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Abstract

One can construct a sequence of rescaled perturbations of voter processes in dimension d = 1
whose approximate densities are tight. By combining both long-range models and fixed ker-
nel models in the perturbations and considering the critical long-range case, results of Cox and
Perkins (2005) are refined. As a special case we are able to consider rescaled Lotka-Volterra
models with long-range dispersal and short-range competition. In the case of long-range inter-
actions only, the approximate densities converge to continuous space time densities which solve
a class of SPDEs (stochastic partial differential equations), namely the heat equation with a class
of drifts, driven by Fisher-Wright noise. If the initial condition of the limiting SPDE is integrable,
weak uniqueness of the limits follows. The results obtained extend the results of Mueller and
Tribe (1995) for the voter model by including perturbations. In particular, spatial versions of the
Lotka-Volterra model as introduced in Neuhauser and Pacala (1999) are covered for parameters
approaching one. Their model incorporates a fecundity parameter and models both intra- and
interspecific competition.
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1 Introduction

We define a sequence of rescaled competing species models ξN
t in dimension d = 1, which can be

described as perturbations of voter models. In the N th-model the sites are indexed by x ∈ N−1Z.
We label the state of site x at time t by ξN

t (x) where ξN
t (x) = 0 if the site is occupied at time t by

type 0 and ξN
t (x) = 1 if it is occupied by type 1.

In what follows we shall write x ∼ y if and only if 0 < |x − y| ≤ N−1/2, i.e. if and only if x is a

neighbour of y . Observe that each x has 2c(N)N1/2, c(N)
N→∞→ 1 neighbours.

The rates of change incorporate both long-range models and fixed kernel models with finite range.
The long-range interaction takes into account the densities of the neighbours of x at long-range, i.e.

f (N)i (x ,ξ)≡
1

2c(N)
p

N

∑

0<|y−x |≤1/
p

N ,
y∈Z/N

1(ξN (y) = i), i = 0, 1

and the fixed kernel interaction considers

g(N)i (x ,ξ)≡
∑

y∈Z/N

p(N(x − y))1(ξN (y) = i), i = 0,1, (1)

where p(x) is a random walk kernel on Z of finite range, i.e. 0 ≤ p(x) ≤ 1,
∑

x∈Z p(x) = 1

and p(x) = 0 for all |x | ≥ Cp. In what follows we shall often abbreviate f (N)i (x ,ξ) by f (N)i and

g(N)i (x ,ξ) by g(N)i if the context is clear. Note in particular that 0≤ f (N)i , g(N)i ≤ 1 and f (N)0 + f (N)1 =
g(N)0 + g(N)1 = 1.

Now define the rates of change of our configurations. At site x in configuration ξN ∈ {0,1}Z/N the
coordinate ξN (x) makes transitions

0→ 1 at rate N f (N)1 + f (N)1

n

g(N)0 G(N)0

�

f (N)1

�

+ g(N)1 H(N)0

�

f (N)1

�o

, (2)

1→ 0 at rate N f (N)0 + f (N)0

n

g(N)0 G(N)1

�

f (N)0

�

+ g(N)1 H(N)1

�

f (N)0

�o

,

where G(N)i , H(N)i , i = 0,1 are functions on [0,1].

Every configuration ξN
t can be rewritten in terms of its corresponding measure. Indeed, introduce

the following notation.

Notation 1.1. For f , g : N−1Z→ R, we set 〈 f , g〉 = 1
N

∑

x f (x)g(x). Let ν be a measure on N−1Z.

Then we set 〈ν , f 〉=
∫

f dν .

Now we can rewrite every configuration ξN
t in terms of its corresponding measure as follows. Let

νN
t ≡

1

N

∑

x
δx1(ξN

t (x) = 1), (3)

then 〈ξN
t , f 〉= 〈νN

t , f 〉.
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We next define approximate densities A(ξN
t ) for the configurations ξN

t via

A(ξN
t )(x) =

1

2c(N)N1/2

∑

y∼x
ξN

t (y), x ∈ N−1Z (4)

and note that A(ξN
t )(x) = f (N)1

�

x ,ξN
t

�

. By linearly interpolating between sites we obtain approxi-
mate densities A(ξN

t )(x) for all x ∈R.

Notation 1.2. Set C1 ≡ { f : R→ [0,1] continuous} and let C1 be equipped with the topology of
uniform convergence on compact sets.

We obtain that t 7→ A(ξN
t ) is cadlag C1-valued, where we used that

0≤ A(ξN
t )(x)≤ 1 for all x ∈ N−1Z.

Definition 1.3. Let S be a Polish space and let D(S) denote the space of cadlag paths from R+ to
S with the Skorokhod topology. Following Definition VI.3.25 in Jacod and Shiryaev [8], we shall
say that a collection of processes with paths in D(S) is C-tight if and only if it is tight in D(S) and
all weak limit points are a.s. continuous. Recall that for Polish spaces, tightness and weak relative
compactness are equivalent.

In what follows we shall investigate tightness of {A(ξN
· ) : N ≥ 1} in D(C1) and tightness of {νN

t : N ≥
1} in D(M (R)), where M (R) is the space of Radon measures equipped with the vague topology
(M (R) is indeed Polish, see Kallenberg [9], Theorem A2.3(i)). We next impose certain assumptions
on the functions G(N)i and H(N)i in (2). These assumptions are rather technical and only become clear
later in the proper context.

Definition 1.4. Let ~P0 be the class of sequences ( f (N) : N ∈ N) of real-valued functions on [0,1],
that can be expressed as power series f (N)(x) ≡

∑∞
m=0 γ

(m+1,N)xm, x ∈ [0, 1] with γ(m+1,N) ∈ R,
m≥ 0 such that there exists N0 ∈N such that

sup
N≥N0

∞
∑

m=0

n

�

γ(m+1,N)
�+
+ (m+ 1)

�

γ(m+1,N)
�−o

<∞, (5)

where a+ =max(a, 0) and a− =max(−a, 0) for a ∈R.

Theorem 1.5. Suppose that A(ξN
0 ) → u0 in C1. Let the transition rates of ξN (x) be as in (2) with

(G(N)i : N ∈ N), (H(N)i : N ∈ N)∈ ~P0, i = 0, 1. Then
�

A(ξN
t ) : t ≥ 0

�

are C-tight as cadlag C1-valued

processes and the
�

νN
t : t ≥ 0

�

are C-tight as cadlag Radon measure valued processes with the vague

topology. If
�

A
�

ξ
Nk
t
�

,νNk
t
�

t≥0 converges to (ut ,νt)t≥0, then νt(d x) = ut(x)d x for all t ≥ 0.

From now on we consider the special case of no fixed kernel interaction (also to be called no short-
range competition in what follows, for reasons that become clear later) and investigate the limits of
our tight sequences. Recall that g(N)0 + g(N)1 = 1. Hence, the special case can be obtained by choosing

G(N)i ≡ H(N)i , i = 0,1 in (2).
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Definition 1.6. Let ~P1 ⊂ ~P0 be the class of sequences ( f (N) : N ∈ N) of real-valued functions on
[0,1] such that f (N)(x) =

∑∞
m=0 γ

(m+1,N)xm with

γ(m+1,N) N→∞→ γ(m+1) for all m≥ 0 (6)

and

lim
N→∞

∞
∑

m=0

n

�

γ(m+1,N)
�+
+ (m+ 1)

�

γ(m+1,N)
�−o

=
∞
∑

m=0

n

�

γ(m+1)
�+
+ (m+ 1)

�

γ(m+1)
�−o

. (7)

Remark 1.7. For ( f (N) : N ∈N)∈ ~P1 let f (x)≡ limN→∞ f (N)(x). Then we have

f (x) =
∞
∑

m=0

γ(m+1)xm, x ∈ [0,1].

Indeed, this holds by (7) and Royden [16], Proposition 11.18.

Theorem 1.8. Consider the special case with no short-range competition. Under the assumptions of
Theorem 1.5 we have for (G(N)i : N ∈ N)∈ ~P1, i = 0, 1 that the limit points of A(ξN

t ) are continuous
C1-valued processes ut which solve

∂ u

∂ t
=
∆u

6
+ (1− u)u

�

G0(u)− G1(1− u)
	

+
p

2u(1− u)Ẇ (8)

with initial condition u0. If we assume additionally 〈u0, 1〉 < ∞, then ut is the unique in law [0, 1]-
valued solution to the above SPDE.

1.1 Literature review

In [13], Mueller and Tribe show that the approximate densities of type 1 of rescaled biased voter
processes converge to continuous space time densities which solve the heat equation with drift,
driven by Fisher-Wright noise. This model and result are covered by our following example.

Example 1.9. Choose G(N)0 (x) = H(N)0 (x) ≡ θ ∈ R and G(N)1 (x) = H(N)1 (x) ≡ 0 in (2). Using that

g(N)0 + g(N)1 = 1 by definition, we obtain a sequence of rescaled biased voter models with rates of change

0→ 1 at rate c(x ,ξ) = N
�

1+
θ

N

�

f (N)1 (x ,ξ),

1→ 0 at rate c(x ,ξ) = N f (N)0 (x ,ξ).

For θ > 0 we thus have a slight favour for type 1 and for θ < 0 we have a slight favour for type 0.

Theorem 1.5 and Theorem 1.8 yield that the sequence of approximate densities A(ξN
t ) is tight and every

limit point solves (8) with G0(u) = θ , G1(1− u) = 0 and initial condition u0. Uniqueness in law holds
for initial conditions of finite mass.

For θ ≥ 0, the above result, except for the part on weak uniqueness, coincides (up to scaling) with
Theorem 2 of [13].
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Example 1.10. For i = 0, 1 choose

a(N)i(1−i) ≡ 1+
θ
(N)
i

N
with θ (N)i

N→∞→ θi . (9)

Let G(N)i (x) = H(N)i (x)≡ θ
(N)
i(1−i)x and observe that G(N)i (x) = H(N)i (x)

N→∞→ θi x ≡ Gi(x) = Hi(x). We
obtain a sequence of rescaled Lotka-Volterra models with rates of change

0→ 1 at rate N f (N)1 + θ (N)0

�

f (N)1

�2
(10)

= N f (N)1 + N(a(N)01 − 1)
�

f (N)1

�2
= N f (N)1

�

f (N)0 + a(N)01 f (N)1

�

,

1→ 0 at rate N f (N)0 + θ (N)1

�

f (N)0

�2
= N f (N)0

�

f (N)1 + a(N)10 f (N)0

�

instead, where we used that f (N)0 + f (N)1 = 1 by definition. The interpretation of a(N)01 and a(N)10 will
become clear once we introduce spatial versions of the Lotka-Volterra model with finite range in (12)
(choose λ= 1). Observe in particular that if we choose a(N)01 , a(N)10 close to 1 as above, the Lotka-Volterra
model can be seen as a small perturbation of the voter model.

Theorem 1.5 and Theorem 1.8 yield that the sequence of approximate densities A(ξN
t ) is tight and every

limit point solves
∂ u

∂ t
=
∆u

6
+ (1− u)u

�

θ0u− θ1(1− u)
	

+
p

2u(1− u)Ẇ (11)

with initial condition u0. Uniqueness in law holds if < u0, 1><∞.

If we choose θ0 = −θ1 > 0 in (11) we obtain the Kolmogorov-Petrovskii-Piscuinov (KPP) equation
driven by Fisher-Wright noise. This SPDE has already been investigated in Mueller and Sowers [12]
in detail, where the existence of travelling waves was shown for θ0 big enough.

In Cox and Perkins [5] it was shown that stochastic spatial Lotka-Volterra models as in (10), satis-
fying (9) and suitably rescaled in space and time, converge weakly to super-Brownian motion with
linear drift. [5] extended the main results of Cox, Durrett and Perkins [4], which proved similar
results for long-range voter models. Both papers treat the low density regime, i.e. where only a
finite number of individuals of type 1 is present. Instead of investigating limits for approximate
densities as we do, both papers define measure-valued processes X N

t by

X N
t =

1

N ′
∑

x∈Z/(MN
p

N)

ξN
t (x)δx ,

i.e. they assign mass 1/N ′, N ′ = N ′(N) to each individual of type 1 and consider weak limits in the
space of finite Borel measures on R. In particular, they establish the tightness of the sequence of
measures and the uniqueness of the martingale problem, solved by any limit point.

Note that both papers use a different scaling in comparison to [13]. Using the notation in [4], for
d = 1 they take N ′ = N and the space is scaled by MN

p
N with MN/

p
N → ∞ (see for instance

Theorem 1.1 of [4] for d = 1) in the long-range setup. According to this notation, [13] used
MN =

p
N , which is at the threshold of the results in [4], but not included. By letting MN =

p
N

in our setup non-linear terms arise in our limiting SPDE. Also note the brief discussion of the case
where MN/

p
N → 0 in d = 1 before (H3) in [4].
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Next recall spatial versions of the Lotka-Volterra model with finite range as introduced in Neuhauser
and Pacala [14] (they considered ξ(x) ∈ {1, 2} instead of {0,1}). They use transition rates

0→ 1 at rate c(x ,ξ) =
λ f1(x ,ξ)

λ f1(x ,ξ) + f0(x ,ξ)
�

f0(x ,ξ) +α01 f1(x ,ξ)
�

, (12)

1→ 0 at rate c(x ,ξ) =
f0(x ,ξ)

λ f1(x ,ξ) + f0(x ,ξ)
�

f1(x ,ξ) +α10 f0(x ,ξ)
�

,

where α01,α10 ≥ 0,λ > 0. Here fi(x ,ξ) = 1
|N |

∑

y∈x+N 1(ξ(y) = i), i = 0,1 with the set of
neighbours of 0 being N = {y : 0< |y| ≤ R} with R≥ 1.

We can think of R as the finite interaction range of the model. [14] use this model to obtain results
on the parameter regions for coexistence, founder control and spatial segregation of types 0 and 1
in the context of a model that incorporates short-range interactions and dispersal. As a conclusion
they obtain that the short-range interactions alter the predictions of the mean-field model.

Following [14] we can interpret the rates as follows. The second multiplicative factor of the rate
governs the density-dependent mortality of a particle, the first factor represents the strength of the
instantaneous replacement by a particle of opposite type. The mortality of type 0 consists of two
parts, f0 describes the effect of intraspecific competition, α01 f1 the effect of interspecific competi-
tion. [14] assume that the intraspecific competition is the same for both species. The replacement of
a particle of opposite type is regulated by the fecundity parameter λ. The first factors of both rates
of change added together yield 1. Thus they can be seen as weighted densities of the two species. If
λ > 1, species 1 has a higher fecundity than species 0.

Example 1.11. Choose the competition and fecundity parameters near one and consider the long-range
case. Namely, the model at hand exhibits the following transition rates:

0→ 1 at rate N





λ(N) f (N)1

λ(N) f (N)1 + f (N)0

�

f (N)0 + a(N)01 f (N)1

�



 ,

1→ 0 at rate N





f (N)0

λ(N) f (N)1 + f (N)0

�

f (N)1 + a(N)10 f (N)0

�



 .

We suppose that

λ(N) ≡ 1+
λ′

N
, a(N)01 ≡ 1+

a01

N
, a(N)10 ≡ 1+

a10

N
.

Using f (N)0 + f (N)1 = 1 we can therefore rewrite the rates as

0→ 1 at rate
�

N +λ′
�

f (N)1

�

1+
a01

N
f (N)1

�

∑

n≥0

�

−
λ′

N
f (N)1

�n

, (13)

1→ 0 at rate N f (N)0

�

1+
a10

N
f (N)0

�

∑

n≥0

�

−
λ′

N
f (N)1

�n

= N f (N)0

�

1+
a10

N
f (N)0

�

∑

k≥0

�

f (N)0

�k
�

λ′

N

�k
∑

n≥k

�

n

k

�

�

−
λ′

N

�n−k

.
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Here we used that
�

�

� f (N)i

�

�

�≤ 1, i = 0,1 and that
�

�

�

λ′

N

�

�

�→ 0 for N →∞. We can use the explicit calculations

for a geometric series, in particular that we have
∑

n≥0 n|q|n <∞ and
∑

n≥k |q|
n−k�n

k

�

= 1
(1−|q|)k+1 for

|q| < 1 to check that (G(N)i : N ∈N), (H(N)i : N ∈N)∈ ~P1, i = 0, 1. Using Theorem 1.8 we obtain that
the limit points of A(ξN

t ) are continuous C1-valued processes ut which solve

∂ u

∂ t
=
∆u

6
+ (1− u)u

��

λ′+ u
�

a01−λ′
��

−
�

−λ′+ (1− u)
�

a10+λ
′��	+

p

2u(1− u)Ẇ

=
∆u

6
+ (1− u)u

�

λ′− a10+ u
�

a01+ a10
�	

+
p

2u(1− u)Ẇ (14)

by rewriting the above rates (13) in the form (2) and taking the limit for N →∞. For 〈u0, 1〉 <∞, ut
is the unique weak [0, 1]-valued solution to the above SPDE.

Additionally, [4] and [5] consider fixed kernel models in dimensions d ≥ 2 respectively d ≥ 3.
They set g(N)i (x ,ξ) =

∑

y∈Zd/(MN
p

N) p(x − y)1(ξN (y) = i), i = 0,1 (compare this to (1)) and
choose MN = 1 and a fixed random walk kernel q satisfying some additional conditions such that
p(x) = q(

p
N x) on x ∈ Zd/(MN

p
N). In Cox and Perkins [6], the results of [5] for d ≥ 3 are used

to relate the limiting super-Brownian motions to questions of coexistence and survival of a rare type
in the original Lotka-Volterra model.

Example 1.12. Consider rescaled Lotka-Volterra models with long-range dispersal and short-range
competition, i.e. where (10) gets generalized to

0→ 1 at rate N f (N)1

�

g(N)0 + a(N)01 g(N)1

�

,

1→ 0 at rate N f (N)0

�

g(N)1 + a(N)10 g(N)0

�

.

Here f (N)i , i = 0, 1 is the density corresponding to a long-range kernel pL and g(N)i , i = 0,1 is the density
corresponding to a fixed kernel pF (also recall the interpretation of both multiplicative factors following
equation (12)).

We obtain for a(N)i(1−i), i = 0, 1 as in (9) that H(N)0 (x)≡ θ
(N)
0 , G(N)1 (x)≡ θ

(N)
1 and G(N)0 (x) = H(N)1 (x)≡

0 in (2). Under the assumption that the initial approximate densities A(ξN
0 ) converge in C1, Theorem

1.5 yields tightness of the sequence of approximate densities A(ξN
t ).

1.2 Discussion of results and future challenges

In the present paper we first prove tightness of the local densities for scaling limits of more general
particle systems. The generalization includes two features.

Firstly, we extend the model in [13] to limits of small perturbations of the long-range voter model,
including negative perturbations (recall Example 1.9 and that [13] assumed θ ≥ 0) and the setup
from [14] (cf. Example 1.11). As the rates in [14] (see (12)) include taking ratios, we extend our
perturbations to a set of power series (for extensions to polynomials of degree 2 recall (10)), thereby
including certain analytic functions. Recall in particular from (9) that we shall allow the coefficients
of the power series to depend on N .

Secondly, we combine both long-range interaction and fixed kernel interaction for the perturbations.
As we see, the tightness results carry over (cf. Example 1.12).
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Finally, in the case of long-range interactions only we show that the limit points are solutions of a
SPDE similar to [13] but with a drift depending on the choice of our perturbation and small changes
in constants due to simple differences in scale factors. Hence, we obtain a class of SPDEs that can
be characterized as the limit of perturbations of the long-range voter model.

Example 1.13. Let Gi(x) =
∑∞

m=0 γ
(m+1)
i xm, i = 0, 1 be two arbitrary power series with coefficients

satisfying
∑

i=0,1

∞
∑

m=0

§
�

γ
(m+1)
i

�+
+ (m+ 1)

�

γ
(m+1)
i

�−ª

<∞.

Set G(N)i (x) ≡ Gi(x) for all N ∈N. Then (G(N)i : N ∈N) ∈ ~P1 and Theorem 1.8 yields that a solution
to (8) with u0 ∈ C1 can be obtained as the limit point of a sequence of approximate densities A(ξN

t ),
where (ξN

t : N ∈N) is a sequence of rescaled competing species models with rates of change

0→ 1 at rate N f (N)1 + f (N)1 G0

�

f (N)1

�

,

1→ 0 at rate N f (N)0 + f (N)0 G1

�

f (N)0

�

(recall (2) with G(N)i ≡ H(N)i ) and initial configurations satisfying A(ξN
0 )→ u0 in C1. This includes in

particular the case where Gi(x), i = 0,1 are polynomials.

If the limiting initial condition u0 satisfies
∫

u0(x)d x < ∞, we can show the weak uniqueness
of solutions to the limiting SPDE and therefore show weak convergence of the rescaled particle
densities to this unique law.

To include more general perturbation functions we resolved to rewrite the transition rates (2) so
that they involve non-negative contributions only (cf. (18)). A representation for the evolution in
time of ξN

t (x) is given in (23) and used to obtain a Green’s function representation (37) (compare
this to (2.9) in [13]). The right choice of Poisson processes in the graphical construction (cf. (22))
turned out to be crucial. For an example of how the proper choice of rates in (22) yields terms
involving approximate densities A(ξN

t ) in the approximate semimartingale decomposition, see the
third equality in (34). Also see (36) for an example of how error bounds can be obtained and why
the additional fixed kernel interaction does not impact the result.

While dealing with non-constant functions G(N)i , H(N)i , i = 0,1, certain cancelation tricks from [13]
were not available anymore. Instead, techniques of [13] had to be modified and refined. See for
instance the calculations (51) to (52), where only the leading term of the perturbation part of the
transition rates in (18) effects the error bounds. Here we can also see best why the additional
perturbations do not change the tightness result.

Finally, as a further extension to [13], we include results on weak uniqueness.

It would be of interest to see if the results can be extended to more general functions G(N)i , H(N)i , i =
0,1 in (2). The techniques utilized in the present paper require the functions to be power series
with coefficients satisfying (5). In short, we model each non-negative contribution to the rewritten
transition rates (18) of the approximating processes ξN via independent families of i.i.d. Poisson
processes (for more details see Subsection 3.2) and as a result obtain a graphical construction of
ξN in (23). The non-negativity assumption makes it necessary to rewrite negative contributions in
terms of positive contributions, which results in assumption (5).
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When there exists a fixed kernel, the question of uniqueness of all limit points and of identifying
the limit remains an open problem. Also, when we consider long-range interactions only with
∫

u0(x)d x =∞ the proof of weak uniqueness of solutions to the limiting SPDE remains open.

In Example 1.11 we apply our results to characterize the limits of spatial versions of the Lotka-
Volterra model with competition and fecundity parameter near one (see (9)) in the case of long-
range interactions only. We obtain a class of parameter-dependent SPDEs in the limit (see (14)).
This opens up the possibility to interpret the limiting SPDEs and their behaviour via their approxi-
mating long-range particle systems and vice versa. For instance, a future challenge would be to use
properties of the SPDE to obtain results on the approximating particle systems, following the ideas
of [5] and [6].

A major question is how the change in the parameter-dependent drift, in particular, possible addi-
tional zeros, impacts the long-time behaviour of the solutions and if there exist phase transitions.
The author conjectures that there are parameter regions that yield survival and others that yield
extinction. Aronson and Weinberger [1] showed that the corresponding class of deterministic PDEs
exhibits a diverse limiting behaviour.

1.3 Outline of the rest of the paper

In Section 2 we prove Theorem 1.5 and Theorem 1.8. The first part of the proof consists in rewriting
the transition rates (2) of the rescaled models ξN

t . We then present results comparable to the results
of Theorems 1.5 and 1.8 for a class of sequences of rescaled models with transition rates that include
the transition rates of the rewritten system. The advantage of the new over the old model is, that
the new model can be approached by the methods used in [13]. The proof of the results for the new
model is given in Section 3.

2 Proof of Theorem 1.5 and Theorem 1.8

We prove both theorems together. Let (G(N)i : N ∈ N), (H(N)i : N ∈ N)∈ ~P0, i = 0,1. Then we can
write

G(N)i (x)≡
∞
∑

m=0

α
(m+1,N)
i xm and H(N)i (x)≡

∞
∑

m=0

β
(m+1,N)
i xm, x ∈ [0, 1] (15)

with i = 0,1 and α(m,N)
j ,β (m,N)

j ∈ R for all j = 0, 1, m ∈ N, satisfying (5). We can now rewrite the

rates of change (2) of ξN (x) as

0→ 1 at rate N f (N)1 + g(N)0

∞
∑

m=1

α
(m,N)
0

�

f (N)1

�m
+ g(N)1

∞
∑

m=1

β
(m,N)
0

�

f (N)1

�m
, (16)

1→ 0 at rate N f (N)0 + g(N)0

∞
∑

m=1

α
(m,N)
1

�

f (N)0

�m
+ g(N)1

∞
∑

m=1

β
(m,N)
1

�

f (N)0

�m
.

Remark 2.1. The above rates of change determine indeed a unique, {0,1}Z/N -valued Markov process
ξN

t for N ≥ N0 with N0 as in Definition 1.4. For a proof, see Appendix A.
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Following [13], we would like to model each term in (16) via independent families of i.i.d. Pois-
son processes. This technique is only applicable to non-negative contributions. As we allow the
α
(m,N)
i ,β (m,N)

i to be negative, too, the first part of the proof consists in rewriting (16) with the help

of f (N)0 + f (N)1 = 1 and g(N)0 + g(N)1 = 1 in a form, where all resulting coefficients are non-negative.

Lemma 2.2. We can rewrite our transitions as follows.

0→ 1 at rate (17)

�

N − θ (N)
�

f (N)1 + f (N)1







∑

i=0,1

a(N)i g(N)i +
∑

m≥2,i, j=0,1

q(0,m,N)
i j g(N)i f (N)j

�

f (N)1

�m−2







,

1→ 0 at rate

�

N − θ (N)
�

f (N)0 + f (N)0







∑

i=0,1

b(N)i g(N)i +
∑

m≥2,i, j=0,1

q(1,m,N)
i j g(N)i f (N)j

�

f (N)0

�m−2







,

with corresponding θ (N), a(N)i , b(N)i , q(k,m,N)
i j ∈R+, i, j, k = 0, 1, m≥ 2.

Proof. We shall drop the superscripts of f (N)i , g(N)i , i = 0, 1 in what follows to simplify notation.

Suppose for instance α(m,N)
0 < 0 for some m≥ 1 in (16). Using that

−xm = (1− x)
m−1
∑

l=1

x l − x

and recalling that 1− f1 = f0 we obtain

g0α
(m,N)
0 f m

1 = g0

(

�

−α(m,N)
0

�

f0
m−1
∑

l=1

f l
1 +α

(m,N)
0 f1

)

.

Finally, we can use g0 = 1− g1 to obtain

g0α
(m,N)
0 f m

1 = g0

�

−α(m,N)
0

�

f0
m−1
∑

l=1

f l
1 + g1

�

−α(m,N)
0

�

f1+α
(m,N)
0 f1.

All terms on the r.h.s. but the last can be accommodated into an existing representation (17) as
follows:

q(0,n,N)
00 → q(0,n,N)

00 +
�

−α(m,N)
0

�

for 2≤ n≤ m,

a(N)1 → a(N)1 +
�

−α(m,N)
0

�

.

Finally, we can assimilate the last term into the first part of the rate 0→ 1, i.e. we replace

θ (N)→ θ (N)−α(m,N)
0 .

627



As we use the representation (17), a change in θ (N) also impacts the rate 1 → 0 in its first term.
Therefore we have to fix the rate 1 → 0 by adding a term of (−α(m,N)

0 ) f0 = g0 f0(−α
(m,N)
0 ) +

g1 f0(−α
(m,N)
0 ) to the second and third term of the rate, i.e. by replacing

b(N)0 → b(N)0 +
�

−α(m,N)
0

�

, b(N)1 → b(N)1 +
�

−α(m,N)
0

�

.

The general case with multiple negative α′s and/or β ′s follows inductively.

Remark 2.3. The above construction yields the following non-negative coefficients:

q(0,m,N)
00 ≡

∞
∑

n=m

�

α
(n,N)
0

�−
, q(0,m,N)

10 ≡
∞
∑

n=m

�

β
(n,N)
0

�−
,

q(0,m,N)
01 ≡

�

α
(m,N)
0

�+
, q(0,m,N)

11 ≡
�

β
(m,N)
0

�+
,

θ (N) ≡
∑

j=0,1

∞
∑

n=1

�

α
(n,N)
j

�−
+
�

β
(n,N)
j

�−
,

a(N)0 ≡
�

α
(1,N)
0

�+
+
∞
∑

n=1

�

β
(n,N)
0

�−
+
∞
∑

n=1

�

α
(n,N)
1

�−
+
∞
∑

n=1

�

β
(n,N)
1

�−
,

a(N)1 ≡
�

β
(1,N)
0

�+
+
∞
∑

n=1

�

α
(n,N)
0

�−
+
∞
∑

n=1

�

α
(n,N)
1

�−
+
∞
∑

n=1

�

β
(n,N)
1

�−
,

q(1,m,N)
00 ≡

�

α
(m,N)
1

�+
, q(1,m,N)

10 ≡
�

β
(m,N)
1

�+

q(1,m,N)
01 ≡

∞
∑

n=m

�

α
(n,N)
1

�−
, q(1,m,N)

11 ≡
∞
∑

n=m

�

β
(n,N)
1

�−
,

b(N)0 ≡
�

α
(1,N)
1

�+
+
∞
∑

n=1

�

β
(n,N)
1

�−
+
∞
∑

n=1

�

α
(n,N)
0

�−
+
∞
∑

n=1

�

β
(n,N)
0

�−
,

b(N)1 ≡
�

β
(1,N)
1

�+
+
∞
∑

n=1

�

α
(n,N)
1

�−
+
∞
∑

n=1

�

α
(n,N)
0

�−
+
∞
∑

n=1

�

β
(n,N)
0

�−
.

For (G(N)i : N ∈ N), (H(N)i : N ∈ N)∈ ~P0, i = 0,1, this implies in particular that there exists N0 ∈ N
such that

sup
N≥N0

∑

i, j,k=0,1

∑

m≥2

q(k,m,N)
i j <∞.

Remark 2.4. Observe that we can rewrite the transition rates in (17) such that a(N)i = b(N)i = 0,
i = 0,1, i.e.

0→ 1 at rate
�

N − θ (N)
�

f (N)1 + f (N)1

∑

m≥2,i, j=0,1

q(0,m,N)
i j g(N)i f (N)j

�

f (N)1

�m−2
, (18)

1→ 0 at rate
�

N − θ (N)
�

f (N)0 + f (N)0

∑

m≥2,i, j=0,1

q(1,m,N)
i j g(N)i f (N)j

�

f (N)0

�m−2
.
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Indeed, using that f (N)0 + f (N)1 = 1, we can change for instance

a(N)0 g(N)0 + q(0,2,N)
00 g(N)0 f (N)0

�

f (N)1

�0
+ q(0,2,N)

01 g(N)0 f (N)1

�

f (N)1

�0

with a(N)0 , q(0,2,N)
00 , q(0,2,N)

01 nonnegative into

�

a(N)0 + q(0,2,N)
00

�

g(N)0 f (N)0

�

f (N)1

�0
+
�

a(N)0 + q(0,2,N)
01

�

g(N)0 f (N)1

�

f (N)1

�0
,

where the new coefficients are nonnegative again.

In the second part of this proof we shall now present results for rescaled competing species models
ξN with transition rates as in (18). Tightness results for such models then immediately yield tight-
ness results for the former models with rates of change as in (16). A bit more work is needed to
translate convergence results of the latter model to obtain convergence results for the former model.
The relevant part of the proof is given at the end of this section.

Moving on to models with transition rates as in (18), we introduce hypotheses directly on the q(k,m,N)
i j

as the primary variables. Observe in particular that they will be assumed to be non-negative.

Hypothesis 2.5. Assume that there exist non-negative q(k,m,N)
i j , i, j, k = 0, 1 and m≥ 2 such that

sup
N≥N0

∑

i, j,k=0,1

∑

m≥2

q(k,m,N)
i j <∞

for some N0 ∈N.

Remark 2.6. Recall the end of Remark 2.3. We can use the above condition as in Remark 2.1 to show
that the rewritten transition rates can be used to determine a {0, 1}Z/N -valued Markov process ξN

t for
N ≥ N0.

Hypothesis 2.7. In the special case with no short-range competition, i.e. where we consider

q(k,m,N)
00 = q(k,m,N)

10 and q(k,m,N)
01 = q(k,m,N)

11 (19)

in (18), we assume additionally to Hypothesis 2.5 that

θ (N)
N→∞→ θ ,

q(k,m,N)
0 j

N→∞→ q(k,m)
0 j for all j, k = 0,1 and m≥ 2

and
lim

N→∞

∑

j,k=0,1

∑

m≥2

q(k,m,N)
0 j =

∑

j,k=0,1

∑

m≥2

q(k,m)
0 j . (20)

Remark 2.8. In the special case with no short-range competition, observe that if we assume that the
q(k,m,N)

0 j , j, k = 0,1, m≥ 2 were obtained from α(m,N)
j , j = 0,1, m≥ 1 as described earlier in Remark 2.3

and Remark 2.4, then G(N)i = H(N)i , i = 0, 1 implies (19). The additional assumption (G(N)i : N ∈
N), (H(N)i : N ∈ N)∈ ~P1, i = 0, 1 implies Hypothesis 2.7. Indeed, use for instance [16], Proposition
11.18 together with Remark 2.3.
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Notation 2.9. For k = 0,1 and a ∈R we let

Fk(a) =

(

1− a, k = 0,

a, k = 1.

We give the proof of the following result for rescaled competing species models ξN with rates of
change as in (18) in Section 3.

Theorem 2.10. Suppose that A(ξN
0 )→ u0 in C1. Let the transition rates of ξN (x) be as in (18) and

q(k,m,N)
i j satisfying Hypothesis 2.5. Then the

�

A(ξN
t ) : t ≥ 0

�

are C-tight as cadlag C1-valued processes

and the
�

νN
t : t ≥ 0

�

are C-tight as cadlag Radon measure valued processes with the vague topology. If
�

A
�

ξ
Nk
t

�

,νNk
t

�

t≥0
converges to (ut ,νt)t≥0, then νt(d x) = ut(x)d x for all t ≥ 0.

For the special case with no short-range competition we further have that if Hypothesis 2.7 holds, then
the limit points of A(ξN

t ) are continuous C1-valued processes ut which solve

∂ u

∂ t
=
∆u

6
+
∑

k=0,1

(1− 2k)
∑

m≥2, j=0,1

q(k,m)
0 j F j(u)

�

F1−k(u)
�m−1 Fk(u) +

p

2u(1− u)Ẇ (21)

with initial condition u0. If we assume additionally 〈u0, 1〉 < ∞, then ut is the unique in law [0, 1]-
valued solution to the above SPDE.

The claim of Theorem 1.5 now follows from the first part of Theorem 2.10. Indeed, rewrite (16) in
the form (18) and use Remark 2.3.

Assume additionally that there is no short-range competition and recall Remark 2.8. The second part
of Theorem 2.10 yields that the limit points of A(ξN

t ), with ξN
t being the system with transition rates

as in (16), are continuous C1-valued processes ut which solve (21). To obtain the claim of Theorem
1.8, it remains to show that every solution to (21) can be rewritten as a solution to (8). This follows
from Corollary 2.11 below. Uniqueness in law of the former solution then implies uniqueness in law
of the latter.

Corollary 2.11. Under the assumptions of Theorem 1.8, the SPDE (21) may be rewritten as

ut =
∆u

6
+ (1− u)u

∞
∑

m=0

α
(m+1)
0 um− u(1− u)

∞
∑

m=0

α
(m+1)
1 (1− u)m+

p

2u(1− u)Ẇ .

Proof. First recall Remark 1.7. Next use the definition of Fk(a) and collect terms appropriately. Then
recall how we rewrote the transition rates in Lemma 2.2 and Remark 2.4 to obtain (18) from (16).
Now, analogously, rewrite (8) as (21).

3 Proof of Theorem 2.10

3.1 Overview of the proof

The proofs in Subsections 3.2-3.7 are generalizations of the proofs in [13]. In [13], limits are
considered for both the long-range contact process and the long-range voter process. Full details
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are given for the contact process. For the voter process, once the approximate martingale problem
is derived, almost all of the remaining steps are left to the reader. Many arguments of our proof are
similar to [13] but as they did not provide details for the long-range voter model and as additions
and adaptations are needed due to our broader setup, we shall not omit the details.

In Subsection 3.2 we shall introduce a graphical construction for each approximating model ξN . This
allows us to write out the time-evolution of our models. By integrating it against a test function and
summing over x ∈ Z/N we finally obtain an approximate martingale problem for the N th-process
in Subsection 3.4. We defined the approximate density A(ξN

t )(x) as the average density of particles
of type 1 on Z/N in an interval centered at x of length 2/

p
N (recall (4)). By choosing a specific

test function, the properties of which are under investigation at the beginning of Subsection 3.5,
an approximate Green’s function representation for the approximate densities A(ξN

t )(·) is derived
towards the end of Subsection 3.5 and bounds on error-terms appearing in it are given. Making use
of the Green’s function representation, tightness of A(ξN

t )(·) is proven in Subsection 3.6. Here the

main part of the proof consists in finding estimates on pth-moment differences. In Subsection 3.7
the tightness of the approximate densities is used to show tightness of the measure corresponding
to the sequence of configurations ξN

t . Finally, in the special case with no short-range competition,
every limit is shown to solve a certain SPDE.

In Subsection 3.8 we additionally prove that this SPDE has a unique weak solution if
∫

u0(x)d x <
∞. In this case, weak uniqueness of the limits of the sequence of approximate densities follows.

3.2 Graphical construction

Recall that the rates of change of the approximating processes ξN
t that we consider in Theorem 2.10

are given in (18). Note in particular that by Hypothesis 2.5 the coefficients q(k,m,N)
i j are non-negative.

We shall first derive a graphical construction and evolution in time of our approximating processes
ξN

t . The graphical construction uses independent families of i.i.d. Poisson processes:

�

Pt(x; y) : x , y ∈ N−1Z
�

i.i.d. Poisson processes of rate
N − θ (N)

2c(N)N1/2
, (22)

and for m≥ 2, i, j, k = 0, 1,
�

Qm,i, j,k
t (x; y1, . . . , ym; z) : x , y1, . . . , ym, z ∈ N−1Z

�

i.i.d. Poisson processes of rate
q(k,m,N)

i j

(2c(N))mN m/2
p(N(x − z)).

Note that we suppress the dependence on N in the family of Poisson processes Pt(x; y) and
Qm,i, j,k

t (x; y1, . . . , ym; z).

At a jump of Pt(x; y) the voter at x adopts the opinion of the voter at y provided that y is a
neighbour of x with opposite opinion.

At a jump of Qm,i, j,k
t (x; y1, . . . , ym; z) the voter at x adopts the opinion 1−k provided that y1, . . . , ym

are neighbours of x , y1 has opinion j, all of y2 . . . , ym have opinion 1− k and z has opinion i.
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This yields the following stochastic integral equation to describe the evolution in time of our ap-
proximating processes ξN

t :

ξN
t (x) =ξ

N
0 (x) +

∑

y∼x

∫ t

0

¦

1
�

ξN
s−(x) = 0

�

1
�

ξN
s−(y) = 1

�

− 1
�

ξN
s−(x) = 1

�

1
�

ξN
s−(y) = 0

�©

dPs(x; y)

(23)

+
∑

k=0,1

(1− 2k)
∑

m≥2,i, j=0,1

∑

y1,...,ym∼x

∑

z

∫ t

0

1
�

ξN
s−(x) = k

�

1
�

ξN
s−(y1) = j

�

×
m
∏

l=2

1
�

ξN
s−(yl) = 1− k

�

1
�

ξN
s−(z) = i

�

dQm,i, j,k
s (x; y1, . . . , ym; z)

for all x ∈ N−1Z.

An explanation of why (23) has a unique solution can be found at the beginning of Section 4.3 of
the author’s thesis, Kliem [10]. There it is further shown that the solution is the spin-flip system
with rates c(x ,ξN ) given by (18). In what follows we shall often drop the superscripts w.r.t. N to
simplify notation.

3.3 Preliminary notation

In what follows we shall consider eλ(x) = exp(λ|x |) for λ ∈R and we let

C = { f :R→ [0,∞) continuous with | f (x)eλ(x)| → 0 as |x | →∞ for all λ < 0}

be the set of non-negative continuous functions with slower than exponential growth. Define

‖ f ‖λ= sup
x
| f (x)eλ(x)|

and give C the topology generated by the norms (‖·‖λ: λ < 0).

Remark 3.1. We work on the space C instead of C1 because in Subsection 3.5 we shall introduce
functions 0≤ψz

t(x)≤ CN1/2 and shall show in Lemma 3.9(b) that they converge inC to the Brownian

transition density p
�

t
3
, z− x

�

. Finally, in Subsection 3.6 we shall derive estimates on pth-moment
differences of Â(ξt)(z) ≡ A(ξt)(z)− 〈ξ0,ψz

t 〉, where A(ξ0)→ u0 in C to finally establish the tightness
claim for the sequence of approximate densities A(ξN )(x).

Notation 3.2. For x ∈ N−1Z, f : N−1Z→R and δ > 0 we shall write

D( f ,δ)(x) = sup{| f (y)− f (x)| : |y − x | ≤ δ, y ∈ N−1Z}, (24)

∆( f )(x) =
N − θ (N)

2c(N)N1/2

∑

y∼x
( f (y)− f (x)),

where we suppress the dependence on N .
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3.4 An approximate martingale problem

We now derive the approximate martingale problem. In short, the idea is to express the integral
of ξt against time-dependent test functions as the sum of a martingale, average (drift) terms and
fluctuation (error) terms.

Take a test function φ : [0,∞) × N−1Z → R with t 7→ φt(x) continuously differentiable and
satisfying

∫ T

0

〈|φs|+φ2
s + |∂sφs|, 1〉ds <∞ (25)

(this ensures that the following integration and summation are well-defined). We apply integration
by parts to ξt(x)φt(x), sum over x and multiply by 1

N
, to obtain for t ≤ T (recall the definition of

νt from (3) and that 〈ξt ,φ〉= 〈νt ,φ〉)

〈νt ,φt〉=〈ν0,φ0〉+
∫ t

0

〈νs,∂sφs〉ds (26)

+
1

N

∑

x

∑

y∼x

∫ t

0

ξs−(y)
�

φs(x)−φs(y)
�

dPs(x; y) (27)

+
1

N

∑

x

∑

y∼x

∫ t

0

ξs−(x)φs(x)
�

dPs(y; x)− dPs(x; y)
�

(28)

+
∑

k=0,1

(1− 2k)
∑

m≥2,i, j=0,1

1

N

∑

x

∑

y1,...,ym∼x

∑

z

∫ t

0

1
�

ξs−(x) = k
�

1
�

ξs−(y1) = j
�

×
m
∏

l=2

1
�

ξs−(yl) = 1− k
�

1
�

ξs−(z) = i
�

φs(x)dQm,i, j,k
s (x; y1, . . . , ym; z). (29)

The main ideas for analyzing terms (27) and (28) will become clear once we analyze term (29) in
detail. The latter is the only term where calculations changed seriously compared to [13]. Hence,
we shall only summarize the results for terms (27) and (28) in what follows.

We break term (27) into two parts, an average term and a fluctuation term and after proceeding as
for term (3.1) in [13] we obtain

(27) =

∫ t

0

〈νs−,∆
�

φs
�

〉ds+ E(1)t (φ),

where

E(1)t (φ)≡
1

N

∑

x

∑

y∼x

∫ t

0

ξs−(y)
�

φs(x)−φs(y)
��

dPs(x; y)− d〈P(x; y)〉s
�

.

We have suppressed the dependence on N in E(1)t (φ). E(1)t (φ) is a martingale (recall that if N ∼
Pois(λ), then Nt −λt is a martingale with quadratic variation 〈N〉t = λt) with predictable brackets
process given by

d



E(1)(φ)
�

t ≤
�

�

�

�

�

�

�

�

D
�

φt ,
1
p

N

�
�

�

�

�

�

�

�

�

2

λ

〈1, e−2λ〉d t. (30)
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Alternatively we also obtain the bound

d



E(1)(φ)
�

t ≤ 4 ‖φt ‖0 〈
�

�φt

�

� , 1〉d t (31)

with ‖φt ‖0= supx |φt(x)|.

The second term (28) is a martingale which we shall denote by M (N)t (φ) (in what follows we shall
drop the superscripts w.r.t. N and write Mt(φ)). It can be analyzed similarly as the martingale
Zt(φ) of (3.3) in [13]. We obtain in particular that

〈M(φ)〉t = 2
N − θ (N)

N

¨
∫ t

0

〈ξs−,φ2
s 〉ds−

∫ t

0

〈A
�

ξs−φs
�

,ξs−φs〉ds

«

. (32)

Using that
�

�A
�

ξs−φs
�

(x)
�

�≡

�

�

�

�

�

1

2c(N)N1/2

∑

y∼x
ξs−(y)φs(y)

�

�

�

�

�

≤ sup
y∼x
|φs(y)|

we can further dominate 〈M(φ)〉t by

〈M(φ)〉t ≤ C(λ)

∫ t

0

�

‖φs ‖2λ 〈1, e−2λ〉
�

∧
�

‖φs ‖0 〈ξs−, |φs|〉
�

ds. (33)

We break the third term (29) into two parts, an average term and a fluctuation term. Recall Notation
2.9 and observe that if we only consider a ∈ {0, 1} we have Fk(a) = 1(a = k). We can now rewrite
(29) to

∑

k=0,1

(1− 2k)
∑

m≥2,i, j=0,1

1

N

∑

x

∑

y1,...,ym∼x

∑

z

∫ t

0

1
�

ξs−(x) = k
�

1
�

ξs−(y1) = j
�

(34)

×
m
∏

l=2

1
�

ξs−(yl) = 1− k
�

1
�

ξs−(z) = i
�

φs(x)
q(k,m,N)

i j

(2c(N))mN m/2
p(N(x − z))ds+ E(3)t (φ)

=
∑

k=0,1

(1− 2k)
∑

m≥2,i, j=0,1

q(k,m,N)
i j

∫ t

0

1

N

∑

x

 

1

2c(N)N1/2

∑

y1∼x
1
�

ξs−(y1) = j
�

!

×
m
∏

l=2

 

1

2c(N)N1/2

∑

yl∼x
1
�

ξs−(yl) = 1− k
�

! 

∑

z
p(N(x − z))1

�

ξs−(z) = i
�

!

× 1
�

ξs−(x) = k
�

φs(x)ds+ E(3)t (φ)

=
∑

k=0,1

(1− 2k)
∑

m≥2,i, j=0,1

q(k,m,N)
i j

∫ t

0

1

N

∑

x
F j(A(ξs−)(x))

×
�

F1−k(A(ξs−)(x))
�m−1 Fi((p

N ∗ ξs−)(x))1
�

ξs−(x) = k
�

φs(x)ds+ E(3)t (φ)

=
∑

k=0,1

(1− 2k)
∑

m≥2,i, j=0,1

q(k,m,N)
i j

∫ t

0

〈
�

F j ◦ A(ξs−)
�

×
�

F1−k ◦ A(ξs−)
�m−1 �Fi ◦ (pN ∗ ξs−)

�

1
�

ξs−(·) = k
�

,φs〉ds+ E(3)t (φ),
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where for x ∈Z/N we set
�

pN ∗ f
�

(x)≡
∑

z∈Z/N

p(N(x − z)) f (z) (35)

and

E(3)t (φ)≡
∑

k=0,1

(1− 2k)
∑

m≥2,i, j=0,1

1

N

∑

x

∑

y1,...,ym∼x

∑

z

∫ t

0

1
�

ξs−(x) = k
�

× 1
�

ξs−(y1) = j
�

m
∏

l=2

1
�

ξs−(yl) = 1− k
�

1
�

ξs−(z) = i
�

φs(x)

×






dQm,i, j,k

s (x; y1, . . . , ym; z)−
q(k,m,N)

i j

(2c(N))mN m/2
p(N(x − z))ds






.

We have suppressed the dependence on N in E(3)t (φ). Here, E(3)t (φ) is a martingale with predictable
brackets process given by




E(3)(φ)
�

t ≤
∑

m≥2,i, j,k=0,1

q(k,m,N)
i j

1

N2

∑

x

m
∏

l=0

 

∑

yl∼x

1

2c(N)N1/2

! 

∑

z
p(N(x − z))

!

∫ t

0

φ2
s (x)ds

(36)

≤
1

N

∑

m≥2,i, j,k=0,1

q(k,m,N)
i j

∫ t

0

‖φs ‖2λ 〈e−2λ, 1〉ds.

Taking the above together we obtain the following approximate semimartingale decomposition from
(26).

〈νt ,φt〉=〈ν0,φ0〉+
∫ t

0

〈νs,∂sφs〉ds+

∫ t

0

〈νs−,∆
�

φs
�

〉ds+ E(1)t (φ) +Mt(φ) + E(3)t (φ) (37)

+
∑

k=0,1

(1− 2k)
∑

m≥2,i, j=0,1

q(k,m,N)
i j

∫ t

0

〈
�

F j ◦ A(ξs−)
�

×
�

F1−k ◦ A(ξs−)
�m−1 �Fi ◦ (pN ∗ ξs−)

�

1
�

ξs−(·) = k
�

,φs〉ds.

Remark 3.3. Note that this approximate semimartingale decomposition provides the link between our
approximate densities and the limiting SPDE in (21) for the case with no short-range competition.
Indeed, uniqueness of the limit ut of A(ξN

t ) will be derived by proving that ut solves the martingale
problem associated with the SPDE (21).

3.5 Green’s function representation

Analogous to [13], define a test function

ψz
t(x)≥ 0 for t ≥ 0, x , z ∈ N−1Z
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as the unique solution, satisfying (25) and such that

∂

∂ t
ψz

t =∆ψ
z
t , ψz

0(x) =
N1/2

2c(N)
1(x ∼ z) (38)

with

∆ψz
t(x) =

N − θ (N)

2c(N)N1/2

∑

y∼x
(ψz

t(y)−ψ
z
t(x)) (39)

as in (24). Note that ψz
0 was chosen such that 〈νt ,ψ

z
0〉 = A(ξt)(z) and that we suppress the depen-

dence on N .

Next observe that ∆ is the generator of a random walk X t ∈ N−1Z, jumping at rate
N−θ (N)

2c(N)N1/2

�

2c(N)N1/2
�

= N − θ (N) = (1+ o(1))N with symmetric steps of variance 1
N

�

1
3
+ o(1)

�

,

where we used that c(N)
N→∞→ 1. Here o(1) denotes some deterministic function that satisfies

o(1)→ 0 for N →∞. Define
ψ̄z

t(x) = NP(X t = x |X0 = z)

then

〈ψz
0, ψ̄x

t 〉=
N1/2

2c(N)

∑

y∼z
P(X t = y|X0 = x) = Ex

�

ψz
0(X t)

�

=ψz
t(x). (40)

As we shall see later in Lemma 3.9(b), when linearly interpolated, the functions ψz
t(x) and ψ̄z

t(x)
converge to p

�

t
3
, z− x

�

(the proof follows), where

p(t, x) =
1
p

2πt
e−

x2

2t is the Brownian transition density. (41)

The next lemma gives some information on the test functions ψ and ψ̄ from above. Later on, this
will provide us with estimates necessary for establishing tightness.

Lemma 3.4. There exists N0 <∞ such that for N ≥ N0, T ≥ 0, z ∈ N−1Z, λ≥ 0,

(a) 〈ψz
t , 1〉= 〈ψ̄z

t , 1〉= 1 and ‖ψz
t ‖0≤ CN1/2 for all t ≥ 0.

(b) 〈eλ,ψz
t + ψ̄

z
t 〉 ≤ C(λ, T )eλ(z) for all t ≤ T,

(c) ‖ψz
t ‖λ≤ C(λ, T )

�

N1/2 ∧ t−2/3
�

eλ(z) for all t ≤ T,

(d) 〈
�

�ψ̄z
t − ψ̄

z
s

�

� , 1〉 ≤ 2N |t − s| for all s, t ≥ 0.

If we further restrict ourselves to N ≥ N0, N−3/4 ≤ s < t ≤ T, y, z ∈ N−1Z, |y − z| ≤ 1, then

(e) ‖ψz
t −ψ

y
t ‖λ≤ C(λ, T )eλ(z)

�

|z− y|1/2 t−1+ N−1/2 t−3/2
�

,

(f) ‖ψz
t −ψ

z
s ‖λ≤ C(λ, T )eλ(z)

�

|t − s|1/2s−3/2+ N−1/2s−3/2
�

,

(g)
�

�

�

�

�

�D
�

ψz
t , N−1/2

�

(·)
�

�

�

�

�

�

λ
≤ C(λ, T )eλ(z)N−1/4 t−1.
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Proof. First we shall derive an explicit description for the test functions ψz
t and ψ̄z

t . We proceed as
at the beginning of Section 4 in [13] by using that ∆ as in (39) is the generator of a random walk.

Let (Yi)i=1,2,... be i.i.d. and uniformly distributed on ( jN−1 : 0< | j| ≤
p

N). Set

ρ(t) = E
�

ei tY1
�

and Sk =
k
∑

i=1

Yi . (42)

Note that E[Y 2
1 ] ≡

c2(N)
3N

, where c2(N)→ 1 for N →∞ (c2(N) corresponds to c3 = c3(N) in [13]).

Similarly, E[Y 4
1 ]≡

c4(N)
5N2 , where c4(N)→ 1 for N →∞.

The relation between the test functions ψz
t , ψ̄

z
t and Sk is as follows.

ψz
t(x) = Ex

�

ψz
0(X t)

�

=
∞
∑

k=0

((N − θ (N))t)k

k!
e−((N−θ

(N))t)NP(Sk+1 = x − z), (43)

ψ̄z
t(x) = NP(X t = x |X0 = z) =

∞
∑

k=0

((N − θ (N))t)k

k!
e−((N−θ

(N))t)NP(Sk = x − z).

Now we can start proving the above lemma.

(a) follows as in the proof of Lemma 3(a), [13], using that P(Sk = x) ≤ CN−1/2 for all x ∈
N−1Z, k ≥ 1.

(b) follows as in the proof of Lemma 3(b), [13], where we shall use the bound E[eµY1] ≤
exp
¦

µ2/N
©

for all µ ≥ 0 to obtain the claim. Indeed, as Y1 is uniformly distributed on ( jN−1 :
0< | j| ≤

p
N), we have

E[eµY1] =
1

c(N)
p

N

b
p

Nc
∑

j=1

cosh(µ j/N)≤
1

c(N)
p

N

b
p

Nc
∑

j=1

eµ
2 j2/N2

≤ eµ
2/N .

(c) Following the proof of Lemma 3(c) in [13], one can show that for k ∈N and |x | ≥ 1,P(Sk = x)≤
1
N
P(Sk ≥ |x | − 1), which we can use to obtain P(Sk = x)≤ 1

N
e−µ(|x |−1) exp

¦

5kµ2 1
N

©

.

Substituting this bound into (43) gives for any µ≥ 0

ψz
t(x)≤ C(µ, T )exp

�

−µ|x − z|
	

(44)

for all t ≤ T and |x − z| ≥ 1.

From (43) we further have for N big enough (recall the notation p(t, x) from (41))

ψz
t(x)≡ E

�

p
�

c2(N)(Pt + 1)
3N

, x − z
��

+ E(N , t, x − z),

where Pt ∼ Pois((N − θ (N))t). Using Corollary B.2 we get as in the proof of [13], Lemma 3(c),

|E(N , t, x)| ≤ C
1

N

�

1+ t−3/2
�

for N−3/4 ≤ t.

Here we used that for P ∼ Pois(r), r > 0 we have

E[(P + 1)a]≤ C(a)ra for all a < 0.
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(This is obviously true for 0< r < 1. For r ≥ 1 fixed, prove the claim first for all a ∈Z. Then extend
this result to general a < 0 by an application of Hölder’s inequality.)

Using the trivial bound p(t, x)≤ C t−1/2 we get from the above

ψz
t(x)≤ C(T )t−2/3 for N−3/4 ≤ t ≤ T.

Finally, we obtain with (44) and part (a) that

‖ψz
t ‖λ≤ sup

{x:|x−z|≥1}

¦

C(λ, T )e−λ|x−z|eλ|x |
©

∨ sup
{x:|x−z|<1,N−3/4≤t≤T}

¦

C(T )t−2/3eλ|x |
©

∨ sup
{x:|x−z|<1,0≤t≤N−3/4}

¦

CN1/2eλ|x |
©

≤C(λ, T )
�

N1/2 ∧ t−2/3
�

eλ(z) for all t ≤ T.

This proves part (c).

(d) follows along the lines of the proof of [13], Lemma 3(d).

(e) For the remaining parts (e)-(g) we fix N−3/4 ≤ s < t ≤ T, y, z ∈ N−1Z, |y − z| ≤ 1. For part (e)
we follow the reasoning of the proof of [13], Lemma 3(e). The only change occurs in the derivation
of the last estimate. In summary, we find as in [13] that

‖ψz
t −ψ

y
t ‖0≤ C(T )

�

|z− y|t−1+ N−1 t−3/2
�

. (45)

Now recall (44) with µ = 2λ to get ψz
t(x) + ψ

y
t (x) ≤ C(λ, T )exp{−2λ|x − z|} for |x − z| ≥ 1,

|x − y| ≥ 1, |y − z| ≤ 1 and thus in particular for |x − z| ≥ 2, |y − z| ≤ 1. This yields

‖ψz
t −ψ

y
t ‖λ≤ sup

{x:|x−z|<2}
‖ψz

t −ψ
y
t ‖0 eλ(x) + sup

{x:|x−z|≥2}

n

C(λ, T ) ‖ψz
t −ψ

y
t ‖

1/2
0 e−λ|x−z|eλ(x)

o

≤C(λ, T )eλ(z)
�

‖ψz
t −ψ

y
t ‖0 + ‖ψ

z
t −ψ

y
t ‖

1/2
0

�

≤C(λ, T )eλ(z)
�

|z− y|1/2 t−1+ N−1/2 t−3/2
�

.

This proves (e).

(f) The proof of part (f) follows analogously to the proof of part (e), with changes as suggested in
the proof of [13], Lemma 3(f).

(g) Finally, to prove part (g), use part (e), ψz
t(y) =ψ

y
t (z) (see (43)) and the definition of

D
�

ψz
t , N−1/2

�

(x) = sup
¦�

�ψz
t(y)−ψ

z
t(x)

�

� : |x − y| ≤ N−1/2, y ∈ N−1Z
©

to get

‖D
�

ψz
t , N−1/2

�

(·)‖λ
(44)
≤ C(λ) sup

{x:|x−z|<2}

(

sup
y:|x−y|≤N−1/2

¦�

�ψz
t(y)−ψ

z
t(x)

�

�

©

eλ|z|
)

+ C(λ, T ) sup
{x:|x−z|≥2}

(

sup
y:|x−y|≤N−1/2

n

�

�ψz
t(y)−ψ

z
t(x)

�

�

1/2
o

e−λ|x−z|eλ|x |
)

.
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Next use that ψa
t (b) =ψ

b
t (a) to get as a further upper bound

C(λ) sup
{x:|x−z|<2}

(

sup
y:|x−y|≤N−1/2

¦�

�ψ
y
t (z)−ψ

x
t (z)

�

�

©

eλ|z|
)

+ C(λ, T ) sup
{x:|x−z|≥2}

(

sup
y:|x−y|≤N−1/2

n

�

�ψ
y
t (z)−ψ

x
t (z)

�

�

1/2
o

eλ|z|
)

(45)
≤ C(λ, T )eλ(z)N

−1/4 t−1,

where we used N−3/4 < t ≤ T . This finishes the proof of (g) and it also finishes the proof of the
lemma.

The following corollary uses the results of Lemma 3.4 to obtain estimates that we shall need later.

Corollary 3.5. There exists N0 < ∞ such that for N ≥ N0, 0 ≤ δ ≤ u ≤ t ≤ T and y, z ∈ N−1Z,
λ≥ 0, we have

(a)
∫ t

u
‖ψz

t−s ‖λ ds ≤ C(λ, T )(t − u)1/3eλ(z) and
∫ t

0
‖ψz

t−s ‖
2
λ ds ≤ C(λ, T )N1/4e2λ(z).

(b) For |y − z| ≤ 1 and δ ≤ t − N−3/4 we further have

sup
0≤s≤δ

‖ψz
t−s −ψ

y
t−s ‖λ≤ C(λ, T )eλ(z)

¦

|z− y|1/2(t −δ)−1+ N−1/2(t −δ)−3/2
©

.

(c) We also have
∫ t

δ
‖ψz

t−s −ψ
y
t−s ‖λ ds ≤ C(λ, T )

�

eλ(z) + eλ(y)
�

(t −δ)1/3.

(d) For N−3/4 ≤ u−δ we have

sup
0≤s≤δ

‖ψz
t−s −ψ

z
u−s ‖λ≤ C(λ, T )eλ(z)

¦

(t − u)1/2(u−δ)−3/2+ N−1/2(u−δ)−3/2
©

.

(e) Finally, we have
∫ u

δ
‖ψz

t−s −ψ
z
u−s ‖λ ds ≤ C(λ, T )eλ(z)(u−δ)1/3.

Proof. The proof is a combination of the results of Lemma 3.4.

(a) We have for n= 1,2 and 0≤ u≤ t by Lemma 3.4(c)

∫ t

u

�

�

�

�ψz
t−s

�

�

�

�

n
λ

ds ≤ C(λ, T )

∫ t

u

N n/2 ∧ (t − s)−2n/3ds enλ(z).

For n = 1 further bound the integrand by (t − s)−2/3, for n = 2 and u = 0 use the above integrand
to obtain the claim.

(b) follows from Lemma 3.4(e).

(c) We further have by Lemma 3.4(c)

∫ t

δ

‖ψz
t−s −ψ

y
t−s ‖λ ds ≤ C(λ, T )

�

eλ(z) + eλ(y)
�

∫ t

δ

(t − s)−2/3ds.
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(d) follows from Lemma 3.4(f).

(e) Using Lemma 3.4(c) once more, we get
∫ u

δ

‖ψz
t−s −ψ

z
u−s ‖λ ds ≤ C(λ, T )eλ(z)

∫ u

δ

(t − s)−2/3+ (u− s)−2/3ds,

which concludes the proof after some basic calculations.

We shall need the following technical lemma.

Lemma 3.6. For f : N−1Z→ [0,∞) with 〈 f , 1〉<∞,λ ∈R we have

(a) 〈νs,ψ
z
t−s〉= 〈A(ξs), ψ̄z

t−s〉,

(b)
�

�〈νt , f 〉 − 〈A(ξt), f 〉
�

�≤ C(λ) ‖D( f , N−1/2)‖λ.

Proof. (a) follows easily from

〈νs,ψ
z
t−s〉= 〈ξs,ψ

z
t−s〉=

1

N

∑

x
ξs(x)ψ

x
t−s(z)

(40)
=

1

N

∑

x
ξs(x)〈ψx

0 , ψ̄z
t−s〉

=
1

N

∑

y

(

∑

x

1

2c(N)N1/2
1(y ∼ x)ξs(x)

)

ψ̄z
t−s(y)

=
1

N

∑

y
A(ξs)(y)ψ̄

z
t−s(y) = 〈A(ξs), ψ̄

z
t−s〉.

Part (b) follows as in the proof of Lemma 5(b) in [13]. Observe in particular that 〈νt , e−λ〉 ≤ C(λ)
as will be shown before and in (48) below.

Taken all together this finishes the proof.

Next use the test function
φs ≡ψx

t−s for s ≤ t

in the semimartingale decomposition (37) and observe that φ satisfies (25) and ∂sφs = −∆(φs) by
(38). Here the initial condition is chosen so that 〈νt ,φt〉= 〈νt ,ψ

x
0〉= A(ξt)(x).

The test function chosen in [13] at the beginning of page 526, namely φs = eθc(t−s)ψx
t−s was chosen

so that the drift term 〈νs,θcφs〉ds of the semimartingale decomposition (2.9) in [13] would cancel
out with the drift term 〈νs,∂sφs〉ds. As we have multiple coefficients, this is not possible. Also, it
turned out that the calculations become easier once we consider time differences in Subsection 3.6
to follow.

With the above choice we obtain, for a fixed value of t, an approximate Green’s function represen-
tation for A(ξt), namely

A(ξt)(x) =〈ν0,ψx
t 〉+ E(1)t

�

ψx
t−·

�

+Mt

�

ψx
t−·

�

+ E(3)t (ψ
x
t−·) (46)

+
∑

k=0,1

(1− 2k)
∑

m≥2,i, j=0,1

q(k,m,N)
i j

∫ t

0

〈
�

F j ◦ A(ξs−)
�

×
�

F1−k ◦ A(ξs−)
�m−1 �Fi ◦ (pN ∗ ξs−)

�

1
�

ξs−(·) = k
�

,ψx
t−s〉ds.
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The following lemma is stated analogously to Lemma 4 of [13]. Parts (a) and (c) will follow easily
in our setup and so the only significant statement will be part (b).

Lemma 3.7. Suppose that the initial conditions satisfy A(ξ0) → u0 in C as N → ∞. Then for
T ≥ 0, p ≥ 2,λ > 0,

(a) E
�

supt≤T 〈νt , e−λ〉p
�

≤ C(λ, p).

(b) We further have

E

��

�

�E(1)t

�

ψz
t−·

�

�

�

�

p
∨
�

�

�E(3)t

�

ψz
t−·

�

�

�

�

p�

≤ C(λ, p, T )
�

1+ C p/2
Q

�

N−p/16eλp(z)

for all t ≤ T and N big enough, where we set

CQ ≡ sup
N≥N0

∑

m≥2,i, j,k=0,1

q(k,m,N)
i j . (47)

(c) Finally, ‖E
�

A(ξt)
�

‖−λp≤ 1 for all t ≤ T.

Proof. First observe that we have ξt ∈ {0, 1}Z/N and 0 ≤ A(ξt) ≤ 1. Therefore, parts (a) and (c)
follow immediately. Indeed, for (a) observe that

0≤ 〈νt , e−λ〉= 〈ξt , e−λ|·|〉 ≤
2

N

∞
∑

j=0

e−λ j/N =
2

N

1

1− e−λ/N
N→∞→

2

λ
.

Note in particular that we showed that

〈e−λ, 1〉 ≤
C

λ
for all λ > 0, N = N(λ) big enough, (48)

which will prove useful later.

For (c) we further have

‖E
�

A(ξt)
�

‖−λp= sup
x

�

�E
�

A(ξt)(x)
�

�

� e−λp|x | ≤ sup
x

e−λp|x | ≤ 1.

It only remains to show that (b) holds.

(b) First observe that CQ <∞ by Hypothesis 2.5.

We shall apply a Burkholder-Davis-Gundy inequality in the form

E

�

sup
s≤t
|Xs|p

�

≤ C(p)E

�

〈X 〉p/2t + sup
s≤t
|Xs − Xs−|p

�

(49)

for a cadlag martingale X with X0 = 0 (this inequality may be derived from its discrete time version,
see Burkholder [3], Theorem 21.1).

To get an upper bound on the second term of the r.h.s. of (49) for the martingales we consider,
observe that the largest possible jumps of the martingales E(1)t (ψ

z
t−·) respectively E(3)t (ψ

z
t−·) are

bounded a.s. by CN−1/2. Indeed,

E(1)t (ψ
z
t−·) =

1

N

∑

x

∑

y∼x

∫ t

0

ξs−(y)
�

ψz
t−s(x)−ψ

z
t−s(y)

�

�

dPs(x; y)− d〈P(x; y)〉s
�
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and thus, using Lemma 3.4(a), the maximal jump size is bounded by

1

N
2 sup

t≤T
‖ψz

t ‖0≤
C

N1/2
(50)

(the maximal number of jumps at a fixed time is 1). The bound on the maximal jump size of
E(3)t (ψ

z
t−·) follows analogously.

Now choose t ≤ T . We shall start with E(3)t (ψ
z
t−·). By (49), (50) and (36) we have

E

��

�

�E(3)t (ψ
z
t−·)
�

�

�

p�

≤ C(p)







∑

m≥2,i, j,k=0,1

q(k,m,N)
i j

1

N

∫ t

0

�

�

�

�ψz
t−s

�

�

�

�

2
λ
〈e−2λ, 1〉ds







p/2

+ C(p)N−p/2

(48)
≤ C(λ, p)C p/2

Q N−p/2







�
∫ t

0

�

�

�

�ψz
t−s

�

�

�

�

2
λ

ds

�p/2

+ 1







.

By Corollary 3.5(a) this is bounded from above by

C(λ, p, T )C p/2
Q N−p/2

¦

N p/8eλp(z) + 1
©

= C(λ, p, T )C p/2
Q N−3p/8eλp(z).

It remains to investigate E(1)t (ψ
z
t−·). Here (49), (50), (30) and (31) yield

E

��

�

�E(1)t (ψ
z
t−·)
�

�

�

p�

≤ C(p)

 

∫ t

0

�

‖ψz
t−s ‖0 〈ψ

z
t−s, 1〉

�

∧





�

�

�

�

�

�

�

�

D
�

ψz
t−s,

1
p

N

�
�

�

�

�

�

�

�

�

2

λ

〈1, e−2λ〉



 ds

!p/2

+ C(p)N−p/2.

This in turn is bounded from above by

C(p)

 

∫ t

0

�

C(T )(t − s)−2/3
�

∧





�

�

�

�

�

�

�

�

D
�

ψz
t−s,

1
p

N

�
�

�

�

�

�

�

�

�

2

λ

C(λ)



 ds

!p/2

+ C(p)N−p/2,

where we used Lemma 3.4(a), (c) and (48). To apply Lemma 3.4(g) to the second part of the
integrand, we need to ensure that N−3/4 ≤ t− s. As N−3/4 ≤ N−3/8 we get as a further upper bound

C(p)







∫ N−3/8

0

C(T )s−2/3ds+

∫ t

N−3/8∧t

�

C(λ, T )eλ(z)N
−1/4s−1

�2
C(λ)ds







p/2

+ C(p)N−p/2

≤ C(λ, p, T )eλp(z)

¨

�

�

N−3/8
�1/3
+ N−1/2

�

N−3/8
�−1
�p/2

+ N−p/2

«

≤ C(λ, p, T )N−p/16eλp(z).

This finishes the proof.
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3.6 Tightness

In what follows, we shall derive estimates on pth-moment differences of

Â(ξt)(z)≡ A(ξt)(z)− 〈ν0,ψz
t 〉.

Recall the assumption A(ξ0)→ u0 in C from Theorem 2.10. Also note that Lemma 3.9(b) to come
will yield that ψz

t(x) converges to p
�

t
3
, z− x

�

. The estimates of Lemma 3.8 and the convergence of
ψz

t taken together will be sufficient to show C-tightness of the approximate densities A(ξt)(z) at the
end of this section.

Lemma 3.8. For 0≤ s ≤ t ≤ T, y, z ∈ N−1Z, |t − s| ≤ 1, |y − z| ≤ 1,λ > 0 and p ≥ 2 we have

E
��

�Â(ξt)(z)− Â(ξs)(y)
�

�

p�≤ C(λ, p, T )
�

1+ C p
Q

�

eλp(z)
�

|t − s|p/24+ |z− y|p/24+ N−p/24
�

.

Proof. Fix s, t, T, y, z,λ, p as in the statement. We decompose the increment Â(ξt)(z)− Â(ξs)(y) into
a space increment Â(ξt)(z)− Â(ξt)(y) and a time increment Â(ξt)(y)− Â(ξs)(y).

We consider first the space differences. From the Green’s function representation (46), the esti-
mates obtained in Lemma 3.7(b) for the error terms E(1) and E(3) and the linearity of Mt(φ) and
E(1)t (φ), E(3)t (φ) in φ, we get

E
��

�Â(ξt)(z)− Â(ξt)(y)
�

�

p�
(51)

≤ C(λ, p, T )
�

1+ C p/2
Q

�

N−p/16eλp(z) +E
��

�

�Mt

�

ψz
t−·−ψ

y
t−·

�

�

�

�

p�

+E
h
�

�

�

∑

k=0,1

(1− 2k)
∑

m≥2,i, j=0,1

q(k,m,N)
i j

∫ t

0

〈
�

F j ◦ A(ξs−)
�

×
�

F1−k ◦ A(ξs−)
�m−1 �Fi ◦ (pN ∗ ξs−)

�

1
�

ξs−(·) = k
�

,
�

ψz
t−s −ψ

y
t−s

�

〉ds
�

�

�

pi

.

Recall Definition (35) and observe that 0 ≤
�

pN ∗ ξs−
�

(x) ≤ 1 follows from ξs− ∈ {0,1}Z/N . Use
this and 0≤ A(ξs−)(x)≤ 1 together with the definition of Fk from Notation 2.9 to get

E
��

�Â(ξt)(z)− Â(ξt)(y)
�

�

p�
(52)

≤ C(λ, p, T )
�

1+ C p/2
Q

�

N−p/16eλp(z) +E
��

�

�Mt

�

ψz
t−·−ψ

y
t−·

�

�

�

�

p�

+E
h�

∑

m≥2,i, j,k=0,1

q(k,m,N)
i j

∫ t

0

〈
�

F1−k ◦ A(ξs−)
�

1
�

ξs−(·) = k
�

,
�

�ψz
t−s −ψ

y
t−s

�

�〉ds
�pi

≤ C(λ, p, T )
�

1+ C p/2
Q

�

N−p/16eλp(z) +E
��

�

�Mt

�

ψz
t−·−ψ

y
t−·

�

�

�

�

p�

+ C p
QE
h�

∫ t

0

〈A(ξs−) + ξs−,
�

�ψz
t−s −ψ

y
t−s

�

�〉ds
�pi

.

Note that this is the main step to see why the fixed kernel interaction does not impact our results on
tightness.

In what follows, we shall employ a similar strategy to the proof of Lemma 6 in [13] to obtain
estimates on the above. We nevertheless give full calculations as we proceeded in a different logical

643



order to highlight the ideas for obtaining bounds. Minor changes in the exponents of our bounds
ensued, both due to the different logical order and the different setup.

Let us first derive a bound on E
��

�

�Mt

�

ψz
t−·−ψ

y
t−·

�

�

�

�

p�

. Using the Burkholder-Davis-Gundy inequal-

ity (49) from above and observing that the jumps of the martingales Mt(ψx
t−·) are bounded a.s. by

CN−1/2 we have for any 0≤ δ ≤ t

E

��

�

�Mt

�

ψz
t−·−ψ

y
t−·

�

�

�

�

p� (33)
≤ C(λ, p)E





 

∫ δ

0

‖ψz
t−s −ψ

y
t−s ‖

2
λ 〈1, e−2λ〉ds (53)

+

∫ t

δ

‖ψz
t−s −ψ

y
t−s ‖0 〈ξs−,

�

�ψz
t−s −ψ

y
t−s

�

�〉ds

�p/2





+ C(p)N−p/2

(48)
≤ C(λ, p)E

��

T sup
0≤s≤δ

‖ψz
t−s −ψ

y
t−s ‖

2
λ

1

λ

+

∫ t

δ

‖ψz
t−s −ψ

y
t−s ‖0 〈ξs−,

�

�ψz
t−s −ψ

y
t−s

�

�〉ds

�p/2





+ C(p)N−p/2.

Now observe that by Lemma 3.6(a) and Lemma 3.4(a),

〈ξs−,
�

�ψz
t−s −ψ

y
t−s

�

�〉 ≤ 〈A(ξs−), ψ̄
z
t−s + ψ̄

y
t−s〉 ≤ 〈1, ψ̄z

t−s + ψ̄
y
t−s〉= 2. (54)

We can therefore apply the estimates from Corollary 3.5(b) to the first term in (53) and Corollary
3.5(c) to the second term, assuming δ ≤

�

t − N−3/4
�

∨ 0 and using |y − z| ≤ 1 to obtain

E

��

�

�Mt

�

ψz
t−·−ψ

y
t−·

�

�

�

�

p�

≤ C(λ, p, T )eλp(z)
¦

|z− y|p/2(t −δ)−p + N−p/2(t −δ)−3p/2+ (t −δ)p/6
©

+ C(p)N−p/2.

Now set
δ = t −

��

|z− y|1/4 ∨ N−1/4
�

∧ t
�

and observe that δ ≤
�

t − N−3/4
�

∨ 0 follows. We obtain t −δ =
�

|z− y|1/4 ∨ N−1/4
�

∧ t and

|z− y|1/4 ≤ N−1/4⇒ |z− y|p/2(t −δ)−p + N−p/2(t −δ)−3p/2+ (t −δ)p/6 (55)

≤ |z− y|p/4+ N−p/8+ N−p/24,

|z− y|1/4 > N−1/4⇒ |z− y|p/2(t −δ)−p + N−p/2(t −δ)−3p/2+ (t −δ)p/6

≤ |z− y|p/4+ N−p/8+ |z− y|p/24.

Plugging this back in the above estimate we finally have

E

��

�

�Mt

�

ψz
t−·−ψ

y
t−·

�

�

�

�

p�

≤ C(λ, p, T )eλp(z)
¦

|z− y|p/24+ N−p/24
©

.
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Next we shall get a bound on the last term of (52). Recall that 〈ξt ,φ〉= 〈νt ,φ〉. We get

E
h�

∫ t

0

〈A(ξs−) + ξs−,
�

�ψz
t−s −ψ

y
t−s

�

�〉ds
�pi

≤ C(p)

(

E





 

∫ δ

0

〈A(ξs−) + νs−, e−λ〉ds sup
0≤s≤δ

‖ψz
t−s −ψ

y
t−s ‖λ

!p



+E





�
∫ t

δ

〈A(ξs−) + νs−, e−λ〉 ‖ψz
t−s −ψ

y
t−s ‖λ ds

�p



)

.

Now use that

〈A(ξs−) + νs−, e−λ〉= 〈A(ξs−) + ξs−, e−λ〉 ≤ 〈2, e−λ〉
(48)
≤ C(λ) (56)

to obtain that the above is bounded by

C(p)

(

�

T C(λ) sup
0≤s≤δ

‖ψz
t−s −ψ

y
t−s ‖λ

�p

+

�
∫ t

δ

C(λ) ‖ψz
t−s −ψ

y
t−s ‖λ ds

�p)

≤ C(λ, p, T )eλp(z)
¦

|z− y|p/2(t −δ)−p + N−p/2(t −δ)−3p/2+ (t −δ)p/3
©

,

where we used Corollary 3.5(b),(c) and |y − z| ≤ 1. Here we assumed δ ≤
�

t − N−3/4
�

∨ 0 when

we applied Corollary 3.5(b). Now choose δ = t −
��

|z− y|1/4 ∨ N−1/4
�

∧ t
�

≤
�

t − N−3/4
�

∨ 0 as
before. Reasoning as in (55), we get

C(λ, p, T )eλp(z)
�

N−p/8+ |z− y|p/12
�

as an upper bound.

Now we can take all the above bounds together and plug them back into (52) to obtain (recall that
|z− y| ≤ 1)

E
��

�Â(ξt)(z)− Â(ξt)(y)
�

�

p�≤ C(λ, p, T )
�

1+ C p/2
Q + C p

Q

�

eλp(z)
�

|z− y|p/24+ N−p/24
�

.

Next we derive a similar bound on the time differences. We start by subtracting the two Green’s
function representations again, this time for the time differences, using (46) and Lemma 3.7(b) for
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the error terms.

E
��

�Â(ξt)(z)− Â(ξu)(z)
�

�

p�
(57)

≤ C(λ, p, T )
�

1+ C p/2
Q

�

N−p/16eλp(z) +E
��

�

�Mt

�

ψz
t−·

�

−Mu

�

ψz
u−·

�

�

�

�

p�

+E
h�

∑

m≥2,i, j,k=0,1

q(k,m,N)
i j

¨
∫ t

u

〈
�

F j ◦ A(ξs−)
�

�

F1−k ◦ A(ξs−)
�m−1 �Fi ◦ (pN ∗ ξs−)

�

× 1
�

ξs−(·) = k
�

,ψz
t−s〉ds

+

∫ u

0

〈
�

F j ◦ A(ξs−)
�

�

F1−k ◦ A(ξs−)
�m−1 �Fi ◦ (pN ∗ ξs−)

�

×1
�

ξs−(·) = k
�

,
�

�ψz
t−s −ψ

z
u−s

�

�〉ds
©

�pi

≤ C(λ, p, T )
�

1+ C p/2
Q

�

N−p/16eλp(z) +E
��

�

�Mt

�

ψz
t−·

�

−Mu

�

ψz
u−·

�

�

�

�

p�

+E
h�

∑

m≥2,i, j,k=0,1

q(k,m,N)
i j

¨
∫ t

u

〈
�

F1−k ◦ A(ξs−)
�

1
�

ξs−(·) = k
�

,ψz
t−s〉ds

+

∫ u

0

〈
�

F1−k ◦ A(ξs−)
�

1
�

ξs−(·) = k
�

,
�

�ψz
t−s −ψ

z
u−s

�

�〉ds

«

�pi

≤ C(λ, p, T )
�

1+ C p/2
Q

�

N−p/16eλp(z) +E
��

�

�Mt

�

ψz
t−·

�

−Mu

�

ψz
u−·

�

�

�

�

p�

+ C p
QE
h�

∫ t

u

〈A(ξs−) + ξs−,ψz
t−s〉ds+

∫ u

0

〈A(ξs−) + ξs−,
�

�ψz
t−s −ψ

z
u−s

�

�〉ds
�pi

.

For the martingale term we now further get via the Burkholder-Davis-Gundy inequality (49)

E

��

�

�Mt

�

ψz
t−·

�

−Mu

�

ψz
t−·

�

�

�

�

p�

≤ C(p)
§

E

��

�

�Mt

�

ψz
t−·

�

−Mu

�

ψz
t−·

�

�

�

�

p�

+E
��

�

�Mu

�

ψz
t−·

�

−Mu

�

ψz
u−·

�

�

�

�

p�ª

≤ C(p)E
�

�

�

�




M·
�

ψz
t−·

�

�

t −



M·
�

ψz
t−·

�

�

u

�

�

�

p/2
�

+ C(p)E
�

�

�

�




M·
�

ψz
t−·−ψ

z
u−·

�

�

u

�

�

�

p/2
�

+ C(p)N−p/2

≤ C(λ, p)E







�
∫ t

u

‖ψz
t−s ‖0 〈ξs−,ψz

t−s〉ds

�p/2





+ C(λ, p)

 

∫ δ∧u

0

‖ψz
t−s −ψ

z
u−s ‖

2
λ 〈1, e−2λ〉ds

!p/2

+ C(λ, p)E





�
∫ u

δ∧u

‖ψz
t−s −ψ

z
u−s ‖0 〈ξs−,

�

�ψz
t−s −ψ

z
u−s

�

�〉ds

�p/2


+ C(p)N−p/2,

where we used equation (33) to bound the first and second term. Using (48) and reasoning as in
(54) the above can further be bounded by

C(λ, p)

�
∫ t

u

‖ψz
t−s ‖0 ds

�p/2

+ C(λ, p, T ) sup
0≤s≤δ∧u

‖ψz
t−s −ψ

z
u−s ‖

p
λ

+ C(λ, p)

�
∫ u

δ∧u

‖ψz
t−s −ψ

z
u−s ‖0 ds

�p/2

+ C(p)N−p/2.
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Under the assumption N−3/4 ∧ u≤ u− (δ ∧ u) we obtain from Corollary 3.5(a), (d), (e) that

E

��

�

�Mt

�

ψz
t−·

�

−Mu

�

ψz
u−·

�

�

�

�

p�

(58)

≤ C(λ, p, T )eλp(z)
¦

(t − u)p/6+
�

|t − u|p/2+ N−p/2
�

(u− (δ ∧ u))−3p/2

+(u− (δ ∧ u))p/6+ N−p/2
©

.

Finally observe that with
δ = u−

��

|t − u|1/4 ∨ N−1/4
�

∧ u
�

we get N−3/4 ∧ u≤ u−δ and by proceeding as in (55) we obtain

E

��

�

�Mt

�

ψz
t−·

�

−Mu

�

ψz
u−·

�

�

�

�

p�

≤ C(λ, p, T )eλp(z)
¦

(t − u)p/6+ |t − u|p/24+ N−p/24+ N−p/2
©

.

Finally, we can bound the last expectation of the last line of (57) by using

〈A(ξt−s) + ξs−,ψz
t−s〉 ≤ 〈1+ 1,ψz

t−s〉= 2.

Here the last equality followed from Lemma 3.4(a). We thus obtain as an upper bound on the last
expectation of the last line of (57),

C(p)

¨

|t − u|p +E
��
∫ u

0

〈A(ξs−) + νs−,
�

�ψz
t−s −ψ

z
u−s

�

�〉ds

�p�«

.

We further have for the second term

E
h�

∫ u

0

〈A(ξs−) + νs−,
�

�ψz
t−s −ψ

z
u−s

�

�〉ds
�pi

≤ C(p)

(

E





 

∫ δ∧u

0

〈A(ξs−) + νs−, e−λ〉ds sup
0≤s≤δ

‖ψz
t−s −ψ

z
u−s ‖λ

!p



+E

��
∫ u

δ∧u

〈A(ξs−) + νs−, e−λ〉 ‖ψz
t−s −ψ

z
u−s ‖λ ds

�p�«

(56)
≤ C(λ, p, T )

¨�

sup
0≤s≤δ∧u

‖ψz
t−s −ψ

z
u−s ‖λ

�p

+

�
∫ u

δ∧u

‖ψz
t−s −ψ

z
u−s ‖λ ds

�p«

≤ C(λ, p, T )eλp(z)
¦

(t − u)p/2(u− (δ ∧ u))−3p/2+ N−p/2(u− (δ ∧ u))−3p/2+ (u− (δ ∧ u))p/3
©

,

where we assumed N−3/4∧u≤ u−(δ∧u) when we applied Corollary 3.5(d) together with Corollary
3.5(e) in the last line. Now reason as from (58) on to obtain

C(λ, p, T )eλp(z)
¦

|t − u|p/24+ N−p/24
©

as an upper bound.

Taking all bounds together we have for the time differences from (57)

E
��

�Â(ξt)(z)− Â(ξu)(z)
�

�

p�≤ C(λ, p, T )
�

1+ C p/2
Q + C p

Q

�

eλp(z)
¦

|t − u|p/24+ N−p/24
©

.

The bounds on the space difference and the time difference taken together complete the proof.

647



We now show that these moment estimates imply C-tightness of the approximate densities. We shall
start including dependence on N again to clarify the tightness argument. First define

Ã(ξN
t )(z) = Â(ξN

t )(z) on the grid z ∈ N−1Z, t ∈ N−2N0.

Linearly interpolate first in z and then in t to obtain a continuous C -valued process. Note in
particular that we can use Lemma 3.8 to show that for 0 ≤ s ≤ t ≤ T, |t − s| ≤ 1 and y, z ∈
R, |y − z| ≤ 1,

E
��

�Ã(ξN
t )(z)− Ã(ξN

s )(y)
�

�

p�≤ C(λ, p, T )
�

1+ C p
Q

�

eλp(z)
�

|t − s|p/48+ |z− y|p/24
�

for λ > 0, p ≥ 2 arbitrarily fixed.

The next lemma shows that Ã(ξN
t ) and Â(ξN

t ) remain close. The advantage of using Ã(ξN
t ) is that it

is continuous.

Using Kolmogorov’s continuity theorem (see for instance Corollary 1.2 in Walsh [19]) on compacts
R(i1,i2)

1 ≡ {(t, x) ∈ R+ ×R : (t, x) ∈ (i1, i2) + [0,1]2} for i1 ∈ N0, i2 ∈ Z we obtain tightness of

Ã(ξN
t )(x) in the space of continuous functions on

n

(t, x) : (t, x) ∈ R(i1,i2)
1

o

. Indeed, we can use the

Arzelà-Ascoli theorem. With arbitrarily high probability, part (ii) of Corollary 1.2 of [19] provides
a uniform (in N) modulus of continuity for all N ≥ N0. Pointwise boundedness follows from the
boundedness of A(ξN

t )(x) together with Lemma 3.9(b) below. Now use a diagonalization argument
to obtain tightness of (Ã(ξN

t )(x) : t ∈R+, x ∈R)N∈N in the space of continuous functions fromR+×
R to R equipped with the topology of uniform convergence on compact sets. Next observe that if
we consider instead the space of continuous functions from R+ to the space of continuous functions
from R to R, both equipped with the topology of uniform convergence on compact sets, tightness
of (Ã(ξN

t )(x) : t ∈ R+, x ∈ R)N∈N in the former space is equivalent to tightness of (Ã(ξN
t )(·) : t ∈

R+)N∈N in the latter.

Finally, tightness of (A(ξN
t ) : t ∈R+)N∈N as cadlag C1-valued processes (recall that 0≤ A(ξN

t )(x)≤
1 by construction) and also the continuity of all weak limit points follow from the next lemma.

Lemma 3.9. For any λ > 0, T <∞ we have

(a) P
�

supt≤T ‖ Ã(ξN
t )− Â(ξN

t )‖−λ≥ 7N−1/4
�

→ 0 as N →∞.

(b) supt≤T ‖〈νN
0 ,ψ·t〉 − Pt/3u0‖−λ→ 0 as N →∞.

Proof. The proof is very similar to the proof of Lemma 7 in [13]. We shall only give some additional
steps for part (a) to complement the proof of the given reference.

(a) For 0≤ s ≤ t we have

‖〈νN
0 ,ψ·t〉 − 〈ν

N
0 ,ψ·s〉‖−λ= sup

z

�

�〈A(ξN
0 ), ψ̄

z
t − ψ̄

z
s 〉
�

� e−λ|z| ≤ 2N |t − s|.

Here we used Lemma 3.6(a), 0 ≤ A(ξN
0 ) ≤ 1 and Lemma 3.4(d). Hence, this only changes by
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O(N−1) between the (time-)grid points in N−2N0. We obtain that

P

�

sup
t≤T
‖ Ã(ξN

t )− Â(ξN
t )‖−λ≥ 7N−1/4

�

≤ P
�

∃t ∈ [0, T]∩ N−2N0, s ∈ [0, T], |s− t| ≤ N−2 such that

‖A(ξN
t )− A(ξN

s )‖−λ +
�

�

�

�〈νN
0 ,ψ·t −ψ

·
s〉
�

�

�

�

−λ ≥ 7N−1/4
�

≤ P
�

∃t ∈ [0, T]∩ N−2N0, s ∈ [0, T], |s− t| ≤ N−2 such that ‖A(ξN
t )− A(ξN

s )‖−λ≥ 6N−1/4
�

for N big enough.

Next note that the value of A(ξN
t )(x) changes only at jump times of Pt(x; y) or

Qm,i, j.k
t (x; y1, . . . , ym; z), i, j, k = 0,1, m ≥ 2 for some y ∼ x respectively for some y1, . . . , ym ∼ x

and arbitrary z ∈ N−1Z and that each jump of A(ξN
t ) is by definition of A(ξN

t ) bounded by N−1/2.
Then, writing P (a) for a Poisson variable with mean a, we get as a further bound on the above

∑

l∈Z
P
�

∃z ∈ N−1Z∩ (l, l + 1],∃t ∈ [0, T]∩ N−2N0,∃s ∈ [t, t + N−2] with

§

�

�A(ξN
t )(z)− A(ξN

s )(z)
�

�∧
�

�

�A(ξN
t+N−2(z)− A(ξN

s )(z)
�

�

�

ª

≥ N−1/4eλ(|l|−1)
�

≤
∑

l∈Z
N(N2T )P



CN−1/2





∑

y∼0

PN−2(0; y)

+
∑

i, j,k=0,1,m≥2

∑

y1,...,ym∼0

∑

u
Qm,i, j,k

N−2 (0; y1, . . . , ym; u)






≥ N−1/4eλ(|l|−1)







≤
∑

l∈Z
C(T )N3P

�

CN−1/2P
�

N−2
��

N − θ (N)
�

+ CQ

��

≥ N−1/4eλ(|l|−1)
�

≤
∑

l∈Z
C(T )N3P

�

�

P
�

N−2
�

N + CQ

���p
≥ CN p/4eλp(|l|−1)

�

for some p > 0. Now apply Chebyshev’s inequality. Choose p > 0 such that 3− p/4 < 0. Then the
resulting sum is finite and goes to zero for N →∞.

(b) The proof of part (b) follows as the proof of Lemma 7(b) of [13].

3.7 Characterizing limit points

To conclude the proof of Theorem 2.10 we can proceed as in Section 4 in [13], except for the proof
of weak uniqueness of (21). We shall give a short overview in what follows. The interested reader
is referred to [13] for complete explanations.

In short, Lemma 3.6(b) implies for all φ ∈ Cc that

sup
t

�

�〈νN
t ,φ〉 − 〈A(ξN

t ),φ〉
�

�≤ C(λ) ‖D(φ, N−1/2)‖λ
N→∞→ 0. (59)

The C-tightness of (A(ξN
t ) : t ≥ 0) in C1 follows from the results of Subsection 3.6.
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This in turn implies the C-tightness of (νN
t : t ≥ 0) as cadlag Radon measure valued processes with

the vague topology. Indeed, let ϕk, k ∈ N be a sequence of smooth functions from R to [0,1] such
that ϕk(x) is 1 for |x | ≤ k and 0 for |x | ≥ k + 1. Then a diagonalization argument shows that
C-tightness of (νN

t : t ≥ 0) as cadlag Radon measure valued processes with the vague topology
holds if and only if C-tightness of (ϕkdνN

t : t ≥ 0) as cadlagMF ([−(k+1), k+1])-valued processes
with the weak topology holds. Here, MF ([−(k + 1), k + 1]) denotes the space of finite measures
on [−(k + 1), k + 1]. Now use Theorem II.4.1 in Perkins [15] (also see the Remark following
it and the proof of sufficiency on pages 157-159) to obtain C-tightness of (ϕkdνN

t : t ≥ 0) in
D(MF ([−(k+ 1), k+ 1])). The compact containment condition (i) in [15] is obvious. The second
condition (ii) in [15] follows from (59) and the C-tightness of (A(ξN

t ) : t ≥ 0) in C1 together with
Lemma 3.7(a).

Observe in particular, that (59) implies the existence of a subsequence
�

A(ξNk
t ),ν

Nk
t

�

that converges
to (ut ,νt). Hence, we can define variables with the same distributions on a different probability
space such that with probability one, for all T <∞,λ > 0,φ ∈ Cc ,

sup
t≤T

�

�

�

�

�

�A(ξNk
t )− ut

�

�

�

�

�

�

−λ
→ 0 as k→∞,

sup
t≤T

�

�

�〈φ,νNk
t 〉 − 〈φ,νt〉

�

�

�→ 0 as k→∞,

where we used 0≤ A(ξNk
t )≤ 1 and thus 0≤ ut(x)≤ 1 a.s. for the first limit. We obtain in particular

νt(d x) = ut(x)d x for all t ≥ 0.

It remains to investigate ut in the special case with no short-range competition, i.e. where q(k,m,N)
0 j =

q(k,m,N)
1 j , j = 0, 1. Take φt ≡ φ ∈ C 3

c in (37). We get

M (N)t (φ) =〈ν
N
t ,φ〉 − 〈νN

0 ,φ〉 −
∫ t

0

〈νN
s−,∆

�

φ
�

〉ds− E(1)t (φ) (60)

−
∑

k=0,1

(1− 2k)
∑

m≥2, j=0,1

q(k,m,N)
0 j

∫ t

0

〈
�

F j ◦ A
�

ξN
s−

��

×
�

F1−k ◦ A
�

ξN
s−

��m−1
1
�

ξN
s−(·) = k

�

,φ〉ds− E(3)t (φ).

From (30) and (36) and the Burkholder-Davis-Gundy inequality (49) we obtain that the error terms
converge to zero for all 0≤ t ≤ T almost surely. Taylor’s theorem further shows that (replace Nk by
N for notational ease)

∆
�

φ
�

(xN ) =
N − θ (N)

c(N)N

p
N

2

∑

y∼xN

(φ(y)−φ(xN ))→
∆φ
6
(x)

as xN → x and N →∞ on the support of φ. Using this in (60) we can show that M (N)t (φ) converges
to a continuous martingale Mt(φ) satisfying

Mt(φ) =

∫

φ(x)ut(x)d x −
∫

φ(x)u0(x)d x −
∫ t

0

∫

∆φ(x)
6

us(x)d xds (61)

−
∑

k=0,1

(1− 2k)
∑

m≥2, j=0,1

q(k,m)
0 j

∫ t

0

∫

F j(us(x))
�

F1−k(us(x))
�m−1 Fk(us(x))φ(x)d xds.
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To exchange the limit in N → ∞ with the infinite sum we used [16], Proposition 11.18 together
with Hypothesis 2.7. Recall in particular, that 0 ≤ Fl(us(x)) ≤ 1 for l = 0, 1. To show that Mt(φ)
is indeed a martingale we used in particular (33) to see that 〈M (N)(φ)〉t ≤ C(λ)t ‖φ ‖2λ 〈1, e−2λ〉 is

uniformly bounded. Therefore, (M (N)t (φ) : N ≥ N0) and all its moments are uniformly integrable,
using the Burkholder-Davis-Gundy inequality of the form (49) once more.

We can further calculate its quadratic variation by making use of (32) for N →∞ together with the
uniform integrability of ((M (N)t (φ))

2 : N ≥ N0).

Use our results for φ ∈ C 3
c , note that C 3

c is dense in C 2
c with respect to the norm ‖ f ‖≡‖ f ‖∞ +

‖ f ′ ‖∞ + ‖∆ f ‖∞, and use (61) to see that ut solves the martingale problem associated with the
SPDE (21). It is now straightforward to show that, with respect to some white noise, ut is actually a
solution to (21) (see Rogers and Williams [17], V.20 for the similar argument in the case of SDEs).

3.8 Uniqueness in law

To show uniqueness of all limit points of Subsection 3.7 in the case with no short-range competition
and with 〈u0, 1〉<∞, we need to show uniqueness in law of [0, 1]-valued solutions to (21). Indeed,
as 0≤ A(ξN

t )(x)≤ 1 by definition, any limit point has to satisfy ut(x) ∈ [0, 1]. Rewrite (21) as

∂ u

∂ t
=
∆u

6
+ u(1− u)

∑

k=0,1

(1− 2k)
∑

m≥2, j=0,1

q(k,m)
0 j F j(u)

�

F1−k(u)
�m−2+

p

2u(1− u)Ẇ (62)

≡
∆u

6
+ u(1− u)Q(u) +

p

2u(1− u)Ẇ .

Observe that |Q(us(x))| ≤ CQ with CQ as in (47) because 0≤ us(x)≤ 1.

To check uniqueness in law of [0, 1]-valued solutions we apply a version of Dawson’s Girsanov
theorem in what follows, cf. Theorem IV.1.6 in [15], p. 252. The idea is to use change of measure
techniques to deduce uniqueness in law of solutions u to (62) from the uniqueness in law of solutions
v to a better understood SPDE.

Let Pu denote the law of a solution to the SPDE (62) and Pv denote the unique law of the [0,1]-
valued solution to the SPDE

∂ v

∂ t
=
∆v

6
+
p

2v(1− v)Ẇ (63)

with v0 = u0. Reasons for existence and uniqueness of a [0, 1]-valued solution to the latter can be
found in Shiga [18], Example 5.2, p. 428. Note in particular that the solution vt takes values in C1.

To prove weak uniqueness, we shall follow the reasoning of the proof of Theorem IV.1.6(a),(b) in
[15] in a univariate setup. We obtain as a result the following lemma.

Lemma 3.10. If 〈u0, 1〉<∞ the weak [0,1]-valued solution to (62) is unique in law. If we let

Rt ≡exp

¨
∫ t

0

∫

Q(vs(x))
2

p

2vs(x)(1− vs(x))dW (x , s)

−
1

2

∫ t

0

∫

(1− vs(x))
�

Q(vs(x))
�2

2
vs(x)d xds

)

,
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then
dPu

dPv

�

�

�

�

Ft

= Rt for all t > 0, (64)

where Ft is the canonical filtration of the process v(t, x).

Proof. We proceed analogously to the proof of Theorem IV.1.6(a),(b) in [15]. Observe in particular
that we take

Tn = inf

(

t ≥ 0 :

∫ t

0

∫

(1− us(x))
�

Q(us(x))
�2

2
us(x)d x + 1 ds ≥ n

)

.

Lemma C.1 shows that under Pu

∫ t

0

∫

(1− us(x))
�

Q(us(x))
�2

2
us(x)d xds ≤

�

CQ

�2

2

∫ t

0

〈us, 1〉ds <∞

for all t > 0 Pu−a.s. and so Tn ↑ ∞ Pu-a.s. As in Theorem IV.1.6(a) of [15] this gives uniqueness of
the law Pu of a solution to (62). As in Theorem IV.1.6(b) of [15] the fact that Tn ↑ ∞ Pv-a.s. (from
Lemma C.1) shows that (64) defines a probability Pu which satisfies (62).

A Proof of Remark 2.1

In what follows we shall prove the claim of Remark 2.1. See for instance Theorem B3, p.3 in
Liggett [11] and note the uniform boundedness assumption on the rates from p.1 of [11]. Following
the notation in [11], let c(x ,ξN ) denote the rate at which the coordinate ξN (x) flips from 0 to 1 or
from 1 to 0 when the system is in state ξN . Then using (G(N)i : N ∈N), (H(N)i : N ∈N)∈ ~P0, i = 0,1,

(15), (16) and 0≤ f (N)i , g(N)i ≤ 1, i = 0,1 yield

sup
x∈Z/N

sup
ξN∈{0,1}Z/N

c
�

x ,ξN
�

≤ N +

 

∞
∑

m=0

�

�

�α
(m+1,N)
0

�

�

�+
�

�

�β
(m+1,N)
0

�

�

�

!

∨

 

∞
∑

m=0

�

�

�α
(m+1,N)
1

�

�

�+
�

�

�β
(m+1,N)
1

�

�

�

!

≡ N + C0(N)<∞

and

sup
x∈Z/N

∑

u∈Z/N

sup
ξN∈{0,1}Z/N

�

�

�c
�

x ,ξN
�

− c
�

x ,ξN
u

�

�

�

�

≤ sup
x∈Z/N

∑

u∼x
sup

ξN∈{0,1}Z/N

�

�

�c
�

x ,ξN
�

− c
�

x ,ξN
u

�

�

�

�

+ sup
x∈Z/N

∑

u∈Z/N

sup
ξN∈{0,1}Z/N

∑

i=0,1

�

�

�g(N)i

�

x ,ξN
�

− g(N)i

�

x ,ξN
u

�

�

�

�C0(N)

≤ 2c(N)N1/22(N + C0(N)) + sup
x∈Z/N

∑

u∈Z/N

2p(N(x − u))C0(N)

<∞,
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where

ξN
u (v) =

(

ξN (v), v 6= u,

1− ξN (v), v = u.

Following [11], the two conditions are sufficient to ensure the claim holds.

B Auxiliary results to prove Lemma 3.4

The following lemma and corollary are necessary to prove Lemma 3.4.

Lemma B.1. There exists N0 <∞ such that for all N ≥ N0, k ≥ 1

(a)
�

�

�ρk(t)− exp
�

−c2(N)
kt2

6N

�
�

�

�≤ C 1
k

exp
�

−c2(N)
kt2

12N

�

for t ≤
Æ

N
3

,

(b) |ρ(t)| ≤ exp
�

−C t2

12N

�

for t ≤
�

6N
c2(N)

�1/2
,

(c) There exists δ > 0 such that |ρ(t)| ≤ 1−δ for t ∈
�

�

6N
c2(N)

�1/2
,πN

�

.

Proof. The proof mainly follows along the lines of the proof of Lemma 8 in [13]. Some small
changes ensued due to the different setup. Recall the definition of ρ(t) from equation (42).

For (b), we could not find the reference mentioned in [13] but the following reasoning in [13] based
on applying Taylor’s theorem at t = 0 works well without it.

For (a), first observe that ρk(t) = E
�

ei tSk
�

and use Bhattacharya and Rao [2], (8.11), (8.13) and
[2], Theorem 8.5. as suggested in [13]. We used that E[Y1] = E[Y 3

1 ] = 0.

It remains to prove (c). We have to change the proof of [13], Lemma 8(c) slightly, as we used x 6∼ x .
We get

|ρ(t)|=

�

�

�

�

�

�

1

2c(N)N1/2

∑

0< j≤c(N)
p

N

2Re
h

ei t j
N

i

�

�

�

�

�

�

=

�

�

�

�

�

�

1

c(N)N1/2
Re







ei t 1
N − ei t c(N)

p
N+1

N

1− ei t 1
N







�

�

�

�

�

�

≤
1

c(N)N1/2

�

�

�

�

�

2

2sin
�

t
2N

�

�

�

�

�

�

.

For 1+ε
c(N)N1/2 ≤

t
2N
≤ π

2
with ε > 0 fixed we get as an upper bound

1

c(N)N1/2

�

�

�

�

�

�

1

sin
�

1+ε
c(N)N1/2

�

�

�

�

�

�

�

≤
1

1+ ε
< 1,

given N big enough. Finally use that 2<
p

6 to obtain the claim.
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Corollary B.2. For N ≥ N0, y ∈ N−1Z we have
�

�

�

�

NP(Sk = y)− p
�

c2(N)
k

3N
, y
�
�

�

�

�

≤ C1

¦

N exp
�

−kC2
	

+ N1/2k−3/2
©

,

where C1, C2 > 0 are some positive constants.

Proof. This result corresponds to Corollary 9 in [13]. The proof works similarly. Instead of the
reference given at the beginning of the proof of Corollary 9 in [13], we used Durrett [7], p. 95, Ex.
3.2(ii) and [7], Thm. (3.3).

Note in particular that the result of Lemma B.1(c) can be extended to t ∈
h
Æ

N
3

,πN
i

if we choose
δ > 0 small enough. Indeed, using Lemma B.1(b) we obtain

|ρ(t)| ≤ e−C t2

12N ≤ e−C N/3
12N ≤ (1−δ)

as claimed.

C Auxiliary results to prove Lemma 3.10

The following lemma is used to prove Lemma 3.10. Let u and Q(u) be as in (62) and v as in (63).
Also recall the definitions of Pu,Pv and CQ in between (62) and (63).

Lemma C.1. Given u0 = v0 satisfying 〈u0, 1〉<∞, we have Pu-a.s.
∫ t

0
〈us, 1〉ds <∞ for all t ≥ 0 and

Pv-a.s.
∫ t

0
〈vs, 1〉ds <∞ for all t ≥ 0.

Proof. We shall prove the claim for Pu. The other claim then follows by considering the special case
Q ≡ 0. As a first step we shall use a generalization of the weak form of (62) to functions in two
variables. In the proof of Theorem 2.1 on p. 430 of [18] it is shown that for every ψ ∈ D2

rap(T ) and
0< t < T we have

〈ut ,ψt〉=〈u0,ψ0〉+
∫ t

0

〈us,
�

∂

∂ s
+
∆
6

�

ψs〉ds+

∫ t

0

〈us(1− us)Q(us),ψs〉ds (65)

+

∫ t

0

∫

p

2us(x)(1− us(x))ψs(x)dW (x , s).

Here we have for T > 0,

C (R) =
�

f :R→R continuous
	

,

Crap =
�

f ∈ C (R) such that sup
x

eλ|x || f (x)|<∞ for all λ > 0
�

,

C 2
rap =

¦

ψ ∈ C 2(R) such that ψ,ψ′,ψ′′ ∈ Crap

©

,

D2
rap(T ) =

n

ψ ∈ C 1,2([0, T )×R) such that ψ(t, ·) is C 2
rap-valued continuous and

∂ψ

∂ t
(t, ·) is Crap-valued continuous in 0≤ t < T

�

.
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Also observe that the condition (2.2) of [18] is satisfied as we have 0 ≤ us(x) ≤ 1 and therefore
|Q(us(x))| ≤ CQ.

Now recall that the Brownian transition density is p(s, x) = 1p
2πs

e−
x2

2s . Let
�

Psφ
�

(x) =
∫

p
�

s
3
, y − x

�

φ(y)d y with φ ∈ C∞c ,φ ≥ 0 and let

ψ(s, x) =ψs(x) = eCQ(T−s) �PT−sφ
�

(x) and thus ψ ∈ D2
rap(T ).

Note that ∂
∂ s

�

PT−sφ
�

(x) = −∆
6

�

PT−sφ
�

(x), where we used that ∂
∂ s

p(s, x) = 1
2
∆p(s, x). We obtain

for the drift term in (65) that

〈us,
�

∂

∂ s
+
∆
6

�

ψs〉+ 〈us(1− us)Q(us),ψs〉

= 〈us,−CQψs −
∆
6
ψs +

∆
6
ψs〉+ 〈us(1− us)Q(us),ψs〉

≤ 0

using that ψ(s, x)≥ 0 for φ ≥ 0. Additionally, the local martingale in (65) is a true martingale as

D

∫ ·

0

∫

p

2us(x)(1− us(x))ψs(x)dW (x , s)
E

t

=

∫ t

0

〈2us(1− us),ψ
2
s 〉ds ≤ 2e2CQ T

∫ t

0

〈1,
�

PT−sφ
�2〉ds

≤ 2e2CQ T ‖φ‖0

∫ t

0

〈1, PT−sφ〉ds = 2e2CQ T ‖φ‖0 〈1,φ〉t

<∞.

Hence we obtain from (65) for all 0< t < T after taking expectations

E
�

〈ut ,ψt〉
�

≤ 〈u0,ψ0〉,

i.e.
eCQ(T−t)E

�

〈ut , (PT−tφ)〉
�

≤ eCQ T 〈u0, (PTφ)〉.

Now choose an increasing sequence of non-negative functions φn ∈ C∞c such that φn ↑ 1 for n→∞.
Using the monotone convergence theorem, we obtain from the above

eCQ(T−t)E
�

〈ut , 1〉
�

= lim
n→∞

eCQ(T−t)E
�

〈ut , (PT−tφ
n)〉
�

≤ lim
n→∞

eCQ T 〈u0, (PTφ
n)〉= eCQ T 〈u0, 1〉.

Hence by the Fubini-Tonelli theorem,

E

�
∫ t

0

〈us, 1〉ds

�

≤ 〈u0, 1〉
∫ t

0

eCQsds <∞

for all t ≥ 0, which proves the claim.
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