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Abstract

We obtain non asymptotic bounds for the Monte Carlo algorithm associated to the Euler dis-
cretization of some diffusion processes. The key tool is the Gaussian concentration satisfied by
the density of the discretization scheme. This Gaussian concentration is derived from a Gaussian
upper bound of the density of the scheme and a modification of the so-called “Herbst argument”
used to prove Logarithmic Sobolev inequalities. We eventually establish a Gaussian lower bound
for the density of the scheme that emphasizes the concentration is sharp.
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1 Introduction

1.1 Statement of the problem

Let the Rd -valued process (X t)t¾0 satisfy the dynamics

X t = x +

∫ t

0

b(s, Xs)ds+

∫ t

0

Bσ(s, Xs)dWs, (1.1)

where (Wt)t¾0 is a d ′-dimensional (d ′ ¶ d) standard Brownian motion defined on a filtered proba-

bility space (Ω,F , (Ft)t¾0,P) satisfying the usual assumptions. The matrix B =

�

Id′×d′

0(d−d′)×d′

�

is

the embedding matrix from Rd ′ into Rd . The coefficients b : R+×Rd → Rd ,σ : R+×Rd → Rd ′⊗Rd ′

are assumed to be Lipschitz continuous in space, 1/2-Hölder continuous in time so that there exists
a unique strong solution to (1.1).

Let us fix T > 0 and introduce for (t, x) ∈ [0, T]×Rd , Q(t, x) := E[ f (T, X t,x
T )], where f is a measur-

able function, bounded in time and with polynomial growth in space. The numerical approximation
of Q(t, x) appears in many applicative fields. In mathematical finance, Q(t, x) can be related to
the price of an option when the underlying asset follows the dynamics (1.1). In this framework we
consider two important cases:

(a) If d = d ′, Q(t, x) corresponds to the price at time t when X t = x of the vanilla option with
maturity T and pay-off f .

(b) If d ′ = d/2, b(x) =

�

b1(x)
b2(x)

�

where b1(x) ∈ Rd ′ , b2(x) = (x1, · · · , xd ′)∗, Q(t, x) corresponds

to the price of an Asian option.

It is also well known, see e.g. Friedman [8], that Q(t, x) is the Feynman-Kac representation of the
solution of the parabolic PDE

¨

∂tQ(t, x) + LQ(t, x) = 0, (t, x) ∈ [0, T )×Rd ,
Q(T, x) = f (T, x), x ∈ Rd ,

(1.2)

where L stands for the infinitesimal generator of (1.1). Hence, the quantity Q(t, x) can also be
related to problems of heat diffusion with Cauchy boundary conditions (case (a)) or to kinetic
systems (case (b)).

The natural probabilistic approximation of Q(t, x) consists in considering the Monte Carlo algorithm.
This approach is particularly relevant compared to deterministic methods if the dimension d is large.
To this end we introduce some discretization schemes. For case (a) we consider the Euler scheme
with time step ∆ := T/N , N ∈ N∗. Set ∀i ∈ N, t i = i∆ and for t ¾ 0, define φ(t) = t i for
t i ¶ t < t i+1. The Euler scheme writes

X∆t = x +

∫ t

0

b(φ(s), X∆φ(s))ds+

∫ t

0

σ(φ(s), X∆φ(s))dWs. (1.3)
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For case (b) we define

X∆t = x +

∫ t

0

�

b1(φ(s), X∆
φ(s))

(X∆s )
1,d ′

�

ds+

∫ t

0

Bσ(φ(s), X∆φ(s))dWs, (1.4)

where (X∆s )
1,d ′ :=

�

(X∆s )
1, · · · , (X∆s )

d ′�∗. Equation (1.4) defines a completely simulatable scheme
with Gaussian increments. On every time step, the last d ′ components are the integral of a Gaussian
process.

The weak error for the above problems has been widely investigated in the literature. Under suitable
assumptions on the coefficients b,σ and f (namely smoothness) it is shown in Talay and Tubaro [24]
that ED(∆) := Ex[ f (T, X∆T )]−Ex[ f (T, XT )] = C∆+O(∆2). Bally and Talay [1] then extended this
result to the case of bounded measurable functions f in a hypoelliptic setting for time homogeneous
coefficients b,σ. Also, still for time homogeneous coefficients, similar expansions have been derived
for the difference of the densities of the process and the discretization scheme, see Konakov and
Mammen [14] in case (a), Konakov et al. [15] in case (b) for a uniformly elliptic diffusion coefficient
σσ∗, and eventually Bally and Talay [2] for a hypoelliptic diffusion and a slight modification of the
Euler scheme. The constant C in the above development involves the derivatives of Q and therefore
depends on f , b,σ, x .

The expansion of ED(∆) gives a good control on the impact of the discretization procedure of the
initial diffusion, and also permits to improve the convergence rate using e.g. Richardson-Romberg
extrapolation (see [24]). Anyhow, to have a global sharp control of the numerical procedure it
remains to consider the quantities

EMC(M ,∆) =
1

M

M
∑

i=1

f (T, (X∆T )
i)−Ex

�

f (T, X∆T )
�

. (1.5)

In the previous quantities M stands for the number of independent samples in the Monte Carlo
algorithm and

�

(X∆t )
i
t¾0

�

i∈[[1,M]] are independent sample paths. Indeed, the global error associated
to the Monte Carlo algorithm writes:

E(M ,∆) = ED(∆)+ EMC(M ,∆),

where ED(∆) is the discretization error and EMC(M ,∆) is the pure Monte Carlo error.

The convergence of EMC(M ,∆), to 0 when M →∞ is ensured under the above assumptions on f
by the strong law of large numbers. A speed of convergence can also be derived from the central
limit theorem, but these results are asymptotic, i.e. they hold for a sufficiently large M . On the
other hand, a non asymptotic result is provided by the Berry-Esseen Theorem that compares the
distribution function of the normalized Monte Carlo error to the distribution function of the normal
law at order O(M−1/2).

In the current work we are interested in giving, for Lipschitz continuous in space functions f , non
asymptotic error bounds for the quantity EMC(M ,∆). Similar issues had previously been studied by
Malrieu and Talay [18]. In that work, the authors investigated the concentration properties of the
Euler scheme and obtained Logarithmic Sobolev inequalities, that imply Gaussian concentration see
e.g. Ledoux [17], for multi-dimensional Euler schemes with constant diffusion coefficients. Their
goal was in some sense different than ours since they were mainly interested in ergodic simulations.
In that framework we also mention the recent work of Joulin and Ollivier for Markov chains [11].
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Our strategy is here different. We are interested in the approximation of Q(t, x), t ¶ T where T > 0
is fixed. It turns out that the log-Sobolev machinery is in some sense too rigid and too ergodic
oriented. Also, as far as approximation schemes are concerned it seems really difficult to obtain
log-Sobolev inequalities in dimension greater or equal than two without the constant diffusion as-
sumption, see [18]. Anyhow, under suitable assumptions on b,σ (namely uniform ellipticity of σσ∗

and mild space regularity), the discretization schemes (1.3), (1.4) can be shown to have a density
admitting a Gaussian upper bound. From this a priori control we can modify Herbst’s argument to
obtain an expected Gaussian concentration as well as the tensorization property (see [17]) that will
yield for r > 0 and a Lipschitz continuous in space f , P

�

|EMC(M ,∆)| ¾ r + δ
�

¶ 2 exp(− M
α(T ) r

2)
for α(T ) > 0 independent of M uniformly in ∆ = T/N . Here δ ¾ 0 is a bias term (independent
of M) depending on the constants appearing in the Gaussian domination (see Theorem 2.1) and
on the Wasserstein distance between the law of the discretization scheme and the Gaussian upper
bound. We also prove that a Gaussian lower bound holds true for the density of the scheme. Hence,
the Gaussian concentration is sharp, i.e. for a function f with suitable non vanishing behavior at
infinity, the concentration is at most Gaussian, i.e. P

�

|EMC(M ,∆)|¾ r − δ̄
�

¾ 2 exp(− M
ᾱ(T ) r

2), for r

large enough, δ̄ depending on f , and the Gaussian upper and lower bounds, ᾱ(T )> 0 independent
of M uniformly in ∆= T/N .

The paper is organized as follows, we first give our standing assumptions and some notations in
Section 1.2. We state our main results in Section 2. Section 3 is dedicated to concentration prop-
erties and non asymptotic Monte Carlo bounds for random variables whose law admits a density
dominated by a probability density satisfying a log-Sobolev inequality. We prove our main devia-
tions results at the end of that section as well. In Section 4 we show how to obtain the previously
mentioned Gaussian bounds in the two cases introduced above. The main tool for the upper bound
is a discrete parametrix representation of Mc Kean-Singer type for the density of the scheme, see
[19] and Konakov and Mammen [13] or [14]. The lower bound is then derived through suitable
chaining arguments adapted to our non Markovian setting.

1.2 Assumptions and Notations

We first specify some assumptions on the coefficients. Namely, we assume:

(UE) The diffusion coefficient is uniformly elliptic. There exists λ0 ¾ 1 s.t. for (t, x ,ξ) ∈ [0, T]×
Rd ×Rd ′ we have λ−1

0 |ξ|
2 ¶ 〈a(t, x)ξ,ξ〉¶ λ0|ξ|2 where a(t, x) := σσ∗(t, x), and |.| stands for the

Euclidean norm.

(SB) The drift b is bounded and the diffusion coefficient σ is uniformly η-Hölder continuous in
space, η > 0, uniformly in time. That is there exists L0 > 0 s.t.

sup
(t,x)∈[0,T]×Rd

|b(t, x)|+ sup
t∈[0,T],(x ,y)∈R2d , x 6=y

|σ(t, x)−σ(t, y)|
|x − y|η

¶ L0.

Throughout the paper we assume that (UE), (SB) are in force.

In the following we will denote by C a generic positive constant that can depend on L0,λ0,η, d, T .
We reserve the notation c for constant depending on L0,λ0,η, d but not on T . In particular the
constants c, C are uniform w.r.t the discretization parameter ∆ = T/N and eventually the value of
both c, C may change from line to line.
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To establish concentration properties, we will work with the class of Lipschitz continuous functions
F : Rd → R satisfying |∇F |∞ = esssupx |∇F(x)| ¶ 1 where |∇F | denotes the Euclidean norm of the
gradient ∇F , defined almost everywhere, of F . From now on, for a given function F (possibly not
Lipschitz), ∇F stands for the usual “weak” gradient.

For a given probability measure µ on Rd we write µ(F) or Eµ[F(X )] for the expectation of F(X )
where X is a random variable with law µ.

Denote now by Sd−1 the unit sphere of Rd . For z ∈ Rd\{0}, πSd−1(z) stands for the uniquely defined
projection on Sd−1. For given ρ0 > 0, β > 0, we introduce the following growth assumption in
space for F in the above class of functions:

(Gρ0,β) There exists A⊂ Sd−1 such that

∀y ∈ Rd\B(ρ0),πSd−1(y) ∈ A, y0 := ρ0πSd−1(y), F(y)− F(y0)¾ β |y − y0|,

with A of non empty interior and |A| ¾ ε > 0 for d ¾ 2 (|.| standing here for the Lebesgue measure
of Sd−1), and A ⊂ {−1, 1} for d = 1. In the above equation B(ρ0) stands for the Euclidean ball of
Rd of radius ρ0, and 〈., .〉 denotes the scalar product in Rd .

Remark 1.1. The above assumption simply means that for |y|¾ ρ0 the graph of F stays above a given
hyperplane. In particular, for all z ∈ A, F(rz) →

r→+∞
+∞.

The bounds of the quantities EMC(M ,∆) will be established for real valued functions f that are
uniformly Lipschitz continuous in space and measurable bounded in time, such that for a fixed T ,
F(.) := f (T, .) will be Lispchitz continuous satisfying |∇F |∞ ¶ 1. Moreover, for the lower bounds,
we will suppose that the above F satisfies (Gρ0,β).

2 Results

Before dealing with the numerical schemes, let us specify that under (UE) and (SB) the nature of
the diffusion (1.1) is very different in cases (a) and (b).

- In case (a), we are in the framework of uniformly elliptic diffusion processes under which Aronson’s
estimates are well understood (cf. Sheu [22]).

- Case (b) is degenerate. If the coefficients are Lipschitz, the diffusion satifies a weak Hörmander
assumption that guarantees the existence of the density (see eg. [20]). In this framework, Aronson’s
estimates have been investigated more recently in [6] and extended to the case of bounded drift b1
and η-Hölder diffusion coefficient σ for η > 1/2.

One of the main results of the paper (Theorem 2.1) is to prove that similar estimates hold for the
discretization schemes (1.3) and (1.4) without any restriction on η in case (b).

Let us first justify that under the assumptions (UE), (SB), the discretization schemes admit a density.
For all x ∈ Rd , 0¶ j < j′ ¶ N , A∈B(Rd) (whereB(Rd) stands for the Borel σ-field of Rd) we get

P
�

X∆t j′
∈ A
�

�X∆t j
= x
�

=

∫

(Rd ) j′− j−1×A

p∆(t j , t j+1, x , x j+1)p
∆(t j+1, t j+2, x j+1, x j+2)× · · ·

× p∆(t j′−1, t j′ , x j′−1, x j′)dx j+1dx j+2 · · ·dx j′ , (2.1)
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where the notation p∆(t i , t i+1, x i , x i+1), i ∈ [[0, N − 1]] stands in case (a) for the density at
point x i+1 of a Gaussian random variable with mean x i + b(t i , x i)∆ and non degenerated co-
variance matrix a(t i , x i)∆, whereas in case (b) it stands for the density of a Gaussian ran-

dom variable with mean

 

x1,d ′

i + b1(t i , x i)∆,

xd ′+1,d
i + x1,d ′

i ∆+ b1(t i , x i)∆2/2

!

and non degenerated as well co-

variance matrix

�

a(t i , x i)∆ a(t i , x i)∆2/2
a(t i , x i)∆2/2 a(t i , x i)∆3/3

�

, where ∀y ∈ Rd , y1,d ′ = (y1, . . . , yd ′)∗ and

yd ′+1,d = (yd ′+1, . . . , yd)∗.

Equation (2.1) therefore guarantees the existence of the density for the discretization schemes.
From now on, we denote by p∆(t j , t j′ , x , ·) the transition densities between times t j and t j′ , 0 ¶
j < j′ ¶ N , of the discretization schemes (1.3), (1.4). Let us denote by Px (resp. Pt j ,x , 0 ¶ j < N)

the conditional probability given
¦

X∆0 = x
©

(resp. {X∆t j
= x}), so that in particular Px

�

X∆T ∈ A
�

=
∫

A
p∆(0, T, x , x ′)dx ′. We have the following Gaussian estimates for the densities of the schemes.

Theorem 2.1 (“Aronson” Gaussian estimates for the discrete Euler scheme). Assume (UE), (SB).
There exist constants c > 0, C ¾ 1, s.t. for every 0¶ j < j′ ¶ N:

C−1pc−1(t j′ − t j , x , x ′)¶ p∆(t j , t j′ , x , x ′)¶ C pc(t j′ − t j , x , x ′), (2.2)

where for all 0¶ s < t ¶ T, in case (a), pc(t−s, x , x ′) :=
�

c
2π(t−s)

�d/2
exp
�

−c |x
′−x |2

2(t−s)

�

and in case (b)

pc(t − s, x , x ′) :=

� p
3c

2π(t − s)2

�d/2

exp
�

−c
� |(x ′)1,d ′ − x1,d ′ |2

4(t − s)

+ 3
|(x ′)d

′+1,d − xd ′+1,d − x1,d′+(x ′)1,d′

2
(t − s)|2

(t − s)3

��

.

Note that pc enjoys the semigroup property, i.e. ∀0 < s < t,
∫

Rd pc(t − s, x , u)pc(s, u, x ′)du =
pc(t, x , x ′) (see Kolmogorov [12] or [15] for case (b)).

Remark 2.1. Note that in case (a), the above upper bound can be found in [14] in the case of time
homogeneous Lipschitz continuous coefficients. Also, for time dependent coefficients, the upper bound is
given by Proposition 3.5 of Gobet and Labart [9] and the lower bound on the diagonal (i.e. x = x ′) can
be derived from their Corollary 2.4. Note that since they use Malliavin Calculus, stronger smoothness
assumptions on the coefficients are needed. Here, in case (a) our framework is the one of the “standard”
PDE assumptions to derive Aronson’s estimates for the fundamental solution of non degenerated non-
divergence form second order operators, see e.g. Sheu [22]. In particular no regularity in time is needed.
In this case, the above theorem provides a technical improvement of existing results.

On the other hand, in the degenerated hypoelliptic framework of case (b), the result is to our best
knowledge new and extends to numerical schemes the results of [6].

In particular, the parametrix techniques we use to prove Theorem 2.1 can be applied to both cases under
minimal natural assumptions (see Section 4 for details).

Our second result is the Gaussian concentration of the Monte Carlo error EMC(M ,∆) defined in
(1.5) for a fixed M uniformly in ∆= T/N , N ¾ 1.

1650



Theorem 2.2 (Gaussian concentration). Assume (UE), (SB). For the constants c and C of Theorem
2.1, we have for every ∆= T/N , N ¾ 1, and every Lipschitz continuous function in space and measur-
able bounded in time f : Rd → R satisfying

�

�∇ f (T, .)
�

�

∞ ¶ 1 in (1.5),

∀r > 0, ∀M ¾ 1, Px

��

�EMC(M ,∆)
�

�¾ r +δC ,α(T )

�

¶ 2e−
M
α(T ) r

2

, (2.3)

with

1

α(T )
=







c
2T

in case (a),
c

2T

�

1+ 3
T2

�

1−
q

1+ T2

3
+ T4

9

�

�

in case (b),
(2.4)

and δC ,α(T ) = 2
p

α(T ) log C.

Moreover, if F(.) := f (T, .)¾ 0 satisfies for a given ρ0 > 0 and β > 0, the growth assumption (Gρ0,β),

∀r > 0, ∀M ¾ 1, Px

��

�EMC(M ,∆)
�

�¾ r − δ̄c,C ,T, f

�

¾ 2 exp

�

−
M

ᾱ(T )

�

r

β
∨ρ0

�2
�

, (2.5)

where δ̄c,C ,T, f = (1+
p

2)
p

α(T ) log C + γc−1,T (F) + ρ0β − F , γc−1,T (dx ′) = pc−1(T, x , x ′)dx ′, and
F := infs∈Sd−1 F(sρ0). The constant ᾱ(T )−1 appearing in (2.5) writes in case (a)

1

ᾱ(T )
= Λ̄+χ :=







c−1

2T
+ 1
ρ2

0
log
�

πd/2C
K(d,A)

�

+
for d even,

c−1θ
2T
+ 1
ρ2

0
log
�

πd/2C
arccos(θ−1/2)K(d,A)

�

+
for d odd, θ ∈ (1,+∞),

where for all d ∈ N∗, A⊂ Sd−1 appearing in (Gρ0,β),

K(d, A) =







|A|(d/2−1)!
2

, d even,

|A|
∏

d−1
2

j=1 ( j−1/2)

π1/2 , d odd.
(2.6)

In case (b), d is even and

1

ᾱ(T )
= Λ̄+χ :=

c−1

2T



1+
3

T2



1+

r

1+
T2

3
+

T4

9









+
1

ρ2
0

log









�

πp
3T

�d/2
[T2+ 3(1+

q

1+ T2

3
+ T4

9
)]d/2C

K(d, A)









+

.

From Theorem 2.1 and our current assumptions on f , we can deduce from the central limit theo-

rem that M1/2EMC(M ,∆)
(law)
→
M
N (0,σ2( f ,∆)), σ2( f ,∆) := Ex[ f (X∆T )

2]−Ex[ f (X∆T )]
2. From this

asymptotic regime, we thus derive that for large M the typical deviation rate r (i.e. the size of
the confidence interval) in (2.3) has order cσ( f ,∆)M−1/2 where for a given threshold α ∈ (0, 1),
c := c(α) can be deduced from the inverse of the Gaussian distribution function. In other words, r
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is typically small for large M . On the other hand, we have a systematic bias δC ,α(T ), independently
of M . In whole generality, this bias is inherent to the concentration arguments used to derive the
above bounds, see Section 3, and cannot be avoided. Hence, those bounds turn out to be particu-
larly relevant to derive non asymptotic confidence intervals when r and δC ,α(T ) have the same order.
In particular, the parameter M is not meant to go to infinity. This kind of result can be useful if for
instance it is particularly heavy to simulate the underlying Euler scheme and that only a relatively
small number M of samples is reasonably allowed. On the other hand, the smaller T is the bigger
M can be. Precisely, one can prove that the constant C of Theorem 2.1 is bounded by c̄ exp(c̃ L2

0 T )
(see Section 4). Hence from (2.4), we have δC ,α(T ) = O(T1/2) for T small.

Remark 2.2. For the lower bound, the “expected” value for ᾱ(T )−1 would be λ̄ corresponding to the
largest eigenvalue of one half the inverse of the covariance matrix of the random variable with density
pc−1(T, x , .) appearing in the lower bound of Theorem 2.1. There are two corrections with respect to
this intuitive approach. First, there is in case (a) an additional multiplicative term θ > 1 (that can
be optimized) when d is odd. This correction is unavoidable for d = 1, anyhow for odd d > 1, it can
be avoided up to an additional additive factor like the above χ (see the proof of Proposition 3.3 for
details). We kept this presentation to be homogeneous for all odd dimensions.

Also, an additive correction (or penalty) factor χ appears. It is mainly due to our growth assumption
(Gρ0,β).Observe anyhow that, for given T > 0, C ¾ 1,ε > 0 s.t. |A| ¾ ε, if the dimension d is large
enough, by definition of K(d, A), we have χ = 0. Still, for d = 1 (which can only occur in case (a)) we
cannot avoid the correction factor χ.

Remark 2.3. Let us also specify that in the above definition of χ, ρ0 is not meant to go to zero, even
though some useful functions like |.| satisfy (Gρ0,1) with any ρ0 > 0. Actually, the bound is particularly
relevant in “large regimes”, that is when r/β is not assumed to be small. Also, we could replace in the
above definition of χ, ρ0 by R > 0 as soon as r/β ¾ R. In particular, if F satisfies (Gρ0,β), for R ¾ ρ0
it also satisfies (GR,β). We gave the statement with ρ0 in order to be uniform w.r.t. the threshold ρ0
appearing in the growth assumption of F but the correction term can be improved in function of the
deviation factor r/β .

Remark 2.4. Note that under (UE), (SB), in case (a), the martingale problem in the sense of Stroock
and Varadhan is well posed for equation (1.1), see Theorem 7.2.1 in [23]. Also, from Theorem 2.1 and
the estimates of Section 4, one can deduce that the unique weak solution of the martingale problem has
a smooth density that satisfies Aronson like bounds. The well-posedness of the martingale problem in
case (b) remains to our best knowledge an open question and will concern further research.

Remark 2.5. In case (b), the concentration regime in the above bounds highly depends on T. Since the
two components do not have the same scale we have that, in short time, the concentration regime is the
one of the non degenerated component in the upper bound (resp. of the degenerated component in the
lower bound). For large T , it is the contrary.

We now consider an important case for applications in case (b). Namely, in kinetic models (resp.
in financial mathematics) it is often useful to evaluate the expectation of functions that involve
the difference of the first component and its normalized average (which corresponds to a time
normalization of the second component). This allows to compare the velocity (resp. the price) at
a given time T and the averaged velocity (resp. averaged price) on the associated time interval.
Obviously, the normalization is made so that the two components have time-homogeneous scales.
We have the following result.
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Corollary 2.1. In case (b), if f in (1.5) writes f (T, x) = g(T,T−1
T x) where T−1

T =
�

Id′×d′ 0d′×d′

0d′×d′ T−1Id′×d′

�

and g is a Lipschitz continuous function in space and measurable bounded

in time satisfying
�

�∇g(T, .)
�

�

∞ ¶ 1 then we have for every ∆= T/N , N ¾ 1,

∀M ¾ 1, Px

��

�EMC(M ,∆)
�

�¾ r +δC ,α(T )

�

¶ 2e−
M
α(T ) r

2

,

with α(T )−1 = (4−
p

13) c
T

and δC ,α(T ) = 2
p

α(T ) log C.

A lower bound could be derived similarly to Theorem 2.2.

The proof of Theorems 2.1 and 2.2 (as well as Corollary 2.1) are respectively postponed to Sections
4.4 and 3.3.

3 Gaussian concentration and non asymptotic Monte Carlo bounds

3.1 Gaussian concentration - Upper bound

We recall that a probability measure γ on Rd satisfies a logarithmic Sobolev inequality with constant
α > 0 if for all f ∈ H1(dγ) := {g ∈ L2(dγ) :

∫ �

�∇g
�

�

2
dγ <+∞} such that f ¾ 0, one has

Entγ( f
2)¶ α

∫

�

�∇ f
�

�

2
dγ, (LSIα)

where Entγ(φ) =
∫

φ log(φ)dγ−
�∫

φdγ
�

log
�∫

φdγ
�

denotes the entropy of the measure γ. In
particular, we have the following result (see [17] Section 2.2 eq. (2.17)).

Proposition 3.1. Let V be a C 2 convex function on Rd with HessV ¾ λId×d, λ > 0 and such that e−V

is integrable with respect to the Lebesgue measure. Let γ(dx) = 1
Z

e−V (x)dx be a probability measure
(Gibbs measure). Then γ satisfies a logarithmic Sobolev inequality with constant α= 2

λ
.

Throughout this section we consider a probability measure µ with density m with respect to the
Lebesgue measure λK on RK (here we have in mind K = d or K = Md, M being the number of
Monte Carlo paths). We assume that µ is dominated by a probability measure γ in the following
sense

γ(dx) = q(x)dx satisfies (LSIα) and ∃κ¾ 1, ∀x ∈ RK , m(x)¶ κq(x). (Hκ,α)

Proposition 3.2. Assume that µ and γ satisfy (Hκ,α). Then for all Lipschitz continuous function
F : RK → R s.t. |∇F |∞ ¶ 1,

∀r > 0, Pµ
h

F(Y )−µ(F)¾ r +W1(µ,γ)
i

¶ κe−
r2

α ,

where W1(µ,γ) = sup
|∇F |∞¶1

�

�µ(F)− γ(F)
�

� (Wasserstein distance W1 between µ and γ).
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Proof. By the Markov inequality, one has for every λ > 0,

Pµ
h

F(Y )−µ(F)¾ r +W1(µ,γ)
i

¶ e−λ(µ(F)+r+W1(µ,γ))Eµ
h

eλF(Y )
i

, (3.1)

and by (Hκ,α), Eµ
�

eλF(Y )� ¶ κEγ
�

eλF(Y )�. Since γ satisfies a logarithmic Sobolev inequality with
constant α > 0, the Herbst argument (see e.g. Ledoux [17] section 2.3) gives

Eγ
h

eλF(Y )
i

¶ eλγ(F)+
α
4
λ2

,

so that Eµ
�

eλF(Y )�¶ κeλµ(F)+
α
4
λ2+λ(γ(F)−µ(F)) and

Eµ
h

eλF(Y )
i

¶ κeλµ(F)+
α
4
λ2+λW1(µ,γ), (3.2)

since owing to the definition of W1 one has W1(µ,γ) ¾ γ(F)− µ(F). Plugging the above control
(3.2) into (3.1) yields

Pµ
h

F(Y )−µ(F)¾ r +W1(µ,γ)
i

¶ κe−λr+ α
4
λ2

.

An optimization on λ gives the result.

Lemma 3.1. Assume that µ with density m and γ with density q satisfy the domination condition

∃κ¾ 1, ∀x ∈ Rd , m(x)¶ κq(x)

and that there exist (α,β1,β2) ∈ (R+)3 such that for all Lipschitz continuous function F satisfying
|∇F |∞ ¶ 1 and for all λ > 0, Eγ

�

eλF(Y )
�

¶ eλγ(F)+
α
4
λ2+β1λ+β2 . Then we have, W1(µ,γ) ¶ β1 +

p

α
�

β2+ log(κ)
�

.

Proof. Recall first that for a non-negative function f , we have the following variational formulation
of the entropy:

Entγ( f ) = sup
¦

Eγ
�

f h
�

; Eγ
�

eh
�

¶ 1
©

. (3.3)

W.l.o.g. we consider F such that µ(F) ¾ γ(F). Let λ > 0 and h := λF −λγ(F)− α
4
λ2 − β1λ− β2 so

that Eγ
�

eh
�

¶ 1 and

Eµ[h] = Eγ

�

m

q
h
�

= λ
�

µ(F)− γ(F)
�

−
α

4
λ2− β1λ− β2.

We then have

µ(F)− γ(F) =
α

4
λ+ β1+

1

λ

�

β2+Eγ

�

m

q
h
��

,

(3.3)
¶
α

4
λ+ β1+

1

λ

�

β2+ Entγ

�

m

q

��

.

An optimization in λ yields

µ(F)− γ(F)¶ β1+

r

α

�

β2+ Entγ

�

m

q

��

. (3.4)

Now using the domination condition, one has Entγ
�

m
q

�

=
∫

m
q

log
�

m
q

�

dγ ¶ log(κ) and the results
follows.
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Remark 3.1. Note that if γ satisfies an (LSIα) we have β1 = β2 = 0 and the result (3.4) of Lemma

3.1 reads W1(µ,γ) ¶
q

αEntγ
�

m
q

�

¶
p

α log(κ). For similar controls concerning the W2 Wasserstein

distance see Theorem 1 of Otto and Villani [21] or Bobkov et al. [4].

Using the tensorization property of the logarithmic Sobolev inequality we derive the following Corol-
lary.

Corollary 3.1. Let Y 1, . . . , Y M be i.i.d. Rd -valued random variables with law µ. Assume there exist
α > 0, κ¾ 1 and γ such that (Hκ,α) holds on Rd . Then, for all Lipschitz continuous function f : Rd →
R satisfying

�

�∇ f
�

�

∞ ¶ 1, we have

∀r > 0, M ¾ 1, P





�

�

�

�

�

1

M

M
∑

k=1

f (Y k)−Eµ
�

f (Y 1)
�

�

�

�

�

�

¾ r +δκ,α



¶ 2e−M r2

α , (3.5)

with δκ,α = 2
p

α log(κ)¾ 0.

Proof. Let r > 0 and M ¾ 1. Clearly, changing f into − f , it suffices to prove that

P





1

M

M
∑

k=1

f (Y k)−Eµ
�

f (Y 1)
�

¾ r +δκ,α



¶ e−M r2

α .

By tensorization, the measure γ⊗M satisfies an (LSIα) with the same constant α as γ, and then
the probabilities µ⊗M and γ⊗M satisfy (HκM ,α) on RK , K = Md. In this case, Lemma 3.1 gives
p

Mδκ,α ¾W1(µ⊗M ,γ⊗M ) +
p

Mα log(κ) and then

P





1

M

M
∑

k=1

f (Y k)−Eµ
�

f (Y 1)
�

¾ r +δκ,α





¶ P





1
p

M

M
∑

k=1

f (Y k)−
p

MEµ
�

f (Y 1)
�

¾
p

M
�

r +
p

α log(κ)
�

+W1(µ
⊗M ,γ⊗M )



 .

Applying Proposition 3.2 with the measures µ⊗M and γ⊗M , the function F(x1, . . . , xM ) =
1p
M

∑M
k=1 f (xk) (which satisfies |∇F |∞ ¶ 1) and r̃ =

p
M(r +

p

α log(κ)) we obtain

P





1

M

M
∑

k=1

f (Y k)−Eµ
�

f (Y 1)
�

¾ r +δκ,α



¶ κM e−M
(r+
p
α log(κ))2
α ,

and we easily conclude.

Remark 3.2. Note that the term δκ,α can be seen as a penalty term due on the one hand to the transport
between µ and γ, and on the other hand to the explosion of the domination constant κM between µ⊗M

and γ⊗M when M tends to infinity. We emphasize that the bias δκ,α is independent of M. Hence,
the result below is especially relevant when r and δκ,α have the same order. In particular, the non-
asymptotic confidence interval given by (3.5) cannot be compared to the asymptotic confidence interval
deriving from the central limit theorem whose size has order O(M−1/2).
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Remark 3.3. Note that to obtain the non-asymptotic bounds of the Monte Carlo procedure (3.5), we
successively used the concentration properties of the reference measure γ, the control of the distance
W1(µ,γ) given by the variational formulation of the entropy (see Lemma 3.1) and the tensorization
property of the functional inequality satisfied by γ. The same arguments can therefore be applied to a
reference measure γ satisfying a Poincaré inequality.

3.2 Gaussian concentration - Lower bound

Concerning the previous deviation rate of Proposition 3.2, a natural question consists in understand-
ing whether it is sharp or not. Namely, for a given function f satisfying suitable growth conditions
at infinity, otherwise we cannot see the asymptotic growth, do we have a lower bound of the same
order, i.e. with Gaussian decay at infinity? The next proposition gives a positive answer to that
question.

Proposition 3.3. Let f : Rd → R+ be a Lipschitz continuous function satisfying
�

�∇ f
�

�

∞ ¶ 1 and
assumption (Gρ0,β) for given ρ0,β > 0.

For a C 2 function V on Rd such that e−V is integrable with respect to λd and s.t. ∃λ̄ ¾ 1, λ̄Id×d ¾
Hess(V ) ¾ 0, let γ(dx) = e−V (x)Z−1dx be the associated Gibbs probability measure. We assume that
∃κ¾ 1 s.t. for |x |¾ ρ0 the measures µ(dx) = m(x)dx and γ(dx) satisfy

m(x)¾ κ−1e−V (x)Z−1.

Let Λ̄ := λ̄
2
+

sups∈Sd−1 |V (sρ0)|
ρ2

0
+

sups∈Sd−1 |∇V (sρ0)|
ρ0

.

We have

∀r > 0, Pµ
�

f (Y )−µ( f )¾ r − (W1(µ,γ) +δ( f ,γ))
�

¾







K(d,A)
ZΛ̄d/2κ

exp
�

−Λ̄
h

r
β
∨ρ0

i2
�

, d even,

arccos(θ−1/2)K(d,A)
ZΛ̄d/2κ

exp
�

−θ Λ̄
h

r
β
∨ρ0

i2
�

, ∀θ > 1, d odd,

with δ( f ,γ) = γ( f ) + βρ0 − f , f := infs∈Sd−1 f (sρ0), and K(d, A) defined in (2.6) where A ⊂ Sd−1

appears in (Gρ0,β).

Proof. Set E := {Y ∈ A× [ρ0,∞)}. Here we use the convention that for d = 1, A× [ρ0,+∞) ⊂
(−∞,−ρ0]∪ [ρ0,+∞). Write now

Pµ
�

f (Y )−µ( f )¾ r − (W1(µ,γ) +δ( f ,γ))
�

¾ Pµ
�

f (Y )−µ( f )¾ r − (W1(µ,γ) +δ( f ,γ)), E
�

¾ κ−1Pγ
h

f (Y )¾ r − βρ0+ f , E
i

:= κ−1P . (3.6)

Denoting Y0 = ρ0πSd−1(Y ), we have

P ¾ Pγ
h

f (Y0) +
�

f (Y )− f (Y0)
�

¾ r − βρ0+ f , E
i

,

(Gρ0 ,β )
¾ Pγ

h

β |Y − Y0|¾ r − βρ0+ f − f (Y0), E
i

¾ Pγ

�

|Y |¾
r − βρ0

β
+ |Y0|, E

�

¾ Pγ

�

|Y |¾
r

β
∨ρ0,πSd−1(Y ) ∈ A

�

. (3.7)
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Write

P ¾
∫

A

σ(ds)

∫ +∞

ρ0∨
r
β

dρρd−1 exp(−V (sρ))Z−1,

where σ(ds) stands for the Lebesgue measure of Sd−1. Now, Hess(V ) ¶ λ̄Id×d yields ∀ρ ¾ ρ0 ∨
r
β

, |V (sρ)|/ρ2 ¶ Λ̄, Λ̄ := λ̄
2
+

sups∈Sd−1 |V (sρ0)|
ρ2

0
+

sups∈Sd−1 |∇V (sρ0)|
ρ0

and therefore

P ¾ |A|
∫ +∞

ρ0∨
r
β

dρρd−1 exp(−Λ̄ρ2)Z−1 ¾
|A|

Z(2Λ̄)d/2

∫ +∞

(ρ0∨
r
β
)(2Λ̄)1/2

dρρd−1 exp(−
ρ2

2
)

=
|A|

Z(2Λ̄)d/2
Qd

�

(ρ0 ∨
r

β
)(2Λ̄)1/2

�

. (3.8)

We now have the following explicit expression:

∀x > 0, Qd(x) := exp(−
x2

2
)M(d, x),

M(d, x) :=























d
2
−1
∑

i=0

x2i

d
2
−1
∏

j=i+1

2 j, d even,

d−1
2
−1

∑

i=0

x2i+1

d−1
2
−1

∏

j=i+1

(2 j+ 1) +

d−1
2
−1

∏

j=0

(2 j+ 1)exp(
x2

2
)

∫ +∞

x

exp(−
ρ2

2
)dρ, d odd,

with the convention that
∑−1

i=0 = 0, ∀k ∈ N,
∏k−1

j=k j = 1.

Observe now that
∫∞

x
exp(−ρ2/2)dρ = (2π)1/2P[N (0,1) ¾ x] ¾ (2π)1/2P[Y ∈ K , |Y | ¾

x/ cos(θ̃)] := (2π)1/2Q(x), where Y ∼ N (02×1, I2×2) is a standard bidimensional Gaussian vec-

tor and K := {z ∈ R2, 〈z, e1〉 ¾ cos(θ̃)|z|}, θ̃ ∈ (0, π
2
), e1 = (1,0). Since Q(x) = θ̃

π
exp(− x2

2 cos2(θ̃)
),

we derive that

Qd(x)¾







2d/2−1(d/2− 1)! exp(− x2

2
), d even,

θ̃2d/2

π1/2

∏

d−1
2

j=1( j−
1
2
)exp(− x2

2 cos2(θ̃)
), d odd,

which plugged into (3.8) yields:

P ¾







K(d,A)
ZΛ̄d/2 exp

�

−Λ̄
h

r
β
∨ρ0

i2
�

, d even,

θ̃K(d,A)
ZΛ̄d/2 exp

�

− Λ̄
cos2(θ̃)

h

r
β
∨ρ0

i2
�

, d odd.

Corollary 3.2. Under the assumptions of Proposition 3.3, let Y 1, · · · , Y M be i.i.d. Rd -valued random
variables with law µ. We have ∀r > 0, ∀M ¾ 1,

P





�

�

�

�

�

1

M

M
∑

k=1

f (Y k)−Eµ
�

f (Y 1)
�

�

�

�

�

�

¾ r − (W1(µ,γ) +δ( f ,γ))



¾ 2exp

�

−M(θ Λ̄ +χ)
�

r

β
∨ρ0

�2
�
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where χ = 1
ρ2

0
log
�

ZΛ̄d/2κ
K(d,A)

�

+
, θ = 1 for d even, and χ = 1

ρ2
0

log
�

ZΛ̄d/2κ

K(d,A)arccos(θ−1/2)

�

+
, θ ∈ (1,+∞) for

d odd, and with K(d, A) defined in (2.6).

Proof. We only consider d even. By independence of the ((Y )k)k∈[[1,M]], exploiting
⋂M

k=1{ f (Y
k)−

Eµ
�

f (Y 1)
�

¾ r− (W1(µ,γ)+δ( f ,γ))} ⊂ { 1
M

∑M
k=1 f (Y k)−Eµ

�

f (Y 1)
�

¾ r− (W1(µ,γ)+δ( f ,γ))},
we have

P
�

1

M

M
∑

k=1

f (Y k)−Eµ
�

f (Y 1)
�

¾ r−(W1(µ,γ)+δ( f ,γ))
�

¾
�

K(d, A)

ZΛ̄d/2κ

�M

exp

�

−MΛ̄
�

r

β
∨ρ0

�2
�

.

For χ = 1
ρ2

0
log
�

ZΛ̄d/2κ
K(d,A)

�

+
, we thus obtain

P





1

M

M
∑

k=1

f (Y k)−Eµ
�

f (Y 1)
�

¾ r − (W1(µ,γ) +δ( f ,γ))



¾ exp

�

−M(Λ̄ +χ)
�

r

β
∨ρ0

�2
�

,

which completes the proof.

.

3.3 Proofs of Theorem 2.2 and Corollary 2.1

- Theorem 2.2 - Upper bound (2.3).

In case (a), the Gaussian probability γc,T with density pc(T, x , .) defined in Theorem 2.1 satisfies
a logarithmic Sobolev inequality with constant α(T ) = 2T

c
(see Proposition 3.1). The result then

follows from Theorem 2.1 and Corollary 3.1.

In case (b), γc,T (dx ′) = pc(T, x , x ′)dx ′ = Z−1e−VT,x (x ′)dx ′ where

VT,x(x
′) = c

� |(x ′)1,d ′ − x1,d ′ |2

4T
+ 3
|(x ′)d

′+1,d − xd ′+1,d − x1,d′+(x ′)1,d′

2
T |2

T3

�

. (3.9)

The Hessian matrix of VT,x satisfies

∀x ′ ∈ Rd , HessVT,x(x
′) =

�

2c
T

Id′×d′
−3c
T2 Id′×d′

−3c
T2 Id′×d′

6c
T3 Id′×d′

�

¾ λId×d,

with λ = c
T
+ 3c

T3

�

1−
q

1+ T2

3
+ T4

9

�

> 0. By Proposition 3.1, the probability γc,T satisfies a

logarithmic Sobolev inequality with constant α(T ) = 2T
c

1

1+ 3
T2

�

1−
q

1+ T2

3
+ T4

9

� . We still conclude by

Theorem 2.1 and Corollary 3.1.

- Theorem 2.2 - Lower bound (2.5).

With the notation pc−1(t − s, x , x ′) = Z−1e−Vt−s,x (x ′), the Hessian of the potential VT,x satisfies ∀x ′ ∈

Rd , HessVT,x(x ′) ¶ λ̄Id×d where λ̄ = c−1

T
in case (a) and λ̄ = c−1

T
+ 3c−1

T3

�

1+
q

1+ T2

3
+ T4

9

�

in
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case (b). Set γc−1,T (dx ′) = pc−1(T, x , x ′)dx ′ and µT (dx ′) = p∆(0, T, x , x ′)dx ′. Since µT and γc,T
satisfy (Hκ,α) with κ = C and α = α(T ) defined in (2.4), the probability µT satisfies (3.2), and

Lemma 3.1 yields W1(µT ,γc,T ) ¶
p

α(T ) log(C). Now, γc−1,T and γc,T satisfy (Hκ,α) with κ = C2

and α = α(T ). We therefore get from Lemma 3.1, W1(γc−1,T ,γc,T ) ¶
p

2α(T ) log(C). Hence,

W1(γc−1,T ,µT ) ¶ W1(µT ,γc,T ) +W1(γc−1,T ,γc,T ) ¶ (1 +
p

2)
p

α(T ) log(C). Now, by definition of
δ̄c,C ,T, f we have δ̄c,C ,T, f ¾W1(γc−1,T ,µT ) + δ( f ,γc−1,T ), (δ( f ,γc−1,T ) introduced in Proposition 3.3)
and Corollary 3.2 yields

Px

�

1

M

M
∑

k=1

f (T, (X∆T )
k)−Ex

�

f (T, X∆T )
�

¾ r − δ̄c,C ,T, f

�

¾ exp

�

−
M

ᾱ(T )

�

r

β
∨ρ0

�2
�

,

where observing that for our Gaussian bounds Λ̄ = λ̄
2
, and

1

ᾱ(T )
=







λ̄
2
+χ, χ = 1

ρ2
0

log
�

2−d/2Zλ̄d/2C
K(d,A)

�

+
for d even,

θ λ̄
2
+χ, χ = 1

ρ2
0

log
�

2−d/2Zλ̄d/2C
K(d,A)arccos(θ−1/2)

�

+
for d odd, θ > 1,

and K(d, A) defined in (2.6).

Observe now that in case (a), the normalization factor Z = Z(T, d) associated to pc−1(T, x , .) writes
Z = (2πcT )d/2. Hence, recalling that λ̄= (cT )−1, we obtain in this case

χ =







1
ρ2

0
log
�

πd/2C
K(d,A)

�

+
for d even,

1
ρ2

0
log
�

πd/2C
K(d,A)arccos(θ−1/2)

�

for d odd, θ > 1.

In case (b), we have Z =
�

2πp
3
c
�d/2

T d , λ̄= 1
cT

�

1+ 3
T2

�

1+
q

1+ T2

3
+ T4

9

��

so that 2−d/2Zλ̄d/2 =
�

πp
3T

�d/2
[T2+ 3(1+

q

1+ T2

3
+ T4

9
)]d/2. Eventually, since in case (b) we always have d even, the

correction writes

χ =
1

ρ2
0

log









�

πp
3T

�d/2
[T2+ 3(1+

q

1+ T2

3
+ T4

9
)]d/2C

K(d, A)









+

.

This completes the proof.

- Proof of Corollary 2.1.

Note that the random variable Y∆T = T−1
T X∆T admits the density p∆Y (T, y, y ′) =

T d ′p∆(0, T,TT y,TT y ′) with respect to λd(dy ′). By Theorem 2.1 this density is dominated by
(Z T d ′)−1e−VT,TT y (TT y ′) where VT,x is defined in (3.9). The Hessian of y ′ 7→ VT,TT y(TT y ′) satisfies

∀y ′ ∈ Rd , HessVT,TT y(TT y ′) =

�

2c
T

Id′×d′
−3c

T
Id′×d′

−3c
T

Id′×d′
6c
T

Id′×d′

�

¾ λId×d,

with λ= c
T
(4−

p
13). We still conclude by Proposition 3.1, and Corollary 3.1.
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4 Derivation of the Gaussian bounds for the discretization schemes

In order to clarify the reading, we begin with a section dedicated to the presentation of the
parametrix techniques, initially developed in [19], in the continuous case. For simplicity, we re-
strict ourselves to case (a) for the description of the method and the specification of the various
steps needed to derive Aronson’s bounds. However, the method can be extended to the degenerate
case (b). This has been done successfully in the continuous case in [15], [6].

We will adapt the methods developed therein to the discrete case in Sections 4.3, 4.4.

4.1 Parametrix techniques in the non degenerate continuous case

For simplicity, we suppose in this section that the coefficients b,σ are C∞b ([0, T]×Rd ,R) (bounded
together with their derivatives at every order) and σσ∗ is uniformly elliptic. We also assume that
they satisfy assumptions (UE),(SB). We denote by Lt the infinitesimal generator of X at time t ¾ 0,
i.e.:

∀ϕ ∈ C2(Rd ,R), ∀x ∈ Rd , Ltϕ(x) = 〈b(t, x), Dxϕ(x)〉+
1

2
Tr(a(t, x)D2

xϕ(x)).

The non-degeneracy and the smoothness of the coefficients guarantee that the solution (X t)t¾0 of
(1.1) admits a smooth transition density p satisfying

∂t p(s, t, x , y) = L∗t p(s, t, x , y), t > s, (x , y) ∈ (Rd)2, p(s, t, x , .)→
t↓s
δx(.),

∂sp(s, t, x , y) =−Lsp(s, t, x , y), t > s, (x , y) ∈ (Rd)2, p(s, t, ., y)→
s↑t
δy(.), (4.1)

where L∗t stands for the adjoint of Lt (see e.g. [7]). We will show that the constants in the Aronson
bounds only depend on the fixed final time T > 0, the upper bounds of the coefficients, the uni-
form ellipticity constant and the η-Hölder modulus of continuity appearing in (SB) but not on the
derivatives of the coefficients as in the Malliavin calculus approach.

Remark 4.1. Under the sole assumptions (UE), (SB), we can consider a sequence of mollified equations
whose coefficients uniformly satisfy (UE), (SB) for which Aronson’s bounds hold. From a smoothness
viewpoint, since the bounds only depend on the η-Hölder modulus of continuity, letting the mollifying
parameter go to zero, we derive that they remain valid for the density of X thanks to uniqueness in
law (deriving from the well posedness of the martingale problem, see Theorem 7.2.1 in [23]) and
Radon-Nikodym’s theorem.

For a fixed starting point (s, x) ∈ [0, T )×Rd and a given x ′ ∈ Rd , introduce the Gaussian process

∀t ∈ [s, T], X̃ t = x +

∫ t

s

b(u, x ′)du+

∫ t

s

σ(u, x ′)dWu. (4.2)

Its infinitesimal generator L̃ x ′
t at time t ∈ [s, T] writes:

∀ϕ ∈ C2(Rd ,R), ∀x ∈ Rd , L̃ x ′
t ϕ(x) = 〈b(t, x ′), Dxϕ(x)〉+

1

2
Tr(a(t, x ′)D2

xϕ(x)).
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Observe that (X̃ t)t∈[s,T] ≡ (X̃ x ′
t )t∈[s,T] and that its density p̃x ′ satisfies:

∂s p̃
x ′(s, t, x , y) =− L̃ x ′

s p̃x ′(s, t, x , y), t > s, (x , y) ∈ (Rd)2, p̃x ′(s, t, ., y)→
s↑t
δy(.). (4.3)

Hence, from (4.1) and (4.3)

(p− p̃x ′)(s, t, x , x ′) =

∫ t

s

du∂u

∫

Rd

dzp(s, u, x , z)p̃x ′(u, t, z, x ′)

=

∫ t

s

du

∫

Rd

dz
�

∂up(s, u, x , z)p̃x ′(u, t, z, x ′) + p(s, u, x , z)∂u p̃x ′(u, t, z, x ′)
�

=

∫ t

s

du

∫

Rd

dz
�

L∗up(s, u, x , z)p̃x ′(u, t, z, x ′)− p(s, u, x , z)L̃ x ′
u p̃x ′(u, t, z, x ′)

�

=

∫ t

s

du

∫

Rd

dzp(s, u, x , z)(Lu− L̃ x ′
u )p̃

x ′(u, t, z, x ′). (4.4)

Remark 4.2. Observe that the parameter x ′ appears here twice. We actually freeze the coefficients in
the Gaussian process at the final point where we want to estimate the density.

Introducing the notation f ⊗ g(s, t, x , x ′) =

∫ t

s

du

∫

Rd

dz f (s, u, x , z)g(u, t, z, x ′) for the time-space

convolution and setting p̃(s, t, x , x ′) := p̃x ′(s, t, x , x ′), H(s, t, x , x ′) := (Ls − L̃ x ′
s )p̃(s, t, x , x ′), equa-

tion (4.4) writes:
(p− p̃)(s, t, x , x ′) = p⊗H(s, t, x , x ′).

The main idea then consists in iterating this procedure for p(s, u, x , z) in (4.4) exploiting the transi-
tion density of the process X̃ z , z being the integration variable. In such a way, we obtain the iterated
convolutions of the kernel H as well as the formal expansion:

p(s, t, x , x ′) =
∞
∑

r=0

p̃⊗H(r)(s, t, x , x ′), (4.5)

with H(0) = I , H(r) = H ⊗H(r−1), r ¾ 1.

Under (UE), (SB), for fixed T > 0, since p̃ is a Gaussian density, ∃C := C(T,λ0, L0), c := c(λ0) s.t.
for any multi-index α, |α|¶ 4, and all 0< s < t < T , (x , x ′) ∈ (Rd)2,

|∂ αx p̃(s, t, x , x ′)|¶
C

(t − s)|α|/2
pc(t − s, x , x ′),

with pc(t − s, x , x ′) :=
�

c

2π(t − s)

�d/2

exp

�

−c
|x − x ′|2

t − s

�

. (4.6)

The kernel writes:

H(s, t, x , x ′) = 〈b(s, x)− b(s, x ′), Dx p̃(s, t, x , x ′)〉+
1

2
tr
�

(a(s, x)− a(s, x ′))D2
x p̃(s, t, x , x ′)

�

. (4.7)
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In particular, equation (4.6) and (SB) give:

|H(s, t, x , x ′)| ¶ C

�

2|b|∞
(t − s)1/2

+
|a(s, x)− a(s, x ′)|

(t − s)

�

pc(t − s, x , x ′)

¶ C((t − s)−1/2+ (t − s)−1+ η
2 )pc(t − s, x , x ′).

The η-Hölder continuity of a is used to compensate the non-integrable time singularity of second
order terms (up to a modification of c for the last inequality). The kernel H is therefore regularizing
in the sense that:
∃C := C(T,λ0, L0,η), c := c(λ0,η), ∀r ¾ 1,

|p̃⊗H(r)(s, t, x , x ′)|¶ C r+1(t − s)rη/2
r+1
∏

i=1

B
�

1+
(i− 1)η

2
,
η

2

�

pc(t − s, x , x ′), (4.8)

where B(m, n) :=
∫ 1

0
sm−1(1− s)n−1ds stands for the β function. For small t− s, this term decreases

geometrically with r.

From (4.8), the r.h.s. of equation (4.5) is well defined. On the other hand, direct computations
show that this r.h.s. satisfies (4.1). Hence, from the uniqueness of the solution to (4.1) we indeed
deduce that (4.5) provides a series expansion of the density, i.e. the previous formal derivation is
fully justified.

Remark 4.3. Observe that to extend the previous approach to case (b), we have to consider a suitable
frozen Gaussian process that takes into account the metric structure of the problem. The idea is once
again to compensate the non integrable time singularity deriving from the second order terms. To this
end, the difference of the diffusion coefficients in the convolution kernel has to be homogeneous to the
off-diagonal terms of the frozen density in case (b). The associated frozen process is different from
case (a) mainly because of the transport of the initial condition (see [15] for the continuous case and
equation (4.11) below for the scheme).

4.2 Steps for Aronson’s bounds in the non degenerate continuous case

We specify below what are the crucial steps to obtain Aronson’s estimates from the controls of the
previous section.

- Upper bound. Equations (4.8) and (4.5) and the asymptotics of the β function directly give
the upper bound, namely ∃C := C(T,λ0, L0,η), c := c(λ0,η), ∀0 ¶ s < t ¶ T, (x , x ′) ∈
(Rd)2, p(s, t, x , x ′)¶ C pc(t − s, x , x ′).

- Lower bound. There are three steps for the lower bound:

* Step 1: lower bound on the diagonal in short time. Equations (4.8) and (4.5) give that there exist
C := C(T,λ0, L0,η), c0 := c0(λ0)

p(s, t, x , x ′)¾ p̃(s, t, x , x ′)− C(t − s)
η

2 pc(s, t, x , x ′)¾ c0
−1pc−1(s, t, x , x ′)− C(t − s)

η

2 pc(s, t, x , x ′).
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Fix now R0 > 0. For |x− x ′|2/(2(t−s))¶ R0 and |t−s|¶ C1 := C1(C , c0, c,η, R0) sufficiently small1,
the above equation gives:

p(s, t, x , x ′)¾
c−1
0

2(2πc(t − s))d/2
exp(−c−1R0). (4.9)

We thus have, from the parametrix expansion of the density and the regularizing property of the
kernel, the lower bound on the compact sets of the parabolic metric in short time. In the current
framework, this idea goes back to Il’in et al. [10].

* Step 2: chaining and global lower bound in short time. It consists in deriving the lower bound
in short time when |x − x ′|2/(2(t − s)) ¾ R0. To this end a chaining is needed. The idea is to
successively apply, along a path joining x to x ′ in time t − s, the lower bound on the compact sets
of the metric. The Markov property of the underlying process is also thoroughly exploited. This
procedure is rather standard in the non degenerate case, see eg. Chapter VII of Bass [3], for which
the natural path turns out to be the straight line between x and x ′. This gives the global lower
bound in short time.

* Step 3: lower bound for fixed arbitrary time. The global lower bound, i.e. for fixed time T > 0 can
then be derived by convolution or scaling arguments. The convolution argument is standard. We
refer to Section 2.3 of [6] for the scaling arguments.

Remark 4.4. In case (b), Aronson’s bounds are derived following the same steps from the associated
parametrix representation and controls on the convolution kernel. Anyhow, the situation is much more
subtle for the chaining. It consists in applying the lower bound for the compact sets along the optimal
path of the deterministic control problem associated to equation (1.1) joining x to x ′ in time t − s
(namely when replacing the Brownian entry by a deterministic control), see Section 4.3 and Appendix
A in [6]. Let us briefly mention that in case (a) the straight line is as well the optimal solution of the
associated deterministic control problem when σ ≡ 1. The uniform ellipticity assumption makes it an
admissible path for the chaining in case (a).

4.3 Parametrix representation of the densities for the schemes

We will follow the previous program for the discretization schemes in both cases (a) and (b). The
main advantage of the McKean-Singer parametrix is that it admits a natural discrete counterpart, cf.
[13, 14, 15]. Similarly to the previous section we first introduce a “frozen” inhomogeneous Markov
chain and discrete convolution kernels from which we derive an expansion for the density of the
schemes similar to (4.5), cf. Proposition 4.1 below.

We then establish some smoothing properties of our discrete convolution kernel similar to (4.8).
This is done in Lemma 4.1. This is a very technical part that involves tedious computations. The
proof is postponed to Appendix A

As in the continuous case, Proposition 4.1 and Lemma 4.1 directly give the upper bound of Theorem
2.1 and the lower bound in small time for the compact sets of the associated metric, which in case
(b) is different from the one considered in the previous section, see equation (4.16) below.

1One can check that C1 :=
�

c−1
0

2cd C
exp(−c−1R0)

�2/η
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The chaining arguments are adapted to our current non-Markovian framework and turn out to be,
even in case (a), not so standard, see Section 4.4.2.

Remark 4.5. Let us mention that in case (a) for smoother coefficients (if b,σ are C0,2
b ([0, T]×Rd)) a

much more direct proof of the upper bound can be obtained via Malliavin calculus, see Proposition 3.5
in [9].

We first need to introduce some objects and notations. Let us begin with the “frozen” inhomogeneous
scheme. For fixed x , x ′ ∈ Rd , 0¶ j < j′ ¶ N , we define

�

eX∆t i

�

i∈[[ j, j′]]
�

≡
�

eX∆,x ′
t i

�

i∈[[ j, j′]]
�

by

eX∆t j
= x , ∀i ∈ [[ j, j′), eX∆t i+1

= eX∆t i
+ b(t i , x ′)∆+σ(t i , x ′)(Wt i+1

−Wt i
) (4.10)

for case (a). Note that in the above definition the coefficients of the process are frozen at x ′,
but we omit this dependence for notational convenience. In case (b) we define

�

eX∆t i

�

i∈[[ j, j′]]
�

=
�

eX∆,x ′, j′
t i

�

i∈[[ j, j′]]
�

by eX∆t j
= x , and ∀i ∈ [[ j, j′),

eX∆t i+1
= eX∆t i

+









b1(t i , x ′)∆
∫ t i+1

t i

(eX∆s )
1,d ′ds









+ Bσ

�

t i , x ′−
�

0d ′×1

(x ′)1,d ′

�

(t j′ − t i)

�

(Wt i+1
−Wt i

). (4.11)

That is, in case (b) the frozen process also depends on j′ through an additional term in the diffusion
coefficient. This correction term is needed, in order to have good continuity properties w.r.t. the
underlying metric associated to pc when performing differences of the form a(t j , x) − a(t j , x ′ −
�

0d ′×1

(x ′)1,d ′

�

(t j′ − t i)), see the definition (4.16), Section 4.4 and Appendix A for details.

From now on, p∆(t j , t j′ , x , ·) and ep∆,t j′ ,x
′
(t j , t j′ , x , ·) denote the transition densities between times

t j and t j′ of the discretization schemes (1.3), (1.4) and the “frozen” schemes (4.10), (4.11) respec-
tively.

Let us introduce a discrete “analogue” to the inhomogeneous infinitesimal generators of the con-
tinuous objects from which we derive the kernel of the discrete parametrix representation. For
a sufficiently smooth function ψ : Rd → R and fixed x ′ ∈ Rd , j′ ∈ (0, N]], define the family of

operators (L∆t j
) j∈[[0, j′) and (eL∆t j

) j∈[[0, j′)
�

= (eL
∆,t j′ ,x

′

t j
) j∈[[0, j′)

�

by

L∆t j
ψ(x) =

E
�

ψ(X∆t j+∆
)
�

�X∆t j
= x
�

−ψ(x)

∆
, and eL∆t j

ψ(x) =
E
�

ψ(eX∆t j+∆
)
�

�
eX∆t j
= x
�

−ψ(x)

∆
.

Using the notation ep∆(t j , t j′ , x , x ′) = ep∆,t j′ ,x
′
(t j , t j′ , x , x ′), we now define the discrete kernel H∆ by

H∆(t j , t j′ , x , x ′) =
�

L∆t j
− eL∆t j

�

ep∆(t j +∆, t j′ , x , x ′), 0¶ j < j′ ¶ N . (4.12)

Remark 4.6. Note carefully that the fixed variable x ′ appears here twice: as the final point where we
consider the density and as freezing point in the previous schemes (4.10), (4.11). We also mention that,
because of the discretization, there is a slight “shift” in time in the definition of H∆. Namely we have
t j +∆ in ep∆ instead of the somehow expected t j that would be the “exact” discrete counterpart of the
continuous kernel (4.7).
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Note also that if j′ = j + 1 i.e. t j′ = t j +∆, the transition probability ep∆,t j′ ,x
′
(t j+1, t j+1, ., x ′) is the

Dirac measure δx ′ so that

H∆(t j , t j+1, x , x ′) = ∆−1
�

E
�

δx ′(X
∆
t j+1
)
�

�X∆t j
= x
�

−E
�

δx ′(eX
∆
t j+1
)
�

�
eX∆t j
= x
�

�

,

=∆−1
�

p∆(t j , t j+1, x , x ′)− ep∆,t j′ ,x
′
(t j , t j+1, x , x ′)

�

.

From the previous definition (4.12), for all 0¶ j < j′ ¶ N ,

H∆(t j , t j′ , x , x ′) = ∆−1

∫

Rd

h

p∆− ep∆,t j′ ,x
′
i

(t j , t j+1, x , u)ep∆,t j′ ,x
′
(t j+1, t j′ , u, x ′)du.

Analogously to Lemma 3.6 in [13] we obtain the following result.

Proposition 4.1 (Parametrix for the density of the Euler scheme).
Assume (UE), (SB) are in force. Then, for 0¶ t j < t j′ ¶ T,

p∆(t j , t j′ , x , x ′) =
j′− j
∑

r=0

�

ep∆⊗∆ H∆,(r)
�

(t j , t j′ , x , x ′), (4.13)

where the discrete time convolution type operator ⊗∆ is defined by

(g ⊗∆ f )(t j , t j′ , x , x ′) =
j′− j−1
∑

k=0

∆

∫

Rd

g(t j , t j+k, x , u) f (t j+k, t j′ , u, x ′)du,

where g⊗∆ H∆,(0) = g and for all r ¾ 1, H∆,(r) = H∆⊗∆ H∆,(r−1) denotes the r-fold discrete convolu-
tion of the kernel H∆. W.r.t. the above definition, we use the convention that ep∆⊗∆H∆,(r)(t j , t j , x , x ′) =
0, r ¾ 1.

The following lemma gives the smoothing properties of our discrete convolution kernel which is, as
indicated in Section 4.2, a key argument for the proof of Aronson’s bounds.

Lemma 4.1. There exists c > 0, C ¾ 1 s.t. for all 0¶ j < j′ ¶ N, for all r ∈ [[0, j′− j]],∀(x , x ′) ∈ Rd ,

|ep∆⊗∆ H∆,(r)(t j , t j′ , x , x ′)|¶ C r+1(t j′ − t j)
rη/2

r+1
∏

i=1

B
�

1+
(i− 1)η

2
,
η

2

�

pc(t j′ − t j , x , x ′). (4.14)

In the above equation B(m, n) :=
∫ 1

0
sm−1(1− s)n−1ds stands for the β function.

The proof of the lemma is postponed to Appendix A.

4.4 Proof of Theorem 2.1: Aronson’s bounds for the schemes

4.4.1 Proof of the upper bound.

The upper bound in (2.2) directly follows from Proposition 4.1 and the asymptotics of the β func-
tion. It is also useful to achieve the first step of the lower bound.
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4.4.2 Proof of the lower bound.

We provide in this section the global lower bound in short time. W.l.o.g. we assume that T ¶ 1. This
allows to substitute the constant C appearing in (4.14) by a constant c0 ¶ c exp(c|b|2∞) uniformly
for t j′ − t j ¶ T . From the upper bound, we derive the lower bound in short time, on the compact
sets of the underlying metric, see (4.16) below. This gives the diagonal decay. To get the whole
bound in short time it remains to obtain the “off-diagonal” bound. To this end a chaining argument
is needed. In case (a) it is quite standard in the Markovian framework, see Chapter VII of Bass [3]
or Kusuoka and Stroock [16]. In case (b), the chaining in the appendix of [6] can be adapted to our
discrete framework. We adapt below these arguments to our non Markovian setting for the sake of
completeness.

Eventually, to derive the lower bound for an arbitrary fixed T > 0 it suffices to use the bound in
short time and the semigroup property of pc−1 . Naturally, the biggest is T , the worse is the constant
in the global lower bound.

* Step 1: lower bound on the diagonal in short time.
From Proposition 4.1 we have

p∆(t j , t j′ , x , x ′) ¾ ep∆(t j , t j′ , x , x ′)−
j′− j
∑

r=1

|ep∆⊗∆ H∆,(r)(t j , t j′ , x , x ′)|

¾ c−1
0 pc−1(t j′ − t j , x , x ′)− c0(t j′ − t j)

η/2pc(t j′ − t j , x , x ′), (4.15)

exploiting ep∆(t j , t j′ , x , x ′) ¾ c−1
0 pc−1(t j′ − t j , x , x ′) (cf. Lemma 3.1 of [15] in case (b)) and (4.14)

(replacing C by c0) for the last inequality. Equation (4.15) provides a lower bound on compact sets
provided that T is small enough. Precisely, denoting

d2
t j′−t j

(x , x ′) =











|x−x ′|2
t j′−t j

in case (a),
�

�

�(x ′)1,d′−x1,d′
�

�

�

2

2(t j′−t j)
+ 6

�

�

�

�

(x ′)d
′+1,d−xd′+1,d− x1,d′+(x′)1,d′

2
(t j′−t j)

�

�

�

�

2

(t j′−t j)3
in case (b),

(4.16)

we have that, for a given R0 ¾ 1/2, if d2
t j′−t j

(x , x ′) ¶ 2R0 and (t j′ − t j) ¶ T ¶
�

1
2c2

0 cd exp(−c−1R0)
�2/η

,

p∆(t j , t j′ , x , x ′)¾
1

(2π)d/2(t j′ − t j)S

�

c−1
0

cd/2
exp(−c−1R0)− c0cd/2Tη/2

�

¾
c−1
0

(2πc)d/22(t j′ − t j)S
exp(−c−1R0)

where the parameter S is the intrinsic scale of the scheme. In case (a) S = d/2, in case (b) S = d.
Hence, up to a modification of c−1

0 we have that

∃c0 ¾ 1, ∀0¶ j < j′ ¶ N , ∀(x , x ′) ∈ (Rd)2, d2
t j′−t j

(x , x ′)¶ 2R0, p∆(t j , t j′ , x , x ′)¾
c−1
0

(t j′ − t j)S
.

(4.17)

1666



In particular ∃c > 0, c0 ¾ 1, ∀0 ¶ j < j′ ¶ N , ∀(x , x ′) ∈ (Rd)2, d2
t j′−t j

(x , x ′) ¶ 2R0,

p∆(t j , t j′ , x , x ′)¾ c−1
0 pc−1(t j′ − t j , x , x ′).

* Step 2 : chaining and global lower bound in short time.
Case (a). Let us introduce: ∀0 ¶ s < t ¶ T, (x , x ′, y) ∈ (Rd)3, p∆,y(s, t, x , x ′)dx ′ := P[X∆t ∈
dx ′|X∆s = x , X∆

φ(s) = y]. Equation (4.17) provides a lower bound for the density of the scheme
when s, t correspond to discretization times. For the chaining, the first step consists in extending
this result to arbitrary times 0¶ s < t ¶ T .Precisely, if d2

t−s(x , x ′)¶ R0/12 we prove that

∃c0 ¾ 1, ∀0¶ s < t ¶ T, ∀y, p∆,y(s, t, x , x ′)¾ c−1
0 (t − s)−d/2. (4.18)

If φ(t) = φ(s) or t = φ(t) = φ(s) + ∆, the above density is Gaussian and (4.18) holds. If
t 6= φ(t) = (φ(s) + ∆) or t = φ(t) = φ(s) + 2∆, equation (4.18) directly follows from a convo-
lution argument between two Gaussian random variables. Note anyhow carefully that the “crude”
convolution argument cannot be iterated L times for an arbitrary large L. Indeed, in that case the
constants would have a geometric decay. Thus, for φ(t)− (φ(s)+∆)¾∆, supposing w.l.o.g. that s
and t do not belong to the time grid

¦

t j

©

j∈[[0,N]]
2, we write

p∆,y(s, t, x , x ′) =

∫

(Rd )2
p∆,y(s,φ(s) +∆, x , x1)p

∆(φ(s) +∆,φ(t), x1, x2)p
∆(φ(t), t, x2, x ′)dx1dx2

¾
∫

BR(s,t,x ,x ′)
p∆,y(s,φ(s) +∆, x , x1)p

∆(φ(s) +∆,φ(t), x1, x2)p
∆(φ(t), t, x2, x ′)dx1dx2

(4.19)

where BR(s, t, x , x ′) := {x1 ∈ Rd : d2
φ(s)+∆−s(x , x1) ¶ R} × {x2 ∈ Rd : d2

t−φ(t)(x2, x ′) ¶ R} for R > 0
to be specified later on. Now, for (x1, x2) ∈ BR(s, t, x , x ′),

d2
φ(t)−(φ(s)+∆)(x1, x2) =

|x1− x2|2

φ(t)− (φ(s) +∆)
¶

2|x1− x |2+ 4|x − x ′|2+ 4|x2− x ′|2

φ(t)− (φ(s) +∆)
¶ 6R+ R0,

where we used that for φ(t)− (φ(s) + ∆) ¾ ∆, 1
φ(t)−(φ(s)+∆) ¶

3
t−s

in the last inequality. Taking

R= R0/6 we obtain that ∀(x1, x2) ∈ BR(s, t, x , x ′), d2
φ(t)−(φ(s)+∆)(x1, x2)¶ 2R0. We therefore derive

from (4.17) and (4.19) that ∃c0 > 0,

p∆,y(s, t, x , x ′)

¾ c−1
0 (φ(s) +∆− s)−d/2(t −φ(t))−d/2(φ(t)− (φ(s) +∆))−d/2

∫

(Rd )2
I(x1,x2)∈BR(s,t,x ,x ′)dx1dx2.

Since φ(t)− (φ(s) + ∆) ¶ t − s and there exists c̃ > 0 s.t. |{x1 ∈ Rd : d2
φ(s)+∆−s(x , x1) ¶ R}| ¾

c̃(φ(s)+∆−s)d/2, |{x2 ∈ Rd : d2
t−φ(t)(x2, x ′)¶ R}|¾ c̃(t−φ(t))d/2 where |.| stands for the Lebesgue

measure of a given set in Rd , we derive (4.18) from the above equation up to a modification of c0.

2Indeed, if (s, t) both belong to the grid, equation (4.17) already gives the bound. If s or (exclusive) t belongs to the
grid, the arguments below can be easily adapted.

1667



It now remains to do the chaining when for 0¶ j < j′ ¶ N , (x , x ′) ∈ (Rd)2 we have d2
t j′−t j

(x , x ′)¾

2R0 ¾ 1. Set L = dKd2
t j′−t j

(x , x ′)e, for K ¾ 1 to be specified later on and h := (t j′ − t j)/L. Note

that L ¾ 1. For all i ∈ [[0, L]] we denote si = t j + ih, yi = x + i
L
(x ′ − x) so that s0 = t j , sL =

t j′ , y0 = x , yL = x ′. Introduce now ρ := dt j′−t j
(x , x ′)(t j′ − t j)1/2/L = |x ′ − x |/L and for all

i ∈ [[1, L − 1]], Bi := {x ∈ Rd : |x − yi| ¶ ρ}. Note that with the previous definitions ∀i ∈
[[0, L− 1]], |yi+1− yi|= |x ′− x |/L = ρ. Thus,

∀x1 ∈ B1, |x − x1|¶ 2ρ, ∀i ∈ [[1, L− 2]], (x i , x i+1) ∈ Bi × Bi+1, |x i − x i+1|¶ 3ρ,

∀xL−1 ∈ BL−1, |xL−1− x ′|¶ 2ρ.
(4.20)

We can now choose K large enough s.t.

3ρ/
p

h= 3dt j′−t j
(x , x ′)/

p
L ¶ (R0/12)1/2 (4.21)

so that according to (4.18), denoting x0 = x , xL = x ′, for all i ∈ [[0, L − 1]], ∀y ∈ Rd , (x i , x i+1) ∈
Bi × Bi+1, p∆,y(si , si+1, x i , x i+1) ¾ c−1

0 h−d/2 (with the slight abuse of notation B0 = {x}, BL = {x ′}
and p∆,y(0, h, x0, x1) = p∆(0, h, x , x1)).

We have

p∆(t j , t j′ , x , x ′)¾ Et j ,x

�

I∩L−1
i=1 X∆si ∈Bi

p∆,X∆
φ(sL−1)(sL−1, t j′ , X∆sL−1

, x ′)
�

. (4.22)

To proceed we have to distinguish two cases: h¾∆ and h<∆.

- If h¾∆, write from (4.22),

p∆(t j , t j′ , x , x ′)¾ Et j ,x

�

I∩L−1
i=1 X∆si ∈Bi

E[p∆,X∆
φ(sL−1)(sL−1, t j′ , X∆sL−1

, x ′)|X∆sL−1
, X∆φ(sL−1)

]
�

.

Since we consider the events X∆sL−1
∈ BL−1, we derive from (4.20), (4.21) that |X∆sL−1

− x ′|/
p

h ¶
2ρ/
p

h¶ 3dt j′−t j
(x , x ′)/

p
L ¶ (R0/12)1/2. Hence, from (4.18)

p∆(t j , t j′ , x , x ′)¾ c−1
0 h−d/2Et j ,x

�

I∩L−1
i=1 X∆si ∈Bi

�

= c−1
0 h−d/2Et j ,x

�

I∩L−2
i=1 X∆si ∈Bi

P[X∆sL−1
∈ BL−1|X∆sL−2

, X∆φ(sL−2)
]
�

.

Now P[X∆sL−1
∈ BL−1|X∆sL−2

, X∆
φ(sL−2)

] =
∫

BL−1
p∆,X∆

φ(sL−2)(sL−2, sL−1, X∆sL−2
, y)dy , but since we restrict to

X∆sL−2
∈ BL−2, according to (4.20), we have for all y ∈ BL−1, |X∆sL−2

− y|/
p

h¶ 3ρ/
p

h¶ (R0/12)1/2

for the previous R and therefore (4.18) yields

p∆(t j , t j′ , x , x ′)¾ (c−1
0 h−d/2)2|BL−1|Et j ,x[I∩L−2

i=1 X∆si ∈Bi
].

Iterating the process we finally get

p∆(t j , t j′ , x , x ′)¾ (c−1
0 h−d/2)L

L−1
∏

i=1

|Bi|.
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Observing that
∃c̃ > 0, ∀i ∈ [[1, L− 1]], |Bi|¾ c̃ρd , (4.23)

we obtain from the previous definition of h and L:

p∆(t j , t j′ , x , x ′)¾ (c−1
0 h−d/2)L(c̃ρd)L−1 (4.24)

¾ c−1
0 (t j′ − t j)

−d/2 exp((L− 1) log(c−1
0 c̃(ρ/

p

h)d))

¾ c−1
0 (t j′ − t j)

−d/2 exp(−cd2
t j′−t j

(x , x ′))

for a suitable c up to a modification of c0.

- If h < ∆. We have to introduce for all k ∈ [[ j, j′), Ik := {l ∈ [[0, L − 1]], sl ∈ [tk, tk+1[}. Rewrite
from (4.22)

p∆(t j , t j′ , x , x ′) ¾ Et j ,x[I∩ j′−1
k= j ∩i∈Ik

X∆si ∈Bi
p∆,X∆

φ(sL−1)(sL−1, t j′ , X∆sL−1
, x ′)].

Define for all k ∈ [[ j, j′), i ∈ [[1, ]Ik]], I i
k ∈ Ik and tk ¶ sI1

k
< sI2

k
< · · · < s

I
]Ik
k
< tk+1. In particular, for

all i ∈ [[1, ]Ik − 1]], sI i+1
k
− sI i

k
= h. Rewrite now,

p∆(t j , t j′ , x , x ′) ¾ Et j ,x[I∩ j′−2
k= j ∩i∈Ik

X∆si ∈Bi
E[I∩i∈I j′−1

X∆si ∈Bi
p
∆,X∆t j′−1 (sL−1, t j′ , X∆sL−1

, x ′)|Fs
I
]I j′−2
j′−2

]].

(4.25)

Introducing

Pj′−1, j := E[I∩i∈I j′−1
X∆si ∈Bi

p
∆,X∆t j′−1 (sL−1, t j′ , X∆sL−1

, x ′)|Fs
I
]I j′−2
j′−2

]

= E[IX∆s
I1
j′−1

∈BI1
j′−1

∫

∏
]I j′−1
i=2 BI i

j′−1

p
∆,X∆t j′−1 (sI1

j′−1
, sI2

j′−1
, X∆sI1

j′−1

, x2)

×
]I j′−1−1
∏

i=2

p
∆,X∆t j′−1 (sI i

j′−1
, sI i+1

j′−1
, x i , x i+1)p

∆,X∆t j′−1 (s
I
]I j′−1
j′−1

, t j′ , x]I j′−1
, x ′)

]I j′−1
∏

i=2

dx i|Fs
I
]I j′−2
j′−2

],

we derive from (4.20), (4.21) and (4.18)

Pj′−1, j ¾ (c−1
0 h−d/2)]I j′−1

]I j′−1
∏

i=2

|BI i
j′−1
|
∫

BI1
j′−1

p
∆,X∆t j′−2 (s

I
]I j′−2
j′−2

, sI1
j′−1

, X∆s
I
]I j′−2
j′−2

, x1)dx1

(4.23)
¾ (c−1

0 h−d/2)]I j′−1(c̃ρd)]I j′−1−1

∫

BI1
j′−1

p
∆,X∆t j′−2 (s

I
]I j′−2
j′−2

, sI1
j′−1

, X∆s
I
]I j′−2
j′−2

, x1)dx1.
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Plugging this estimate in (4.25) we obtain

p∆(t j , t j′ , x , x ′) ¾ (c−1
0 h−d/2)]I j′−1(c̃ρd)]I j′−1−1

×Et j ,x[I∩ j′−2
k= j ∩i∈Ik

X∆si ∈Bi

∫

BI1
j′−1

p
∆,X∆t j′−2 (s

I
]I j′−2
j′−2

, sI1
j′−1

, X∆s
I
]I j′−2
j′−2

, x1)dx1]

¾ (c−1
0 h−d/2)]I j′−1+1(c̃ρd)]I j′−1Et j ,x[I∩ j′−2

k= j ∩i∈Ik
X∆si ∈Bi

]

using once again (4.21), (4.18) for the last inequality. Iterating this procedure we still obtain (4.24)
and can conclude as in the previous case.

Case (b). If d2
t−s(x , x ′)¶ c̃−1R0, for c̃ large enough, we can show similarly to case (a) that

∃c0 > 0, ∀0¶ s < t ¶ T, ∀y, p∆,y(s, t, x , x ′)¾ c−1
0 (t − s)−d . (4.26)

As in the previous paragraph we reduce to the case φ(t) − (φ(s) + ∆) ¾ ∆, (s, t) 6∈
{t j}2j∈[[0,N]]. Then, equation (4.19) still holds for the previous set BR with the current defini-

tion of d2
. (., .). From standard computations, we derive taking a suitable R that ∀(x1, x2) ∈

BR(s, t, x , x ′), d2
φ(t)−(φ(s)+∆)(x1, x2)¶ 2R0. Therefore,

p∆,y(s, t, x , x ′)¾ c−1
0 (φ(s)+∆−s)−d(t−φ(t))−d(φ(t)−(φ(s)+∆))−d

∫

(Rd )2
I(x1,x2)∈BR(s,t,x ,x ′)dx1dx2.

(4.27)
Define now ∀(u, y) ∈ (0, T]×Rd , R> 0,

B̃R(u, y) := {z ∈ Rd : |z1,d ′ − y1,d ′ |2/u¶ R/7, |zd ′+1,d − yd ′+1,d − y1,d ′u|2/u3 ¶ R/24}.

We have that ∀z ∈ B̃R(u, y):

d2
u (y, z) :=

|z1,d ′ − y1,d ′ |2

2u
+ 6
|zd ′+1,d − yd ′+1,d − y1,d′+z1,d′

2
u|2

u3

¶ 12
|zd ′+1,d − yd ′+1,d − y1,d ′u|2

u3 + 7
|z1,d ′ − y1,d ′ |2

2u
¶ R.

Hence B̃R(φ(s) +∆− s, x)× B̃R(t −φ(t), x ′)⊂ BR(s, t, x , x ′) and therefore ∃c̃ > 0, |BR(s, t, x , x ′)|¾
c̃(t −φ(t))d(φ(s) +∆− s)d which plugged into (4.27) yields (4.26).

It now remains to do the chaining when d2
t j′−t j

(x , x ′)¾ 2R0. The crucial point is to choose a “good”

path between x and x ′. In the non degenerated case it was naturally the straight line between
the two points (Euclidean geodesic). In our current framework we can relate d2

t j′−t j
(x , x ′) to a

deterministic control problem. Introduce:

I(t j′ − t j , x , x ′) = inf{
∫ t j′−t j

0

|ϕ(s)|2ds,φ(0) = x , φ(t j′ − t j) = x ′},
·
φ t = Aφt + Bϕt , (CD)
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with A=

�

0d′×d′ 0d′×d′

Id′×d′ 0d′×d′

�

, B =

�

1d′×d′

0d′×d′

�

, ϕ ∈ L2([0, t j′ − t j],Rd ′). Problem (CD) is a linear

deterministic controllability problem that has a unique solution corresponding to

ϕs = B∗[R(t j′ − t j , s)]∗[Q−1
t j′−t j

](x ′− R(t j′ − t j , 0)x), (4.28)

where R stands for the resolvent, i.e. ∀0 ¶ t, t0 ¶ t j′ − t j ,∂tR(t, t0) = AR(t, t0), R(t0, t0) = Id×d

and Q t j′−t j
=
∫ t j′−t j

0
R(t j′ − t j , s)BB∗R(t j′ − t j , s)∗ds is the Gram matrix, see e.g. Theorem 1.11

Chapter 1 in Coron [5]. For (CD) the resolvent writes R(t, t0) =

�

Id′×d′ 0d′×d′

(t − t0)Id′×d′ Id′×d′

�

and

therefore the Gram matrix of the control problem corresponds to the covariance matrix of the process

X t = x+
∫ t

0
AXsds+BWt at time t j′− t j , that is Q t j′−t j

=

�

(t j′ − t j)Id′×d′ (t j′ − t j)2/2Id′×d′

(t j′ − t j)2/2Id′×d′ (t j′ − t j)3/3Id′×d′

�

.

Hence, explicit computations give: ∀s ∈ [0, t j′ − t j],

ϕs =
(x ′)1,d ′ − x1,d ′

(t j′ − t j)2
[6s− 2(t j′ − t j)] + 6

(x ′)d
′+1,d − xd ′+1,d − x1,d ′(t j′ − t j)

(t j′ − t j)3
[t j′ − t j − 2s], (4.29)

and thus, 1
2

I(t j′ − t j , x , x ′) = d2
t j′−t j

(x , x ′) defined in (4.16). Now we have a candidate for a deter-

ministic curve along which we can do the chaining. It is simply the deterministic curve (φs)s∈[0,t j′−t j]

solution of (CD) for the above control (ϕs)s∈[0,t j′−t j].

To complete the proof of the chaining it remains to specify how to define the (si)i¾1, (yi)i¾1 and the
associated sets. Recall that 2R0 ¾ 1. We set here L := dKd2

t j′−t j
(x , x ′)e for an integer K ¾ 3 to be

specified later on. In term of the new distance, L is similar in its definition to the one of the previous

paragraph. Define s0 = 0, si := inf{t ∈ [si−1, t j′ − t j] :

∫ t

si−1

|ϕs|2ds = I(t j′ − t j , x , x ′)/L} ∧ (si−1 +

(t j′ − t j)/L)Isi−1<(t j′−t j)(1−
2
L )
+ (t j′ − t j)Isi−1¾(t j′−t j)(1−

2
L )

, i ¾ 1. The previous conditions on R0, K

give the well posedness of this definition.

Lemma 4.2 (Controls on the time step). Set for all i ¾ 0, εi := si+1− si . There exist a constant c1 ¶ 1
and an integer L̄ ∈ [L− 1, L/c1], s.t. s L̄ = t j′ − t j and

∀i ∈ [[0, L̄− 2]], c1

t j′ − t j

L
¶ εi ¶

t j′ − t j

L
,

t j′ − t j

L
¶ εL̄−1 ¶ 2

t j′ − t j

L
. (4.30)

Proof. We first set L̄ = inf{k ≥ 1 : sk = t j′ − t j}. The set {k ≥ 1 : sk = t j′ − t j} is clearly non-empty.
The upper bound in (4.30) then follows from the definition of the family (si)i¾1. Suppose now that
si < (t j′ − t j)(1−2/L) for a given 0≤ i ≤ L̄−2. Assume also that si+1− si < (t j′ − t j)/L (otherwise

εi = (t j′ − t j)/L). Then,
∫ si+1

si
|ϕs|2ds = I(t j′ − t j , x , x ′)/L. From (4.28), (4.29), (4.16), we deduce

that
∃c2 > 0, sup

0≤s≤t j′−t j

|ϕs| ≤ c2(t j′ − t j)
−1/2dt j′−t j

(x , x ′).

Hence, we obtain
∫ si+1

si

|ϕs|2ds :=
I(t j′ − t j , x , x ′)

L
¶ c2

2εi

d2
t j′−t j

(x , x ′)

(t j′ − t j)
.
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Recalling that I(t j′ − t j , x , x ′) = 2d2
t j′−t j

(x , x ′), the lower bound in (4.30) follows for all i s.t.

si < T (1− 2/L). The bound for L̄ and the last time step are then easily derived.

Define now for all i ∈ [[0, L̄]], yi = φsi
(in particular y0 = x and y L̄ = x ′), and for all i ∈ [[1, L̄−1]],

Bi := {z ∈ Rd : |Q−1/2
Kρ2 (R(si , si−1)yi−1− z)|+ |Q−1/2

Kρ2 (z− R(si , si+1)yi+1)|¶ 2R0K−1/2},

where ρ := dt j′−t j
(x , x ′)(t j′ − t j)1/2/L. Because of the transport term, we are led to consider sets

that involve the forward transport from the previous point on the optimal curve and the backward
transport of the next point in the above definition. Equation (4.22) still holds with L replaced by L̄.
Following the strategy of the previous paragraph concerning the conditioning, the end of the proof
relies on the following

Lemma 4.3 (Controls for the chaining). With the previous assumptions and definitions we have that
for K large enough:

∀i ∈ [[1, L̄− 2]], ∀(x i , x i+1) ∈ Bi × Bi+1, d2
εi
(x i , x i+1)¶ 2R0,

∀x1 ∈ B1, d2
s1
(x , x1)¶ 2R0,

∀x L̄−1 ∈ B L̄−1, d2
εL̄−1
(x L̄−1, x ′)¶ 2R0.

(4.31)

For the same c1 as in Lemma 4.2,

∀i ∈ [[1, L̄− 1]], |Bi|¾ c1ρ
2d , (4.32)

where |Bi| stands for the Lebesgue measure of the set Bi .

Indeed, exploiting, (4.30), (4.31) (resp. (4.32)) instead of (4.20), (4.21) (resp. (4.23)), the proof
remains unchanged. The proof of Lemma 4.3 is postponed to Appendix A.

A Proof of the technical Lemmas

A.1 Proof of Lemma 4.1.

The key estimate is the following control of the convolution kernel H∆. There exist c > 0, C ¾ 1, s.t.
for all 0¶ j < j′ ¶ N , x , x ′ ∈ Rd ,

|H∆(t j , t j′ , x , x ′)|¶ C(t j′ − t j)
−1+η/2pc(t j′ − t j , x , x ′). (A.1)

Indeed this bound yields that for all 0¶ j < j′ ¶ N , x , x ′ ∈ Rd

|ep∆⊗∆ H∆(t j , t j′ , x , x ′)|¶∆
j′− j−1
∑

k=0

∫

Rd

ep∆(t j , t j+k, x , u)|H∆(t j+k, t j′ , u, x ′)|du

¶ C2∆
j′− j−1
∑

k=0

(t j′ − t j+k)
−1+η/2pc(t j′ − t j , x , x ′)

¶ C2(t j′ − t j)
η/2B

�

1,
η

2

�

pc(t j′ − t j , x , x ′)
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using the inequality ep∆(t j+k − t j , x , u) ¶ C pc(t j , t j+k, x , u) (cf. Lemma 3.1 of [15] in case (b)) and
the semigroup property of pc for the last but one inequality. The bound (4.14) then follows from
the above control and (A.1) by induction.

Proof of (A.1). We consider two cases.

- j′ = j+ 1. From (4.12) we have in this case, ∀x , x ′ ∈ Rd ,

H∆(t j , t j′ , x , x ′) = ∆−1(p∆− ep∆)(t j , t j′ , x , x ′)

which are Gaussian densities. In case (a) we have

H∆(t j , t j′ , x , x ′) = ∆−1
�G
�

(
p
∆σ(t j , x))−1(x ′− x − b(t j , x)∆)

�

�

∆ddet(a(t j , x))
�1/2

−
G
�

(
p
∆σ(t j , x ′))−1(x ′− x − b(t j , x ′)∆)

�

�

∆ddet(a(t j , x ′))
�1/2

�

,

where ∀z ∈ Rd , G(z) = exp(−|z|2/2)(2π)−d/2 stands for the density of the standard Gaussian vector
of Rd . In case (b) we get

H∆(t j , t j′ , x , x ′) = ∆−1(2
p

3)d
′
×















G

  

(∆1/2σ(t j , x))−1((x ′)1,d ′ − x1,d ′ − b1(t j , x)∆)

2
p

3(∆3/2σ(t j , x))−1((x ′)d
′+1,d − xd ′+1,d − x1,d′+(x ′)1,d′

2
∆)

!!

∆ddet(a(t j , x))

−

G

  

(∆1/2σ(t j , (x ′)∆))−1((x ′)1,d ′ − x1,d ′ − b1(t j , x ′)∆)

2
p

3(∆3/2σ(t j , (x ′)∆))−1((x ′)d
′+1,d − xd ′+1,d − x1,d′+(x ′)1,d′

2
∆)

!!

∆ddet(a(t j , (x ′)∆))















,

where (x ′)∆ := x ′ −
�

0d ′×1

(x ′)1,d ′∆

�

allows to have good continuity properties to equilibrate the

singularities coming from the difference |x−(x ′)∆|¶ |(x ′)1,d ′− x1,d ′ |(1+ ∆
2
)+ |(x ′)d

′+1,d− xd ′+1,d−
x1,d′+(x ′)1,d′

2
∆| with the terms appearing in the exponential. In all cases, tedious but elementary

computations involving the mean value theorem yield that ∃c > 0, C ¾ 1 s.t. |H∆(t j , t j′ , x , x ′)| ¶
C∆−1+η/2pc(∆, x , x ′).

- j′ > j+ 1. Case (a).

We first define for all ( j, x , z) ∈ [[0, N]]× (Rd)2, the transition

T∆(t j , x , z) := b(t j , x)∆+∆1/2σ(t j , x)z.
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The discrete convolution kernel then writes

H∆(t j , t j′ , x , x ′) = ∆−1

∫

Rd

G(z)
¦�

ep∆(t j+1, t j′ , x + T∆(t j , x , z), x ′)− ep∆(t j+1, t j′ , x , x ′)
�

−
�

ep∆(t j+1, t j′ , x + T∆(t j , x ′, z), x ′)− ep∆(t j+1, t j′ , x , x ′)
�©

dz := T (a)1 − T (a)2 .

Now exploiting that
∫

Rd G(z)zdz = 0, a Taylor expansion at order 3 of T (a)1 , T (a)2 yields

H∆(t j , t j′ , x , x ′) = 〈b(t j , x)− b(t j , x ′), Dxep
∆(t j+1, t j′ , x , x ′)〉

+
1

2
Tr
�

�

a(t j , x)− a(t j , x ′)
�

D2
xep
∆(t j+1, t j′ , x , x ′)

�

+ R∆(t j , t j′ , x , x ′)

:= (H + R∆)(t j , t j′ , x , x ′).

(A.2)

In the above equation H is the difference of the infinitesimal generators at time t j of the processes

(X t)t¾0 satisfying (1.1) and the Gaussian process X̃ t = x +
∫ t

t j
b(s, x ′)ds +

∫ t

t j
σ(s, x ′)dWs, t ¾ t j ,

which can be seen as the continuous version of the frozen Markov chain (X̃∆t i
)i∈[[ j,N]] introduced in

(4.10), applied to the Gaussian density ep∆(t j+1, t j′ , ·, x ′) at point x . The remainder term then writes

R∆(t j , t j′ , x , x ′) =
∆
2

Tr
�

�

bb∗(t j , x)− bb∗(t j , x ′)
�

D2
xep
∆(t j+1, t j′ , x , x ′)

�

+

3∆−1
∑

|ν |=3

∫

Rd

dzG(z)

∫ 1

0

dδ(1−δ)2


Dνxep
∆(t j+1, t j′ , x +δT∆(t j , x , z), x ′)

�

T∆(t j , x , z)
�ν

ν!

− Dνxep
∆(t j+1, t j′ , x +δT∆(t j , x ′, z), x ′)

�

T∆(t j , x ′, z)
�ν

ν!





using the following notations for multi-indices and powers. For ν = (ν1, ...,νd) ∈ Nd , x =
(x1, ..., xd)∗ set |ν | = ν1 + ... + νd , ν! = ν1!...νd !, (x)ν = xν1

1 ... xνd
d , Dνx = Dν1

x1
...Dνd

xd
. Recalling

the standard control

∃c > 0, C ¾ 1, ∀ν , |ν |¶ 4,∀0¶ j < j′ ¶ N , (x , x ′) ∈ (Rd)2,

|Dνxep
∆(t j , t j′ , x , x ′)|¶ C(t j′ − t j)

−|ν |/2pc(t j′ − t j , x , x ′) (A.3)

for the derivatives of Gaussian densities, we obtain:

|R∆(t j , t j′ , x , x ′)|¶ C∆|b|2∞(t j′ − t j+1)
−1pc(t j′ − t j+1, x , x ′) + 3∆−1

�

�

�

�

∑

|ν |=3

∫

Rd

dzG(z)

∫ 1

0

dδ(1−δ)2×

�

Dνxep
∆(t j+1, t j′ , x +δT∆(t j , x , z), x ′)

�

(T∆(t j , x , z))ν

ν!
−
(T∆(t j , x ′, z))ν

ν!

�

−
�

Dνxep
∆(t j+1, t j′ , x +δT∆(t j , x ′, z), x ′)− Dνxep

∆(t j+1, t j′ , x +δT∆(t j , x , z), x ′)
�

×
(T∆(t j , x ′, z))ν

ν!

�
�

�

�

�

.

(A.4)
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Note now that,

∃C > 0, ∀ν , |ν |¶ 3, ∀( j, x ′, z) ∈ [[0, N]]× (Rd)2, |(T∆(t j , x ′, z))ν |¶ C(∆|ν |+∆|ν |/2|z||ν |),

∀( j, x , x ′, z) ∈ [[0, N]]× (Rd)3, |T∆(t j , x , z)− T∆(t j , x ′, z)|¶ C(∆+∆1/2|x − x ′|η|z|),

and that

∀ν , |ν |= 3, |(T∆(t j , x ′, z))ν − (T∆(t j , x , z))ν |¶ C(∆+∆1/2|x − x ′|η|z|)(∆2+∆|z|2)

¶ C(∆3+∆2|z|2+∆3/2|x − x ′|η(∆|z|+ |z|3)).

Hence, plugging these controls in (A.4) and using (A.3) we get:

|R∆(t j , t j′ , x , x ′)|¶ C
�

pc(t j′ − t j+1, x , x ′)

+

∫

Rd

dzG(z)

∫ 1

0

dδ(1−δ)2pc(t j+1, t j′ , x+δT∆(t j , x , z), x ′)

�

∆2+∆|z|2+∆1/2|x − x ′|η(∆|z|+ |z|3)
�

(t j′ − t j+1)3/2

+

∫

Rd

dzG(z)

∫

[0,1]2
dδdγ(1−δ)2pc(t j+1, t j′ , x +δT∆(t j , x , z) + γδ(T∆(t j , x ′, z)− T∆(t j , x , z)), x ′)

×
�

(∆+∆1/2|x − x ′|η|z|)(∆2+∆1/2|z|3)
�

(t j′ − t j+1)2

�

.

Now, using the inequality ∀ε ∈ (0, 1), |x − x ′ + ρ|2 ¾ |x − x ′|2(1− ε) + |ρ|2(1− ε−1),∀ρ ∈ Rd ,
taking ρ = δT∆(t j , x , z) and ρ = δT∆(t j , x , z) + γδ[T∆(t j , x ′, z)− T∆(t j , x , z)] respectively in the
first and second integral we derive

|R∆(t j , t j′ , x , x ′)|¶
C

(1− ε)d/2
p(1−ε)c(t j′−t j+1, x , x ′)

¨

1+

∫

Rd

dzG(z)exp

�

c
|σ|2∞|z|

2∆
t j′ − t j+1

(ε−1− 1)

�

×
��

∆1/2+
|z|2

(t j′ − t j+1)1/2
+ |x ′− x |η

� |z|3

(t j′ − t j+1)
+ |z|

�

�

+

�

∆+
|z|3

(t j′ − t j+1)1/2
+ |x ′− x |η

�

∆1/2|z|+
|z|4

(t j′ − t j+1)
�

��«

.

Choosing ε sufficiently close to one the above integrals w.r.t. z are finite and therefore for different
c, C depending on ε as well, we have

|R∆(t j , t j′ , x , x ′)| ¶ C pc(t j′ − t j+1, x , x ′)

�

1+
1

(t j′ − t j+1)1/2
+
|x − x ′|η

(t j′ − t j+1)

�

¶ C(t j′ − t j+1)
−1+η/2pc(t j′ − t j+1, x , x ′). (A.5)

Now with the definitions of (A.2) we also have from (A.3)

|H(t j , t j′ , x , x ′)|¶ C(t j′ − t j+1)
−1+η/2pc(t j′ − t j+1, x , x ′).

Plugging this last estimate and (A.5) in (A.2) we derive

|H∆(t j , t j′ , x , x ′)|¶ C(t j′ − t j+1)
−1+η/2pc(t j′ − t j+1, x , x ′)¶ C(t j′ − t j)

−1+η/2pc(t j′ − t j , x , x ′).
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Case (b). We first introduce some notations. Set x∆ := x +

�

0d ′×1

x1,d ′∆

�

, (x ′)∆, j, j′ :=

x ′ −
�

0d ′×1

(x ′)1,d ′

�

(t j′ − t j). Define ∀y ∈ Rd , B∆(t j , y) :=

�

b1(t j , y)∆
b1(t j , y)∆2/2

�

, Σ∆(t j , y) :=
�

∆1/2σ(t j , y) 0
∆3/2σ(t j , y)/2 ∆3/2σ(t j , y)/(2

p
3)

�

. Introducing for all ( j, x , y, z) ∈ [[0, N]] × (Rd)3 the

transition
T∆(t j , x , y, z) := B∆(t j , x) +Σ∆(t j , y)z,

we have

H∆(t j , t j′ , x , x ′) = ∆−1

∫

Rd

G(z)
¦�

ep∆(t j+1, t j′ , x∆+ T∆(t j , x , x , z), x ′)− ep∆(t j+1, t j′ , x∆, x ′)
�

−
�

ep∆(t j+1, t j′ , x∆+ T∆(t j , x ′, (x ′)∆, j, j′ , z), x ′)− ep∆(t j+1, t j′ , x∆, x ′)
�©

dz := T (b)1 − T (b)2 .

The strategy now relies as in case (a) on Taylor expansions. Let us first perform an exact Taylor
expansion of T (b)1 , T (b)2 around the point x∆ at order one, separating the components from 1 to d ′

and d ′+ 1 to d. We obtain

H∆(t j , t j′ , x , x ′) =
(

∆−1

∫

Rd

dzG(z)

∫ 1

0

dγ
§

Dx1,d′ep∆(t j+1, t j′ , x∆+ γT∆(t j , x , x , z), x ′),
�

T∆(t j , x , x , z)
�1,d ′

·

−


Dx1,d′ep∆(t j+1, t j′ , x∆+ γT∆(t j , x ′, (x ′)∆, j, j′ , z), x ′),
�

T∆(t j , x ′, (x ′)∆, j, j′ , z)
�1,d ′

·ªª

+

(

∆−1

∫

Rd

dzG(z)

∫ 1

0

dγ
§

Dxd′+1,dep∆(t j+1, t j′ , x∆+ γT∆(t j , x , x , z), x ′),
�

T∆(t j , x , x , z)
�d ′+1,d

·

−


Dxd′+1,dep∆(t j+1, t j′ , x∆+ γT∆(t j , x ′, (x ′)∆, j, j′ , z), x ′),
�

T∆(t j , x ′, (x ′)∆, j, j′ , z)
�d ′+1,d

·ªª

:= (M∆1 + R∆1 )(t j , t j′ , x , x ′), (A.6)

where Dx1,d′ (resp. Dxd′+1,d ) denotes the differentiation w.r.t. the first d ′ (resp. the last d ′) com-
ponents. Expanding the terms Dx1,d′ep∆(t j+1, t j′ , x∆ + γT∆(t j , x , x , z), x ′), Dx1,d′ep∆(t j+1, t j′ , x∆ +
γT∆(t j , x ′, (x ′)∆, j, j′ , z), x ′) at order 2 around x∆ in M∆1 , we get:

H∆(t j , t j′ , x , x ′) = 〈b1(t j , x)− b1(t j , x ′), Dx1,d′ep∆(t j+1, t j′ , x∆, x ′)〉 (A.7)

+
1

2
Tr
n

�

a(t j , x)− a
�

t j , (x
′)∆, j, j′

��

D2
x1,d′ep

∆(t j+1, t j′ , x∆, x ′)
o

+(R∆1 + R∆2 )(t j , t j′ , x , x ′) := H(t j , t j′ , x∆, x ′) + (R∆1 + R∆2 )(t j , t j′ , x , x ′).

Here, similarly to (A.2), H is the difference of the generators at time t j of the pro-

cesses (X t)t¾0 satisfying (1.1) and the Gaussian process X̃ t = x +
∫ t

t j

�

b1(s, x ′)
(X̃s)1,d ′

�

ds +

∫ t

t j
Bσ

�

s, x ′−
�

0d′×1

(x ′)1,d ′

�

(t j′ − s)

�

dWs, t ∈ [t j , t j′] (continuous version of (X̃∆t i
)i∈[[ j, j′]] intro-
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duced in (4.11)), applied to the Gaussian density ep∆(t j+1, t j′ , ·, x ′) at point x∆. The second remain-
der term R∆2 writes R∆2 (t j , t j′ , x , x ′) = (R∆21+ R∆22)(t j , t j′ , x , x ′) where

R∆21(t j , t j′ , x , x ′) =
∆
2

Tr
�

�

b1 b∗1(t j , x)− b1 b∗1(t j , x ′)
�

D2
x1,d′ep

∆(t j+1, t j′ , x∆, x ′)
�

+
∆
4

�

Tr
�

�

b1 b∗1(t j , x)− b1 b∗1(t j , x ′)
�

∆+
�

a(t j , x)− a(t j , (x
′)∆, j, j′)

�

�

× D2
x1,d′ ,xd′+1,dep

∆(t j+1, t j′ , x∆, x ′)
�

and

R∆22(t j , t j′ , x , x ′) = 2∆−1
∑

|θ |=2

∫

Rd

dzG(z)

∫

[0,1]2
dγdδ(1−δ)γ2

×
��

DθDx1,d′ep∆(t j+1, t j′ , x∆+δγT∆(t j , x , x , z), x ′)

�

T∆(t j , x , x , z)
�θ

θ !
, T∆(t j , x , x , z)1,d ′

�

−
�

DθDν
x1,d′ep

∆(t j+1, t j′ , x∆+δγT∆(t j , x ′, (x ′)∆, j, j′ , z), x ′)

�

T∆(t j , x ′, (x ′)∆, j, j′ , z)
�θ

θ !
,

(T∆(t j , x ′, (x ′)∆, j, j′ , z)1,d ′
��

Let µ= (µ1, · · · ,µd ′) ∈ Nd ′ , ν = (ν1, · · · ,νd ′) ∈ Nd ′ be multi-indices. Similarly to (A.3) we have,

∃c > 0, C ¾ 1, ∀(µ,ν), |µ|¶ 3, |ν |¶ 4,∀0¶ j < j′ ¶ N , (x , x ′) ∈ Rd ×Rd ,

|Dν
x1,d′D

µ

xd′+1,d
ep∆(t j , t j′ , x , x ′)|¶ C(t j′ − t j)

−(|ν |/2+3/2|µ|)pc(t j′ − t j , x , x ′). (A.8)

Observe as well that there exists C > 0 s.t.

|T∆(t j , x , x , z)d
′+1,d − T∆(t j , x , (x ′)∆, j, j′ , z)d

′+1,d |¶ C(∆2+ |x − (x ′)∆, j, j′ |η∆3/2|z|).

From (A.8), and the above equation, proceeding as in case (a), we get from (A.6) for ε sufficiently
close to 1:

|R∆1 (t j , t j′ , x , x ′)|¶
C

(1− ε)d/2
p(1−ε)c(t j′ − t j+1, x∆, x ′)

¨
∫

dzG(z)exp
�

2c|σ|2∞|z|
2(ε−1− 1)

�

×
�

1

(t j′ − t j+1)1/2
+
|x − (x ′)∆, j, j′ |η|z|
(t j′ − t j+1)

�

+

�

1+
|z|

(t j′ − t j)1/2
+
|x − (x ′)∆, j, j′ |η|z|

(t j′ − t j+1)1/2
+
|x − (x ′)∆, j, j′ |η|z|2

t j′ − t j+1

�«

¶
C

(1− ε)d/2
p(1−ε)c(t j′ − t j+1, x∆, x ′)

�

1

(t j′ − t j+1)1/2
+
|x − (x ′)∆, j, j′ |η

t j′ − t j+1

�

. (A.9)

To conclude the proof, one has now to bound the terms |x − (x ′)∆, j, j′ |η deriving from the difference
of the transitions in the above expressions with quantities that appear as well in the off-diagonal
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bounds of the density p(1−ε)c(t j′ − t j+1, x∆, x ′). This allows to compensate the singularities in time
of the remainders. We write:

|x−(x ′)∆, j, j′ |η ¶ C(|x1,d ′ − (x ′)1,d ′ |η+ |xd ′+1,d − (x ′)d
′+1,d − (x ′)1,d(t j′ − t j)|η)

¶ C

�

|x1,d ′ − (x ′)1,d ′ |η
�

1+
� t j′ − t j

2

�η�

+ |xd ′+1,d − (x ′)d
′+1,d −

x1,d + (x ′)1,d

2
(t j′ − t j)|η

�

¶ C

�

|x1,d ′ − (x ′)1,d ′ |η+ |xd ′+1,d − (x ′)d
′+1,d −

x1,d + (x ′)1,d

2
(t j′ − t j)|η

�

. (A.10)

On the other hand, the off-diagonal term of p(1−ε)c(t j′ − t j+1, x∆, x ′) associated to components
d ′+ 1, d writes:

|(x ′)d
′+1,d − xd ′+1,d

∆ − (x
′)1,d′+x1,d′

∆
2

(t j′ − t j+1)|2

(t j′ − t j+1)3
=
|(x ′)d

′+1,d − xd ′+1,d − (x
′)1,d′+x1,d′

2
(t j′ − t j+1)− x1,d ′∆|2

(t j′ − t j+1)3

=
|(x ′)d

′+1,d − xd ′+1,d − (x
′)1,d′+x1,d′

2
(t j′ − t j)−

(x1,d′−(x ′)1,d′ )
2

∆|2

(t j′ − t j+1)3

¾ (1− ζ)
|(x ′)d

′+1,d − xd ′+1,d − (x
′)1,d′+x1,d′

2
(t j′ − t j)|2

(t j′ − t j)3
+ (1− ζ−1)

|(x ′)1,d ′ − x1,d ′ |2∆2

4(t j′ − t j)3
,ζ ∈ (0,1).

(A.11)

Use now equations (A.10), (A.11) and the bound 1
(t j′−t j+1)

¶ 2
t j′−t j

(since j′ > j+ 1) to obtain, for ζ

sufficiently close to 1, from (A.9):

|R∆1 (t j , t j′ , x , x ′)|¶ C(t j′ − t j)
−1+ η

2 pc(t j′ − t j , x , x ′),

up to modifications of C , c that both depend on ε,ζ.

The same line of reasoning yields |R∆21(t j , t j′ , x , x ′)| ¶ C
�

1+
|x−(x ′)∆, j, j′ |

η

(t j′−t j+1)

�

pc(t j′ − t j+1, x∆, x ′) ¶

C(1+ (t j′ − t j)−1+η/2)pc(t j′ − t j , x , x ′). Proceeding as in case (a), using (A.10), (A.8) to handle
R∆22(t j , t j′ , x , x ′), we eventually derive that |R∆2 (t j , t j′ , x , x ′)| ¶ C(t j′ − t j)−1+η/2pc(t j′ − t j , x , x ′).
From the definition in equation (A.7) we also obtain |H(t j , t j′ , x , x ′)| ¶ C(t j′ − t j)−1+η/2pc(t j′ −
t j , x , x ′) using (A.10), (A.8) and the statement (A.1) follows.

Remark A.1. Note that the time dependence in the frozen dynamics (4.11) somehow corresponds to
the backward transport of the terminal condition. It is crucial in order to allow from (A.10) the
compensation of the exploding terms associated to derivatives in x1,d ′ of order greater than 2 and
derivatives in xd ′+1,d of order greater than 1 appearing in the kernel H∆. A similar construction was
used in [15].
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A.2 Proof of Lemma 4.3

Let us first prove (4.31). We begin with (x i , x i+1) ∈ Bi×Bi+1, i ∈ [[1, L̄−2]]. From Section 4.4, one
can check that |Q−1/2

εi
(R(si+1, si)x i − x i+1)|2 = 2d2

εi
(x i , x i+1). Hence,

Q i := dεi
(x i , x i+1) =

1
p

2
|Q−1/2
εi
(R(si+1, si)x i − x i+1)|¶ c|Q−1/2

εi
(x i − R(si , si+1)x i+1)|

¶ c
�

|Q−1/2
εi
(x i − R(si , si−1)yi−1)|+ |Q−1/2

εi
(R(si , si−1)yi−1− yi)|+ |Q−1/2

εi
(yi − R(si , si+1)x i+1)|

	

:=Q1
i +Q2

i +Q3
i .

One has

Q1
i ¶ c

2
∑

j=1

ε
1/2− j
i |(x i − R(si , si−1)yi−1) j|¶ c

2
∑

j=1

�

εi

Kρ2

�1/2− j

(K1/2ρ)1−2 j|(x i − R(si , si−1)yi−1) j|,

denoting for all z ∈ Rd , z1 := z1,d ′ , z2 := zd ′+1,d with a slight abuse of notation. Now, from
(4.30), εi/(Kρ2) ¾ c1((t j′ − t j)/L)/(Kd2

t j′−t j
(x , x ′)(t j′ − t j)/L2) = c1

L
Kd2

t j′ −t j
(x ,x ′) . Thus, recalling

L = dKd2
t j′−t j

(x , x ′)e, ∃c > 0, ∀ j ∈ [[1, 2]],
�

εi

Kρ2

�1/2− j
¶ c and

Q1
i ¶ c

2
∑

j=1

(K1/2ρ)1−2 j|(x i − R(si , si−1)yi−1) j|¶ c|Q−1/2
Kρ2 (x i − R(si , si−1)yi−1)|¶ cR0K−1/2,

exploiting x i ∈ Bi for the last identity. The term Q3
i could be handled in a similar way so that

Q1
i +Q3

i ¶ cR0K−1/2. Now Q2
i :=

p
2dεi
(yi , yi+1) ¶ I(si , si+1, yi , yi+1)1/2 ¶ c

�

∫ si+1

si
|ϕs|2ds

�1/2
¶

c
dt j′ −t j

(x ,x ′)

L1/2 ¶ c
K1/2 . Hence, for all i ∈ [[1, L̄ − 2]], Q i ¶ 2R0 for K large enough independent of

t j′ − t j . Eventually, for x1 ∈ B1, x L̄−1 ∈ B L̄−1 the terms Q0 := |Q−1/2
ε0
(R(s1, 0)x − x1)| and Q L̄−1 :=

|Q−1/2
εL̄−1
(R(t j′ − t j , s L̄−1)x L̄−1 − x ′)| ¶ c|Q−1/2

εL̄−1
(x L̄−1 − R(s L̄−1, t j′ − t j)x ′)| can be controlled as the

previous Q1
i , i ∈ [[1, L̄−2]] from the definitions of B1, B L̄−1, so that Q i ¶ 2R0, i ∈ {0, L̄−1} as well.

This proves (4.31).

It now remains to control the Lebesgue measure of the sets (Bi)i∈[[1, L̄−1]]. Define for all i ∈ [[1, L̄ −
1]], Ei := {z ∈ Rd : |Q−1/2

Kρ2 (yi − z)| ¶ 2R0(3K1/2)−1}. One has ∃č := č(d) > 0, |Ei| ¾ čρ2d . Let us
now prove Ei ⊂ Bi . Write, for all z ∈ Ei ,

Ri := |Q−1/2
Kρ2 (R(si , si−1)yi−1− z)|+ |Q−1/2

Kρ2 (z− R(si , si+1)yi+1)|

¶ |Q−1/2
Kρ2 (R(si , si−1)yi−1− yi)|+ 2|Q−1/2

Kρ2 (yi − z)|+ |Q−1/2
Kρ2 (yi − R(si , si+1)yi+1)|

:= R1
i + R2

i + R3
i .

The previous definition of Ei gives R2
i ¶

4R0

3K1/2 . Now, arguments similar to those used to control the
above (Q1

i ,Q2
i )i∈[[1,M−2]] yield

R1
i ¶ c

2
∑

j=1

�

εi

Kρ2

� j−1/2

ε
1/2− j
i |(R(si , si−1)yi−1− yi) j|¶ c

dt j′−t j
(x ′, x)

L1/2
¶

c

K1/2
.
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Since the term R3
i could be handled in the same way we deduce that for K large enough and R0

large enough w.r.t. the above c, Ri ¶ 2R0K−1/2. Hence Ei ⊂ Bi which completes the proof.
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