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Abstract

We extend some of the results of Pfaffelhuber and Wakolbinger on the process of the most recent
common ancestors in evolving coalescent by taking into account the size of one of the two oldest
families or the oldest family which contains the immortal line of descent. For example we give an
explicit formula for the Laplace transform of the extinction time for the Wright-Fisher diffusion.
We give also an interpretation of the quasi-stationary distribution of the Wright-Fisher diffusion
using the process of the relative size of one of the two oldest families, which can be seen as a
resurrected Wright-Fisher diffusion .
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1 Introduction

Many models have been introduced to describe population dynamics in population genetics.
Fisher [14], Wright [34] and Moran [25] have introduced two models for exchangeable haploid
populations of constant size. A generalization has been given by Cannings [2]. Looking backward
in time at the genealogical tree leads to coalescent processes, see Griffiths [17] for one of the first
papers with coalescent ideas. For a large class of exchangeable haploid population models of con-
stant size, when the size N tends to infinity and time is measured in units of “N generations”, the
associated coalescent process is Kingman’s coalescent [22] (see also [24; 27; 28; 29] for general
coalescent processes associated with Cannings’ model). One of the associated object of interest is
the time to the most recent common ancestor (TMRCA), say At , of the population living at time
t. This is also the depth of their genealogical tree (see [9; 12]). In the case of Kingman’s coales-
cent, each couple of individual merges at rate one, which gives a TMRCA with expectation 2, or an
expected time equivalent to 2N generations in the discrete case (see [12] for more results on this
approximation, [15] for the exact coalescent in the Wright-Fisher model and [24] for the statement
for the convergence to the Kingman coalescent). When time t evolves forward from a fixed time
t0, the TMRCA at time t is At = At0

+ (t − t0) until the most recent common ancestor (MRCA) of
the population changes, and At jumps down. We say that at this time a new MRCA is established.
Recent papers give an exhaustive study of times when MRCAs live and times when new MRCAs are
established, see [26] and also [30] (see also [11] for genealogies of continuous state branching
processes). In particular, for the Wright-Fisher (WF) model with infinite population size, the times
when MRCAs live as well as the times when new MRCAs are established, are distributed according
to a Poisson process, see [6] and [26].

In the Moran model (with finite population size) and in WF model with infinite population size,
only two lineages can merge at a time. The population is divided in two “oldest” families each one
born from one of the two children of the MRCA. Let X t and 1− X t denote the relative proportion
of those two oldest families. One of these two oldest families will fixate (in the future); this one
contains the immortal line of descent. Let Yt be its relative size. We have: Yt = X t with probability
X t and Yt = 1− X t with probability 1− X t . At time τt = inf{s; X t+s ∈ {0,1}} = inf{s; Yt+s = 1}, one
of the two oldest families fixate, a new MRCA is established and two new oldest families appear.
This corresponds to a jump of the processes X = (X t , t ∈ R) and Y = (Yt , t ∈ R). Processes X and Y
are functionals of the genealogical trees, and could be studied by the approach developed in [16]
on martingale problems for tree-valued process. In between two jumps the process X is a Wright-
Fisher (WF) diffusion on [0, 1]: dX t =

p

X t(1− X t)dBt , where B is a standard Brownian motion,
with absorbing states 0 and 1. Similarly, in between two jumps the process Y is a WF diffusion on
[0,1] conditioned not to hit 0: dYt =

p

Yt(1− Yt)dBt + (1− Yt)d t, with absorbing state 1. The
WF diffusion and its conditioned version have been largely used to model allelic frequencies in a
neutral two-types population, see [9; 12; 18]. A key tool to study the proportion of the two oldest
families is the look-down representation for the genealogy introduced by Donnelly and Kurtz [7; 8]
and a direct connection between the tree topology generated by a Pólya’s urns and the Kingman’s
coalescent, see Theorem 2.1. In fact, we consider a biased Pólya’s urn (because of the special role
played by the immortal line of descendants).

Following Pfaffelhuber and Wakolbinger [26], we are interested in the distribution of the following
quantities:
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• At : the TMRCA for the population at time t.

• τt ≥ 0: the time to wait before a new MRCA is established (that is the next hitting time of
{0, 1} for X).

• Lt ∈ N∗ = {1, 2, . . .}: the number of living individuals which will have descendants at time τ.

• Zt ∈ {0, . . . , Lt}: the number of individuals present in the genealogy which will become MRCA
of the population in the future.

• Yt ∈ (0, 1) the relative size of the oldest family to which belongs the immortal line of descent.

• X t ∈ (0,1) the relative size of one of the two oldest families taken at random (with probability
one half it has the immortal individual).

The distribution of (At ,τt , Lt , Zt) is given in [26] with t either a fixed time or a time when a new
MRCA is established. We complete this result by giving, see Lemma 1.1 and Theorem 1.2 below, the
joint distribution of (At ,τt , Lt , Zt , X t , Yt).

Let (Ek, k ∈ N∗) be independent exponential random variables with mean 1. We introduce

TK =
∑

k≥1

2

k(k+ 1)
Ek and TT =

∑

k≥2

2

k(k+ 1)
Ek.

Notice that TK is distributed as the lifetime of a Kingman’s coalescent process. The first part of the
next Lemma is well known, and can be deduced from the look-down construction recalled in Section
2.1 and from [32]. The second part is proved in Section 4.6.

Lemma 1.1. If t is a fixed time (resp. a time when a new MRCA is established) then At is distributed
as TK (resp. TT ). If t is a fixed time or a time when a new MRCA is established, then At is independent
of (τt , Lt , Zt , X t , Yt).

By stationarity, the distribution of (τt , Lt , Zt , X t , Yt) does not depend on t for fixed t. It does not
depend on t either if t is a time when a new MRCA is established (the argument is the same as in the
proof of Theorem 2 in [26]). This property is the analogue of the so-called PASTA (Poisson Arrivals
See Time Average) property in queuing theory. For this reason, we shall write (τ, L, Z , X , Y ) instead
of (τt , Lt , Zt , X t , Yt). We now state the main result of this paper, whose proof is given in Section 4.7.

Theorem 1.2. At a fixed time t or at a time when a new MRCA is established, we have:

i) Y is distributed as a beta (2, 1).

ii) Conditionally on Y , we have X = εY +(1−ε)(1−Y ) where ε is an independent random variable
(of Y ) such that P(ε = 1) = P(ε = 0) = 1/2. And X is uniform on [0,1].

iii) Conditionally on Y , L is geometric with parameter 1− Y .

iv) Conditionally on (Y, L), τ
(d)
=

∞
∑

k=L

2

k(k+ 1)
Ek, where (Ek, k ∈ N∗) are independent exponential

random variables with mean 1 and independent of (Y, L).
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v) Conditionally on (Y, L), Z
(d)
=

L
∑

k=2

Bk (with the convention
∑

; = 0), where (Bk, k ≥ 2) are

independent Bernoulli random variables independent of (Y, L) and such that P(Bk = 1) = 1/
�k

2

�

.

vi) Conditionally on (Y, L), τ and Z are independent.

vii) Conditionally on Y , X and (τ, L, Z) are independent.

In Section 2, we also give formulas for the Laplace transform and the first two moments of Z
conditionally on (Y, L), Y or X , see Corollaries 2.10, 2.11 and 2.12 (see also Remark 2.9 and (17)
for a direct representation of the distribution of Z). Notice that results iii), iv), v) and vi) imply that
given L the random variables Y , τ and Z are jointly independent. Those results also give a detailed
proof of the heuristic arguments of Remarks 3.2 and 7.3 in [26]. From the conditional distribution of
τ given in iv), we give its first two moments, see (10), and we recover the formula from Kimura and
Ohta [20; 21] of its conditional expectation and second moment, see (13) and (14). See also (15)
and (16) for the first and second moment of τ conditionally on X . The conditional distribution of τ
given X is well known. Its Laplace transform is the solution of the ODE: L X f = λ f , with boundary
condition f (0) = f (1) = 1, whereL X is the generator of the WF diffusion: L X h(x) = x(1−x)h′′(x)
in (0,1). This Laplace transform is explicitly given by (12). We also recover (Corollary 2.6) that τ
is an exponential random variable with mean 1, see [26] or [6].

We then give a new formula linking Z and τ, which is a consequence of Theorem 1.2 iv) and v) (see
also (18)).

Corollary 1.3. We have for all λ≥ 0:

E
�

e−λτ |Y, L
�

= E
�

e−λTK
�

E
�

(1+λ)Z |Y, L
�

. (1)

In particular, we deduce that

E[e−λτ |X ] = E[e−λTK ]E[(1+λ)Z |X ]. (2)

Notice that we also immediately get the following relations for the first moments:

E[τ|Y, L] = 2−E[Z |Y, L], (3)

E[τ2|Y, L] = E[Z2|Y, L]− 5E[Z |Y, L] +
4π2

3
− 8, (4)

using that E[TK] = 2 for the first equality and that E[T2
K] =

4π2

3
− 8 for the last.

Detailed results on the distribution of X , Y, L, Z ,τ using the look-down process and ideas of [26] are
stated in Section 2.

In Section 3.1, we recall that a probability measure µ is a quasi-stationary distribution (QSD) for
a diffusion killed at an hitting time if and only if this is a stationary measure for the associated
resurrected diffusion with resurrection measure µ, see Lemma 2.1 in [4] and also the pioneer work
of [13] in a discrete setting. Notice that Theorem 1.2 ii) states that µ0, the uniform distribution
on [0,1], is a stationary measure for the resurrected WF diffusion with resurrection measure µ0.
We thus recover that µ0 is a QSD of the WF diffusion, see [12; 18] and also [3]. The only QSD
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distribution of the WF diffusion is the uniform distribution, see [12, p. 161], or [18] for an explicit
computation. Similarly, Theorem 1.2 i) states that µ1, the beta (2, 1) distribution, is a stationary
measure for the resurrected WF diffusion conditioned not to hit 0 with resurrection measure µ1 and
thus is a QSD of the WF diffusion conditioned not to hit 0, see also [18]. We check in Proposition
3.1 that µ1 is indeed its only QSD.

In those two examples, the QSD distribution can be seen as the stationary distribution of the size of
one of the two oldest families (either taken at random, or the one that fixates). A similar result is
also true for the Moran model, see Section 3.4. But there is no such interpretation for the WF model
for finite population, see Remark 3.2.

The proofs are postponed to Section 4.

2 Presentation of the main results on the conditional distribution

2.1 The look-down process and notations

The look-down process and the modified look-down process have been introduced by Donnelly and
Kurtz [7; 8] to give the genealogical process associated to a diffusion model of population evolution
(see also [10] for a detailed construction for the Fleming-Viot process). This powerful representation
is now currently used. We briefly recall the definition of the modified look-down process, without
taking into account any spatial motion or mutation for the individuals.

2.1.1 The set of individuals

Consider an infinite size population evolving forward in time. Let E = R×N∗. Each (s, i) in E denotes
the (unique) individual living at time s and level i. This level is affected according to the persistence
of each individual: the higher the level is, the faster the individual will die. Let (Ni, j , 0 ≤ i < j)
be independent Poisson processes with rate 1. At a jumping time t of Ni j , the individual (t−, i)
reproduces and its unique child appears at level j. At the same time every individual having level at
least j is pushed one level up (see Figure 1). These reproduction events involving levels i and j are
called look-down events (as j looks down at i).

2.1.2 Partition of the set of individuals in lines

We can construct a partition of E in lines associated to the processes Ni, j as follows. This partition
contains the immortal line ι = R × {1}. All the individuals which belong to the immortal line
are called immortal individuals. The other lines of the partition start at look-down events: if an
individual is born at level j ≥ 2 at time s0 by a look-down event (which means that s0 is a jumping
time of Ni, j for some i), it initiates a new line

G =
⋃

k∈N

[sk, sk+1)× { j+ k},

where for k ∈ N∗, sk is the first birth time after sk−1 of an individual with level less than j + k+ 1.
We shall write bG = s0 for the birth time of the line G. We say that dG = limk→∞ sk is the death time
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of this line. We say that a line is alive at time t if bG ≤ t < dG , and k is the level of G at time t if the
individual (t, k) ∈ G. We write Gt for the set of all lines alive at time t. A line at level j is pushed
at rate

� j
2

�

to level j+1 (since there are
� j

2

�

possible independent look-down events which arrive at

rate 1 and which push a line living at level j). Since
∑

j≥2 1/
� j

2

�

<∞, we get that any line but the
immortal one dies in finite time.

Figure 1: A look-down event between levels 1 and 3. Each line living at level at least 3 before the
look-down event is pushed one level up after it.

2.1.3 The genealogy

Let (t, j) be an individual in a line G. An individual (s, i) is an ancestor of the individual (t, j) if
s ≤ t and either (s, i) ∈ G, or there is a finite sequence of lines G0, G1, G2, . . . , Gn = G such that each
line Gk is initiated by a child of an individual in Gk−1, k = 1, 2, . . . , n and (s, i) ∈ G0.

For any fixed time t0, we can introduce the following family of equivalence relations R(t0) =
(R(t0)

s , s ≥ 0): iR(t0)
s j if the two individuals (t0, i) and (t0, j) have a common ancestor at time

t0 − s. It is then easy to show that the coalescent process on N∗ defined by R(t0) is the Kingman’s
coalescent. See Figure 2 for a graphical representation.

2.1.4 Fixation curves

In the study of MRCA, some lines will play a particular role. We say that a line G is a fixation curve
if (bG , 2) ∈ G: the initial look-down event was from 2 to 1.

For a fixed time t, let Gt be the highest fixation curve. It has been initiated by the MRCA of the whole
population living at time t. Notice that t − At = inf{bG; G ∈ Gt , G 6= ι} = bGt

. Let Zt + 1 denote
the number of fixation curves living at time t: Zt ≥ 0 is the number of individuals present in the
genealogy which will become MRCA of the population in the future. We denote by L0(t) > L1(t) >
· · ·> LZt

(t) the decreasing levels of the fixation curves alive at time t. Notice L(t) = L0(t)−1 is the
number of living individuals at time t which will have descendants at the next MRCA change. The
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Figure 2: The look down process and its associated coalescent tree, started at time t for the 5 first
levels. At each look-down event, a new line is born. We indicate at which level this line is at time t.
The line of the individual (t, 5) is bold.

joint distribution of (Zt , L0(t), L1(t), . . . , LZt
(t)) is given in Theorem 2 of [26], and the distribution

of Zt is given in Theorem 3 of [26].

2.1.5 The two oldest families

We consider the partition of the population into the two oldest families given by the equivalence
relation R(t)t−At

. This corresponds to the partition of individuals alive at time t whose ancestor at
time bGt

is either (bGt
, 2) or the immortal individual (bGt

, 1) . We shall denote by Yt the relative
proportion of the sub-population (i.e. the oldest family) whose ancestor at time bGt

is the immortal
individual, that is the oldest family which contains the immortal individual. Let X t be the relative
proportion of an oldest family picked at random: with probability 1/2 it is the one which contains
the immortal individual and with probability 1/2 the other one.
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2.1.6 Stationarity and PASTA property

We set Ht = (X t , Yt , Zt , L(t), L1(t), . . . , LZt
(t)). We are interested in the distribution of Ht at as well

as the distribution of the labels of the individuals of the same oldest family. By stationarity, those
distributions does not depend of t for fixed t. Arguing as in the proof of Theorem 2 of [26] they are
also the same if t is a time when a new MRCA is established. This is the so-called PASTA (Poisson
Arrivals See Time Average) property, see [1] for a review on this subject, where the Poisson process
considered corresponds to the times when the MRCA changes. For this reason, we shall omit the
subscript and write H, and carry out the proofs at a time when a new MRCA is established.

2.2 Size of the new two oldest families

We are interested in the description of the population, and more precisely in the relative size of
the two oldest families at the time when a new MRCA is established. Let G∗ be a fixation curve
and G be the next fixation curve: they have been initiated by two successive present or future
MRCAs. Let s0 = bG∗ be the birth time of G∗ and (sk, k ∈ N∗) be the jumping times of G∗. Notice
that s1 = bG corresponds to the birth time of G. Let N ≥ 2. Notice that at time sN−1, only the
individuals with level 1 to N will have descendants at the death time dG∗ of G∗. They correspond
to the ancestors at time sN−1 of the population living at time dG∗ . We consider the partition into 2
subsets given by R(sN−1)

sN−1−s0
which corresponds to the partition of individuals alive at time sN−1 with

labels k ∈ {1, . . . , N} whose ancestor at time s1 is either the individual (s1, 2)which has initiated G or
the immortal individual. We set σN (k) = 1 if this ancestor is the immortal individual and σN (k) = 0
if it is (s1, 2). Let VN =

∑N
k=1σN (k) be the number of individuals at time sN−1 whose ancestor at

time s1 is the immortal individual, see Figure 3 for an example. Notice that limN→∞ VN/N will be
the proportion of the oldest family which contains the immortal individual when (bG∗ , 2) becomes
the MRCA of the population. By construction the process (σN , N ∈ N∗) is Markov. Notice Theorem
2.1 below gives that (VN , N ∈ N∗) is also Markov.

In order to give the law of (VN ,σN ) we first recall some facts on Pólya’s urns, see [19]. Let S(i, j)N be
the number of green balls in an urn after N drawing, when initially there was i green balls and j of
some other color in the urn, and where at each drawing, the chosen ball is returned together with
one ball of the same color. The process (S(i, j)N , N ∈ N) is a Markov chain, and for ` ∈ {0, . . . , N}

P
�

S(i, j)N = i+ `
�

=
�

N

`

�

(i+ `− 1)!( j+ N − `− 1)!(i+ j− 1)!
(i− 1)!( j− 1)!(i+ j+ N − 1)!

·

In particular, for i = 2, j = 1 and k ∈ {1, N + 1}, we have

P(S(2,1)
N = k+ 1) =

2k

(N + 2)(N + 1)
· (5)

The next Theorem is proved in Section 4.1.

Theorem 2.1. Let N ≥ 2.

i) The process (1+VN+2, N ∈ N) is a Pólya’s urn starting at (2, 1). In particular, VN has a size-biased
uniform distribution on {1, . . . , N − 1}, i.e.

P(VN = k) =
2k

N(N − 1)
·
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Figure 3: In this example, the fixation curve G∗ is bold whereas the next fixation curve G is dotted.
At time s1, we have σ2 = (1,0) and V2 = 1. At time s2, we have σ3 = (1, 0,1) and V3 = 2. At time
s3, we have σ4 = (1, 0,1, 0) and V4 = 2. At time s4, we have σ5 = (1, 1,0, 1,0) and V5 = 3. At time
s5, we have σ6 = (1, 1,1, 0,1, 0) and V6 = 4.

ii) Conditionally on (V1, . . . , VN ), σN is uniformly distributed on the possible configurations: {σ ∈
{0, 1}N ;σ(1) = 1 and

∑N
k=1σ(k) = VN}.

Remark 2.2. We now give an informal proof of Theorem 2.1-i). If one forgets about the levels of the
individuals but for the immortal one, one gets that when there are N lines, the immortal line gives
birth to a new line at rate N , whereas one line taken at random (different from the immortal one)
gives birth to a new line at rate N/2. Among those N−1 lines, VN −1 have a common ancestor with
the immortal line at time s1, N − VN do not. Let us say the former are of type 1 and the other are
of type 0. The lines of type 0 are increased by 1 at rate (N − VN )N/2. Taking into account that the
immortal line gives birth to lines of type 1, we get that the lines of type 1 are increased by 1 at rate
N +(VN −1)N/2. The probability to add a line of type 1 is then (VN +1)/(N +1). Since V2 = 1, we
recover that (1+ VN , N ≥ 2) is a Pólya’s urn starting at (2, 1).

Notice that, in general, if N0 ≥ 3, the process (VN0+N , N ∈ N) conditionally on σN0
can not be

described using Pólya’s urns.

Results on Pólya’s urns, see Section 6.3.3 of [19], give that (VN/N , N ∈ N∗) converges a.s. to a
random variable Y with a beta distribution with parameters (2,1). This gives the following result.

Corollary 2.3. When a new MRCA is established, the relative proportion Y of the new oldest family
which contains the immortal line of descent is distributed as a beta (2,1).
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If one chooses a new oldest family at random (with probability 1/2 the one which contains the im-
mortal individual and with probability 1/2 the other one), then its relative proportion X is uniform
on (0,1). This is coherent with the Remark 3.2 given in [26]. Notice that Y has the size biased
distribution of X , which corresponds to the fact that the immortal individual is taken at random
from the two oldest families with probability proportional to their size.

2.3 Level of the next fixation curve

We keep notations from the previous section. Let L(N)+ 1 be the level of the fixation curve G when
the fixation curve G∗ reaches level N+1, that is at time sN−1. Notice that L(N) belongs to {1, . . . , VN}.
The law of (L(N), VN ) will be useful to give the joint distribution of (Z , Y ), see Section 2.5. It also
implies (7) which was already given by Lemma 7.1 of [26]. The process L(N) is an inhomogeneous
Markov chain, see Lemma 6.1 of [26]. By construction, the sequence (L(N), N ≥ 2) is non-decreasing
and converges a.s. to L defined in Section 2.1. The next Proposition is proved in Section 4.2.

Proposition 2.4. Let N ≥ 2.

i) For 1≤ i ≤ k ≤ N − 1, we have

P(L(N) = i, VN = k) = 2
(N − i− 1)!

N !

k!

(k− i)!
N − k

N − 1
, (6)

and for all i ∈ {1, . . . , N − 1},

P(L(N) = i) =
N + 1

N − 1

2

(i+ 1)(i+ 2)
· (7)

ii) The sequence ((L(N), VN/N), N ∈ N∗) converges a.s. to a random variable (L, Y ), where Y has a
beta (2, 1) distribution and conditionally on Y , L is geometric with parameter 1− Y .

A straightforward computation gives that for i ∈ N∗

P(L = i) =
2

(i+ 1)(i+ 2)
·

This result was already in Proposition 3.1 of [26].

The level L + 1 corresponds to the level of the line of the current MRCA, when the MRCA is newly
established. Recall L1(t) is the level at time t of the second fixation curve. We use the convention
L1(t) = 1 if there is only one fixation curve i.e. Z(t) = 0. Just before the random time dG∗ of
the death of the fixation curve G∗, we have L1(dG∗−) = L0(dG∗) = L + 1. At a fixed time t, by
stationarity, the distribution of L1(t) does not depend on t, and equation (3.4) from [26] gives
that L1(t) is distributed as L. In view of Remark 4.1 in [26], notice the result is also similar for
M/M/k queue where the invariant distribution for the queue process and the queue process just
before arrivals time are the same, thanks to the PASTA property.
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2.4 Next fixation time

We consider the time dG∗ of death of the line G∗ (which corresponds to a time when a new MRCA
is established). At this time, Y is the proportion of the oldest family which contains the immortal
individuals. We denote by τ the time we have to wait for the next fixation time. It is the time needed
by the highest fixation curve alive at time dG∗ to reach ∞. Hence, by the look-down construction,
we get that

τ
(d)
=

∞
∑

k=L

2

k(k+ 1)
Ek (8)

where Ek are independent exponential random variables with parameter 1 and independent of Y
and L. See also Theorem 1 in [26].

Proposition 2.5. Let a ∈ N∗. The distribution of the waiting time for the next fixation time is given by:
for λ ∈ R+,

E[e−λτ |Y, L = a] =
∞
∏

k=a

�

k(k+ 1)
k(k+ 1) + 2λ

�

. (9)

Its first two moments are given by:

E[τ|Y, L = a] =
2

a
and E[τ2|Y, L = a] =−

8

a
+ 8
∑

k≥a

1

k2 · (10)

We also have: for y, x ∈ (0, 1) and λ ∈ R+,

E[e−λτ |Y = y] = (1− y)
∞
∑

`=1

y`−1
∞
∏

k=`

�

k(k+ 1)
k(k+ 1) + 2λ

�

, (11)

E[e−λτ |X = x] = x(1− x)
∞
∑

`=1

�

x`−1+ (1− x)`−1
�

∞
∏

k=`

�

k(k+ 1)
k(k+ 1) + 2λ

�

. (12)

We deduce from (10) that E[τ|L = a] =
2

a
, which was already in Theorem 1 in [26]. Notice that

using (11), we recover the following result.

Corollary 2.6. The random variable τ is exponential with mean 1.

Using (10) and the fact that L is geometric with parameter 1−Y , we recover the well known results
from Kimura and Ohta [20; 21] (see also [12]):

E[τ|Y = y] =−2
(1− y) log(1− y)

y
, (13)

E[τ2|Y = y] = 8

 

(1− y) log(1− y)
y

−
∫ 1

y

log(1− z)
z

dz

!

. (14)

The following Lemma is elementary.

786



Lemma 2.7. Let Y be a beta (2,1) random variable and X = εY+(1−ε)(1−Y ) where ε is independent
of Y and such that P(ε = 1) = P(ε = −1) = 1/2. Then X is uniform on [0,1]. Furthermore, if
W is integrable and independent of ε, then we have E[W |X ] = X g(X ) + (1 − X )g(1 − X ) where
g(y) = E[W |Y = y].

We also get, thanks to the above Lemma that:

E[τ|X = x] =−2
�

x log(x) + (1− x) log(1− x)
�

, and (15)

E[τ2|X = x] = 8

 

x log(x) + (1− x) log(1− x)− x

∫ 1

x

log(1− z)
z

dz (16)

−(1− x)

∫ 1

1−x

log(1− z)
z

dz

!

.

2.5 Number of individuals present which will become MRCA

We keep notations from Sections 2.1 and 2.3. We set Z = ZdG∗
the number of individuals living

at time dG∗ which will become MRCA of the population in the future. Let L0 = L(dG∗) + 1 and
(L0, L1, . . . , LZ) = (L0(dG∗), . . . , LZ(dG∗)) be the levels of the fixation curves at the death time of G∗.
Recall notations from Section 2.2. The following Lemma and Proposition 2.4 characterize the joint
distribution of (Y, Z , L, L1, . . . , LZ).

Lemma 2.8. Conditionally on (L, Y ) the distribution of (Z , L1, . . . , LZ) does not depend on Y . Condi-
tionally on {L = N}, (Z , L1, . . . , LZ) is distributed as follows:

1. Z = 0 if N = 1;

2. Conditionally on {Z ≥ 1}, L1 is distributed as L(N)+ 1.

3. For N ′ ∈ {1, . . . , N − 1}, conditionally on {Z ≥ 1, L1 = N ′+ 1}, (Z − 1, L2, . . . , LZ) is distributed
as (Z , L1, . . . , LZ) conditionally on {L = N ′}.

Remark 2.9. If one is interested only in the distribution of (Z , L0, . . . , LZ , L), one gets that
{LZ , . . . , L0} is distributed as {k; Bk = 1} where (Bn, n ≥ 2) are independent Bernoulli r.v. such
that P(Bk = 1) = 1/

�k
2

�

. In particular we have

Z
(d)
=
∑

k≥2

Bk − 1. (17)

Indeed, set Bk = 1 if the individual (k, dG∗) at level k belongs to a fixation curve and Bk = 0
otherwise. Notice that Bk = 1 if none of the k − 2 look-down events which pushed the line of
(k, dG∗) between its birth time and dG∗ involved the line of (k, dG∗). This happens with probability

P(Bk = 1) =

�k−1
2

�

�k
2

�

· · ·

�2
2

�

�3
2

�
=

1
�k

2

�

.

Moreover Bk is independent of B2, . . . , Bk−1 which depends on the lines below the line of (k, dG∗)
from the look-down construction. This gives the announced result. Notice that L = L0 − 1 =
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sup{k; Bk = 1} − 1. We deduce that conditionally on L = a, Z =
∑a

k=2 Bk (with the convention
Z = 0 if a = 1). In particular, we get

E[(1+λ)Z |L = a] =
a
∏

k=2

E[(1+λ)Bk] =
a
∏

k=2

k(k− 1) + 2λ

k(k− 1)
=

a−1
∏

k=1

k(k+ 1) + 2λ

k(k+ 1)
.

The result does not change if one considers a fixed time t instead of dG∗ .

We deduce the following Corollary from the previous Remark and Lemma 2.8 and for the first two
moments (20) we use (10) and Proposition 1.3.

Corollary 2.10. Let a ≥ 1. Conditionally on (Y, L), Z
(d)
=

L
∑

k=2

Bk (with the convention
∑

; = 0),

where (Bk, k ≥ 2) are independent Bernoulli random variables independent of (Y, L) and such that
P(Bk = 1) = 1/

�k
2

�

. We have for all λ≥ 0,

E[(1+λ)Z |Y, L = a] =
a−1
∏

k=1

k(k+ 1) + 2λ

k(k+ 1)
, (18)

with the convention
∏

; = 1. We have P(Z = 0|Y, L = 1) = 1 and for k ≥ 1,

P(Z = k|Y, L = a) =
2k−1

3

a+ 1

a− 1

∑

1<ak<···<a2<a

k
∏

i=2

1

(ai − 1)(ai + 2)
· (19)

We also have

E[Z |Y, L = a] = 2−
2

a
and E[Z2|Y, L = a] = 18−

4π2

3
−

18

a
+ 8
∑

k≥a

1

k2 · (20)

We are now able to give the distribution of Z conditionally on Y or X . We deduce from ii) of
Proposition 2.4 and from Corollary 2.10 the next result.

Corollary 2.11. Let y ∈ [0,1]. We have, for all λ≥ 0,

E[(1+λ)Z |Y = y] = (1− y)
+∞
∑

a=1

ya−1
a−1
∏

k=1

k(k+ 1) + 2λ

k(k+ 1)
, (21)

with the convention
∏

; = 1. We have P(Z = 0|Y = y) = 1− y, and, for all k ∈ N∗,

P(Z = k|Y = y) =
2k−1

3
(1− y)

∑

1<ak<···<a1<∞
(a1+ 1)(a1+ 2)ya1−1

k
∏

i=1

1

(ai − 1)(ai + 2)
. (22)

We also have

E[Z |Y = y] = 2
�

1+
1− y

y
log(1− y)

�

. (23)

The next Corollary is a direct consequence of Lemma 2.7 and Corollary 2.10 .
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Corollary 2.12. Let x ∈ [0,1]. We have, for all λ≥ 0,

E[(1+λ)Z |X = x] = x(1− x)
∞
∑

a=2

�

xa−1+ (1− x)a−1
�

+∞
∑

a=1

a−1
∏

k=1

k(k+ 1) + 2λ

k(k+ 1)
, (24)

with the convention
∏

; = 1. We have P(Z = 0|X = x) = 2x(1− x), and, for all k ∈ N∗,

P(Z = k|X = x)

=
2k−1

3
x(1− x)

∑

1<ak<···<a1<∞
(a1+ 1)(a1+ 2)

�

xa1−2+ (1− x)a1−2
�

k
∏

i=1

1

(ai − 1)(ai + 2)
· (25)

We also have
E[Z |X = x] = 2

�

1+ x log(x) + (1− x) log(1− x)
�

. (26)

The second moment of Z conditionally on Y (resp. X ) can be deduced from (21) (resp. (24)) or
from (4) and (14) (resp. (16)).

Some elementary computations give:

P(Z = 0|X = x) = 2x(1− x),

P(Z = 1|X = x) =
1

3

�

x2+ (1− x)2− 2x(1− x) ln(x(1− x))
�

,

P(Z = 2|X = x) =
2

3

�

11

6
(x2+ (1− x)2)− (1− x) ln(1− x)− x ln(x)

�

+
2

3
x(1− x)

�

2−
π2

3
+ 2 ln(x) ln(1− x)−

1

3
ln(x(1− x))

�

.

We recover by integration of the previous equations the following results from [26]:

P(Z = 0) =
1

3
, P(Z = 1) =

11

27
and P(Z = 2) =

107

243
−

2

81
π2.

3 Stationary distribution of the relative size for the two oldest families

3.1 Resurrected process and quasi-stationary distribution

Let E be a subset of R. We recall that if U = (Ut , t ≥ 0) is an E-valued diffusion with absorbing
states ∆, we say that a distribution ν is a quasi-stationary distribution (QSD) of U if for any Borel
set A⊂ R,

Pν(Ut ∈ A|Ut 6∈∆) = ν(A) t ≥ 0,

where we write Pν when the distribution of U0 is ν . See also [31] for QSD for diffusions with killing.

Let µ and ν be two distributions on E\∆. We define Uµ the resurrected process associated to U ,
with resurrection distribution µ, under Pν as follows:

1. U0 is distributed according to ν and Uµt = Ut for t ∈ [0,τ1), where τ1 = inf{s ≥ 0; Us ∈∆}.
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2. Conditionally on (τ1, {τ1 < ∞}, (U
µ
t , t ∈ [0,τ1))), (U

µ
t+τ1

, t ≥ 0) is distributed as Uµ under
Pµ.

According to Lemma 2.1 of [4], the distribution µ is a QSD of U if and only if µ is a stationary
distribution of Uµ. See also the pioneer work of [13] in a discrete setting.

The uniqueness of quasi-stationary distributions is an open question in general. We will give a ge-
nealogical representation of the QSD for the Wright-Fisher diffusion and the Wright-Fisher diffusion
conditioned not to hit 0, as well as for the Moran model for the discrete case.

We also recall that the so-called Yaglom limit µ is defined by

lim
t→∞
Px(Ut ∈ A|Ut 6∈∆) = µ(A) ∀A∈B(R),

provided the limit exists and is independent of x ∈ E\∆.

3.2 The resurrected Wright-Fisher diffusion

From Corollary 2.3 and comments below it, we get that the relative proportion of one of the two
oldest families at a time when a new MRCA is established is distributed according to the uniform
distribution over [0,1]. Then the relative proportion evolves according to a Wright-Fisher (WF)
diffusion. In particular it hits the absorbing state of the WF diffusion, {0,1}, in finite time. At this
time one of the two oldest families dies out and there a new MRCA is (again) established.

The QSD distribution of the WF diffusion exists and is the uniform distribution, see [12, p. 161],
or [18] for an explicit computation. From Section 3.1, we get that in stationary regime, for fixed
t (and of course at time when a new MRCA is established) the relative size, X t , of one of the two
oldest families taken at random is uniform over (0,1).

Similar arguments as those developed in the proof of Proposition 3.1 yield that the uniform distri-
bution is the only QSD of the WF diffusion. Lemma 2.1 in [4] implies there is no other resurrection
distribution which is also the stationary distribution of the resurrected process.

3.3 The oldest family with the immortal line of descent

Recall that Y = (Yt , t ∈ R) is the process of relative size for the oldest family containing the immortal
individual. From Corollary 2.3, we get that, at a time when a new MRCA is established, Y is
distributed according to the beta (2, 1) distribution. Then Y evolves according to a WF diffusion
conditioned not to hit 0; its generator is given byL = 1

2
x(1−x)∂ 2

x +(1−x)∂x , see [9; 18]. Therefore
Y is a resurrected Wright-Fisher diffusion conditioned not to hit 0, with beta (2, 1) resurrection
distribution.

The Yaglom distribution of the Wright-Fisher diffusion conditioned not to hit 0 exists and is the beta
(2,1) distribution, see [18] for an explicit computation. In fact the Yaglom distribution is the only
QSD according to the next proposition.

Proposition 3.1. The only quasi-stationary distribution of the Wright-Fisher diffusion conditioned not
to hit 0 is the beta (2, 1) distribution.

Lemma 2.1 in [4] implies that the beta (2,1) distribution is therefore the stationary distribution of
Y . Furthermore, the resurrected Wright-Fisher diffusion conditioned not to hit 0, with resurrection
distribution µ has stationary distribution µ if and only if µ is the beta (2, 1) distribution.
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3.4 Resurrected process in the Moran model

The Moran model has been introduced in [25]. This mathematical model represents the neutral
evolution of a haploid population of fixed size, say N . Each individual gives, at rate 1, birth to a
child, which replaces an individual taken at random among the N individuals. Notice the population
size is constant. Let ξt denote the size of the descendants at time t of a given initial group. The
process ξ = (ξt , t ≥ 0) goes from state k to state k + ε, where ε ∈ {−1,1}, at rate k(N − k)/N .
Notice that 0 and N are absorbing states. They correspond respectively to the extinction of the
descendants of the initial group or its fixation. The Yaglom distribution of the process ξ is uniform
over {1, . . . , N − 1} (see [12, p. 106]). Since the state is finite, the Yaglom distribution is the only
QSD.

Let µ be a distribution on {1, . . . , N − 1}. We consider the resurrected process (ξµt , t ≥ 0) with
resurrection distribution µ. The resurrected process has the same evolution as ξ until it reaches 0
or N , and it immediately jumps according to µ when it hits 0 or N . The process ξµ is a continuous
time Markov process on {1, . . . , N − 1} with transition rates matrix Λµ given by:

Λµ(1, k) =
�

µ(k) + 1{k=2}
� N − 1

N
for k ∈ {2, . . . , N − 1},

Λµ(k, k+ ε) =
k(N − k)

N
for ε ∈ {−1,1} and k ∈ {2, . . . , N − 2},

Λµ(N − 1, k) =
�

µ(k) + 1{k=N−2}
� N − 1

N
for k ∈ {1, . . . , N − 2}.

We deduce from [13], that µ is a stationary distribution for ξµ (i.e. µΛµ = 0) if and only if µ is a
QSD for ξ, hence if and only if µ is uniform over {1, . . . , N − 1}.
Using the genealogy of the Moran model, we can give a natural representation of the resurrected
process ξµ when the resurrection distribution is the Yaglom distribution. Since the genealogy of the
Moran model can be described by the restriction of the look-down process to E(N) = R×{1, . . . , N},
we get from Theorem 2.1 that the size of the oldest family which contains the immortal individual
is distributed as the size-biased uniform distribution on {1, . . . , N − 1} at a time when a new MRCA
is established. The PASTA property also implies that this is the stationary distribution. If, at a
time when a new MRCA is established, we consider at random one of the two oldest families (with
probability 1/2 the one with the immortal individual and with probability 1/2 the other one), then
the size process is distributed as (ξµt , t ∈ R) under its stationary distribution, with µ the uniform
distribution.

Remark 3.2. We can also consider the Wright-Fisher model (see e.g. [9]) in discrete time with a
population of fixed finite size N , ζ = (ζk, k ∈ N). This is a Markov chain with state space {0, . . . , N}
and transition probabilities

P(i, j) =
�

N

j

��

i

N

� j�

1−
i

N

�N− j

.

There exists a unique quasi-stationary distribution, µN (which is not the uniform distribution), see
[5]. We deduce that the resurrected process ζµ has stationary distribution µ if and only if µ = µN .
Notice, that in this example there is no biological interpretation of µN as the size of one of the oldest
family at a time when a new MRCA is established.
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4 Proofs

4.1 Proof of Theorem 2.1

We consider the set

AN =
�

(k1, . . . , kN ); k1 = 1, for i ∈ {1, . . . , N − 1}, ki+1 ∈
�

ki , ki + 1
		

.

Notice that P(V1 = k1, . . . , VN = kN ) > 0 if and only if (k1, . . . , kN ) ∈ AN . To prove the first part of
Theorem 2.1, it is enough to show that, for N ≥ 2 and (k1, . . . , kN+1) ∈ AN+1,

P(VN+1 = kN+1|VN = kN , . . . , V1 = k1) =

(

1− 1+kN
N+1

if kN+1 = kN ,
1+kN
N+1

if kN+1 = 1+ kN .
(27)

For p and q in N∗ such that q < p, we introduce the set:

∆p,q = {α= (α1, . . . ,αp) ∈ {0, 1}p,α1 = 1,
p
∑

i=1

αi = q}.

Notice that Card (∆p,q) =
�p−1

q−1

�

. Hence to prove the second part of Theorem 2.1, it is enough to
show that: for all (k1, . . . , kN ) ∈ AN , and all α ∈∆N ,kN

,

P(σN = α|VN = kN , . . . , V1 = k1) =
1

� N−1
kN−1

�
· (28)

We proceed by induction on N for the proof of (27) and (28). The result is obvious for N = 2. We
suppose that (27) and (28) are true for a fixed N . We denote by IN and JN , 1≤ IN < JN ≤ N+1, the
two levels involved in the look-down event at time sN . Notice that (IN , JN ) and σN are independent.
This pair is chosen uniformly so that, for 1≤ i < j ≤ N + 1,

P(IN = i, JN = j) =
2

(N + 1)N
,

P(IN = i) =
2(N − i+ 1)
(N + 1)N

,

P(JN = j) =
2( j− 1)
(N + 1)N

·

For α =
�

α1, . . . ,αN+1
�

∈ {0, 1}N+1 and j ∈ {1, . . . , N + 1}, we set α j
× =

�

α1, . . . ,α j−1,
α j+1, . . . ,αN+1

�

∈ {0,1}N .

Let us fix (k1, . . . , kN+1) ∈ AN+1, and α =
�

α1, . . . ,αN+1
�

∈ ∆N+1,kN+1
. Notice that {σN+1 = α} ⊂

{VN+1 = kN+1}. We first compute

P(σN+1 = α|VN = kN , . . . , V1 = k1).
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1st case: kN+1 = kN + 1. We have:

P(σN+1 = α|VN = kN , . . . , V1 = k1)

=
∑

1≤i< j≤N+1

P(IN = i, JN = j,σN+1 = α|VN = kN , . . . , V1 = k1)

=
∑

1≤i< j≤N+1,αi=α j=1

P(IN = i, JN = j,σN = α
j
×|VN = kN , . . . , V1 = k1)

=
∑

1≤i< j≤N+1,αi=α j=1

P(IN = i, JN = j)P(σN = α
j
×|VN = kN , . . . , V1 = k1)

=
∑

1≤i< j≤N+1,αi=α j=1

2

(N + 1)N
1

� N−1
kN−1

�

=
2

(N + 1)N
1

� N−1
kN−1

�

kN+1(kN+1− 1)
2

=
(kN + 1)!(N − kN )!

(N + 1)!
, (29)

where we used the independence of (IN , JN ) and σN for the third equality, the uniform distribution
of σN conditionally on VN for the fourth, and that kN+1 = kN + 1 for the sixth. Hence, we get

P(VN+1 = kN + 1|VN = kN , . . . , V1 = k1) =
∑

α∈∆N+1,kN+1

P(σN+1 = α|VN = kN , . . . , V1 = k1)

=
�

N

kN+1− 1

�

(kN + 1)!(N − kN )!
(N + 1)!

=
1+ kN

N + 1
· (30)

2nd case: kN+1 = kN . Similarly, we have:

P(σN+1 = α|VN = kN , . . . , V1 = k1) =
∑

1≤i< j≤N+1,αi=α j=0

2

(N + 1)N
1

� N−1
kN−1

�

=
2

(N + 1)N
1

� N−1
kN−1

�

(N + 1− kN )(N − kN )
2

=
(N − kN )(kN − 1)!(N − kN + 1)!

(N + 1)!
. (31)

Hence, we get

P(VN+1 = kN |VN = kN , . . . , V1 = k1) =
∑

α∈∆N+1,kN+1

P(σN+1 = α|VN = kN , . . . , V1 = k1)

=
�

N

kN+1− 1

�

(N − kN )(kN − 1)!(N − kN + 1)!
(N + 1)!

=1−
1+ kN

N + 1
· (32)
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Equalities (30) and (32) imply (27). Moreover, we deduce from (29) and (31) that, for kN+1 ∈
{kN , kN + 1},

P(σN+1 = α|VN+1 = kN+1, . . . , V1= k1) =
P(σN+1 = α, VN+1 = kN+1|VN = kN , . . . , V1= k1)
P(VN+1 = kN+1|VN = kN , . . . , V1 = k1)

=
1

� N
kN+1−1

�
,

which proves that (28) with N replaced by N + 1 holds. This ends the proof.

4.2 Proof of Proposition 2.4

Theorem 2.1 shows that the distribution of σN conditionally on VN is uniform. Then, if VN = k, we
can see L(N) as the number of draws (without replacement) we have to do in a two-colored urn of
size N − 1 with k − 1 black balls until we obtain a white ball. Hence, for k ∈ {1, . . . , N − 1} and
i ∈ {1, . . . , k},

P(L(N) = i|VN = k) =
k− 1

N − 1

k− 2

N − 2
· · ·

k− i+ 1

N − i+ 1

N − k

N − i

=
(N − i− 1)!
(N − 1)!

(k− 1)!
(k− i)!

(N − k).

This and Theorem 2.1 give (6).

It is easy to prove by induction on j that for all j ∈ N,

i+ j
∑

k=i

k!

(k− i)!
=
(i+ j+ 1)!

j!(i+ 1)
· (33)

Summing (6) over k ∈ {i, . . . , N − 1} gives:

P(L(N) = i) =
2(N − i− 1)!

N !(N − 1)

N−1
∑

k=i

k!

(k− i)!
(N − k)

=
2(N − i− 1)!

N !(N − 1)



(N + 1)
N−1
∑

k=i

k!

(k− i)!
−

N−1
∑

k=i

(k+ 1)!
((k+ 1)− (i+ 1))!





=
2(N − i− 1)!

N !(N − 1)

�

(N + 1)!
(N − i− 1)!(i+ 1)

−
(N + 1)!

(N − i− 1)!(i+ 2)

�

= 2
N + 1

N − 1

1

(i+ 1)(i+ 2)
,

where we used (33) twice in the third equality.
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Since (L(N), n ∈ N∗) is non-decreasing, we deduce from Theorem 2.1 that the sequence
((L(N), V (N)/N), N ∈ N∗) converges a.s. to a limit (L, Y ). Let i ≥ 1 and v ∈ [0,1). We have:

P
�

L(N) = i,
VN

N
≤ v
�

=
bN vc
∑

k=i

P
�

L(N) = i, VN = k
�

=
bN vc
∑

k=i

2
(N − i− 1)!

N !

k!

(k− i)!
N − k

N − 1

=
2

N

bN vc
∑

k=i

k

N − 1

k− 1

N − 2
· · ·

k− i+ 1

N − i

�

1−
k− 1

N − 1

�

,

which converges to 2

∫ v

0

y i(1 − y)d y as N goes to infinity. We deduce that P(L = i, Y ≤ v) =

2
∫ v

0
y i(1− y)d y for i ∈ N∗ and v ∈ [0, 1). Thus Y has a beta (2,1) distribution and conditionally

on Y , L is geometric with parameter 1− Y .

4.3 Proof of Proposition 2.5

The Laplace transform (9) comes from (8). We deduce from (8) that

E[τ|Y, L = a] =
∑

k≥a

2

k(k+ 1)
=

2

a
,

and that

E[τ2|Y, L = a] = 8
∑

k≥a

1

k(k+ 1)

∑

`≥k

1

`(`+ 1)

= 8
∑

k≥a

1

k2(k+ 1)

= 8
∑

k≥a

1

k2 − 8
∑

k≥a

1

k(k+ 1)

= 8
∑

k≥a

1

k2 −
8

a
·

We get (11) from (9) and Proposition 2.4. We get (12) from (11) and Lemma 2.7.
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4.4 Proof of Corollary 2.6

We give a direct proof. We set ck = k(k + 1) and bk = ck − 2 = (k − 1)(k + 2). Notice that
ck + 2λ= bk + 2(1+λ). We have from (11)

E[e−λτ] =
∫ 1

0

2y d y

 

∑

a≥1

(1− y)ya−1
∏

k≥a

ck

ck + 2λ

!

= 2
∑

a≥1

1

(a+ 1)(a+ 2)

∏

k≥a

ck

ck + 2λ

= 2
∑

a≥1

1

ba + 2(λ+ 1)

∏

k≥a+1

bk

bk + 2(1+λ)

=
1

1+λ
lim

N→+∞

N
∑

a=1

�

1−
ba

ba + 2(1+λ)

�

∏

k≥a+1

bk

bk + 2(1+λ)

=
1

1+λ
lim

N→+∞

∏

k≥N+1

bk

bk + 2(1+λ)

=
1

1+λ
,

where for the last equality we used that limN→∞
∏

k≥N+1
bk

bk+2(1+λ) = 1.

4.5 Proof of Lemma 2.8

Let us fix N ≥ 2. We have introduced L(N)+ 1 as the level of the fixation curve G when the fixation
curve G∗ reaches level N + 1, that is at time sN−1. We denote by ZN the number of other fixation
curves alive at this time, and L(N)1 > L(N)2 > · · ·> L(N)ZN

= 2 their levels. By construction of the fixation

curves, the result given by Lemma 2.8 is straightforward for (VN/N , ZN , L(N), L(N)1 , L(N)2 , . . . , L(N)ZN
) in-

stead of (Y, Z , L, L1, . . . , LZ). Now, using similar arguments as for the proof of the second part
of Proposition 2.4, we get that

�

(VN/N , ZN , L(N), L(N)1 , L(N)2 , . . . , L(N)ZN
), N ≥ 2

�

converges a.s. to
(Y, Z , L, L1, . . . , LZ) which ends the proof.

4.6 Proof of Lemma 1.1

Only the second part of this Lemma has to be proved. Assume t is either fixed or a time when a new
MRCA is established. The fact that the coalescent times At (and thus the TMRCA ) does not depend
on the coalescent tree shape can be deduced from [33], Section 3, see also [6]. In particular, At
does not depend on (X t , Yt , Lt , Zt) neither on τt which conditionally on the past depends only on
the coalescent tree shape (see Section 2.4).

4.7 Proof of Theorem 1.2

The properties i)-vii) are proved at time dG∗ , but arguments as in the proof of Theorem 2 in [26]
yield that these results also hold at fixed time.
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The distribution of Y is given by Corollary 2.3. Properties ii) and vii) are straightforward by con-
struction of X . Proposition 2.4 implies iii). Proposition 2.5 implies iv) and Corollary 2.10 implies
v). We deduce vi) from (8), as the exponential random variables are independent of the past before
dG∗ .

4.8 Proof of Proposition 3.1

Let µ1 be the beta (2, 1) distribution. Using [4], it is enough to prove that µ1 is the only probability
distribution µ on [0, 1) such that µ is invariant for Y µ. Since x 7→ Ex[τ] is bounded (see (15)), we
get that Eµ[τ]<∞. For a measure µ and a function f , we set 〈µ, f 〉=

∫

f dµ when this is well de-
fined. As Eµ[τ]<∞, it is straightforward to deduce from standard results on Markov chains having
one atom with finite mean return time (see e.g. [23] for discrete time Markov chains) that Y µ has

a unique invariant probability measure π which is defined by 〈π, f 〉 = Eµ

�
∫ τ

0

f (Ys) ds

�

/Eµ[τ].

Hence we have

Eµ

�
∫ τ

0

f (Ys)ds

�

= 〈π, f 〉Eµ[τ]. (34)

Let τn be the n-th resurrection time (i.e. n-th hitting time of 1) after 0 of the resurrected process
Y µ: τ1 = τ and for n ∈ N∗, τn+1 = inf{t > τn; Y µt− = 1}. The strong law of large numbers implies
that for any real measurable bounded function f on [0,1),

Pµ− a.s.
1

τn

∫ τn

0

f (Ys)ds −−−→
n→∞

〈π, f 〉.

Recall L is the infinitesimal generator of Y . For g any C2 function defined on [0,1], the process

Mt = g(Yt)−
∫ t

0

L g(Ys) ds is a martingale. Since |Mt | ≤ ‖g‖∞+ t(‖g ′‖∞+‖g ′′‖∞) and Eµ[τ]<∞,

we can apply the optional stopping theorem for (Mt , t ≥ 0) at time τ to get that

g(1)−Eµ

�
∫ τ

0

L g(Ys) ds

�

= 〈µ, g〉·

If a C2 function gλ is an eigenvector with eigenvalue −λ (with λ > 0) such that gλ(1) = 0, we de-
duce from (34) that 〈µ, gλ〉= λEµ[τ]〈π, gλ〉. Therefore, if the resurrection measure is the invariant
measure, we get:

〈µ, gλ〉= λEµ[τ]〈µ, gλ〉. (35)

Let (aλn , n≥ 0) be defined by aλ0 = 1 and, for n≥ 0,

aλn+1 =
n(n+ 1)− 2λ

(n+ 1)(n+ 2)
aλn .

The function
∑∞

n=0 aλn xn solves L f = −λ f on [0, 1). For N ∈ N∗ and λ =
N(N + 1)

2
, notice that

PN (x) =
∑∞

n=0 aλn xn is a polynomial function of degree N . By continuity at 1, PN is an eigenvector
of L with eigenvalue −N(N + 1)/2, and such that PN (1) = 0 (as L f (1) = 0 for any C2 function
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f ). Notice that P1(x) = 1− x , which implies that 〈µ, P1〉 > 0. We deduce from (35) that Eµ[τ] = 1
and 〈µ, PN 〉 = 0 for N ≥ 2. As PN (1) = 0 for all N ≥ 1, we can write PN (x) = (1− x)QN−1(x),
where QN−1 is a polynomial function of degree N − 1. For the probability distribution µ̄(d x) =
1− x

〈µ, P1〉
µ(d x), as 〈µ,PN+1〉

〈µ,P1〉
= 0, we get that:

〈µ̄,QN 〉= 0, for all N ≥ 1. (36)

Since µ̄ is a probability distribution on [0,1], it is characterized by (36). To conclude, we just have
to check that µ̄1 satisfies (36). In fact, we shall check that 〈µ1, gλ〉 = 0 for any C2 function gλ
eigenvector of L with eigenvalue −λ such that gλ(1) = 0 and λ 6= 1. Indeed, we have

−λ〈µ1, gλ〉=−λ
∫ 1

0

2x gλ(x)d x

=

∫ 1

0

x2(1− x)g ′′λ(x)d x +

∫ 1

0

2x(1− x)g ′λ(x)d x

=
�

x2(1− x)g ′λ(x)
�1

0
−
∫ 1

0

(2x(1− x)− x2)g ′λ(x)d x +

∫ 1

0

2x(1− x)g ′λ(x)d x

=

∫ 1

0

x2 g ′λ(x)d x

=
�

x2 gλ(x)
�1

0
−
∫ 1

0

2x gλ(x)d x =−〈µ1, gλ〉,

which implies 〈µ1, gλ〉= 0 unless λ= 1.
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