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Abstract

Suppose we are given the free product V of a finite family of finite or countable sets. We consider
a transient random walk on the free product arising naturally from a convex combination of ran-
dom walks on the free factors. We prove the existence of the asymptotic entropy and present
three different, equivalent formulas, which are derived by three different techniques. In partic-
ular, we will show that the entropy is the rate of escape with respect to the Greenian metric.
Moreover, we link asymptotic entropy with the rate of escape and volume growth resulting in
two inequalities.
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1 Introduction

Suppose we are given a finite family of finite or countable sets V1, . . . , Vr with distinguished vertices
oi ∈ Vi for i ∈ {1, . . . , r}. The free product of the sets Vi is given by V := V1∗. . .∗Vr , the set of all finite
words of the form x1 . . . xn such that each letter is an element of

⋃r
i=1 Vi \ {oi} and two consecutive

letters arise not from the same Vi . We consider a transient Markov chain (Xn)n∈N0
on V starting at

the empty word o, which arises from a convex combination of transition probabilities on the sets Vi .
Denote by πn the distribution of Xn. We are interested in whether the sequence E[− logπn(Xn)]/n
converges, and if so, to compute this constant. If the limit exists, it is called the asymptotic entropy.
In this paper, we study this question for random walks on general free products. In particular, we
will derive three different formulas for the entropy by using three different techniques.

Let us outline some results about random walks on free products: for free products of finite groups,
Mairesse and Mathéus [21] computed an explicit formula for the rate of escape and asymptotic
entropy by solving a finite system of polynomial equations. Their result remains valid in the case
of free products of infinite groups, but one needs then to solve an infinite system of polynomial
equations. Gilch [11] computed two different formulas for the rate of escape with respect to the
word length of random walks on free products of graphs by different techniques, and also a third
formula for free products of (not necessarily finite) groups. The techniques of [11] are adapted to
the present setting. Asymptotic behaviour of return probabilities of random walks on free products
has also been studied in many ways; e.g. Gerl and Woess [10], [28], Sawyer [24], Cartwright and
Soardi [5], and Lalley [18], Candellero and Gilch [4].

Our proof of existence of the entropy envolves generating functions techniques. The techniques we
use for rewriting probability generating functions in terms of functions on the factors of the free
product were introduced independently and simultaneously by Cartwright and Soardi [5], Woess
[28], Voiculescu [27] and McLaughlin [22]. In particular, we will see that asymptotic entropy is
the rate of escape with respect to a distance function in terms of Green functions. While it is well-
known by Kingman’s subadditive ergodic theorem (see Kingman [17]) that entropy (introduced by
Avez [1]) exists for random walks on groups whenever E[− logπ1(X1)]<∞, existence for random
walks on other structures is not known a priori. We are not able to apply Kingman’s theorem in our
present setting, since we have no (general) subadditivity and we have only a partial composition
law for two elements of the free product. For more details about entropy of random walks on groups
we refer to Kaimanovich and Vershik [14] and Derriennic [7].

An important link between drifts and harmonic analysis was obtained by Varopoulos [26]. He proved
that for symmetric finite range random walks on groups the existence of non-trivial bounded har-
monic functions is equivalent to a non-zero rate of escape. Karlsson and Ledrappier [16] generalized
this result to symmetric random walks with finite first moment of the step lengths. This leads to a
link between the rate of escape and the entropy of random walks, compare e.g. with Kaimanovich
and Vershik [14] and Erschler [8]. Erschler and Kaimanovich [9] asked if drift and entropy of ran-
dom walks on groups vary continuously on the probability measure, which governs the random
walk. We prove real-analyticity of the entropy when varying the probabilty measure of constant
support; compare also with the recent work of Ledrappier [19], who simultaneously proved this
property for finite-range random walks on free groups.

Apart from the proof of existence of the asymptotic entropy h = limn→∞E[− logπn(Xn)]/n (The-
orem 3.7), we will calculate explicit formulas for the entropy (see Theorems 3.7, 3.8, 5.1 and
Corollary 4.2) and we will show that the entropy is non-zero. The technique of our proof of exis-
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tence of the entropy was motivated by Benjamini and Peres [2], where it is shown that for random
walks on groups the entropy equals the rate of escape w.r.t. the Greenian distance; compare also
with Blachère, Haïssinsky and Mathieu [3]. We are also able to show that, for random walks on
free products of graphs, the asymptotic entropy equals just the rate of escape w.r.t. the Greenian
distance (see Corollary 3.3 in view of Theorem 3.7). Moreover, we prove convergence in probability
and convergence in L1 (if the non-zero single transition probabilities are bounded away from 0) of
the sequence − 1

n
logπn(Xn) to h (see Corollary 3.11), and we show also that h can be computed

along almost every sample path as the limes inferior of the aforementioned sequence (Corollary
3.9). In the case of random walks on discrete groups, Kingman’s subadditive ergodic theorem pro-
vides both the almost sure convergence and the convergence in L1 to the asymptotic entropy; in the
case of general free products there is neither a global composition law for elements of the free prod-
uct nor subadditivity. Thus, in the latter case we have to introduce and investigate new processes.
The question of almost sure convergence of − 1

n
logπn(Xn) to some constant h, however, remains

open. Similar results concerning existence and formulas for the entropy are proved in Gilch and
Müller [12] for random walks on directed covers of graphs. The reasoning of our proofs follows the
argumentation in [12]: we will show that the entropy equals the rate of escape w.r.t. some special
length function, and we deduce the proposed properties analogously. In the present case of free
products of graphs, the reasoning is getting more complicated due to the more complex structure of
free products in contrast to directed covers, although the main results about existence and conver-
gence types are very similar. We will point out these difficulties and main differences to [12] at the
end of Section 3.2. Finally, we will link entropy with the rate of escape and the growth rate of the
free product, resulting in two inequalities (Corollary 6.4).

The plan of the paper is as follows: in Section 2 we define the random walk on the free product
and the associated generating functions. In Section 3 we prove existence of the asymptotic entropy
and give also an explicit formula for it. Another formula is derived in Section 4 with the help of
double generating functions and a theorem of Sawyer and Steger [25]. In Section 5 we use another
technique to compute a third explicit formula for the entropy of random walks on free products of
(not necessarily finite) groups. Section 6 links entropy with the rate of escape and the growth rate
of the free product. Sample computations are presented in Section 7.

2 Random Walks on Free Products

2.1 Free Products and Random Walks

Let I := {1, . . . , r} ⊆ N, where r ≥ 2. For each i ∈ I , consider a random walk with transition matrix
Pi on a finite or countable state space Vi . W.l.o.g. we assume that the sets Vi are pairwise disjoint
and we exclude the case r = 2= |V1|= |V2| (see below for further explanation). The corresponding
single and n-step transition probabilities are denoted by pi(x , y) and p(n)i (x , y), where x , y ∈ Vi . For
every i ∈ I , we select an element oi of Vi as the “root”. To help visualize this, we think of graphsXi
with vertex sets Vi and roots oi such that there is an oriented edge x → y if and only if pi(x , y)> 0.
Thus, we have a natural graph metric on the set Vi . Furthermore, we shall assume that for every
i ∈ I and every x ∈ Vi there is some nx ∈ N such that p(nx )

i (oi , x) > 0. For sake of simplicity we
assume pi(x , x) = 0 for every i ∈ I and x ∈ Vi . Moreover, we assume that the random walks on Vi
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are uniformly irreducible, that is, there are ε(i)0 > 0 and Ki ∈ N such that for all x , y ∈ Vi

pi(x , y)> 0 ⇒ p(k)i (x , y)≥ ε(i)0 for some k ≤ Ki . (2.1)

We set K := maxi∈I Ki and ε0 := mini∈I ε
(i)
0 . For instance, this property is satisfied for nearest

neighbour random walks on Cayley graphs of finitely generated groups, which are governed by
probability measures on the groups.

Let V×i := Vi \ {oi} for every i ∈ I and let V×∗ :=
⋃

i∈I V×i . The free product is given by

V := V1 ∗ . . . ∗ Vr

=
n

x1 x2 . . . xn

�

�

� n ∈ N, x j ∈ V×∗ , x j ∈ V×k ⇒ x j+1 /∈ V×k
o

∪
n

o
o

. (2.2)

The elements of V are “words” with letters, also called blocks, from the sets V×i such that no two
consecutive letters come from the same Vi . The empty word o describes the root of V . If u =
u1 . . . um ∈ V and v = v1 . . . vn ∈ V with um ∈ Vi and v1 /∈ Vi then uv stands for their concatenation
as words. This is only a partial composition law, which makes defining the asymptotic entropy more
complicated than in the case of free products of groups. In particular, we set uoi := u for all i ∈ I
and ou := u. Note that Vi ⊆ V and oi as a word in V is identified with o. The block length of a word
u = u1 . . . um is given by ‖u‖ := m. Additionally, we set ‖o‖ := 0. The type τ(u) of u is defined to
be i if um ∈ V×i ; we set τ(o) := 0. Finally, ũ denotes the last letter um of u. The set V can again be
interpreted as the vertex set of a graph X , which is constructed as follows: take copies of X1, . . .Xr
and glue them together at their roots to one single common root, which becomes o; inductively, at
each vertex v1 . . . vk with vk ∈ Vi attach a copy of every X j , j 6= i, and so on. Thus, we have also a
natural graph metric associated to the elements in V .

The next step is the construction of a new Markov chain on the free product. For this purpose, we lift
Pi to a transition matrix P̄i on V : if x ∈ V with τ(x) 6= i and v, w ∈ Vi , then p̄i(x v, xw) := pi(v, w).
Otherwise we set p̄i(x , y) := 0. We choose 0 < α1, . . . ,αr ∈ R with

∑

i∈I αi = 1. Then we obtain a
new transition matrix on V given by

P =
∑

i∈I
αi P̄i .

The random walk on V starting at o, which is governed by P, is described by the sequence of random
variables (Xn)n∈N0

. For x , y ∈ V , the associated single and n-step transition probabilities are denoted
by p(x , y) and p(n)(x , y). Thus, P governs a nearest neighbour random walk on the graphX , where
P arises from a convex combination of the nearest neighbour random walks on the graphs Xi .

Theorem 3.3 in [11] shows existence (including a formula) of a positive number `0 such that `0 =
limn→∞ ‖Xn‖/n almost surely. The number `0 is called the rate of escape w.r.t. the block length.
Denote by πn the distribution of Xn. If there is a real number h such that

h= lim
n→∞

1

n
E
�

− logπn(Xn)
�

,

then h is called the asymptotic entropy of the process (Xn)n∈N0
; we write N0 := N \ {0}. If the sets

Vi are groups and the random walks Pi are governed by probability measures µi , existence of the
asymptotic entropy rate is well-known, and in this case we even have h= limn→∞−

1
n

logπn(Xn)
almost surely; see Derriennic [7] and Kaimanovich and Vershik [14]. We prove existence of h in the
case of general free products.
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2.2 Generating Functions

Our main tool will be the usage of generating functions, which we introduce now. The Green func-
tions related to Pi and P are given by

Gi(x i , yi|z) :=
∑

n≥0

p(n)i (x i , yi) z
n and G(x , y|z) :=

∑

n≥0

p(n)(x , y) zn,

where z ∈ C, x i , yi ∈ Vi and x , y ∈ V . At this point we make the basic assumption that the radius
of convergence R of G(·, ·|z) is strictly bigger than 1. This implies transience of our random walk on
V . Thus, we may exclude the case r = 2 = |V1| = |V2|, because we get recurrence in this case. For
instance, if all Pi govern reversible Markov chains, then R> 1; see [29, Theorem 10.3]. Furthermore,
it is easy to see that R> 1 holds also if there is some i ∈ I such that p(n)i (oi , oi) = 0 for all n ∈ N.

The first visit generating functions related to Pi and P are given by

Fi(x i , yi|z) :=
∑

n≥0

P
�

Y (i)n = yi ,∀m≤ n− 1 : Y (i)m 6= yi | Y
(i)

0 = x i
�

zn and

F(x , y|z) :=
∑

n≥0

P
�

Xn = y,∀m≤ n− 1 : Xm 6= y | X0 = x
�

zn,

where
�

Y (i)n

�

n∈N0
describes a random walk on Vi governed by Pi . The stopping time of the first

return to o is defined as To := inf{m≥ 1 | Xm = o}. For i ∈ I , define

H i(z) :=
∑

n≥1

P[To = n, X1 /∈ V×i ] z
n and ξi(z) :=

αiz

1−H i(z)
.

We write also ξi := ξi(1), ξmin := mini∈I ξi and ξmax := maxi∈I ξi . Observe that ξi < 1; see [11,
Lemma 2.3]. We have F(x i , yi|z) = Fi

�

x i , yi|ξi(z)
�

for all x i , yi ∈ Vi; see Woess [29, Prop. 9.18c].
Thus,

ξi(z) :=
αiz

1−
∑

j∈I\{i}
∑

s∈Vj
α j p j(o j , s)zF j

�

s, o j

�

�ξ j(z)
�

.

For x i ∈ Vi and x ∈ V , define the stopping times T (i)x i
:= inf{m ≥ 1 | Y (i)m = x i} and Tx := inf{m ≥

1 | Xm = x}, which take both values in N∪{∞}. Then the last visit generating functions related to Pi
and P are defined as

Li(x i , yi|z) :=
∑

n≥0

P
�

Y (i)n = yi , T (i)x i
> n | Y (i)0 = x i

�

zn,

L(x , y|z) :=
∑

n≥0

P
�

Xn = y, Tx > n | X0 = x
�

zn.

If x = x1 . . . xn, y = x1 . . . xn xn+1 ∈ V with τ(xn+1) = i then

L(x , y|z) = Li
�

oi , xn+1

�

�ξi(z)
�

; (2.3)

this equation is proved completely analogously to [29, Prop. 9.18c]. If all paths from x ∈ V to
w ∈ V have to pass through y ∈ V , then

L(x , w|z) = L(x , y|z) · L(y, w|z);
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this can be easily checked by conditioning on the last visit of y when walking from x to w. We have
the following important equations, which follow by conditioning on the last visits of x i and x , the
first visits of yi and y respectively:

Gi(x i , yi|z) = Gi(x i , x i|z) · Li(x i , yi|z) = Fi(x i , yi|z) · Gi(yi , yi|z),

G(x , y|z) = G(x , x |z) · L(x , y|z) = F(x , y|z) · G(y, y|z).
(2.4)

Observe that the generating functions F(·, ·|z) and L(·, ·|z) have also radii of convergence strictl
bigger than 1.

3 The Asymptotic Entropy

3.1 Rate of Escape w.r.t. specific Length Function

In this subsection we prove existence of the rate of escape with respect to a specific length function.
From this we will deduce existence and a formula for the asymptotic entropy in the upcoming
subsection.

We assign to each element x i ∈ Vi the “length”

li(x i) :=− log L(o, x i|1) =− log Li(oi , x i|ξi).

We extend it to a length function on V by assigning to v1 . . . vn ∈ V the length

l(v1 . . . vn) :=
n
∑

i=1

lτ(vi)(vi) =−
n
∑

i=1

log L(o, vi|1) =− log L(o, v1 . . . vn|1).

Observe that the lengths can also be negative. E.g., this can be interpreted as height differences.
The aim of this subsection is to show existence of a number ` ∈ R such that the quotient l(Xn)/n
tends to ` almost surely as n→∞. We call ` the rate of escape w.r.t. the length function l(·).
We follow now the reasoning of [11, Section 3]. Denote by X (k)n the projection of Xn to the first k
letters. We define the k-th exit time as

ek :=min
�

m ∈ N0

�

� ∀n≥ m : X (k)n is constant
	

.

Moreover, we define Wk := Xek
, τk := τ(Wk) and k(n) := max{k ∈ N0 | ek ≤ n}. We remark that

‖Xn‖ →∞ as n→∞, and consequently ek <∞ almost surely for every k ∈ N; see [11, Prop. 2.5].
Recall that eWk is just the laster letter of the random word Xek

. The process (τk)k∈N is Markovian
and has transition probabilities

q̂(i, j) =
α j

αi

ξi

ξ j

1− ξ j

1− ξi

� 1

(1− ξ j)G j(o j , o j|ξ j)
− 1
�

for i 6= j and q̂(i, i) = 0; see [11, Lemma 3.4]. This process is positive recurrent with invariant
probability measure

ν(i) = C−1 ·
αi(1− ξi)

ξi

�

1− (1− ξi)Gi(oi , oi|ξi)
�

,

where C :=
∑

i∈I

αi(1− ξi)
ξi

�

1− (1− ξi)Gi(oi , oi|ξi)
�

;

81



see [11, Section 3]. Furthermore, the rate of escape w.r.t. the block length exists almost surely and
is given by the almost sure constant limit

`0 = lim
n→∞

‖Xn‖
n
= lim

k→∞

k

ek
=

1
∑

i, j∈I ,i 6= j ν(i)α j
1−ξ j

1−ξi
γ′i, j(1)

(see [11, Theorem 3.3]), where

γi, j(z) :=
1

αi

ξi(z)
ξ j(z)

� 1
�

1− ξ j(z)
�

G j
�

o j , o j

�

�ξ j(z)
�
− 1
�

.

Lemma 3.1. The process
�

eWk,τk
�

k∈N is Markovian and has transition probabilities

q
�

(g, i), (h, j)
�

=







α j

αi

ξi

ξ j

1−ξ j

1−ξi
L j(o j , h|ξ j), if i 6= j,

0, if i = j.

Furthermore, the process is positive recurrent with invariant probability measure

π(g, i) =
∑

j∈I
ν( j)q

�

(∗, j), (g, i)
�

.

Remark: Observe that the transition probabilities q
�

(g, i), (h, j)
�

of
�

eWk,τk
�

k∈N do not depend on
g. Therefore, we will write sometimes an asterisk instead of g.

Proof. By [11, Section 3], the process
�

eWk,ek − ek−1,τk
�

k∈N is Markovian and has transition prob-
abilities

q̃
�

(g, m, i), (h, n, j)
�

=







1−ξ j

1−ξi

∑

s∈Vj
k(n−1)

i (s)p(s, h), if i 6= j,

0, if i = j,

where k(n)i (s) := P
�

Xn = s,∀l ≤ n : X l /∈ V×i |X0 = o] for s ∈ V×∗ \ Vi . Thus,
�

ÝWk,τk
�

k∈N is also
Markovian and has the following transition probabilities if i 6= j:

q
�

(g, i), (h, j)
�

=
∑

n≥1

q̃
�

(g,∗, i), (h, n, j)
�

=
1− ξ j

1− ξi

∑

s∈Vj

∑

n≥1

k(n−1)
i (s)p(s, h)

=
1− ξ j

1− ξi

∑

s∈Vj

L j(o j , s|ξ j)

1− H̄i(1)
p(s, h) =

α j

αi

ξi

ξ j

1− ξ j

1− ξi
L j(o j , h|ξ j).

In the third equality we conditioned on the last visit of o before finally walking from o to s and
we remark that h ∈ V×j . A straight-forward computation shows that π is the invariant probability
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measure of
�

eWk,τk
�

k∈N, where we writeA :=
�

(g, i)
�

� i ∈ I , g ∈ V×i
	

:

∑

(g,i)∈A

π(g, i) · q
�

(g, i), (h, j)
�

=
∑

(g,i)∈A

∑

k∈I
ν(k) · q

�

(∗, k), (g, i)
�

· q
�

(∗, i), (h, j)
�

=
∑

i∈I
q
�

(∗, i), (h, j)
�

∑

k∈I
ν(k)

∑

g∈V×i

q
�

(∗, k), (g, i)
�

=
∑

i∈I
q
�

(∗, i), (h, j)
�

∑

k∈I
ν(k) · q̂(k, i)

=
∑

i∈I
q
�

(∗, i), (h, j)
�

· ν(i) = π(h, j).

Now we are able to prove the following:

Proposition 3.2. There is a number ` ∈ R such that

`= lim
n→∞

l(Xn)
n

almost surely.

Proof. Define h : A → R by h(g, j) := l(g). Then
∑k
λ=1 h

�

eWλ,τλ
�

=
∑k
λ=1 l

�

eWλ

�

= l(Wk). An
application of the ergodic theorem for positive recurrent Markov chains yields

l(Wk)
k
=

1

k

k
∑

λ=1

h
�

eWλ,τλ
� n→∞−−−→ Ch :=

∫

h dπ,

if the integral on the right hand side exists. We now show that this property holds. Observe that the
values G j(o j , g|ξ j) are uniformly bounded from above for all (g, j) ∈A :

G j(o j , g|ξ j) =
∑

n≥0

p(n)j (o j , g)ξn
j ≤

1

1− ξ j
≤

1

1− ξmax
.

For g ∈ V×∗ , denote by |g| the smallest n ∈ N such that p(n)
τ(g)(oτ(g), g) > 0. Uniform irreducibility

of the random walk Pi on Vi implies that there are some ε0 > 0 and K ∈ N such that for all j ∈ I ,
x j , y j ∈ Vj with p j(x j , y j) > 0 we have p(k)j (x j , y j) ≥ ε0 for some k ≤ K . Thus, for (g, j) ∈ A we
have

G j(o j , g|ξ j)≥ ε
|g|
0 ξ

|g|·K
j ≥

�

ε0 ξ
K
min

�|g|.

Observe that the inequality |g| ·
�

�log
�

ε0 ξ
K
min

�

�

� < log1/(1− ξmax) holds if and only if |g| < log(1−
ξmax)/ log(ε0 ξ

K
min). Define the sets

M1 :=
n

g ∈ V×∗

�

�

� |g| ≥
log(1− ξmax)

log(ε0 ξ
K
min)

o

, M2 :=
n

g ∈ V×∗

�

�

� |g|<
log(1− ξmax)

log(ε0 ξ
K
min)

o

.
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Recall Equation (2.4). We can now prove existence of
∫

h dπ:

∫

|h| dπ =
∑

(g, j)∈A

�

�log L j(o j , g|ξ j)
�

� ·π(g, j)

≤
∑

(g, j)∈A

�

�log G j(o j , g|ξ j)
�

� ·π(g, j) +
∑

(g, j)∈A

�

�log G j(o j , o j|ξ j)
�

� ·π(g, j)

≤
∑

(g, j)∈A :g∈M1

�

�log G j(o j , g|ξ j)
�

� ·π(g, j)

+
∑

(g, j)∈A :g∈M2

�

�log G j(o j , g|ξ j)
�

� ·π(g, j) +max
j∈I

log G j(o j , o j|ξ j)

≤
∑

(g, j)∈A :g∈M1

�

�log(ε0ξ
K
min)

|g|| ·π(g, j)

+
∑

(g, j)∈A :g∈M2

�

�log(1− ξmax)
�

� ·π(g, j) +max
j∈I

log G j(o j , o j|ξ j)

≤
∑

(g, j)∈A :g∈M1

�

�log(ε0ξ
K
min)| · |g| ·π(g, j)

+
�

�log(1− ξmax)
�

�+max
j∈I

log G j(o j , o j|ξ j)<∞,

since
∑

(g, j)∈A |g| ·π(g, j) <∞; see [11, Proof of Prop. 3.2]. From this follows that l(Wk)/k tends
to Ch almost surely. The next step is to show that

l(Xn)− l(Wk(n))

n
n→∞−−−→ 0 almost surely. (3.1)

To prove this, assume now that we have the representations Wk(n) = g1 g2 . . . gk(n) and Xn =
g1 g2 . . . gk(n) . . . g‖Xn‖. Define M :=max

�

| log(ε0 ξ
K
min)|, | log(1− ξmax)|

	

. Then:

�

�l(Xn)− l(Wk(n))
�

� =

�

�

�

�

−
‖Xn‖
∑

i=k(n)+1

log Lτ(gi)
�

oτ(gi), gi | ξτ(gi)
�

�

�

�

�

≤
‖Xn‖
∑

i=k(n)+1

�

�

�

�

log
Gτ(gi)

�

oτ(gi), gi | ξτ(gi)
�

Gτ(gi)
�

oτ(gi), oτ(gi) | ξτ(gi)
�

�

�

�

�

≤
‖Xn‖
∑

i=k(n)+1:gi∈M1

�

� log Gτ(gi)
�

oτ(gi), gi | ξτ(gi)
�

�

�

+
‖Xn‖
∑

i=k(n)+1:gi∈M2

�

� log Gτ(gi)
�

oτ(gi), gi | ξτ(gi)
�

�

�

+
�

‖Xn‖− k(n)
�

·
�

� log(1− ξmax)
�

�
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≤
‖Xn‖
∑

i=k(n)+1:gi∈M1

�

� log(ε0 ξ
K
min)

|gi |
�

�

+
‖Xn‖
∑

i=k(n)+1:gi∈M2

�

� log(1− ξmax)
�

�+
�

‖Xn‖− k(n)
�

·
�

� log(1− ξmax)
�

�

≤
‖Xn‖
∑

i=k(n)+1:gi∈M1

|gi| ·M +
‖Xn‖
∑

i=k(n)+1:gi∈M2

M +
�

‖Xn‖− k(n)
�

·M

≤ 3 ·M · (n− ek(n)).

Dividing the last inequality by n and letting n→∞ provides analogously to Nagnibeda and Woess
[23, Section 5] that limn→∞

�

l(Xn)− l(Wk(n))
�

/n = 0 almost surely. Recall also that k/ek → `0 and
ek(n)/n→ 1 almost surely; compare [23, Proof of Theorem D] and [11, Prop. 3.2, Thm. 3.3]. Now
we can conclude:

l(Xn)
n
=

l(Xn)− l(Wk(n))

n
+

l(Wk(n))

k(n)
k(n)
ek(n)

ek(n)

n
n→∞−−−→ Ch · `0 almost surely. (3.2)

We now compute the constant Ch from the last proposition explicitly:

Ch =
∑

(g, j)∈A

l(g) ·
∑

i∈I
ν(i) · q

�

(∗, i), (g, j)
�

=
∑

i, j∈I ,
i 6= j

∑

g∈V×j

− log L j(o j , g|ξ j)ν(i)
α j

αi

ξi

ξ j

1− ξ j

1− ξi
L j(o j , g|ξ j). (3.3)

We conclude this subsection with the following observation:

Corollary 3.3. The rate of escape ` is non-negative and it is the rate of escape w.r.t. the Greenian
metric, which is given by dGreen(x , y) :=− log F(x , y|1). That is,

`= lim
n→∞

−
1

n
log F(e, Xn|1)≥ 0.

Proof. By (2.4), we get

`= lim
n→∞

−
1

n
log F(e, Xn|1)−

1

n
log G(Xn, Xn|1) +

1

n
log G(o, o|1).

Since F(e, Xn|1) ≤ 1 it remains to show that G(x , x |1) is uniformly bounded in x ∈ V : for v, w ∈ V ,
the first visit generating function is defined as

U(v, w|z) =
∑

n≥1

P
�

Xn = w,∀m ∈ {1, . . . , n− 1} : Xm 6= w | X0 = v
�

zn. (3.4)

Therefore,

G(x , x |z) =
∑

n≥0

U(x , x |z)n =
1

1− U(x , x |z)
.
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Since U(x , x |z) < 1 for all z ∈ [1, R), U(x , x |0) = 0 and U(x , x |z) is continuous, stricly increasing
and strictly convex, we must have U(x , x |1) ≤ 1

R
, that is, 1 ≤ G(x , x |1) ≤

�

1− 1
R

�−1. This finishes
the proof.

3.2 Asymptotic Entropy

In this subsection we will prove that ` equals the asymptotic entropy, and we will give explicit
formulas for it. The technique of the proof which we will give was motivated by Benjamini and
Peres [2], where it is shown that the asymptotic entropy of random walks on discrete groups equals
the rate of escape w.r.t. the Greenian distance. The proof follows the same reasoning as in Gilch and
Müller [12].

Recall that we made the assumption that the spectral radius of (Xn)n∈N0
is strictly smaller than 1,

that is, the Green function G(o, o|z) has radius of convergence R> 1. Moreover, the functions ξi(z),
i ∈ I , have radius of convergence bigger than 1. Recall that ξi = ξi(1) < 1 for every i ∈ I . Thus,
we can choose % ∈ (1, R) such that ξi(%) < 1 for all i ∈ I . We now need the following three
technical lemmas:

Lemma 3.4. For all m, n ∈ N0,

p(m)(o, Xn)≤ G(o, o|%) ·
� 1

1−maxi∈I ξi(%)

�n
·%−m.

Proof. Denote by C% the circle with radius % in the complex plane centered at 0. A straightforward
computation shows for m ∈ N0:

1

2πi

∮

C%

zm dz

z
=

(

1, if m= 0,

0, if m 6= 0.

Let be x = x1 . . . x t ∈ V . An application of Fubini’s Theorem yields

1

2πi

∮

C%

G(o, x |z) z−m dz

z
=

1

2πi

∮

C%

∑

k≥0

p(k)(o, x)zk z−m dz

z

=
1

2πi

∑

k≥0

p(k)(o, x)

∮

C%

zk−m dz

z
= p(m)(o, x).

Since G(o, x |z) is analytic on C%, we have |G(o, x |z)| ≤ G(o, x |%) for all |z|= %. Thus,

p(m)(o, x)≤
1

2π
·%−m−1 · G(o, x |%) · 2π% = G(o, x |%) ·%−m.

Iterated applications of equations (2.3) and (2.4) provide

G(o, x |%) = G(o, o|%)
‖x‖
∏

k=1

Lτ(xk)
�

oτ(xk), xk|ξi(%)
�

≤ G(o, o|%)
� 1

1−maxi∈I ξi(%)

�‖x‖
.

Since ‖Xn‖ ≤ n, we obtain

p(m)(e, Xn)≤ G(o, o|%) ·
� 1

1−maxi∈I ξi(%)

�n
·%−m.
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Lemma 3.5. Let (An)n∈N, (an)n∈N, (bn)n∈N be sequences of strictly positive numbers with An = an+ bn.
Assume that limn→∞−

1
n

log An = c ∈ [0,∞) and that limn→∞ bn/q
n = 0 for all q ∈ (0, 1). Then

limn→∞−
1
n

log an = c.

Proof. Under the made assumptions it can not be that lim infn→∞ an/q
n = 0 for every q ∈ (0, 1).

Indeed, assume that this would hold. Choose any q > 0. Then there is a subseqence (ank
)k∈N with

ank
/qnk → 0. Moreover, there is Nq ∈ N such that ank

, bnk
< qnk/2 for all k ≥ Nq. But this implies

−
1

nk
log(ank

+ bnk
)≥−

1

nk
log(qnk) =− log q.

The last inequality holds for every q > 0, yielding that limsupn→∞−
1
n

log An =∞, a contradiction.

Thus, there is some N ∈ N such that bn < an for all n≥ N . We get for all n≥ N :

−
1

n
log(an+ bn) ≤ −

1

n
log(an) =−

1

n
log
�1

2
an+

1

2
an

�

≤ −
1

n
log
�1

2
an+

1

2
bn

�

≤−
1

n
log

1

2
−

1

n
log(an+ bn).

Taking limits yields that− 1
n

log(an) tends to c, since the leftmost and rightmost side of this inequality
chain tend to c.

For the next lemma recall the definition of K from (2.1).

Lemma 3.6. For n ∈ N, consider the function fn : V → R defined by

fn(x) :=

(

− 1
n

log
∑Kn2

m=0 p(m)(o, x), if p(n)(o, x)> 0,

0, otherwise.

Then there are constants d and D such that d ≤ fn(x)≤ D for all n ∈ N and x ∈ V .

Proof. Assume that p(n)(o, x) > 0. Recall from the proof of Corollary 3.3 that we have G(x , x |1) ≤
�

1− 1
R

�−1. Therefore,

Kn2
∑

m=0

p(m)(o, x)≤ G(o, x |1)≤ F(o, x |1) · G(x , x |1)≤
1

1− 1
R

,

that is

fn(x)≥−
1

n
log

1

1− 1
R

.

For the upper bound, observe that, by uniform irreducibility, x ∈ V with p(n)(o, x) > 0 can be
reached from o in Nx ≤ K · |x | ≤ Kn steps with a probability of at least ε|x |0 , where ε0 > 0 from (2.1)

is independent from x . Thus, at least one of the summands in
∑Kn2

m=0 p(m)(o, x) has a value greater

or equal to ε|x |0 ≥ ε
n
0 . Thus, fn(x)≤− logε0.

Now we can state and prove our first main result:
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Theorem 3.7. Assume R> 1. Then the asymptotic entropy exists and is given by

h= `0 ·
∑

g∈V×∗

l(g)π
�

g,τ(g)
�

= `.

Proof. By (2.4) we can rewrite ` as

`= lim
n→∞

−
1

n
log L(o, Xn|1) = lim

n→∞
−

1

n
log

G(o, Xn|1)
G(o, o|1)

= lim
n→∞

−
1

n
log G(o, Xn|1).

Since
G(o, Xn|1) =

∑

m≥0

p(m)(o, Xn)≥ p(n)(o, Xn) = πn(Xn),

we have

lim inf
n→∞

−
1

n
logπn(Xn)≥ `. (3.5)

The next aim is to prove limsupn→∞−
1
n
E
�

logπn(Xn)
�

≤ `. We now apply Lemma 3.5 by setting

An :=
∑

m≥0

p(m)(o, Xn), an :=
Kn2
∑

m=0

p(m)(o, Xn) and bn :=
∑

m≥Kn2+1

p(m)(o, Xn).

By Lemma 3.4,

bn ≤
∑

m≥Kn2+1

G(o, o|%)
%m ·

� 1

1−maxi∈I ξi(%)

�n
= G(o, o|%) ·

� 1

1−maxi∈I ξi(%)

�n
·
%−Kn2−1

1−%−1 .

Therefore, bn decays faster than any geometric sequence. Applying Lemma 3.5 yields

`= lim
n→∞

−
1

n
log

Kn2
∑

m=0

p(m)(o, Xn) almost surely.

By Lemma 3.6, we may apply the Dominated Convergence Theorem and get:

` =

∫

lim
n→∞

−
1

n
log

Kn2
∑

m=0

p(m)(o, Xn) dP

= lim
n→∞

∫

−
1

n
log

Kn2
∑

m=0

p(m)(o, Xn) dP

= lim
n→∞

−
1

n

∑

x∈V

p(n)(o, x) log
Kn2
∑

m=0

p(m)(o, x).

Recall that Shannon’s Inequality gives

−
∑

x∈V

p(n)(o, x) logµ(x)≥−
∑

x∈V

p(n)(o, x) log p(n)(o, x)
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for every finitely supported probability measure µ on V . We apply now this inequality by setting

µ(x) := 1
Kn2+1

∑Kn2

m=0 p(m)(o, x):

` ≥ limsup
n→∞

1

n

∑

x∈V

p(n)(o, x) log(Kn2+ 1)−
1

n

∑

x∈V

p(n)(o, x) log p(n)(o, x)

= limsup
n→∞

−
1

n

∫

logπn(Xn) dP.

Now we can conclude with Fatou’s Lemma:

`≤
∫

lim inf
n→∞

− logπn(Xn)
n

dP ≤ lim inf
n→∞

∫

− logπn(Xn)
n

dP

≤ lim sup
n→∞

∫

− logπn(Xn)
n

dP≤ `. (3.6)

Thus, limn→∞−
1
n
E
�

logπn(Xn)
�

exists and the limit equals `. The rest follows from (3.2) and
(3.3).

We now give another formula for the asymptotic entropy which shows that it is strictly positive.

Theorem 3.8. Assume R> 1. Then the asymptotic entropy is given by

h= `0 ·
∑

g,h∈V×∗

−π
�

g,τ(g)
�

q
�

(g,τ(g)), (h,τ(h))
�

log q
�

(g,τ(g)), (h,τ(h))
�

> 0.

Remarks: Observe that the sum on the right hand side of Theorem 3.8 equals the entropy rate (for
positive recurrent Markov chains) of

�

eWk,τk
�

k∈N, which is defined by the almost sure constant limit

hQ := lim
n→∞

−
1

n
logµn

�

( eW1,τ1), . . . , ( eWn,τn)
�

,

where µn
�

(g1,τ1), . . . , (gn,τn)
�

is the joint distribution of
�

( eW1,τ1), . . . , ( eWn,τn)
�

. That is, h =
` · hQ. For more details, we refer e.g. to Cover and Thomas [6, Chapter 4].

At this point it is essential that we have defined the length function l(·) with the help of the functions
L(x , y|z) and not by the Greenian metric.

Proof. For a moment let be x = x1 . . . xn ∈ V . Then:

l(x) = − log
n
∏

j=1

Lτ(x j)
�

oτ(x j), x j|ξτ(x j)
�

= − log
n
∏

j=2

ατ(x j)

ατ(x j−1)

ξτ(x j−1)

ξτ(x j)

1− ξτ(x j)

1− ξτ(x j−1)
Lτ(x j)

�

oτ(x j), x j|ξτ(x j)
�

− log Lτ(x1)
�

oτ(x1), x1|ξτ(x1)
�

+ log
ξτ(x1)ατ(xn) (1− ξτ(xn))

ατ(x1) ξτ(xn) (1− ξτ(x1))

= − log
n
∏

j=2

q
�

(x j−1,τ(x j−1)), (x j ,τ(x j))
�

− log Lτ(x1)
�

oτ(x1), x1|ξτ(x1)
�

+ log
ξτ(x1)ατ(xn) (1− ξτ(xn))

ατ(x1) ξτ(xn) (1− ξτ(x1))
.(3.7)
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We now replace x by Xek
in the last equation: since l(Xn)/n tends to h almost surely, the subsequence

�

l(Xek
)/ek

�

k∈N converges also to h. Since mini∈I ξi > 0 and maxi∈I ξi < 1, we get

1

ek
log
ξτ(x1)ατ(xk) (1− ξτ(xk))

ατ(x1) ξτ(xk) (1− ξτ(x1))
k→∞−−−→ 0 almost surely,

where x1 := Xe1
and xk := eWk = eXek

. By positive recurrence of
�

eWk,τk
�

k∈N, an application of the
ergodic theorem yields

−
1

k
log

k
∏

j=2

q
�

( eW j−1,τ j−1), ( eW j ,τ j)
�

n→∞−−−→ h′ :=−
∑

g,h∈V×∗ ;
τ(g)6=τ(h)

π
�

g,τ(g)
�

q
�

(g,τ(g)), (h,τ(h)
�

log q
�

(g,τ(g)), (h,τ(h)
�

> 0 a.s.,

whenever h′ <∞. Obviously, for every x1 ∈ V×∗

lim
k→∞
−

1

ek
log Lτ(x1)

�

oτ(x1), x1|ξτ(x1)
�

= 0 almost surely.

Since limk→∞ k/ek = `0 we get

h= lim
k→∞

l
�

Xek

�

ek
= lim

k→∞

l
�

Xek

�

k

k

ek
= h′ · `0,

whenever h′ <∞. In particular, h> 0 since `0 > 0 by [11, Section 4].

It remains to show that it cannot be that h′ =∞. For this purpose, assume now h′ =∞. Define for
N ∈ N the function hN :

�

V×∗
�2→ R by

hN (g, h) := N ∧
�

− log q
�

(g,τ(g)), (h,τ(h))
�

.

Then

−
1

k

k
∑

j=2

log hN
�

eXe j−1
, eXe j

�

k→∞−−−→ h′N :=−
∑

g,h∈V×∗ ,
τ(g)6=τ(h)

π
�

g,τ(g)
�

q
�

(g,τ(g)), (h,τ(h))
�

log hN (g, h) almost surely.

Observe that h′N → ∞ as N → ∞. Since hN (g, h) ≤ − log q
�

(g,τ(g)), (h,τ(h))
�

and h′ = ∞ by
assumption there is for every M ∈ R and almost every trajectory of

�

eWk
�

k∈N an almost surely finite
random time Tq ∈ N such that for all k ≥ Tq

−
1

k

k
∑

j=2

log q
�

( eW j−1,τ j−1), ( eW j ,τ j)
�

> M . (3.8)
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On the other hand side there is for every M > 0, every small ε > 0 and almost every trajectory an
almost surely finite random time TL such that for all k ≥ TL

−
1

ek

k
∑

j=1

log Lτ(Xe j
)
�

oτ(Xe j
), eXe j

|ξτ(Xe j
)
�

∈ (h− ε, h+ ε) and

−
1

ek

k
∑

j=2

log q
�

(eXe j−1
,τ j−1), (eXe j

,τ j)
�

= −
k

ek

1

k

k
∑

j=2

log q
�

(eXe j−1
,τ j−1), (eXe j

,τ j)
�

> `0 ·M .

Furthermore, since mini∈I ξi > 0 and maxi∈I ξi < 1 there is an almost surely finite random time
Tε ≥ TL such that for all k ≥ Tε and all x1 = Xe1

and xk = eXek

−
1

ek
log
ξτ(x1)ατ(xk) (1− ξτ(xk))

ατ(x1) ξτ(xk) (1− ξτ(x1))
∈ (−ε,ε) and

1

ek
log Lτ(x1)

�

oτ(x1), x1|ξτ(x1)
�

∈ (−ε,ε).

Choose now M > (h+3ε)/`0. Then we get the desired contradiction, when we substitute in equality
(3.7) the vertex x by Xek

with k ≥ Tε, divide by ek on both sides and see that the left side is in
(h−ε, h+ε) and the rightmost side is bigger than h+ε. This finishes the proof of Theorem 3.8.

Corollary 3.9. Assume R> 1. Then we have for almost every path of the random walk (Xn)n∈N0

h= lim inf
n→∞

−
logπn(Xn)

n
.

Proof. Recall Inequality (3.5). Integrating both sides of this inequality yields together with the
inequality chain (3.6) that

∫

lim inf
n→∞

−
logπn(Xn)

n
− hdP= 0,

providing that h= lim infn→∞−
1
n

logπn(Xn) for almost every realisation of the random walk.

The following lemma gives some properties concerning general measure theory:

Lemma 3.10. Let (Zn)n∈N0
be a sequence of non-negative random variables and 0< c ∈ R. Suppose

that lim infn→∞ Zn ≥ c almost surely and limn→∞E[Zn] = c. Then the following holds:

1. Zn
P−→ c, that is, Zn converges in probability to c.

2. If Zn is uniformly bounded then Zn
L1−→ c, that is,

∫ �

�Zn− c
�

�dP→ 0 as n→∞.
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Proof. First, we prove convergence in probability of (Zn)n∈N0
. For every δ1 > 0, there is some index

Nδ1
such that for all n≥ Nδ1

∫

Zn dP ∈ (c−δ1, c+δ1).

Furthermore, due to the above made assumptions on (Zn)n∈N0
there is for every δ2 > 0 some index

Nδ2
such that for all n≥ Nδ2

P[Zn > c−δ1]> 1−δ2. (3.9)

Since c = limn→∞
∫

Zn dP it must be that for every arbitrary but fixed ε > 0, every δ1 < ε and for
all n big enough

P
�

Zn > c−δ1
�

· (c−δ1) + P
�

Zn > c+ ε
�

· (ε+δ1)≤
∫

Zn dP≤ c+δ1,

or equivalently,

P
�

Zn > c+ ε
�

≤
c+δ1− P

�

Zn > c−δ1
�

· (c−δ1)
ε+δ1

.

Letting δ2→ 0 we get

limsup
n→∞
P
�

Zn > c+ ε
�

≤
2δ1

ε+δ1
.

Since we can choose δ1 arbitrarily small we get

P
�

Zn > c+ ε
� n→∞−−−→ 0 for all ε > 0.

This yields convergence in probability of Zn to c.

In order to prove the second part of the lemma we define for any small ε > 0 and n ∈ N the events

An,ε :=
�

|Zn− c| ≤ ε
�

and Bn,ε :=
�

|Zn− c|> ε
�

.

For arbitrary but fixed ε > 0, convergence in probability of Zn to c gives an integer Nε ∈ N such
that P[Bn,ε] < ε for all n ≥ Nε. Since 0 ≤ Zn ≤ M is assumed to be uniformly bounded, we get for
n≥ Nε:

∫

|Zn− c| dP=
∫

An,ε

|Zn− c| dP+
∫

Bn,ε

|Zn− c| dP≤ ε+ ε (M + c)
ε→0−−→ 0.

Thus, we have proved the second part of the lemma.

We can apply the last lemma immediately to our setting:

Corollary 3.11. Assume R> 1. Then we have the following types of convergence:

1. Convergence in probability:

−
1

n
logπn(Xn)

P−→ h.

2. Assume that there is c0 > 0 such that p(x , y)≥ c0 whenever p(x , y)> 0. Then:

−
1

n
logπn(Xn)

L1−→ h.
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Proof. Setting Zn = −
1
n

logπn(Xn) and applying Lemma 3.10 yields the claim. Note that the as-

sumption p(x , y)≥ c0 yields 0≤ − logπn(Xn)
n

≤− log c0.

The assumption of the second part of the last corollary is obviously satisfied if we consider free
products of finite graphs.

The reasoning in our proofs for existence of the entropy and its different properties (in particular,
the reasoning in Section 3.2) is very similar to the argumentation in [12]. However, the structure of
free products of graphs is more complicated than in the case of directed covers as considered in [12].
We outline the main differences to the reasoning in the aforementionend article. First, in [12] a very
similar rate of escape (compare [12, Theorem 3.8] with Proposition 3.2) is considered, which arises
from a length function induced by last visit generating functions. While the proof of existence of the
rate of escape in [12] is easy to check, we have to make more effort in the case of free products,
since − log Li(oi , x |1) is not necessarily bounded for x ∈ Vi . Additionally, one has to study the
various ingridients of the proof more carefully, since non-trivial loops are possible in our setting in
contrast to random walks on trees. Secondly, in [12] the invariant measure π

�

g,τ(g)
�

of our proof
collapses to ν

�

τ(g)
�

, that is, in [12] one has to study the sequence
�

τ(Wk)
�

k∈N, while in our setting
we have to study the more complex sequence

�

eWk,τ(Wk)
�

k∈N; compare [12, proof of Theorem 3.8]
with Lemma 3.1 and Proposition 3.2.

4 A Formula via Double Generating Functions

In this section we derive another formula for the asymptotic entropy. The main tool is the following
theorem of Sawyer and Steger [25, Theorem 2.2]:

Theorem 4.1 (Sawyer and Steger). Let (Yn)n∈N0
be a sequence of real-valued random variables such

that, for some δ > 0,

E
�

∑

n≥0

exp(−rYn− sn)
�

=
C(r, s)
g(r, s)

for 0< r, s < δ,

where C(r, s) and g(r, s) are analytic for |r|, |s| < δ and C(0,0) 6= 0. Denote by g ′r and g ′s the partial
derivatives of g with respect to r and s. Then

Yn

n
n→∞−−−→

g ′r(0,0)
g ′s(0,0)

almost surely.

Setting z = e−s and Yn :=− log L(o, Xn|1) the expectation in Theorem 4.1 becomes

E (r, z) =
∑

x∈V

∑

n≥0

p(n)(o, x)L(o, x |1)rzn =
∑

x∈V

G(o, x |z)L(o, x |1)r .

We define for i ∈ I , r, z ∈ C:

L (r, z) := 1+
∑

n≥1

∑

x1...xn∈V\{o}

n
∏

j=1

Lτ(x j)
�

oτ(x j), x j|ξτ(x j)(z)
�

· Lτ(x j)
�

oτ(x j), x j|ξτ(x j)
�r ,

L+i (r, z) :=
∑

x∈V×i

Li
�

oi , x |ξi(z)
�

Li(oi , x |ξi)
r .
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Finally, Li(r, z) is defined by

L+i (r, z) ·
�

1+
∑

n≥2

∑

x2...xn∈V×\{o},
τ(x2)6=i

n
∏

j=2

Lτ(x j)
�

oτ(x j), x j|ξτ(x j)(z)
�

· Lτ(x j)
�

oτ(x j), x j|ξτ(x j)
�r
�

.

With these definitions we have L (r, z) = 1+
∑

i∈I Li(r, z) and E (r, z) = G(o, o|z) · L (r, z). Simple
computations analogously to [11, Lemma 4.2, Corollary 4.3] yield

E (r, z) =
G(o, o|z)

1−L ∗(r, z)
, where L ∗(r, z) =

∑

i∈I

L+i (r, z)

1+L+i (r, z)
.

We now define C(r, z) := G(o, o|z) and g(r, z) := 1−L ∗(r, z) and apply Theorem 4.1 by differenti-
ating g(r, z) and evaluating the derivatives at (0,1):

∂ g(r, z)
∂ r

�

�

�

�

r=0,z=1
= −

∑

i∈I

∑

x∈V×i
Li(oi , x |ξi) · log Li(oi , x |ξi)

�

1+
∑

x∈V×i
Li(oi , x |ξi)

�2

= −
∑

i∈I
Gi(oi , oi|ξi) · (1− ξi)

2 ·
∑

x∈V×i

Gi(oi , x |ξi) log Li(oi , x |ξi)

= −
∑

i∈I
Gi(oi , oi|ξi) · (1− ξi)

2 ·

·
�

∑

x∈Vi

Gi(oi , x |ξi) log Gi(oi , x |ξi)−
log Gi(oi , oi|ξi)

1− ξi

�

,

∂ g(r, z)
∂ s

�

�

�

�

r=0,s=0
=

∑

i∈I

∂

∂ z

�

1−
�

1− ξi(z)
�

Gi
�

oi , oi|ξi(z)
�

�
�

�

�

z=1

=
∑

i∈I
ξ′i(1) ·

�

Gi(oi , oi|ξi)− (1− ξi)G
′
i(oi , oi|ξi)

�

.

Corollary 4.2. Assume R> 1. Then the entropy can be rewritten as

h=
∂ g(r,z)
∂ r
(0, 1)

∂ g(r,z)
∂ s
(0, 1)

.

�

5 Entropy of Random Walks on Free Products of Groups

In this section let each Vi be a finitely generated group Γi with identity ei = oi . W.l.o.g. we assume
that the Vi ’s are pairwise disjoint. The free product is again a group with concatenation (followed
by iterated cancellations and contractions) as group operation. We write Γ×i := Γi \ {ei}. Suppose
we are given a probability measure µi on Γi \ {ei} for every i ∈ I governing a random walk on Γi ,
that is, pi(x , y) = µi(x−1 y) for all x , y ∈ Γi . Let (αi)i∈I be a family of strictly positive real numbers
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with
∑

i∈I αi = 1. Then the random walk on the free product Γ := Γ1 ∗ · · · ∗ Γr is defined by the
transition probabilities p(x , y) = µ(x−1 y), where

µ(w) =

(

αiµi(w), if w ∈ Γ×i ,

0, otherwise.

Analogously, µ(n) denotes the n-th convolution power of µ. The random walk on Γ starting at the
identity e of Γ is again denoted by the sequence (Xn)n∈N0

. In particular, the radius of convergence
of the associated Green function is strictly bigger than 1; see [29, Theorem 10.10, Corollary 12.5].
In the case of free products of groups it is well-known that the entropy exists and can be written as

h= lim
n→∞

− logπn(Xn)
n

= lim
n→∞

− log F(e, Xn|1)
n

;

see Derriennic [7], Kaimanovich and Vershik [14] and Blachère, Haïssinsky and Mathieu [3]. For
free products of finite groups, Mairesse and Mathéus [21] give an explicit formula for h, which
remains also valid for free products of countable groups, but in the latter case one needs the solution
of an infinite system of polynomial equations. In the following we will derive another formula for
the entropy, which holds also for free products of infinite groups.

We set l(g1 . . . gn) := − log F(e, g1 . . . gn|1). Observe that transitivity yields F(g, gh|1) = F(e, h|1).
Thus,

l(g1 . . . gn) =− log
n
∏

j=1

F(g1 . . . g j−1, g1 . . . g j|1) =−
n
∑

j=1

log F(e, g j|1).

First, we rewrite the following expectations as

El(Xn) =
∑

i∈I

∑

g∈Γi

αiµi(g)
∑

h∈Γ
l(h)µ(n)(h),

El(Xn+1) =
∑

i∈I

∑

g∈Γi

αiµi(g)
∑

h∈Γ
l(gh)µ(n)(h).

Thus,

El(Xn+1)−El(Xn) =
∑

i∈I

∑

g∈Γi

αiµi(g)

∫

�

l(gh)− l(h)
�

dµ(n)(h)

=
∑

i∈I

∑

g∈Γi

αiµi(g)

∫

− log
F(e, gXn|1)
F(e, Xn|1)

dµ(n). (5.1)

Recall that ‖Xn‖ →∞ almost surely. That is, Xn converges almost surely to a random infinite word

X∞ of the form x1 x2 . . . ∈
�

⋃r
i=1Γ

×
i

�N
, where two consecutive letters are not from the same Γ×i .

Denote by X (1)∞ the first letter of X∞. Let be g ∈ Γ×i . For n ≥ e1, the integrand in (5.1) is constant:
if τ
�

X (1)∞
�

6= i then

log
F(e, gXn|1)
F(e, Xn|1)

= log F(e, g),

and if τ
�

X (1)∞
�

= i then

log
F(e, gXn|1)
F(e, Xn|1)

= log
F
�

e, gX (1)∞
�

�1
�

F
�

e, X (1)∞
�

�1
�

.
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By [11, Section 5], for i ∈ I and g ∈ Γ×i ,

%(i) := P[X (1)∞ ∈ Γi] = 1− (1− ξi)Gi(oi , oi|ξi) and

P[X (1)∞ = g] = F(oi , g|ξi) (1− ξi)Gi(oi , oi|ξi) = (1− ξi)Gi(oi , g|ξi).

Recall that F(e, g|1) = Fi(oi , g|ξi) for each g ∈ Γi . We get:

Theorem 5.1. Whenever hi := −
∑

g∈Γi
µi(g) logµi(g) <∞ for all i ∈ I , that is, when all random

walks on the factors Γi have finite single-step entropy, then the asymptotic entropy h of the random
walk on Γ is given by

h=−
∑

i∈I

∑

g∈Γi

αiµi(g)
h

�

1−%(i)
�

log Fi(oi , g|ξi) + (1− ξi)Gi(oi , oi|ξi)F (g)
i

,

where

F (g) :=
∑

g ′∈Γ×i

Fi(oi , g ′|ξi) log
Fi(oi , g g ′|ξi)
Fi(oi , g ′|ξi)

for g ∈ Γi . (5.2)

Proof. Consider the sequence El(Xn+1)−El(Xn). If this sequence converges, its limit must equal h.
By the above made considerations we get

El(Xn+1)−El(Xn)

n→∞−−−→ −
∑

i∈I

∑

g∈Γi

µ(g)
�

(1−%(i)) log Fi(oi , g|ξi) +
∑

g ′∈Γ×i

P[X (1)∞ = g ′] log
Fi(oi , g g ′|ξi)
Fi(oi , g ′|ξi)

�

,

if the sum on the right hand side is finite. We have now established the proposed formula, but it
remains to verify finiteness of the sum above. This follows from the following observations:

Claim A: −
∑

i∈I
∑

g∈Γi
αiµi(g)(1−%(i)) log Fi(oi , g|ξi) is finite.

Observe that Fi(oi , g|ξi)≥ µi(g)ξi for g ∈ supp(µi). Thus,

0<−
∑

g∈Γi

µi(g) log Fi(oi , g|ξi)≤−
∑

g∈Γi

µi(g) log
�

µi(g)ξi
�

= hi − logξi .

This proves Claim A.

Claim B:
∑

i∈I
∑

g∈Γi
αiµi(g)(1− ξi)

∑

g ′∈Γ×i
Gi(oi , g ′|ξi)

�

�

�log Fi(oi ,g g ′|ξi)
Fi(oi ,g ′|ξi)

�

�

� is finite.

Observe that Fi(oi , g g ′|ξi)/Fi(oi , g ′|ξi) = Gi(oi , g g ′|ξi)/Gi(oi , g ′|ξi). Obviously,

µ
(n)
i (g

′)ξn
i ≤ Gi(oi , g ′|ξi)≤

1

1− ξi
for every n ∈ N and g ′ ∈ Γi .

96



For g ∈ Γ set N(g) :=
�

n ∈ N0

�

�µ(n)(g)> 0
	

. Then:

0 <
∑

g ′∈Γ×i

P[X (1)∞ = g ′] ·
�

� log Gi(oi , g ′|ξi)
�

�

=
∑

g ′∈Γ×i

(1− ξi) · Gi(oi , g ′|ξi) ·
�

� log Gi(oi , g ′|ξi)
�

�

=
∑

g ′∈Γ×i

(1− ξi) ·
∑

n∈N(g ′)

µ
(n)
i (g

′) · ξn
i ·
�

� log Gi(oi , g ′|ξi)
�

�

≤
∑

g ′∈Γ×i

(1− ξi) ·
∑

n∈N(g ′)

µ
(n)
i (g

′) · ξn
i ·max

�

− log
�

µ
(n)
i (g

′)ξn
i

�

,− log(1− ξi)
	

≤ (1− ξi) ·
∑

n∈N(g ′)

nξn
i ·
−1

n

∑

g ′∈Γi

µ
(n)
i (g

′) logµ(n)i (g
′)

︸ ︷︷ ︸

(∗)

−(1− ξi) logξi

∑

n≥1

nξn
i

−(1− ξi) log(1− ξi)
∑

n≥1

ξn
i .

Recall that hi < ∞ together with Kingman’s subadditive ergodic theorem implies existence of a
constant Hi ≥ 0 with

lim
n→∞

−
1

n

∑

g∈Γi

µ
(n)
i (g) logµ(n)i (g) = Hi . (5.3)

Thus, if n ∈ N is large enough, the sum (∗) is in the interval (Hi − ε, Hi + ε) for any arbitrarily small
ε > 0. That is, the sum (∗) is uniformly bounded for all n ∈ N. From this follows that the rightmost
side of the last inequality chain is finite.

Furthermore, we have for each g ∈ Γi with µ(n)i (g)> 0:

0 <
∑

g ′∈Γ×i

P[X (1)∞ = g ′] ·
�

� log Gi(oi , g g ′|ξi)
�

�

=
∑

g ′∈Γ×i

(1− ξi) · Gi(oi , g ′|ξi) ·
�

�log Gi(oi , g g ′|ξi)
�

�

=
∑

g ′∈Γ×i

(1− ξi) ·
∑

n∈N(g ′)

µ
(n)
i (g

′) · ξn
i ·
�

�log Gi(oi , g g ′|ξi)
�

�

≤
∑

g ′∈Γ×i

(1− ξi) ·
∑

n∈N(g ′)

µ
(n)
i (g

′) · ξn
i ·max

�

− log
�

µi(g)µ
(n)
i (g

′)ξn+1
i

�

,− log(1− ξi)
	

≤ −(1− ξi) ·
∑

n∈N(g ′)

ξn
i ·
∑

g ′∈Γi

µ
(n)
i (g

′) logµ(n)i (g
′)− (1− ξi) · logξi ·

∑

n≥1

(n+ 1)ξn
i

− logµi(g)− log(1− ξi).
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If we sum up over all g with µ(g)> 0, we get:

−
∑

i∈I

∑

g∈Γi

αiµi(g)(1− ξi)
∑

n∈N(g ′)

ξn
i

∑

g ′∈Γi

µ
(n)
i (g

′) logµ(n)i (g
′)

︸ ︷︷ ︸

(I)

−
∑

i∈I

∑

g∈Γi

αiµi(g)(1− ξi) logξi

∑

n≥1

(n+ 1)ξn
i

︸ ︷︷ ︸

(I I)

−
∑

i∈I
αi

∑

g∈Γi

µi(g) logµi(g)

︸ ︷︷ ︸

(I I I)

−
∑

i∈I
αi log(1− ξi)

︸ ︷︷ ︸

<∞

.

Convergence of (I) follows from (5.3), (I I) converges since ξi < 1 and (I I I) is convergent by
assumption hi <∞. This finishes the proof of Claim B, and thus the proof of the theorem.

Erschler and Kaimanovich [9] asked if drift and entropy of random walks on groups depend contin-
uously on the probability measure, which governs the random walk. Ledrappier [19] proves in his
recent, simultaneous paper that drift and entropy of finite-range random walks on free groups vary
analytically with the probability measure of constant support. By Theorem 5.1, we are even able to
show continuity for free products of finitely generated groups, but restricted to nearest neighbour
random walks with fixed set of generators.

Corollary 5.2. Let Γi be generated as a semigroup by Si . Denote byPi the set of probability measures µi
on Si with µi(x i)> 0 for all x i ∈ Si . Furthermore, we writeA := {(α1, . . . ,αr) | αi > 0,

∑

i∈I αi = 1}.
Then the entropy function

h :A ×P1× · · · ×Pr → R : (α1, . . . ,αr ,µ1, . . . ,µr) 7→ h(α1, . . . ,αr ,µ1, . . . ,µr)

is real-analytic.

Proof. The claim follows directly with the formula given in Theorem 5.1: the involved generating
functions Fi(oi , g|z) and Gi(oi , oi|z) are analytic when varying the probability measure of constant
support, and the values ξi can also be rewritten as

ξi =
∑

k1,...,kr ,l1,1,...,lr,|Sr |≥1

x(k1, . . . , kr , l1,1, . . . , lr,|Sr |)
∏

i∈I
α

ki
i

|Si |
∏

j=1

µi(x i, j)
li, j ,

where Si = {x i,1, . . . , x i,|Si |}. This yields the claim.

Remarks:

1. Corollary 5.2 holds also for the case of free products of finite graphs, if one varies the transition
probabilities continously under the assumption that the sets {(x i , yi) ∈ Vi × Vi | pi(x i , yi)> 0}
remain constant: one has to rewrite ξi as power series in terms of (finitely many) pi(x i , yi)
and gets analyticity with the formula given in Theorem 3.7.
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2. Analyticity holds also for the drift (w.r.t. the block length and w.r.t. the natural graph metric)
of nearest neighbour random walks due to the formulas given in [11, Section 5 and 7].

3. The formula for entropy and drift given in Mairesse and Mathéus [21] for random walks on
free products of finite groups depends also analytically on the transition probabilities.

6 Entropy Inequalities

In this section we consider the case of free products of finite sets V1, . . . , Vr , where Vi has |Vi| vertices.
We want to establish a connection between asymptotic entropy, rate of escape and the volume
growth rate of the free product V . For n ∈ N0, let S0(n) be the set of all words of V of block length
n. The following lemmas give an answer how fast the free product grows.

Lemma 6.1. The sphere growth rate w.r.t. the block length is given by

s0 := lim
n→∞

log |S0(n)|
n

= logλ0,

where λ0 is the Perron-Frobenius eigenvalue of the r× r-matrix D = (di, j)1≤,i, j≤r with di, j = 0 for i = j
and di, j = |Vj| − 1 otherwise.

Proof. Denote by bD the r × r-diagonal matrix, which has entries |V1| − 1, |V2| − 1, . . . , |Vr | − 1 on its
diagonal. Let 1 be the (r × 1)-vector with all entries equal to 1. Thus, we can write

|S0(n)|= 1T
bDDn−11.

Let 0< v1 ≤ 1 and v2 ≥ 1 be eigenvectors of D w.r.t. the Perron-Frobenius eigenvalue λ0. Then

|S0(n)| ≥ 1T
bDDn−1v1 = C1 ·λn−1

0 ,

|S0(n)| ≤ 1T
bDDn−1v2 = C2 ·λn−1

0 ,

where C1, C2 are some constants independent from n. Thus,

log |S0(n)|
n

= log |S0(n)|1/n
n→∞−−−→ logλ0.

Recall from the Perron-Frobenius theorem that λ0 ≥
∑r

i=1,i 6= j(|Γi| − 1) for each j ∈ I ; in particular,
λ0 ≥ 1. We also take a look on the natural graph metric and its growth rate. For this purpose, we
define

S1(n) :=
�

x ∈ V
�

� p(n)(o, x)> 0,∀m< n : p(m)(o, x) = 0
	

,

that is, the set of all vertices in V which are at distance n to the root o w.r.t. the natural graph metric.

We now construct a new graph, whose adjacency matrix allows us to describe the exponential growth
of S1(n) as n→∞. For this purpose, we visualize the sets V1, . . . , Vr as graphsX1, . . . ,Xr with vertex
sets V1, . . . , Vr equipped with the following edges: for x , y ∈ Vi , there is a directed edge from x to y
if and only if pi(x , y)> 0. Consider now directed spanning trees T1, . . . ,Tr of the graphsX1, . . . ,Xr
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such that the graph distances of vertices in Ti to the root oi remain the same as in Xi . We now
investigate the free product T = T1 ∗· · ·∗Tr , which is again a tree. We make the crucial observation
that T can be seen as the directed cover of a finite directed graph F , where F is defined in the
following way:

1. The vertex set of F is given by {o} ∪
⋃

i∈I V×i with root o.

2. The edges of F are given as follows: first, we add all edges inherited from one of the trees
T1, . . . ,Tr , where o plays the role of oi for each i ∈ I . Secondly, we add for all i ∈ I and
every x ∈ V×i an edge from x to each y ∈ V×j , j 6= i, whenever there is an edge from oi to y
in T j .

The tree T can be seen as a periodic tree, which is also called a tree with finitely many cone types; for
more details we refer to Lyons [20] and Nagnibeda and Woess [23]. Now we are able to state the
following lemma:

Lemma 6.2. The sphere growth rate w.r.t. the natural graph metric defined by

s1 := lim
n→∞

log |S1(n)|
n

exists. Moreover, we have the equation s1 = logλ1, where λ1 is the Perron-Frobenius eigenvalue of the
adjacency matrix of the graph F.

Proof. Since the graph metric remains invariant under the restriction of V to T and since it is
well-known that the growth rate exists for periodic trees (see Lyons [20, Chapter 3.3]), we have
existence of the limit s1. More precisely, |S1(n)|1/n tends to the Perron-Frobenius eigenvalue of the
adjacency matrix of F as n → ∞. For sake of completeness, we remark that the root of T plays a
special role (as a cone type) but this does not affect the application of the results about directed
covers to our case.

For i ∈ {0,1}, we write Bi(n) =
⋃n

k=0 Si(k). Now we can prove:

Lemma 6.3. The volume growth w.r.t. the block length, w.r.t. the natural graph metric respectively, is
given by

g0 := lim
n→∞

log |B0(n)|
n

= logλ0, g1 := lim
n→∞

log |B1(n)|
n

= logλ1 respectively.

Proof. For ease of better readability, we omit the subindex i ∈ {0,1} in the following, since the
proofs for g0 and g1 are completely analogous. Choose any small ε > 0. Then there is some Kε such
that for all k ≥ Kε

λke−kε ≤ |S(k)| ≤ λkekε.

Write Cε =
∑Kε−1

i=0 |S(i)|. Then for n≥ Kε:

|B(n)|1/n = n

s

n
∑

k=0

|S(k)| ≤ n

√

√

√

√Cε +
n
∑

k=Kε

λkekε = λeε n

√

√

√

√

Cε
λnenε +

n
∑

k=Kε

1

λn−ke(n−k)ε

≤ λeε
n

r

Cε
λnenε + (n− Kε + 1)

n→∞−−−→ λeε.
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In the last inequality we used the fact λ ≥ 1. Since we can choose ε > 0 arbitrarily small, we get
limsupn→∞ |B(n)|1/n ≤ λ. Analogously:

|B(n)|1/n ≥ n

√

√

√

√Cε +
n
∑

k=Kε

λke−kε = λ n

√

√

√

√

Cε
λn +

n
∑

k=Kε

e−kε

λn−k

n→∞−−−→ λe−ε.

That is, limn→∞
1
n

log |B(n)|= logλ.

For i ∈ {0,1}, define li : V → N0 by l0(x) = ‖x‖ and l1(x) = inf{m ∈ N0 | p(m)(o, x) > 0}. Then
the limits `i = limn→∞ li(Xn)/n exist; see [11, Theorem 3.3, Section 7.II]. Now we can establish a
connection between entropy, rate of escape and volume growth:

Corollary 6.4. h≤ g0 · `0 and h≤ g1 · `1.

Proof. Let be i ∈ {0, 1} and ε > 0. Then there is some Nε ∈ N such that for all n≥ Nε

1− ε ≤ P
��

x ∈ V | − logπn(x)≥ (h− ε)n, li(x)≤ (`i + ε)n
	�

≤ e−(h−ε)n ·
�

�Bi
�

(`i + ε)n
�

�

�.

That is,

(h− ε) +
log(1− ε)

n
≤ (`i + ε) ·

log
�

�Bi
�

(`i + ε)n
�

�

�

(`i + ε)n
.

If we let n tend to infinity and make ε arbitrarily small, we get the claim.

Finally, we remark that an analogous inequality for random walks on groups was given by
Guivarc’h [13], and more generally for space- and time-homogeneous Markov chains by Kaima-
novich and Woess [15, Theorem 5.3].

7 Examples

7.1 Free Product of Finite Graphs

Consider the graphs X1 and X2 with the transition probabilities sketched in Figure 7.1. We set
α1 = α2 = 1/2. For the computation of `0 we need the following functions:

F1(g1, o1|z) =
z2

2
1

1−z2/2
, F2(h1, o2|z) =

z2

2
1

1−z3/2
,

ξ1(z) =
z/2

1− z
2
ξ2(z)

2

2
1

1−ξ2(z)
3/2

, ξ2(z) =
z/2

1− z
2
ξ1(z)

2

2
1

1−ξ1(z)
2/2

.

Simple computations with the help of [11, Section 3] and MATHEMATICA allow us to determine the
rate of escape of the random walk on X1 ∗X2 as `0 = 0.41563. For the computation of the entropy,
we need also the following generating functions:

L1(o1, g1|z) =
z

1− z2/2
, L1(o1, g2|z) =

z2

1− z2/2
, L2(o2, h1|z) =

z

1− z3/2
,

L2(o2, h2|z) =
z2

1− z3/2
, L2(o2, h3|z) =

z3/2

1− z3/2
.

Thus, we get the asymptotic entropy as h= 0.32005.
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Figure 1: Finite graphs X1 and X2

7.2 (Z×Z/2) ∗ (Z×Z/2)

Consider the free product Γ = Γ1 ∗ Γ2 of the infinite groups Γi = Z× (Z/2Z) with αi = 1/2 and
µi
�

(±1, 0)
�

= µi
�

(0, 1)
�

= 1/3 for each i ∈ {1,2}. We set a := (1,0), b := (1,1), c := (0, 1) and
λ(x , y) := x for (x , y) ∈ Γi . Define

F̂(a|z) :=
∑

n≥1

P
�

Yn = a,∀m< n : λ(Ym)< 1
�

�Y0 = (0, 0)
�

zn,

F̂(b|z) :=
∑

n≥1

P
�

Yn = b,∀m< n : λ(Ym)< 1
�

�Y0 = (0, 0)
�

zn,

where (Yn)n∈N0
is a random walk on Z × Z/2 governed by µ1. The above functions satisfy the

following system of equations:

F̂(a|z) =
z

3

�

1+ F̂(b|z) + F̂(a|z)2+ F̂(b|z)2
�

,

F̂(b|z) =
z

3

�

F̂(a|z) + F̂(a|z)F̂(b|z) + F̂(b|z)F̂(a|z)
�

.

From this system we obtain explicit formulas for F̂(a|z) and F̂(b|z). We write F
�

n, j|z) :=
F1
�

(0,0), (n, j)|z) for (n, j) ∈ Z×Z/2. To compute the entropy rate we have to solve the following
system of equations:

F(a|z) =
z

3

�

1+ F(b|z) + F̂(a|z)F(a|z) + F̂(b|z)F(b|z)
�

,

F(b|z) =
z

3

�

F(c|z) + F(a|z) + F̂(a|z)F(b|z) + F̂(b|z)F(a|z)
�

,

F(c|z) =
z

3

�

1+ 2 F(b|z)
�

.

Moreover, we need the value ξ1(1) = ξ2(1) = ξ. This value can be computed analogously to [11,
Section 6.2], that is, ξ has to be computed numerically from the equation

ξ

2− 2ξ
= ξG1(ξ) =

ξ

1− 2
3
ξF(a|ξ)− 1

3
ξF(c|ξ)

.

Solving this equation with MATHEMATICA yields ξ = 0.55973. To compute the entropy we have to
evaluate the functions F(g|z) at z = ξ for each g ∈ Z×Z2. For even n ∈ N, we have the following
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formulas:

F
�

(±n, 0)|ξ
�

=
n/2
∑

k=0

�

n

2k

�

F̂(b|ξ)2k F̂(a|ξ)n−2k +

n/2−1
∑

k=0

�

n

2k+ 1

�

F̂(b|ξ)2k+1 F̂(a|ξ)n−2k−1F(c|ξ),

F
�

(±n, 1)|ξ
�

=
n/2−1
∑

k=0

�

n

2k+ 1

�

F̂(b|ξ)2k+1 F̂(a|ξ)n−2k−1+

n/2
∑

k=0

�

n

2k

�

F̂(b|ξ)2k F̂(a|ξ)n−2kF(c|ξ).

For odd n ∈ N,

F
�

(±n, 0)|ξ
�

=
(n−1)/2
∑

k=0

�

n

2k

�

F̂(b|ξ)2k F̂(a|ξ)n−2k +

(n−1)/2
∑

k=0

�

n

2k+ 1

�

F̂(b|ξ)2k+1 F̂(a|ξ)n−2k−1F(c|ξ),

F
�

(±n, 1)|ξ
�

=
(n−1)/2
∑

k=0

�

n

2k+ 1

�

F̂(b|ξ)2k+1 F̂(a|ξ)n−2k−1+

(n−1)/2
∑

k=0

�

n

2k

�

F̂(b|ξ)2k F̂(a|ξ)n−2kF(c|ξ).

Moreover, we define F̂ := P[∃n ∈ N : λ(Xn) = 1]. This probability can be computed by conditioning
on the first step and solving

F̂ =
ξ

3

�

1+ F̂ + F̂2�,

that is, F̂ = 0.24291. Observe that we get the following estimations:

F1(o, g|ξ) ≤ F̂ |λ(g)| for g ∈ Z×Z2,

F1(o, g|ξ) ≥ F̂ |λ(g)|−1 ·min
�

F1(o1, a|ξ), F1(o1, b|ξ)
	

for g ∈
�

Z×Z2
�

\ {(0, 0), c}.

These bounds allow us to cap the sum over all g ′ ∈ Γ×i in (5.2) and to estimate the tails of these
sums. Thus, we can compute the entropy rate numerically as h= 1.14985.
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