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Abstract

A continuous semigroup of probability generating functions F := (Ft , t ≥ 0) is used to intro-
duce a notion of discrete semi-selfdecomposability, or F -semi-selfdecomposability, for distribu-
tions with support on Z+. F -semi-selfdecomposable distributions are infinitely divisible and
are characterized by the absolute monotonicity of a specific function. The class of F -semi-
selfdecomposable laws is shown to contain the F - semistable distributions and the geometric
F -semistable distributions. A generalization of discrete random stability is also explored.
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1 Introduction

A real-valued random variable (rv) X, or its distribution, is said to be self-decomposable if for every
0< α < 1 there exists a rv Xα such that

(1.1) X
d
= αX + Xα,

where X and Xα are independent. If Xα
d
= (1− α)1/γX for some γ > 0, then X is said to be stable

with exponent γ.

Self-decomposable (resp. stable) distributions derive their importance in probability theory from
the fact that they arise as weak limits of sequences of normalized partial sums of independent (resp.
iid) rv’s (Loève, 1977).

A distribution on the real line is self-decomposable if and only if it is infinitely divisible and has
an absolutely continuous Lévy measure ν(d x) = g(x)

|x | d x such that g(x) ≥ 0 is nondecreasing on
(−∞, 0) and nonincreasing on (0,∞) (Steutel and van Harn, 2004).

Stable distributions exist only if γ ∈ (0,2]. They are self-decomposable and their characteristic
functions admit the canonical form ln f (t) = −λ|t|γ(1 ± sign(t)θ i), for some λ > 0 and θ ∈ R
(Steutel and van Harn, 2004).

van Harn et al. (1982) proposed discrete analogues of self-decomposability and stability for distri-
butions on Z+ := {0,1, 2, · · · }. The authors first introduced the Z+-valued multiple α�F X for a
Z+-valued rv X and 0< α < 1 in the following way:

(1.2) α�F X =
X
∑

k=1

Yk(t) := ZX (t) (t =− lnα),

where Y1(·), Y2(·), · · · are independent copies of a continuous-time Markov branching process, inde-
pendent of X , such that for every k ≥ 1, P(Yk(0) = 1) = 1. The processes (Yk(·), k ≥ 1) are driven
by a composition semigroup of probability generating functions (pgf’s) F := (Ft , t ≥ 0):

(1.3) Fs ◦ Ft(z) = Fs+t(z) (|z| ≤ 1; s, t ≥ 0).

For every k ≥ 1 and t ≥ 0, Ft(z) is the pgf of Yk(t), and the transition matrix {pi j(t} of the Markov
process Yk(·) is determined by the equation

(1.4)
∞
∑

j=0

pi j(t)z
j = {Ft(z)}i (|z| ≤ 1; i ≥ 0).

Note that the process ZX (·) of (1.2) is itself a Markov branching process driven by F and starting
with X individuals (ZX (0) = X ).

Let P(z) be the pgf of X . Then the pgf Pα�F X (z) of α�F X is given by

(1.5) Pα�F X (z) = P(Ft(z)) ( t =− lnα; 0≤ z ≤ 1).

As an analogue of scalar multiplication, the operation �F must satisfy some minimal conditions
(Steutel and van Harn (2004), Chapter V, Section 8). In particular, the following regularity condi-
tions are imposed on the composition semigroup F :

(1.6) lim
t↓0

Ft(z) = F0(z) = z, lim
t→∞

Ft(z) = 1.
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The first part of (1.6) implies the continuity of the semigroup F (by way of (1.3)) and the sec-
ond part is equivalent to assuming that m = F ′1(1) ≤ 1, which implies the (sub-)criticality of the
continuous-time Markov branching process Yk(·) in (1.2).

We will restrict ourselves to the subcritical case (m < 1) and we will assume without loss of gener-
ality that m= e−1 (see Remark 3.1 in van Harn et al., 1982).

A Z+-valued rv X , or its distribution, is said to have anF -self-decomposable distribution if for every
0< α < 1,

(1.7) X
d
= α�F X + Xα (t =− lnα),

where Xα is Z+-valued and X and Xα are independent (van Harn et al., 1982).

Equivalently, by (1.5) and (1.7), a distribution on Z+ with pgf P(z) is F -self-decomposable if for
every t > 0, there exists a pgf Pt(z) such that

(1.8) P(z) = P(Ft(z))Pt(z) (0≤ z ≤ 1),

where P and Pt are the pgf’s of X and Xα (α= e−t), respectively, in (1.7).

Using (1.3), (1.5) and (1.8), it is easily seen that (1.7) corresponds to an identity that links the
distributions of two generations of the Markov branching process ZX (·) of (1.2):

(1.9) ZX (s)
d
= ZX (t + s) + Z ′Xα(s) (t > 0; s ≥ 0; α= e−t),

where Z ′Xα(·) is a continuous-time Markov branching process independent of ZX (·), driven byF and
such that Z ′Xα(0) = Xα.

An F -self-decomposable distribution is infinitely divisible and is characterized by the following
canonical form of its pgf (van Harn et al., 1982):

(1.10) P(z) = exp
�
∫ 1

z

lnQ(x)
U(x)

d x
�

(0≤ z ≤ 1),

where U(z) is the infinitesimal generator of the semigroup F (see definition below) and Q(z) is the
pgf of an infinitely divisible distribution on Z+.

F -stable distributions and geometric F -stable distributions (the definitions are recalled in Sec-
tion 3 and 4, respectively) form important subclasses of the class of F -self-decomposable distri-
butions. Steutel et al. (1983) showed that F -self-decomposable distributions arise as weak limits
of continuous-time branching processes with immigration. Aly and Bouzar (2005) discussed the
relationship between F -self-decomposability and Z+-valued first-order autoregressive processes.

Maejima and Naito (1998) introduced the notion of semi-selfdecomposability as follows. Let α ∈
(0,1). A real-valued rv X, or its distribution, is said to be semi-selfdecomposable of order α if X
satisfies (1.1) for some infinitely divisible rv Xα independent of X .

A distribution on the real line is self-decomposable if and only if it is semi-selfdecomposable of all
orders 0< α < 1 (Maejima and Naito, 1998).

Semi-selfdecomposable distributions are infinitely divisible and are characterized by a specific rep-
resentation of their Lévy measures (Maejima and Naito, 1998). The class of semi-selfdecomposable

1119



laws coincides with the class of weak limits of subsequences of normalized partial sums of indepen-
dent rv’s. Semistable distributions (Lévy, 1937) and geometric semistable distributions (Borowiecka,
2002) form notable subclasses of the class of semi-selfdecomposable distributions. Several authors
have studied the connection between the notions of (semi-)self-decomposability and (semi-)stability
and the class of (semi-) selfsimilar additive and Lévy processes. We refer in particular to the work by
Choi (1994), Maejima and Sato (2003), and the monograph by Sato (1999), and references therein.

The aim of this paper is to introduce and develop a notion of F -semi-selfdecomposability for dis-
tributions with support on Z+ that generalizes the concept of F -self-decomposability. In Section 2,
we define F -semi-selfdecomposability and obtain several properties. Notably, we show that these
distributions possess the property of infinite divisibility and are characterized by the absolute mono-
tonicity of a specific function. We establish a relationship between semi-selfdecomposability for
distributions on R+ and F -semi-selfdecomposability by way of compound Poisson mixtures. In Sec-
tion 3, the F -semistable distributions of Krapavitskaite (1987) are shown to form a subclass of the
class of F -semi-selfdecomposable distributions. We also offer some new results on F -semistability.
The subclass of the geometric F -semistable distributions, is discussed in Section 4. In Section 5, we
explore a generalization of discrete random stability.

In the rest of this section we recall some additional definitions and results about the continuous
composition semigroup of pgf’sF := (Ft , t ≥ 0). For proofs and further details we refer to van Harn
et al. (1982) and Steutel and van Harn (2004) and references therein.

The infinitesimal generator U of the semigroup F is defined by

(1.11) U(z) = lim
t↓0
(Ft(z)− z)/t (|z| ≤ 1),

and satisfies U(z)> 0 for 0≤ z < 1.

The related A-function is defined by

(1.12) A(z) = exp
n

−
∫ z

0

(U(x))−1 d x
o

(0≤ z < 1).

The functions U(z) and A(z) satisfy for any t > 0,

(1.13a)
∂

∂ t
Ft(z) = U(Ft(z)) = U(z)F ′t(z) (|z| ≤ 1),

and

(1.13b) A(Ft(z)) = e−tA(z) (0≤ z < 1).

A nonnegative function f (z) on [0, 1) is absolutely monotone if it has nonnegative derivatives of
all orders. An absolutely monotone function f (z) on [0,1) is characterized by the power series
representation f (z) =

∑∞
k=0 akzk, ak ≥ 0, k ≥ 0.

Finally, we recall a characterization of infinite divisibility for distributions on Z+.

Theorem 1.1. A distribution (pn, n ≥ 0) on Z+ with pgf P(z), 0 < P(0) < 1, is infinitely divisible
if and only if the function R(z) = P ′(z)/P(z) is absolutely monotone on [0, 1), with power series
expansion

(1.14) R(z) =
∞
∑

n=0

rnzn (0≤ z < 1),
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where rn ≥ 0 for every n≥ 0 and, necessarily,
∑∞

n=0 rn/(n+ 1)<∞.

Following Steutel and van Harn (2004), we will refer to the function R(z) (respectively, the sequence
(rn, n ≥ 0)) in Theorem 1.1 as the R-function (respectively, the canonical sequence) of (pn, n ≥ 0),
or that of its pgf P(z).

2 F -semi-selfdecomposability

Definition 2.1. Let 0 < α < 1. A Z+-valued rv X with a nondegenerate distribution is said to be
F -semi-selfdecomposable of order α if X satisfies (1.7) for some infinitely divisible Z+-valued rv Xα
independent of X .

By Corollary V.8.4 in Steutel and van Harn (2004), a distribution on Z+ is F -self-decomposable if
and only if it is F -semi-selfdecomposable of all orders 0< α < 1.

A Z+-valued rv X is F -semi-selfdecomposable of order 0 < α < 1 if and only if its pgf P(z) satisfies
(1.8) for some infinitely divisible pgf Pt(z), t = − lnα. In terms of Markov branching processes,
this translates as follows. The process ZX (·) of (1.2) will exhibit the periodic behavior, with period
t =− lnα, that for every s > 0, ZX (s+ t) and ZX (s) are linked by the distributional identity (1.9).

F -semi-selfdecomposability implies infinite divisibility.

Theorem 2.1. An F -semi-selfdecomposable distribution of order 0< α < 1 is infinitely divisible.

Proof: Let P(z) be the pgf of anF -semi-selfdecomposable distribution of order 0< α < 1. By (1.3),
(1.8), and an induction argument, we have for all k ≥ 1,

(2.1) P(z) = P(Fkt(z))
k−1
∏

i=0

Pt(Fi t(z)) (t =− lnα; 0≤ z ≤ 1),

for some infinitely divisible pgf Pt(z). The pgf Pt(Fs(z)) is infinitely divisible for any s > 0. Clo-

sure under convolution of infinite divisibility implies that
k−1
∏

i=0

Pt(Fi t(z)) is an infinitely divisible pgf.

Moreover, we have by (1.6) and (2.1)

(2.2) P(z) = lim
k→∞

k
∏

i=0

Pt(Fi t(z)) (0≤ z ≤ 1).

Since the class of infinitely divisible discrete distributions is closed under weak convergence, we
conclude from (2.2) that P(z) is infinitely divisible.

Next, we obtain some useful characterizations of F -semi-selfdecomposability.

Theorem 2.2. Let (pn, n≥ 0) be a distribution on Z+ with pgf P(z) and let 0< α < 1. The following
assertions are equivalent.

(i) (pn, n≥ 0) is F -semi-selfdecomposable of order α.
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(ii) (pn, n≥ 0) is infinitely divisible and the function

(2.3) Rt(z) = R(z)− F ′t(z)R(Ft(z)) (t =− lnα; 0≤ z < 1),

where R(z) is the R-function of P(z), is absolutely monotone on [0, 1).

(iii) (pn, n ≥ 0) is infinitely divisible and its canonical sequence (rn, n ≥ 0) satisfies the following
inequality for every n≥ 0,

(2.4)
∞
∑

i=0

� n
∑

k=0

(n− k+ 1)p1,n−k+1(t)pik(t)
�

ri ≤ rn (t =− lnα),

where (pkl(t), k ≥ 0, l ≥ 0) is the distribution on Z+ defined by (1.4).

Proof: Assume that (i) holds. By Theorem 2.1, (pn, n ≥ 0) is infinitely divisible. It is easily shown
that Rt(z) of (2.3) is the R-function of Pt(z) and hence (i)⇔(ii) follows by Theorem 1.1. To establish
(ii)⇔(iii), we note that if (rn, n ≥ 0) is the canonical sequence of P(z), then by (1.4) and (1.14)
the n-th coefficient of the power series expansion of R(z)− F ′t(z)R(Ft(z)) is

An = rn−
∞
∑

i=0

� n
∑

k=0

(n− k+ 1)p1,n−k+1(t)pik(t)
�

ri .

Therefore, Rt(z) of (2.3) is absolutely monotone if and only if the inequality (2.4) holds for every
n≥ 0.

Corollary 2.1. The support of an F - semi-selfdecomposable distribution (pn, n ≥ 0) of order 0 <
α < 1 is equal to Z+. i.e., pn > 0 for every n≥ 0.

Proof: By Theorem 2.1, (pn, n ≥ 0) is infinitely divisible. It follows that p0 > 0 (see Section II.1 in
Steutel and van Harn (2004)). Let (rn, n ≥ 0) be the canonical sequence of (pn, n ≥ 0). If r0 = 0,
then by (2.4) rn = 0 for every n≥ 1 and thus (pn, n≥ 0) would be a degenerate distribution, which
is a contradiction. Therefore, r0 > 0 and p1 = r0p0 > 0. The conclusion follows by Corollary II.8.3
in Steutel and van Harn (2004).

van Harn et al. (1982) constructed F -self-decomposable distributions from self-decomposable dis-
tributions on R+ (see their Theorem 5.3). Their method extends to semi-selfdecomposability.

Let φ(τ) be the Laplace-Stieltjes transform (LST) of a distribution on R+ and A(z) the A-function of
F (see (1.12)). Then for any θ > 0,

(2.5) Pθ (z) = φ(θA(z)) (0≤ z ≤ 1),

is the pgf of a compound Poisson mixture distribution on Z+.

Theorem 2.3. A function φ(τ) defined on R+ is the LST of a semi-selfdecomposable distribution on
R+ of order 0< α < 1, if and only if for every θ > 0, Pθ (z) is the pgf of anF -semi-selfdecomposable
distribution of order α.

Proof: The proof is the same as that of Theorem 5.3 in van Harn et al. (1982).
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An F -semi-selfdecomposable distribution does not necessarily arise as a mixture of the form (2.5)
as the following example shows.

Consider the scaled Sibuya distribution (Sibuya (1979) and Christoph and Schreiber (2000)) with
pgf Q(z) = 1−c(1−z)a, a, c ∈ (0,1]. Assume 0< c ≤ 1−a

1+a
. By Theorem 1 in Christoph and Schreiber

(2000), Q(z) is (discrete) self-decomposable with respect to the binomial thinning operator �F (0)
of Steutel and van Harn (1979) (see (2.6) below, and the subsequent remark). The function B(z) =
1− A(z), with 0 ≤ z ≤ 1 and A(z) of (1.12), is a pgf (van Harn et al., 1982). Simple calculations
(and (1.13b)) show that the pgf P(z) = Q(B(z)) = 1 − cA(z)a, 0 ≤ z ≤ 1, satisfies (1.8) and is
therefore F -self-decomposable. If P(z) had the form (2.5) for some LST φ(τ) and θ > 0, then
φ(τ) = 1− cτa/θ over a finite interval [0,θ]. This contradicts the fact that φ(τ) is an LST.

The subclass of F - semi-selfdecomposable distributions that have a mixture representation of the
type (2.5) coincides with the class of weak limits of subsequences of weighted sums of Z+-valued
independent rv’s via the multiplicator �F . The proof is obtained by combining the arguments in the
proofs of Theorems 8.4 and 8.5 of van Harn et al. (1982) and by using Theorem 2.1 in Maejima and
Naito (1998). We omit the details.

Theorem 2.4. Let (Xn, n ≥ 1) be a sequence of independent Z+-valued rv’s and 0 < α < 1. Let
(cn, n≥ 1) be an increasing sequence of real numbers such that cn ≥ 1 and cn ↑ ∞ and let (kn, n≥ 1)
be a strictly increasing sequence in Z+ such that kn ↑ ∞. Assume

(i) c−1
n �F

kn
∑

i=1

X i converges weakly to a Z+-valued rv X ; (ii) lim
n→∞

cn

cn+1
= α; (iii) lim

n→∞
max

1≤i≤kn

P(c−1
n �F

X i ≥ ε) = 0, for every ε > 0. Then X is F -semi-selfdecomposable of order α. Moreover, X admits

the mixture representation (2.5) (for some θ > 0) with a semi-selfdecomposable mixing distribution
on R+ of order α.

Conversely, if a Z+-valued rv X admits a mixture representation of the type (2.5) with a semi-
selfdecomposable mixing distribution of order 0 < α < 1, then there exist sequences (Xn, n ≥ 1),
(cn, n≥ 1) and (kn, n≥ 1), as defined above, that satisfy (i)-(iii).

van Harn et al. (1982) give some rich examples of continuous composition semigroups of pgf’s. We
mention the family of semigroups (F (θ), 0≤ θ < 1) described by

(2.6) F (θ)t (z) = 1−
θ e−t(1− z)

θ + θ(1− e−t)(1− z)
(t ≥ 0, |z| ≤ 1, θ = 1− θ).

In this case we have m = e−1, U (θ)(z) = θ
−1
(1 − z)(1 − θz) and A(θ)(z) = 1−z

1−θz
. We note that

for θ = 0, F (θ)corresponds to the standard semigroup F (0)t (z) = 1− e−t + e−tz and the multipli-
cation �F (0) becomes the binomial thinning operator of Steutel and van Harn (1979). F (0)-semi-
selfdecomposability was studied by Bouzar (2008).

3 F -semistability

In this section, we discuss an important subset of the set of F -semi-selfdecomposable distributions.
First, we recall the definition of F -stability due to van Harn et al. (1982).
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A Z+-valued rv X , or its distribution, is said to be F -stable if for every n ≥ 1 there exists cn ∈ (0, 1]
such that

(3.1) X
d
= cn�F (X1+ · · ·+ Xn),

where X1, · · ·Xn are iid with X1
d
= X .

An F -stable distribution is F -selfdecomposable and is characterized by the following canonical
form of its pgf (van Harn et al., 1982):

(3.2) P(z) = exp{−cA(z)γ} (0≤ z ≤ 1),

where c > 0, 0 < γ ≤ 1, and A(z) is the A-function of F (see (1.12)). The number γ is called the
exponent of the (F -stable) distribution.

Krapavitskaite (1987) introduced the notion of F -semistability as follows.

Definition 3.1 A Z+-valued rv X with pgf P(z) is said to be F -semistable if there exist λ > 0 and
0< α < 1 such that

(3.3) P(z) = [P(Ft(z)]
λ (t =− lnα; 0≤ z ≤ 1).

Krapavitskaite (1987) showed that if an F -semistable distribution exists, then α and λ of (3.3)
satisfy the inequality λα ≤ 1 < λ. This implies that one can write λ = α−γ for some 0 < γ ≤ 1. We
will refer to γ as the exponent of the distribution and α its order.

A distribution on Z+ with pgf P(z) is F -stable if and only if for every λ > 1, there exists 0 < α < 1
such that P(z) satisfies (3.3) (van Harn et al., 1982). Therefore, a distribution on Z+ is F -stable
distribution if and only if it is F -semistable for all λ > 0.

Proposition 3.1. An F -semistable distribution with exponent 0 < γ ≤ 1 and order 0 < α < 1 is
infinitely divisible.

Proof: Let P(z) be the pgf of an F -semistable distribution with exponent γ and order α. By (1.3),
(3.3), and induction, we have for any n≥ 0

(3.4) [P(z)]α
nγ
= P(Fnt(z)) (t =− lnα; 0≤ z ≤ 1).

Let Pn(z) = exp{−α−nγ(1− [P(z)]α
nγ
)}, n ≥ 0. By (3.4), Pn(z) is the pgf of a compound Poisson

distribution on Z+ and is therefore infinitely divisible. Moreover, we have limn→∞ Pn(z) = P(z),
0 ≤ z ≤ 1. Hence, any F -semistable distribution is the weak limit of a sequence of infinitely
divisible distributions and is therefore infinitely divisible.

Characterization results for F -semistability are given next.

Theorem 3.1. Let 0 < α < 1 and 0 < γ ≤ 1, and let (pn, n ≥ 0) be a distribution on Z+ with pgf
P(z). The following assertions are equivalent.

(i) (pn, n≥ 0) is F -semistable with exponent γ and order α.
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(ii) There exists a nonnegative and periodic function g(·) on R+, with period t =− lnα, such that

(3.5) P(z) = exp
�

−A(z)γg(| ln A(z)|)
	

(0≤ z < 1),

where A(z) is the A-function of F (see (1.12)).

(iii) (pn, n≥ 0) is infinitely divisible and its R-function has the form

(3.6) R(z) = A(z)γr(| ln A(z)|)/U(z) (0≤ z < 1),

for some nonnegative and periodic function r(·) on R+, with period t =− lnα.

Proof: (i)⇔(ii): Let P(z) be the pgf of an F -semistable distribution with exponent γ and order
α. Let f (z) = −A(z)−γ ln P(z), z ∈ [0, 1). Clearly, f (z) ≥ 0, z ∈ [0,1). By (3.3) and (1.13b),
f (Ft(z)) = f (z), t =− lnα. Therefore, P(z) has the form

(3.7) P(z) = exp{−A(z)γ f (z)} (0≤ z < 1).

Let g(τ) = f (A−1(e−τ)), τ ≥ 0, where A−1(·) is the inverse function of A(·) (note A is one-to-one
from [0, 1] onto [0, 1]). Clearly, g(− ln A(z)) = f (A−1(eln A(z))) = f (z). Therefore, (3.5) follows
from (3.7). Since, by (1.13b), A[Ft(A−1(e−τ))] = e−τ−t , we have g(τ + t) = f (A−1(e−τ−t)) =
f (Ft(A−1(e−τ)) = f (A−1(e−τ)) = g(τ). This implies g(τ) is periodic with period t. The proof of the
converse is straightforward.

(i)⇔(iii): Infinite divisibility follows from Proposition 3.1. By (ii), ln P(z) = −A(z)γg(| ln A(z)|),
z ∈ [0,1). By differentiation and the fact that [−U(z)]−1 = A′(z)/A(z) (see (1.12)), we have
R(z) = A(z)γ(−γg(| ln A(z)|) + g ′(| ln A(z)|))/U(z). The representation (3.6) ensues, with r(τ) =
γg(τ) − g ′(τ), τ ≥ 0. Since R(z) ≥ 0 on [0, 1) and g(τ) has period t, it follows that r(τ) is
nonnegative and periodic, with period t. Conversely, by (3.6), (1.13a), (1.13b), and the fact that
r(τ) is periodic with period t, we have for every 0 ≤ z < 1, R(z) = αγF ′t(z)R(Ft(z)). An integration
argument leads to (3.3) (with λ= α−γ).

The following result is a direct consequence of Theorem 3.1 and equation (1.8).

Corollary 3.1. An F -semistable distribution with exponent 0 < γ ≤ 1, order 0 < α < 1, and pgf
P(z), is F -semi-selfdecomposable of order α. In this case, the pgf Pt(z) of (1.8), t = − lnα, takes
the form

(3.8) Pt(z) = [P(z)]
c (c = 1−αγ; 0≤ z ≤ 1).

Corollary 3.1 allows for an interpretation ofF -semistability in terms of Markov branching processes
in a way that is similar to the one described forF -semi-sefdecomposability (see paragraph following
Definition 2.1). In this case, the Z+-valued rv Xα in (1.9) will have pgf Pt(z) of (3.8).

F -semistable distributions can be obtained from their continuous counterparts with support on R+.

Theorem 3.2. A function φ(τ) defined on R+ is the LST of a semistable distribution on R+ with
exponent 0 < γ ≤ 1 and order 0 < α < 1 if and only if for every θ > 0, Pθ (z) of (2.5) is the pgf of
an F -semistable distribution with exponent γ and order α, for some, and then for all, θ > 0.
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Proof: The ’only if’ part follows from the fact that φ(τ) satisfies (Huillet et al., 2001)

(3.9) lnφ(τ) = α−γ lnφ(ατ) (τ≥ 0).

To prove the ’if’ part, assume that φ(τ) is an LST with the property that for some θ > 0, Pθ (z)
satisfies (3.3) with t = − lnα and λ = α−γ. Then by (1.13b), lnφ(θA(z)) = α−γ lnφ(αθA(z))),
z ∈ [0,1). For 0 ≤ τ ≤ θ , let z = A−1�(τ/θ))

�

. Noting that 0 ≤ z ≤ 1, it follows that φ(τ) satisfies
(3.9) for every 0 ≤ τ ≤ θ and hence for every τ ≥ 0 (since an LST is completely determined over
finite intervals). The conclusion extends to all θ > 0 by the first part of the theorem.

If (Xn, n≥ 1) in Theorem 2.4 is a sequence of iid rv’s, then the limiting distribution is F -semistable
(note that in this case condition (iii) of the theorem is necessarily satisfied). The proof is obtained
by combining the arguments in the proofs of Theorems 8.4 and 8.5 of van Harn et al. (1982) and
by using Theorem 2.1 in Maejima (2001). We omit the details.

Theorem 3.3 Let (Xn, n ≥ 1) be a sequence of Z+-valued iid rv’s and 0 < α < 1. Let (cn, n ≥ 1) be
an increasing sequence of real numbers such that cn ≥ 1 and cn ↑ ∞ and let (kn, n ≥ 1) be a strictly
increasing sequence in Z+ such that kn ↑ ∞. Assume

(i) c−1
n �F

kn
∑

i=1

X i converges weakly to a Z+-valued rv X ; (ii) lim
n→∞

cn

cn+1
= α; Then X is F -semistable

with some exponent 0 < γ ≤ 1 and order α. Moreover, X admits the mixture representation (2.5)
(for some θ > 0) with a semistable mixing distribution on R+ with exponent γ and order α. The
sequence (kn, n≥ 1) necessarily satisfies

(3.10) lim
n→∞

kn

kn+1
= γ.

Conversely, if a Z+-valued rv X admits a mixture representation of the type (2.5) with a semistable
mixing distribution with exponent γ and order α (for some 0 < α < 1 and 0 < γ ≤ 1), then there
exist sequences (Xn, n ≥ 1), (cn, n ≥ 1) and (kn, n ≥ 1), as defined above, that satisfy (i)-(ii) and
(3.10).

The following result is a direct consequence of Theorems 3.2 and 3.3.

Corollary 3.2. A Z+-valued rv X has an F -semistable distribution with exponent 0 < γ ≤ 1 and
order 0 < α < 1 if and only if X admits the mixture representation (2.5) (for some θ > 0) with a
semistable mixing distribution on R+ with exponent γ and order α.

Next, we give an example of an F -semistable distribution.

Let 0< α < 1 and 0< γ≤ 1. Letψα(x) be a continuous bounded nonnegative and periodic function
over R+, with period − lnα. The function

(3.11) φ(τ) = exp
n

−
∫ ∞

0

(1− e−τx)x−1−γψα(ln x) d x
o

(τ≥ 0)

is the LST of an infinitely divisible distribution µ on R+ (by Theorem III.4.3 in Steutel and van Harn
(2004)). It is easily seen that φ(τ) satisfies (3.9). Thus µ is semistable with exponent γ and order

1126



α. By Theorem 3.2,

(3.12) Pθ (z) = exp
n

−
∫ ∞

0

(1− e−θA(z)x)x−1−γψα(ln x) d x
o

(θ > 0;0≤ z ≤ 1)

is the pgf of an F -semistable distribution with exponent γ and order α.

We note that Theorem 3.1 ((i)⇔(ii)) and Theorem 3.3 are essentially due to Krapavitskaite (1987).
The proofs we outlined for these results are somewhat simpler than those provided by Krapavitskaite
(1987).

4 Geometric F -semistability

In this section, we introduce a notion of discrete random semistability and discuss its relationship
with F -semistability and F -semi-selfdecomposability.

We recall (Bouzar, 1999) that a Z+-valued rv X , or its distribution, is said to be geometric F -stable
if for every 0< p < 1, there exists 0< α < 1 such that

(4.1) X
d
= α�F

Np
∑

i=1

X i ,

where (X i , i ≥ 1) is a sequence of iid rv’s, X i
d
= X , Np has the geometric distribution with parameter

p (i.e., P(Np = k) = p(1− p)k−1, k ≥ 1), and (X i , i ≥ 1) and Np are independent.

A geometricF -stable distribution isF -selfdecomposable and is characterized by the following form
of its pgf (Bouzar, 1999):

(4.2) P(z) = (1+ cA(z)γ)−1 (0≤ z ≤ 1),

where c > 0, 0 < γ ≤ 1, and A(z) is the A-function of F (see (1.12)). The number γ is called the
exponent of the (geometric F -stable) distribution.

Definition 4.1. A Z+-valued rv X is said to be geometric F -semistable if it satisfies (4.1) for some
0< p < 1 and 0< α < 1.

It follows from the definitions above that a Z+-valued rv X is geometric F -stable if and only if it is
geometric F -semistable for every 0< p < 1.

It is easily shown that a Z+-valued rv with pgf P(z) is geometric F -semistable if and only if there
exist p,α ∈ (0,1) such that

(4.3) P(Ft(z)) =
P(z)

p+ (1− p)P(z)
(t =− lnα; 0≤ z ≤ 1).

Klebanov et al. (1984) introduced random infinite divisibility as follows. A rv X is said to be
geometric infinitely divisible if for any 0 < p < 1, there exits a sequence of iid rv’s (X (p)i , i ≥ 1) and

a rv Np with a geometric distribution (as in (4.1)), and independent of (X (p)i , i ≥ 1), such that

(4.4) X
d
=

Np
∑

i=1

X (p)i .
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Proposition 4.1. A geometric F -semistable distribution is geometric infinitely divisible, and hence
infinitely divisible.

Proof: Let P(z) be the pgf of a geometric F -semistable distribution. Using (4.3) inductively (for
p,α ∈ (0, 1)), along with (1.3) and (1.6), it can be shown that P(z) = limn→∞ Pn(z), where Pn(z) =
�

1+p−n(1−P(Fnt(z)))
�−1

and t =− lnα. By Aly and Bouzar (2000), Pn(z) is the pgf of a geometric
infinitely divisible distribution for every n ≥ 1. Therefore, any geometric F -semistable distribution
is the weak limit of a sequence of geometric infinitely divisible distributions and, hence, must itself
be geometric infinitely divisible (Klebanov et al., 1984). The second part follows by Aly and Bouzar
(2000).

A useful link exists between F -semistability and geometric F -semistability.

Theorem 4.1. A distribution on Z+ with pgf P(z) is geometric F -semistable for some p,α ∈ (0,1)
if and only if

(4.5) H(z) = exp
n

1−
1

P(z)

o

(0≤ z ≤ 1)

is the pgf of an F -semistable distribution with exponent γ= ln p/ lnα and order α.

Proof: If P(z) satisfies (4.3) for p,α ∈ (0, 1), then by Proposition 4.1, P(z) is geometric infinitely
divisible. By Aly and Bouzar (2000), H(z) of (4.5) is an infinitely divisible pgf. Moreover, we have
by (4.3) that H(z) satisfies (3.3) with λ = 1/p. Therefore H(z) is F -semistable with exponent
γ = ln p/ lnα and order α. This proves the ’only if’ part. For the ’if’ part, assume H(z) of (4.5)
is F -semistable with exponent 0 < γ ≤ 1 and order 0 < α < 1. Then P(z) satisfies (4.3) with
p = αγ.

By Theorem 4.1, the parameters p,α ∈ (0,1) of a geometric F -semistable distribution are linked by
the equation p = αγ, 0 < γ ≤ 1. We will refer to γ as the exponent of the distribution and α its
order.

Corollary 4.1. A distribution on Z+ with pgf P(z) is geometric F -semistable with exponent 0 <
γ≤ 1 and order 0< α < 1 if and only if

(4.6) P(z) =
�

1− ln H(z)
�−1 (0≤ z ≤ 1),

where H(z) is the pgf of an F -semistable distribution with exponent γ and order α.

Combining Theorem 3.1 and Corollary 4.1 yields the following representation result.

Corollary 4.2. A distribution on Z+ with pgf P(z) is geometric F -semistable with exponent 0 <
γ ≤ 1 and order 0 < α < 1 if and only if there exists a nonnegative and periodic function g(·) on
R+, with period t =− lnα, such that

(4.7) P(z) =
�

1+ A(z)γg(| ln A(z)|)
�−1 (0≤ z < 1),

where A(z) is the A-function of F (see (1.12)).

From Corollary 4.2 and equation (1.8), we deduce
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Corollary 4.3. A geometric F -semistable distribution with exponent 0 < γ ≤ 1, order 0 < α < 1,
and pgf P(z), is F -semi-selfdecomposable of order α. In this case, the pgf Pt(z) of (1.8) takes the
form

(4.8) Pt(z) = 1− c+ cP(z) (c = 1−αγ; 0≤ z ≤ 1).

Corollary 4.3 allows for an interpretation of geometricF -semistability in terms of Markov branching
processes in a way that is similar to the one described forF -semi-sefdecomposability (see paragraph

following Definition 2.1). By (4.8), the rv Xα in (1.9) satisfies Xα
d
= IX ′, where I and X ′ are

independent, I is Bernoulli (1−αγ), and X ′
d
= X .

By Theorem 3.2 and Corollary 4.1 (and its continuous counterpart), we obtain

Corollary 4.4. A function φ(τ) defined on R+ is the LST of a geometric semistable distribution
on R+ with exponent 0 < γ ≤ 1 and order 0 < α < 1, if and only if Pθ (z) of (2.5) is the pgf of a
geometric F -semistable distribution with exponent γ and order t = − lnα, for some, and then for
all, θ > 0.

Theorem 4.1, Corollary 3.2, and Corollary 4.1 (and its continuous counterpart) yield

Corollary 4.5. A Z+-valued rv X has a geometricF -semistable distribution with exponent 0< γ≤ 1
and order 0 < α < 1 if and only if X admits the mixture representation (2.5) (for some θ > 0) with
a geometric semistable mixing distribution on R+ with exponent γ and order α.

Combining Corollary 4.1 with equation (3.12) yields an example of a geometric F -semistable dis-
tribution with pgf

P(z) =
�

1+

∫ ∞

0

(1− e−θA(z))x−1−γψα(ln x) d x
�−1

(θ > 0; 0≤ z ≤ 1).

5 N -semistability on Z+

The concept of geometric infinite divisibility of Klebanov et al. (1984) encountered in Section 4
was generalized independently by Klebanov and Rachev (1996) and Bunge (1996). The definition
follows.

Let I be a subset of (0,1) and N := {Np, p ∈ I} a family of Z+-valued rv’s such that E(Np) = 1/p for
any p ∈ I , and

(5.1) Kp1
◦ Kp2

(z) = Kp2
◦ Kp1

(z) (p1, p2 ∈ I ; 0≤ z ≤ 1),

where Kp(z) is the pgf of Np.

Definition 5.1. A rv X is said to be N -infinitely divisible if it satisfies (4.1) for any Np ∈ N .

The commutative property (5.1) implies (see the proof of Theorem 4.6.1 in Gnedenko and Korolev
(1996)) the existence of an LST ϕ(τ) that satisfies ϕ(0) =−ϕ′(0) = 1 and

(5.2) ϕ(τ) = Kp(ϕ(pτ)) (p ∈ I ; τ≥ 0).
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The function ϕ(τ) links N -infinite divisibility with its classical counterpart. We cite the main result
in the discrete case (Aly and Bouzar, 2000).

A Z+-valued rv X is N -infinitely divisible if and only if its pgf P(z) has the form

(5.3) P(z) = ϕ(− ln H(z)) (0≤ z ≤ 1),

where H(z) is the pgf of an infinitely divisible rv.

We now define a related concept of discrete random semistability.

Definition 5.2. A Z+-valued rv X is said to have anN (F)-semistable distribution if it satisfies (4.1)
for some p ∈ I , 0< α < 1, and Np ∈ N .

Using the following equivalent formulation of (5.2),

(5.4) Kp(z) = ϕ(ϕ
−1(z)/p) (p ∈ I ; 0≤ z ≤ 1),

it is easily shown that a distribution on Z+ with pgf P(z) is N (F)-semistable for some p ∈ I and
0< α < 1 if and only if

(5.5) P(Ft(z)) = ϕ(pϕ
−1(P(z))) (t =− lnα; 0≤ z ≤ 1).

Let P(z) be the pgf of an N (F)-semistable distribution for some p ∈ I and 0 < α < 1. Using (5.5)
inductively, along with (1.3), yields

(5.6) P(Fnt(z)) = ϕ(p
nϕ−1(P(z))) (t =− lnα; 0≤ z ≤ 1),

for all n ≥ 1. Let Pn(z) = ϕ(p−n(1− P(Fnt(z))), n ≥ 1. It follows by (5.6), and the basic properties
of ϕ(τ) that limn→∞ Pn(z) = P(z). By (5.3), Pn(z) is the pgf of anN -infinitely divisible distribution.
The closure property of N -infinite divisibility under weak convergence (see Gnedenko and Korolev
(1996), Section 4.6) implies the following result.

Proposition 5.1. Any N (F)-semistable distribution is N -infinitely divisible.

Next, we describe a useful link between N (F)-semistability and F -semistability.

Theorem 5.1. A distribution on Z+ with pgf P(z) is N (F)-semistable for some p ∈ I and 0< α < 1
if and only if

(5.7) H(z) = exp{−ϕ−1(P(z))} (0≤ z ≤ 1)

is the pgf of an F -semistable distribution with exponent γ= ln p/ lnα and order α.

Proof: If P(z) is N (F)-semistable for some p ∈ I and 0< α < 1, then by (5.5)

(5.8) P(z) = ϕ(ϕ−1(P(Ft(z))/p)) (0≤ z ≤ 1).

By Proposition 5.1, P(z) has the form (5.3) for some infinitely divisible pgf H(z). Solving for H(z)
in (5.3) yields (5.7). By (5.5), (5.7), and (5.8), we deduce that H(z) satisfies (3.3) with λ = 1/p.
Therefore H(z) is F -semistable with exponent γ = ln p/ lnα and order α. Conversely, if H(z) of
(5.7) is N (F)-semistable with exponent 0 < γ ≤ 1 and order 0 < α < 1, then P(z) satisfies (5.5)
with p = αγ.

By Theorem 5.1, the parameters p and α of a geometric N (F)-semistable distribution are linked by
the equation p = αγ, 0 < γ ≤ 1. We will refer to γ as the exponent of the distribution and α its
order.

We now gather some characterizations of N (F)-semistability.
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Theorem 5.2. Let 0 < γ ≤ 1 and 0 < α < 1, and let (pn, n ≥ 0) be a distribution on Z+ with pgf
P(z). The following assertions are equivalent.

(i) (pn, n≥ 0) is N (F)-semistable with exponent γ and order α.

(ii) P(z) has the form (5.3), where H(z) is the pgf of an F -semistable distribution with exponent
γ and order α.

(iii) There exists a nonnegative and periodic function g(·) on R+, with period t =− lnα, such that

(5.9) P(z) = ϕ(A(z)γg(| ln A(z)|)) (0≤ z < 1),

where A(z) is the A-function of F (see (1.12)).

Proof: (i)⇒(ii) follows from Theorem 5.1. (ii)⇒(iii) is shown by applying Theorem 3.1 to H(z).
Finally, using (1.13b), it is easily verified that P(z) of (5.9) satisfies (5.5) with p = αγ, which proves
(iii)⇒(i).

Corollary 5.1. Let (pn, n ≥ 0) be an N (F)-semistable distribution with exponent 0 < γ ≤ 1 and
order 0 < α < 1. If ϕ(τ) of (5.2) is the LST of a self-decomposable distribution on R+, then
(pn, n≥ 0) is F -semi-selfdecomposable of order α.

Proof: Let P(z) be the pgf of (pn, n ≥ 0). By Theorem 5.1, P(z) = φ(− ln H(z)) for some F -
semistable pgf H(z)with exponent γ and order α. It is easy to show that if ϕ(τ) is self-decomposable
then P(z) is F -semi-selfdecomposable of order α.

Definition 5.3. A Z+-valued rv X is said to have an N (F)-stable distribution if for any p ∈ I , there
exists 0< α < 1 and Np ∈ N such that (4.1) holds.

The same argument that led to Theorem 5.1 can be used to show that a distribution on Z+ with pgf
P(z) is N (F)-stable if and only if H(z) of (5.7) is the pgf of an F -stable distribution. Using (3.2),
we obtain the following representation result for N (F)-stability.

Theorem 5.3. A distribution on Z+ with pgf P(z) is N (F)-stable if and only if there exist 0< γ≤ 1
and c > 0 such that

P(z) = ϕ(cA(z)γ) (0≤ z ≤ 1),

where A(z) is the A-function of F (see (1.12)).

We note that classical (resp. geometric) infinite divisibility corresponds to the family of rv’s N
where Np =

1
p

with probability 1, p ∈ I = { 1
n

: n ≥ 1} (resp. Np has the geometric distribution

with parameter p ∈ I = (0,1)). In the classical case ϕ(τ) = e−τ, whereas in the geometric case,
ϕ(τ) = (1+τ)−1.
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