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Hydrodynamic limit of zero range processes among
random conductances on the supercritical percolation

cluster
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Abstract

We consider i.i.d. random variables {ω(b) : b ∈ Ed} parameterized by the family of bonds
in Zd , d > 2. The random variable ω(b) is thought of as the conductance of bond b and it
ranges in a finite interval [0, c0]. Assuming the probability m of the event {ω(b) > 0} to be
supercritical and denoting by C (ω) the unique infinite cluster associated to the bonds with posi-
tive conductance, we study the zero range process on C (ω) with ω(b)–proportional probability
rate of jumps along bond b. For almost all realizations of the environment we prove that the
hydrodynamic behavior of the zero range process is governed by the nonlinear heat equation
∂tρ = m∇ · (D∇φ(ρ/m)), where the matrix D and the function φ are ω–independent. As
byproduct of the above result and the blocking effect of the finite clusters, we discuss the bulk
behavior of the zero range process on Zd with conductance field ω. We do not require any ellip-
ticity condition.
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1 Introduction

Percolation provides a simple and, at the same time, very rich model of disordered medium [G],
[Ke]. The motion of a random walker on percolation clusters has been deeply investigated in Physics
(see [BH] and reference therein) and also numerous rigorous results are now available. In the
last years, for the supercritical percolation cluster it has been possible to prove the convergence
of the diffusively rescaled random walk to the Brownian motion for almost all realizations of the
percolation [SS], [BB], [MP], improving the annealed invariance principle obtained in [DFGW].
We address here our attention to interacting random walkers, moving on the supercritical Bernoulli
bond percolation cluster with additional environmental disorder given by random conductances
(for recent results on random walks among random conductances see [BP], [M], [F] and reference
therein).

Particle interactions can be of different kind. An example is given by site exclusion, the hydrody-
namic behavior of the resulting exclusion process has been studied in [F]. Another basic example,
considered here, is the zero range interaction: particles lie on the sites of the infinite cluster without
any constraint, while the probability rate of the jump of a particle from site x to a neighboring site
y is given by g(η(x))ω(x , y), where g is a suitable function on N, η(x) is the number of particles
at site x and ω(x , y) is the conductance of the bond {x , y}. We suppose that the concuctances are
i.i.d. random variables taking value in [0, c0].

The above exclusion and zero range processes are non–gradient systems, since due to the disorder
the algebraic local current cannot be written as spatial gradient of some local function. Neverthe-
less, thanks to the independence of the conductances from any bond orientation, one can study
the hydrodynamic behavior avoiding the heavy machinery of non–gradient particle systems [V],
[KL][Chapter VII]. Indeed, in the case of exclusion processes, due to the above symmetry of the
conductance field the infinitesimal variation of the occupancy number η(x) is a linear combination
of occupancy numbers. This degree conservation strongly simplifies the analysis of the limiting be-
havior of the random empirical measure with respect to genuinely non–gradient disordered models
as in [Q1], [FM], [Q2], and can be reduced to an homogenization problem [F]. In the case of
zero–range processes, this degree conservation is broken. Nevertheless, due to the symmetry of the
conductance field, adapting the method of the corrected empirical measure [GJ1] to the present
contest one can reduce the proof of the hydrodynamic limit to an homogenization problem plus the
proof of the Replacement Lemma. The resulting diffusive hydrodynamic equation does not depend
on the environment and keeps memory on the particle interaction.

The homogenization problem has been solved in [F] also for more general random conductance
fields. The core of the problem here is the proof of the Replacement Lemma. This technical lemma
compares the particle density on microscopic boxes with the particle density on macroscopic boxes
and it is a key tool in order to go from the microscopic scale to the macroscopic one. This comparison
is usually made by moving particles along macroscopic paths by microscopic steps and then summing
the local variations at each step. The resulting method corresponds to the so called Moving Particle
Lemma and becomes efficient if the chosen macroscopic paths allow a spread–out particle flux,
without any concentration in some special bond. While for a.a. ω any two points x , y in a box
ΛN of side N centered at the origin can be connected inside the infinite cluster by a path γx ,y of
length at most O(N) [AP], it is very hard (maybe impossible) to exhibit such a family of paths
{γx ,y}x ,y∈ΛN

with a reasonable upper bound of the number of paths going through a given bond b,
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uniformly in b. Due to this obstacle, we will prove the Moving Particle Lemma not in its standard
form, but in a weaker form, allowing anyway to complete the proof of the Replacement Lemma.
We point out that in this step we use some technical results of [AP], where the chemical distance
inside the supercritical Bernoulli bond percolation cluster is studied. It is only here that we need
the hypothesis of i.i.d. conductances. Extending part of the results of [AP], one would get the
hydrodynamic limit of zero range processes among random conductances on infinite clusters of
more general conductance fields as in [F].

We comment another technical problem we had to handle with. The discussion in [GJ1] refers to the
zero range process on a finite toroidal grid with conductances bounded above and below by some
positive constants, and some steps cannot work here due to the presence of infinite particles. A
particular care has to be devoted to the control of phenomena of particle concentration and slightly
stronger homogenization results are required.

Finally, in the Appendix we discuss the bulk behavior of the zero range process on Zd with i.i.d.
random conductances in [0, c0], in the case of initial distributions with slowly varying parameter.
Due to the blocking effect of the clusters with finite size, the bulk behavior is not described by a
nonlinear heat equation.

We recall that the problem of density fluctuations for the zero range process on the supercritical
Bernoulli bond percolation cluster with constant conductances has been studied in [GJ2]. Recently,
the hydrodynamic limit of other interacting particle systems on Zd , or fractal spaces, with random
conductances has been proved (cf. [F1], [FJL], [JL], [LF], [Val]). We point out the pioneering paper
[Fr], where J. Fritz has proved the hydrodynamic behaviour of a one-dimensional Ginzburg-Landau
model with conservation law in the presence of random conductances.

2 Models and results

2.1 The environment

The environment ω modeling the disordered medium is given by i.i.d. random variables
�

ω(b) :
b ∈ Ed

�

, parameterized by the set Ed of non–oriented bonds in Zd , d > 2. ω and ω(b) are thought
of as the conductance field and the conductance at bond b, respectively. We call Q the law of the
field ω and we assume that ω(b) ∈ [0, c0] for Q–a.a. ω, for some fixed positive constant c0. Hence,
without loss of generality, we can suppose that Q is a probability measure on the product space
Ω := [0, c0]Ed . Moreover, in order to simplify the notation, we write ω(x , y) for the conductance
ω(b) if b = {x , y}. Note that ω(x , y) =ω(y, x).

Consider the random graph G(ω) =
�

V (ω), E(ω)
�

with vertex set V (ω) and bond set E(ω) defined
as

E(ω) :=
�

b ∈ Ed : ω(b)> 0
	

,

V (ω) :=
�

x ∈ Zd : x ∈ b for some b ∈ E(ω)
	

.

Assuming the probability Q(ω(b) > 0) to be supercritical, the translation invariant Borel subset
Ω0 ⊂ Ω given by the configurations ω for which the graph G(ω) has a unique infinite connected
component (cluster) C (ω) ⊂ V (ω) has Q–probability 1 [G]. Below, we denote by E (ω) the bonds
in E(ω) connecting points of C (ω) and we will often understand the fact that ω ∈ Ω0.
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For later use, given c > 0 we define the random field ω̂c =
�

ω̂c(b) : b ∈ Ed
�

as

ω̂c(b) =

(

1 if ω(b)> c ,

0 otherwise .
(2.1)

For c = 0 we simply set ω̂ := ω̂0.

2.2 The zero range process on the infinite cluster C (ω)

We fix a nondecreasing function g : N→ [0,∞) such that g(0) = 0, g(k)> 0 for all k > 0 and

g∗ := sup
k∈N
|g(k+ 1)− g(k)|<∞ . (2.2)

Given a realization ω of the environment, we consider the zero range process ηt on the graph
G (ω) =

�

C (ω),E (ω)
�

where a particle jumps from x to y with rate g(η(x))ω(x , y). This is the
Markov process with paths η(t) in the Skohorod space D

�

[0,∞),NC (ω)
�

whose Markov generator
L acts on local functions as

L f (η) =
∑

e∈B

∑

x∈C (ω) :
x+e∈C (ω)

g(η(x))ω(x , x + e)
�

f (ηx ,x+e)− f (η)
�

, (2.3)

whereB = {±e1,±e2, . . . ,±ed}, e1, . . . , ed being the canonical basis of Zd , and where in general

ηx ,y(z) =







η(x)− 1, if z = x ,

η(y) + 1, if z = y ,

η(z), if z 6= x , y .

We recall that a function f is called local if f (η) depends only on η(x) for a finite number of sites
x . Since C (ω) is infinite, the above process is well defined only for suitable initial distribution. As
discussed in [A], the process is well defined when the initial distribution has support on configura-
tions η such that ‖η‖ :=

∑

x∈C (ω)η(x)a(x) <∞, a(·) being a strictly positive real valued function
on C (ω) such that

∑

x∈C (ω)

∑

e∈B
ω(x , x + e)a(x + e)6 Ma(x)

for some positive constant M .

Given ϕ > 0, set Z(ϕ) :=
∑

k > 0ϕ
k/g(k)! where g(0)! = 1, g(k)! = g(1)g(2) · · · g(k) for k > 1.

Since Z(ϕ) is an increasing function and g(k)! > g(1)k, there exists a critical value ϕc ∈ (0,∞]
such that Z(ϕ) <∞ if ϕ < ϕc and Z(ϕ) =∞ if ϕ > ϕc . Then, for 0 6 ϕ < ϕc we define ν̄ϕ as the
product probability measure on NC (ω) such that

ν̄ϕ(η(x) = k) =
1

Z(ϕ)
ϕk

g(k)!
, k ∈ N , x ∈ C (ω) .

Taking for example α(x) = e−|x | in the definition of ‖η‖ one obtains that ν̄ϕ(‖η‖) < ∞, thus
implying that the zero range process is well defined whenever the initial distribution is given by ν̄ϕ
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or by a probability measure µ stochastically dominated by ν̄ϕ. In this last case, as proven in [A],
by the monotonicity of g one obtains that the zero range process ηt starting from µ is stochastically
dominated by the zero range process ζt starting from ν̄ϕ, i.e. one can construct on an enlarged
probability space both processes ηt and ζt s.t. ηt(x) 6 ζt(x) almost surely. Finally, we recall that
all measures ν̄ϕ are reversible for the zero range process and that ν̄ϕ(eθη(x)) <∞ for some θ > 0,
thus implying that ν̄ϕ(η(x)k)<∞ for all k > 0 (cf. Section 2.3 of [KL]).

As usually done, we assume that limϕ↑ϕc
Z(ϕ) = ∞. Then, cf. Section 2.3 in [KL], the function

R(ϕ) := ν̄ϕ(η(0)) is strictly increasing and gives a bijection from [0,ϕc) to [0,∞). Given ρ ∈ [0,∞)
we will write ϕ(ρ) for the unique value such that R(ϕ) = ρ. Then we set

νρ := ν̄ϕ(ρ) , φ(ρ) := νρ(g(ηx)) x ∈ C (ω) . (2.4)

As proven in Section 2.3 of [KL], φ is Lipschitz with constant g∗.

2.3 The hydrodynamic limit

Given an integer N > 1 and a probability measure µN on NC (ω), we denote by Pω,µN the law of the
zero range process with generator N2L (see (2.3)) and with initial distribution µN (assuming this
dynamics to be admissible). We denote by Eω,µN the associated expectation. In order to state the
hydrodynamic limit, we define B(Ω) as the family of bounded Borel functions on Ω and let D be the
d × d symmetric matrix characterized by the variational formula

(a,Da) =
1

m
inf

ψ∈B(Ω)







∑

e∈B∗

∫

Ω
ω(0, e)(ae +ψ(τeω)−ψ(ω))2I0,e∈C (ω)Q(dω)







, ∀a ∈ Rd , (2.5)

whereB∗ denotes the canonical basis of Zd ,

m :=Q (0 ∈ C (ω)) (2.6)

and the translated environment τeω is defined as τeω(x , y) = ω(x + e, y + e) for all bonds {x , y}
in Ed . In general, IA denotes the characteristic function of A.

The above matrix D is the diffusion matrix of the random walk among random conductances on the
supercritical percolation cluster and it equals the identity matrix multiplied by a positive constant
(see the discussion in [F] and references therein).

Theorem 2.1. For Q–almost all environments ω the following holds. Let ρ0 : Rd → [0,∞) be a
bounded Borel function and let {µN}N > 1 be a sequence of probability measures on NC (ω) such that for
all δ > 0 and all continuous functions G on Rd with compact support (shortly G ∈ Cc(Rd)), it holds

lim
N↑∞

µN
�
�

�

�N−d
∑

x∈C (ω)

G(x/N)η(x)−
∫

Rd

G(x)ρ0(x)d x
�

�

�> δ
�

= 0 . (2.7)

Moreover, suppose that there exist ρ0,ρ∗, C0 > 0 such that µN is stochastically dominated by νρ0
and

the entropy H(µN |νρ∗) is bounded by C0N d .
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Then, for all t > 0, G ∈ Cc(Rd) and δ > 0, it holds

lim
N↑∞

Pω,µN

�
�

�

�N−d
∑

x∈C (ω)

G(x/N)ηt(x)−
∫

Rd

G(x)ρ(x , t)d x
�

�

�> δ
�

= 0 , (2.8)

where ρ : Rd × [0,∞)→ R is assumed to be the unique weak solution of the heat equation

∂tρ = m∇ · (D∇φ(ρ/m)) (2.9)

with boundary condition ρ0 at t = 0.

We define the empirical measure πN (η) associated to the particle configuration η as

πN (η) :=
1

N d

∑

x∈C (ω)

η(x)δx/N ∈M (Rd) ,

whereM (Rd) denotes the Polish space of non–negative Radon measures on Rd endowed with the
vague topology (namely, νn→ ν inM if and only if νn( f )→ ν( f ) for each f ∈ Cc(Rd)). We refer to
the Appendix of [S] for a detailed discussion about the spaceM endowed of the vague topology. We
write πN

t for the empirical measure πN (ηt), ηt being the zero range process with generator N2L .
Then condition (2.7) simply means that under µN the random measure πN converges in probability
to ρ0(x)d x , while under Pω,µN the random measure πN

t converges in probability to ρ(x , t)d x , for
each fixed t > 0. In order to prove the conclusion of Theorem 2.1 one only needs to show that the
law of the random path πN

· ∈ D([0, T],M ) weakly converges to the delta distribution concentrated
on the path [0, T] 3 t → ρ(x , t)d x ∈ M (see [KL][Chapter 5]). It is this stronger result that we
prove here.

Let us give some comments on our assumptions. We have restricted to increasing functions g in
order to assure attractiveness and therefore that the dynamics is well defined whenever the initial
distributions are stochastically dominated by some invariant measure νρ0

. This simplifies also some
technical estimates. One could remove the monotone assumption on g and choose other conditions
assuring a well defined dynamics and some basic technical estimates involved in the proof, which
would be similar to the ones appearing in [KL][Chapter 5].

The entropy bound H(µN |νρ∗) 6 C0N d is rather restrictive. Indeed, given a locally Riemann in-
tegrable bounded profile ρ0 : Rd → [0,∞), let µN be the product measure on NC (ω) with slowly
varying parameter associated to the profile ρ0/m at scale N . Namely, µN is the product measure on
NC (ω) such that

µN (η(x) = k) = νρ0(x/N)/m(η(x) = k) .

Due to the ergodicity of Q condition (2.7) is fulfilled and, setting ρ′ := supx ρ0(x), µN is stochasti-
cally dominated by νρ′/m. On the other hand, the entropy H(µN |νρ∗) is given by

1

N d
H(µN |νρ∗) =

1

N d

∑

x∈C (ω)

ρ0(x/N)
m

h

logϕ
�ρ0(x/N)

m
�

− logϕ
�

ρ∗
�

io

+

1

N d

∑

x∈C (ω)

n

log Z
�

ϕ
�

ρ∗
�

)− log Z
�

ϕ
�ρ0(x/N)

m
��

(2.10)
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Hence, H(µN |µρ∗) 6 C0N d only if ρ0 approaches sufficiently fast the constant mρ∗ at infinity. All
these technical problems are due to the infinite space. In order to weaken the entropic assumption
one should proceed as in [LM]. Since here we want to concentrate on the Moving Particle Lemma,
which is the real new problem, we keep our assumptions.

Finally, we have assumed uniqueness of the solution of differential equation (2.9) with initial con-
dition ρ0. Results on uniqueness can be found in [BC], [KL][Chapter 5] and [Va]. Proceeding as in
[KL][Section 5.7] and using the ideas developed below, one can prove that the limit points of the
sequence {πN

t }t∈[0,T] are concentrated on paths t → ρ(x , t)d x satisfying an energy estimate.

3 Tightness of {πN
t }t∈[0,T]

As already mentioned, in order to reduce the proof of Theorem 2.1 to the Replacement Lemma
one has to adapt the method of the corrected empirical measure developed in [GJ1] and after that
invoke some homogenization properties proved in [F]. The discussion in [GJ1] refers to the zero
range process on a finite toroidal grid and has to be modified in order to solve technical problems
due to the presence of infinite particles.

Given N ∈ N+, we define LN as the generator of the random walk among random conductances ω
on the supercritical percolation cluster, after diffusive rescaling. More precisely, we define CN (ω) =
{x/N : x ∈ C (ω)} and set

LN f (x/N) = N2
∑

e∈B:
x+e∈C (ω)

ω(x , x + e)
n

f ((x + e)/N)− f (x/N)
o

(3.1)

for all x ∈ C (ω) and f : CN (ω) → R. We denote by νN
ω the uniform measure on CN (ω) given

by νN
ω = N−d

∑

x∈CN (ω)
δx . Below we will think of the operator LN as acting on L2(νN

ω ). We write
(·, ·)νN

ω
and ‖ · ‖L2(νN

ω )
for the scalar product and the norm in L2(νN

ω ), respectively. Note that LN is a
symmetric operator, such that ( f ,−LN f )νN

ω
> 0 for each nonzero function f ∈ L2(νN

ω ). In particular,
λI−LN is invertible for each λ > 0. Moreover, it holds

( f ,−LN g)νN
ω
=

1

2

∑

x∈C (ω)

∑

e∈B:
x+e∈C (ω)

ω(x , x + e)
�

f (x + e)− f (x)
�

·
�

g(x + e)− g(x)
�

for all functions f , g ∈ L2(νN
ω ). Given λ > 0, G ∈ C∞c (R

d) and N ∈ N+ we define GλN as the unique
element of L2(νN

ω ) such that
λGλN −LN GλN = Gλ, (3.2)

where Gλ is defined as the restriction to CN (ω) of the function λG−∇ ·D∇G ∈ C∞c (R
d).

Let us collect some useful facts on the function GλN :

Lemma 3.1. Fix λ > 0. Then, for each G ∈ C∞c (R
d) it holds

(GλN ,−LN GλN )νN
ω

6 c(G,λ), (3.3)

‖GλN‖L1(νN
ω )

, ‖GλN‖L2(νN
ω )

6 c(λ, G) , (3.4)

‖LN GλN‖L1(νN
ω )

, ‖LN GλN‖L2(νN
ω )

6 c(λ, G) , (3.5)
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for a suitable positive constant c(λ, G) depending on λ and G, but not from N. Moreover, for Q–a.s.
conductance fields ω it holds

lim
N↑∞
‖GλN − G‖L2(νN

ω )
= 0 , ∀G ∈ C∞c (R

d) , (3.6)

lim
N↑∞
‖GλN − G‖L1(νN

ω )
= 0 , ∀G ∈ C∞c (R

d) . (3.7)

Proof. By taking the scalar product with GλN in (3.2) one obtains that

λ‖GλN‖
2
L2(νN

ω )
+ (GλN ,−LN GλN )νN

ω
= (GλN , Gλ)νN

ω
6 ‖GλN‖L2(νN

ω )
‖Gλ‖L2(νN

ω )
.

Using that supN ‖Gλ‖L2(νN
ω )
< ∞, from the above expression one easily obtains the uniform up-

per bounds on (GλN ,−LN GλN )νN
ω

and ‖GλN‖L2(νN
ω )

. Since supN > 1 ‖Gλ‖L2(νN
ω )
< ∞, by difference one

obtains the uniform upper bound on ‖LN GλN‖L2(νN
ω )

.

In order to estimate ‖GλN‖L1(νN
ω )

let us write pN
t (x , y) for the probability that the random walk on

CN (ω) with generator LN and starting point x is at site y at time t. Then, since the jump rates
depend on the unoriented bonds, pN

t (x , y) = pN
t (y, x). Since

GλN (x) =
∑

y∈CN (ω)

∫ ∞

0

e−λt pN
t (x , y)Gλ(y) , (3.8)

for all x ∈ CN (ω), the above symmetry allows to conclude that

‖GλN‖L1(νN
ω )

6
1

N d

∑

x ,y∈CN (ω)

∫ ∞

0

e−λt pN
t (x , y)|Gλ(x)|=

1

λN d

∑

x∈CN (ω)

|Gλ(x)| →
1

λ

∫

Rd

|Gλ(u)|du<∞ . (3.9)

Again, since supN > 1 ‖Gλ‖L1(νN
ω )
< ∞, by difference one obtains the uniform upper bound on

‖LN GλN‖L1(νN
ω )

.

The homogenization result (3.6) follows from Theorem 2.4 (iii) in [F]. Finally, let us consider (3.7).
Given ` > 0, using Schwarz inequality, one can bound

‖GλN − G‖L1(νN
ω )

6

‖GλN (u)I(|u|> `)‖L1(νN
ω )
+ ‖G(u)I(|u|> `)‖L1(νN

ω )
+ c`d/2‖GλN − G‖1/2

L2(νN
ω )

.

Since G ∈ C∞c (R
d) the second term in the r.h.s. is zero for ` large enough. The last term in the r.h.s.

goes to zero due to (3.6). In order to conclude we need to show that

lim
`↑∞

lim
N↑∞
‖GλN (u)I(|u|> `)‖L1(νN

ω )
= 0 . (3.10)

Since Gλ ∈ C∞c (R
d) we can fix nonnegative functions F, f ∈ C∞c (R

d) such that − f 6 Gλ 6 F . We
call FλN , f λN the solutions in L2(νN

ω ) of the equations

λFλN −LN FλN = F ,

λ f λN −LN f λN = f ,
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respectively. From the integral representation (3.8) we derive that FλN , f λN are nonnegative, and that
− f λN 6 GλN 6 FλN on CN (ω). In particular, in order to prove (3.10) it is enough to prove the same
claim with FλN , f λN instead of GλN . We give the proof for FλN , the other case is completely similar. Let
us define H ∈ C∞(Rd) as the unique solution in L2(d x) of the equation

λH −∇ ·D∇H = F . (3.11)

Again, by a suitable integral representation, we get that H is nonnegative. Applying Schwarz in-
equality, we can estimate

‖FλN (u)I(|u|> `)‖L1(νN
ω )
= ‖FλN‖L1(νN

ω )
−‖FλN (u)I(|u|6 `)‖L1(νN

ω )
6

‖FλN‖L1(νN
ω )
−‖H(u)I(|u|6 `)‖L1(νN

ω )
+ ‖(H(u)− FλN )I(|u|6 `)‖L1(νN

ω )
6

‖FλN‖L1(νN
ω )
−‖H(u)I(|u|6 `)‖L1(νN

ω )
+ c`d/2‖FλN −H‖1/2

L2(νN
ω )

. (3.12)

Since FλN and F are nonnegative functions, when repeating the steps in (3.9) with FλN , F instead of
GλN , Gλ respectively, we get the the inequality is an equality and therefore

‖FλN‖L1(νN
ω )
→ λ−1‖F‖L1(d x) = ‖H‖L1(d x) .

This observation, the above bound (3.12) and Theorem 2.4 (iii) in [F] imply that

lim
N↑∞
‖FλN (u)I(|u|> `)‖L1(νN

ω )
6 ‖H(u)I(|u|> `)‖L1(νN

ω )

At this point it is trivial to derive (3.10) for FλN .

In the rest of this section, we will assume that ω is a good conductance field, i.e. the infinite cluster
C (ω) is well–defined and ω satisfies Lemma 3.1. We recall that these properties hold Q–a.s.

The first step in proving the hydrodynamic limit consists in showing that the sequence of processes
{πN

t }t∈[0,T] is tight in the Skohorod space D([0, T],M ). By adapting the proof of Proposition IV.1.7
in [KL] to the vague convergence, one obtains that it is enough to show that the sequence of pro-
cesses {πN

t [G]}t∈[0,T] is tight in the Skohorod space D([0, T],R) for all G ∈ C∞c (R). A key relation
between the zero range process and the random walk among random conductances is given by

N2L
�

πN (η)[G]
�

=
1

N d

∑

x∈C (ω)

g(η(x))
�

LN G
�

(x/N) . (3.13)

The check of (3.13) is trivial and based on integration by parts. At this point, due to the disorder
given by the conductance field ω, a second integration by parts as usually done for gradient systems
(cf. [KL][Chapter 5]) would be useless since the resulting object would remain wild. A way to over-
come this technical problem is given by the method of the corrected empirical measure: as explained
below, the sequence of processes {πN

t [G]}t∈[0,T] behaves asymptotically as {πN
t [G

λ
N]}t∈[0,T], thus

the tightness of the former follows from the tightness of the latter. We need some care since the
total number of particles can be infinite, hence it is not trivial that the process {πN

t [G
λ
N]}t∈[0,T] is

well defined.

We start with a technical lemma which will be frequently used:
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Lemma 3.2. Let H be a nonnegative function on CN (ω) belonging to L1(νN
ω )∩ L2(νN

ω ) and let k > 0.
Then

Pω,µN

�

sup
0 6 t 6 T

1

N d

∑

x∈C (ω)

ηt(x)
kH(x/N)> A

�

6 A−1c(k,ρ0)
q

‖H‖2
L1(νN

ω )
+ ‖H‖2

L2(νN
ω )

(3.14)

for all A> 0.

Proof. We use a maximal inequality for reversible Markov processes due to Kipnis and Varadhan
[KV] (cf. Theorem 11.1 in Appendix 1 of [KL]). Let us set

F(η) =
1

N d

∑

x∈C (ω)

η(x)kH(x/N) , (3.15)

supposing first that H has bounded support. Note that F(η) 6 F(η′) if η(x) 6 η′(x) for all
x ∈ C (ω). Hence by the stochastic domination assumption, it is enough to prove (3.14) with
Pω,νρ0

(always referred to the diffusively accelerated process) instead of Pω,µN . We recall that νρ0
is

reversible w.r.t. the the zero range process. Moreover

νρ0
(F2) =

1

N2d

∑

x ,y∈C (ω)

H(x/N)H(y/N)νρ0
(η(x)kη(y)k)6 c(k,ρ0)‖H‖2L1(νN

ω )
, (3.16)

while

νρ0
(F,−N2L F) =

N2

N2d

∑

x ,y∈C (ω)

H(x/N)H(y/N)νρ0
(η(x)k,−Lη(y)k)6

c(k,ρ0)
N2

N2d

∑

x∈C (ω)

∑

y∈C (ω):
|x−y|=1

H(x/N)H(y/N) .

Using the bound H(x/N)H(y/N)6 H(x/N)2+H(y/N)2 and the fact that d > 2, we conclude that

νρ0
(F,−N2L F)6 c(k,ρ0)‖H‖2L2(νN

ω )
. (3.17)

By the result of Kipnis and Varadhan it holds

Pω,νρ0

�

sup
0 6 t 6 T

1

N d

∑

x∈C (ω)

ηt(x)
kH(x/N)> A

�

6
e

A

Æ

νρ0
(F2) + Tνρ0

(F,−N2L F) . (3.18)

At this point the thesis follows from the above bounds (3.16) and (3.17). In order to remove the
assumption that H is local, it is enough to apply the result to the sequence of functions Hn(x) :=
H(x)χ(|x |6 n) and then apply the Monotone Convergence Theorem as n ↑ ∞.

Remark 1. We observe that the arguments used in the proof of Lemma 4.3 in [CLO] imply that, given
a function H of bounded support and defining F as in (3.15), it holds

Eω,νρ0

�

sup
0 6 t 6 T

�

F(ηt)− F(η0)
�2
�

6 cTνρ0
(F,−N2L F) .
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In particular, it holds

Eω,νρ0

�

sup
0 6 t 6 T

F(ηt)
2
�

6 cνρ0
(F2) + cTνρ0

(F,−N2L F) .

Using the bounds (3.16) and (3.17), the domination assumption and the Monotone Convergence The-
orem, under the same assumption of Lemma 3.2 one obtains

Eω,µN

�

sup
0 6 t 6 T

h 1

N d

∑

x∈C (ω)

ηt(x)
kH(x/N)

i2�

6 c(k,ρ0)
h

‖H‖2L1(νN
ω )
+ ‖H‖2L2(νN

ω )

i

. (3.19)

Using afterwards the Markov inequality, one concludes that

Pω,µN

�

sup
0 6 t 6 T

1

N d

∑

x∈C (ω)

ηt(x)
kH(x/N)> A

�

6 c(k,ρ0)A
−2
h

‖H‖2L1(νN
ω )
+ ‖H‖2L2(νN

ω )

i

(3.20)

for all A> 0. The use of (3.14) or (3.20) in the rest of the discussion is completely equivalent.

Due to Lemma 3.2 and Lemma 3.1 the process {πN
t [G

λ
N]}t∈[0,T] is well defined w.r.t Eω,µN . Let us

explain why this process is a good approximation of the process {πN
t [G]}t∈[0,T]:

Lemma 3.3. Let G ∈ C∞c (R
d). Then, given δ > 0, it holds

lim
N↑∞

Pω,µN

�

sup
0 6 t 6 T

�

�πN
t [G

λ
N]−π

N
t [G]

�

�> δ
�

= 0 . (3.21)

Proof. By Lemma 3.2 we can bound the above probability by

c(ρ0)δ
−1
q

‖GλN − G‖2
L1(νN

ω )
+ ‖GλN − G‖2

L2(νN
ω )

.

At this point the thesis follows from Lemma 3.1.

Due to the above Lemma, in order to prove the tightness of {πN
t [G]}t∈[0,T] it is enough to prove the

tightness of {πN
t [G

λ
N]}t∈[0,T]. Now we can go on with the standard method based on martingales

and Aldous criterion for tightness (cf. [KL][Chapter 5]), but again we need to handle with care
our objects due to the risk of explosion. We fix a good realization ω of the conductance field. Due
to Lemma 3.1, Lemma 3.2 and the bound g(k) 6 g∗k, we conclude that the process {M N

t }0 6 t 6 T
where

M N
t (G) := πN

t (G
λ
N )−π

N
0 (G

λ
N )−

∫ t

0

1

N d

∑

x∈C (ω)

g(ηs(x))LN GλN (x/N)ds , (3.22)

is well defined Pω,µN –a.s.

Lemma 3.4. Given δ > 0,

lim
N↑∞

Pω,µN

�

sup
0 6 t 6 T

|M N
t (G)|> δ

�

= 0 . (3.23)
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Proof. Given n > 1, we define the cut–off function GλN ,n :CN (ω)→ R as GλN ,n(x) = GλN (x)I(|x |6 n).
Then GλN ,n is a local function and by the results of [A] (together with the stochastic domination
assumption) we know that

M N ,n
t (G) := πN

t (G
λ
N ,n)−π

N
0 (G

λ
N ,n)−

∫ t

0

1

N d

∑

x∈C (ω)

g(ηs(x))LN GλN ,n(x/N)ds

is an L2–martingale of quadratic variation

< M N ,n
t (G)>=

∫ t

0

N2

N2d

∑

x∈C (ω)

∑

y∈C (ω):
|x−y|=1

g(ηs(x))ω(x , y)
�

GλN ,n(y/N)− GλN ,n(x/N)
�2ds .

Note that, by the stochastic domination assumption and the bound g(k)6 g∗k,

Eω,µN
�

< M N ,n
t (G)>

�

6

g∗
∫ t

0

N2

N2d

∑

x∈C (ω)

∑

y∈C (ω):
|x−y|=1

Eω,νρ0

�

ηs(x)
�

ω(x , y)
�

GλN ,n(y/N)− GλN ,n(x/N)
�2ds

= g∗ρ0 tN−d(GλN ,n,−LN GλN ,n)νN
ω

. (3.24)

By Doob’s inequality and (3.24), we conclude that

Pω,µN

�

sup
0 6 t 6 T

|M N ,n
t (G)|> δ

�

6
c

δ2 Eω,µN
�

|M N ,n
T (G)|2

�

6

cg∗Tρ0

δ2N d
(GλN ,n,−LN GλN ,n)νN

ω
6

c′g∗Tρ0

δ2N d
. (3.25)

Above we have used that limn↑∞(GλN ,n,−LN GλN ,n)νN
ω
= (GλN ,−LN GλN )νN

ω
6 c(λ) (see Lemma 3.1).

The above process {M N ,n
t (G)}t∈[0,T] is a good approximation of {M N

t (G)}t∈[0,T] as n ↑ ∞. Indeed, it
holds

lim
n↑∞

Pω,µN

�

sup
0 6 t 6 T

|M N ,n
t (G)−M N

t (G)|> δ
�

= 0 , δ > 0 . (3.26)

Indeed, since ‖GλN ,n−GλN‖L1(νN
ω ),L

2(νN
ω )

and ‖LN GλN ,n−LN GλN‖L1(νN
ω ),L

2(νN
ω )

converge to zero as N ↑ ∞
and since g(k)6 g∗k, the above claim follows from Lemma 3.2.

At this point, (3.26) and (3.25) imply (3.23).

Let us prove the tightness of {πN
t [G

λ
N]}t∈[0,T] using Aldous criterion (cf. Proposition 1.2 and Propo-

sition 1.6 in Section 4 of [KL]):

Lemma 3.5. Given G ∈ C∞c (R
d), the sequence of processes {πN

t [G
λ
N]}t∈[0,T] is tight in D([0, T],R).
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Proof. Fix θ > 0 and uppose that τ is a stopping time w.r.t. the canonical filtration bounded by T .
With some abuse of notation we write τ+ θ for the quantity min{τ+ θ , T}. Then, given ε > 0, by
Lemmata 3.1 and 3.2,

Pω,µN
�

�

�

�

∫ τ+θ

τ

1

N d

∑

x∈C (ω)

g(ηs(x))LN GλN (x/N)ds
�

�

�> ε
�

6

Pω,µN
�

θ g∗ sup
s∈[0,T]

1

N d

∑

x∈C (ω)

ηs(x)|LN GλN (x/N)|ds > ε
�

6 C g∗θ/ε . (3.27)

In particular,

lim
γ↓0

limsup
N↑∞

sup
τ,θ∈[0,γ]

Pω,µN
�

�

�

�

∫ τ+θ

τ

1

N d

∑

x∈C (ω)

g(ηs(x))LN GλN (x/N)ds
�

�

�> ε
�

= 0 . (3.28)

An estimate similar to (3.27) implies that

lim
ε↑∞

sup
N > 1

Pω,µN
�

�

�

�

∫ t

0

1

N d

∑

x∈C (ω)

g(ηs(x))LN GλN (x/N)ds
�

�

�> ε
�

= 0 . (3.29)

Let us now come back to Lemma 3.4. Let τ,θ as above. Then

lim sup
N↑∞

Pω,µN
�

|M N
τ+θ −M N

τ |> ε
�

6 limsup
N↑∞

Pω,µN
�

sup
0 6 s 6 T

|M N
s |> ε/2

�

= 0 (3.30)

Collecting (3.28), (3.29) and (3.30), together with Lemma 3.4, we conclude that

lim
γ↓0

limsup
N↑∞

sup
τ,θ∈[0,γ]

Pω,µN
�

�

�πN
τ+θ[G

λ
N]−π

N
τ [G

λ
N]
�

�> ε
�

= 0 , (3.31)

lim
ε↑∞

sup
N > 1

Pω,µN
�

|πN
t [G

λ
N]> ε

�

= 0 . (3.32)

Aldous criterion for tightness allows to derive the thesis from (3.31) and (3.32).

Let us come back to (3.22) and investigate the integral term there. The following holds:

Lemma 3.6. Let I(t) :=
∫ t

0
N−d

∑

x∈C (ω) g(ηs(x))
�

GλN (x/N)− G(x/N)
�

ds. Then, for all δ > 0,

lim
N↑∞

Pω,µN
�

sup
0 6 t 6 T

|I(t)|> δ
�

= 0 . (3.33)

Proof. Since g(k)6 g∗k and by Schwarz inequality we can bound

I(t)6 J := T g∗‖GλN − G‖1/2
L1(νN

ω )
sup

0 6 s 6 T
{N−d

∑

x∈C (ω)

ηs(x)
2
�

�GλN (x/N)− G(x/N)
�

�}1/2 .

Using the stochastic domination assumption and applying Lemma 3.2 we obtain

Pω,µN
�

sup
0 6 t 6 T

|I(t)|> δ
�

6 Pω,νρ0
(J > δ)6

(1/δ)2T2(g∗)2‖GλN − G‖L1(νN
ω )

q

‖GλN − G‖2
L1(νN

ω )
+ ‖GλN − G‖2

L2(νN
ω )

. (3.34)

The thesis now follows by applying Lemma 3.1.
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We are finally arrived at the conclusion. Indeed, due to Lemma 3.3 and Lemma 3.5 we know that the
sequence of processes {πN

t }t∈[0,T] is tight in the Skohorod space D([0, T],M ). Moreover, starting
from the identity (3.22), applying Lemma 3.4, using the identity (3.2) which equivalent to

LN GλN = λGλN − Gλ = λ(GλN − G) +∇ ·D∇G ,

and finally invoking Lemma 3.6 we conclude that, fixed a good conductance field ω, for any G ∈
C∞c (R

d) and for any δ > 0

lim
N↑∞

Pω,µN

�

sup
0 6 t 6 T

�

�

�πN
t (G)−π

N
0 (G)−

∫ t

0

1

N d

∑

x∈C (ω)

g(ηs(x))∇ ·D∇G(x/N)ds
�

�

�> δ
�

= 0 . (3.35)

Using the stochastic domination assumption it is trivial to prove that any limit point of the sequence
{πN

t }t∈[0,T] is concentrate on trajectories {πt}t∈[0,T] such that πt is absolutely continuous w.r.t.
to the Lebesgue measure. Moreover, in order to characterize the limit points as solution of the
differential equation (2.9) one would need non only (3.35). Indeed, it is necessary to prove that,
given ω good, for each function G ∈ C∞c

�

[0, T]×Rd� it holds

lim
N↑∞

Pω,µN

�

sup
0 6 t 6 T

�

�

�πN
t (Gt)−πN

0 (G0)−
∫ t

0

1

N d

∑

x∈C (ω)

g(ηs(x))∇ ·D∇Gs(x/N)ds−
∫ t

0

πN
s (∂sGs)ds

�

�

�> δ
�

= 0 , (3.36)

where Gs(x) := G(s, x). One can easily recover (3.36) from the same estimates used to get (3.35)
and suitable approximations of G which are piecewise linear in t as in the final part of Section 3 in
[GJ1]. In order to avoid heavy notation will continue the investigation of (3.35) only.

4 The Replacement Lemma

As consequence of the discussion in the previous section, in order to prove the hydrodynamical limit
stated in Theorem 2.1 we only need to control the term

∫ t

0

1

N d

∑

x∈C (ω)

g(ηs(x))∇ ·D∇G(x/N)ds . (4.1)

To this aim we first introduce some notation. Given a family of parameters α1,α2, . . . ,αn, we will
write

lim sup
α1→a1,α2→a2,...,αn→an

instead of
limsup
αn→an

lim sup
αn−1→an−1

· · · limsup
α1→a1

.

Below, given x ∈ Zd and k ∈ N, we write Λx ,k for the box

Λx ,k := x + [−k, k]d ∩Zd ,
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and we write ηk(x) for the density

ηk(x) :=
1

(2k+ 1)d
∑

y∈Λx ,k∩C (ω)

η(y) .

If x = 0 we simply write Λk instead of Λ0,k.

Then, we claim that for Q–a.a. ω, given G ∈ Cc(Rd), δ > 0 and a sequence µN of probability
measures on NC (ω) stochastically dominated by some νρ0

and such that H(µN |νρ∗)6 C0N d , it holds

limsup
N↑∞,ε↓0

Pω,µN

�
�

�

�

∫ t

0

1

N d

∑

x∈C (ω)

g
�

ηs(x)
�

G(x/N)ds−

∫ t

0

m

N d

∑

x∈Zd

φ
�

ηεNs (x)/m
�

G(x/N)ds
�

�

�> δ
�

= 0 . (4.2)

Let us first assume the above claim and explain how to conclude, supposing for simplicity of notation
that εN ∈ N.

Given u ∈ Rd and ε > 0, define ιu,ε := (2ε)−dI{u ∈ [−ε,ε]d}. Then the integral πN�ιx/N ,ε
�

, x ∈ Zd ,
can be written as

πN�ιx/N ,ε
�

=
(2εN + 1)d

(2εN)d
ηεN (x) . (4.3)

Let us define
∫ t

0

m

N d

∑

x∈Zd

φ(πN
s [ιx/N ,ε/m])∇ ·D∇G(x/N)ds . (4.4)

Then, due to (4.3) and since φ is Lipschitz with constant g∗, we can estimate from above the
difference between (4.4) and the second integral term in (4.2) with G substituted by ∇ ·D∇G as

(2εN + 1)d − (2εN)d

(2εN)d

∫ t

0

1

N d

∑

x
ηεNs (x)

�

�∇ ·D∇G(x/N)
�

�ds (4.5)

Since the integral term in (4.5) has finite expectation w.r.t Pω,νρ0
and therefore also w.r.t. Pω,µN ,

we conclude that the above difference goes to zero in probability w.r.t. Pω,µN . At this point the
conclusion of the proof of Theorem 2.1 can be obtained by the same arguments used in [KL][pages
78,79].

Let us come back to our claim. Since
∑

x∈C (ω)

g(ηs(x))G(x/N) =
∑

x∈Zd

g(ηs(x))I(x ∈ C (ω))G(x/N) ,

by a standard integration by parts argument and using that G ∈ C∞c (R
d) one can replace the first

integral in (4.2) by
∫ t

0

1

N d

∑

x∈Zd

h 1

(2`+ 1)d
∑

y:y∈Λx ,`∩C (ω)

g
�

ηs(y)
�

i

G(x/N) .

Then the claim (4.2) follows from
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Lemma 4.1. (Replacement Lemma) For Q–a.a. ω, given δ > 0, M ∈ N and given a sequence of prob-
ability measures µN on NC (ω) stochastically dominated by some νρ0

and such that H(µN |νρ∗)6 C0N d ,
it holds

limsup
N↑∞,ε↓0

Pω,µN

h

∫ t

0

1

N d

∑

x∈ΛMN

VεN (τxηs,τxω)ds > δ
i

= 0 , (4.6)

where

V`(η,ω) =
�

�

�

1

(2`+ 1)d
∑

y:y∈Λ`∩C (ω)

g
�

η(y)
�

−mφ
�

η`(0)/m
�

�

�

� .

Let us define ΥC0,N as the set of measurable functions f : NC (ω) → [0,∞) such that i) νρ∗( f ) = 1,

(ii) D( f ) := νρ∗(
p

f ,−L
p

f )6 C0N d−2 and (iii) f dνρ∗ is stochastically dominated by νρ0
(shortly,

f dνρ∗ ≺ dνρ0
). Using the assumption H(µN |νρ∗) 6 C0N d and entropy production arguments as in

[KL][Chapter 5], in order to prove the Replacement Lemma it is enough to show that for Q–a.a. ω,
given ρ0,ρ∗, C0, M > 0, it holds

limsup
N↑∞,ε↓0

sup
f ∈ΥC0,N

∫

1

N d

∑

x∈ΛMN

VεN (τxη,τxω) f (η)νρ∗(dη) = 0 . (4.7)

Trivially, since νρ1
stochastically dominates νρ2

if ρ1 > ρ2, it is enough to prove that, given
ρ0,ρ∗, C0, M > 0, for Q–a.a. ω (4.7) is verified. We claim that the above result follows from
the the One Block and the Two Blocks estimates:

Lemma 4.2. (One block estimate) Fix ρ0,ρ∗, C0, M > 0. Then, for Q–a.a. ω it holds

lim sup
N↑∞,`↑∞

sup
f ∈ΥC0,N

∫

1

N d

∑

x∈ΛMN

V`(τxη,τxω) f (η)νρ∗(dη) = 0 . (4.8)

Lemma 4.3. (Two blocks estimate) Fix ρ0,ρ∗, C0, M > 0. Then, for Q–a.a. ω it holds

limsup
N↑∞,ε↓0,`↑∞

sup
f ∈ΥC0,N

∫

1

N d

∑

x∈ΛMN

h 1

(2εN + 1)d
∑

y∈Λx ,εN

�

�η`(y)−ηεN (x)
�

�

i

f (η)νρ∗(dη) = 0 . (4.9)

We point out that the form of the Two Blocks Estimate is slightly weaker from the one in
[KL][Chapter 5], nevertheless it is strong enough to imply, together with the One Block Estimate,
equation (4.7). Indeed, let us define a(y) := I(y ∈ C (ω)) and

I1(η) :=
1

N d

∑

x∈ΛMN

�

�

�Avy∈Λx ,εN
g(η(y))a(y)− Avy∈Λx ,εN

Avz∈Λy,`
g(η(z))a(z)

�

�

� , (4.10)

I2(η) :=
1

N d

∑

x∈ΛMN

�

�

�Avy∈Λx ,εN

�

Avz∈Λy,`
g(η(z))a(z)−mφ(η`(y)/m)

�
�

�

� , (4.11)

I3(η) :=
1

N d

∑

x∈ΛMN

�

�

�Avy∈Λx ,εN
mφ(η`(y)/m)−mφ(ηεN (x)/m)

�

, (4.12)
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where Av denotes the standard average. Then

1

N d

∑

x∈ΛMN

VεN (τxη,τxω) =

1

N d

∑

x∈ΛMN

�

�

�Avy∈Λx ,εN
g(η(y))a(y)−mφ(ηεN (x)/m)

�

�

�6 (I1+ I2+ I3)(η) . (4.13)

Let us explain a simple bound that will be frequently used below, often without any mention. Con-
sider a family of numbers b(x), x ∈ Zd . Then, taking L,` > 0 we can write

Avx∈ΛL
b(x)− Avx∈ΛL

Avu∈Λx ,`
b(u) =

1

|ΛL|

∑

x∈ΛL+`

b(x)
�

I(x ∈ ΛL)−
1

|Λ`|
]{u ∈ ΛL : |x − u|∞ 6 `}

�

.

In particular, it holds

�

�Avx∈ΛL
b(x)− Avx∈ΛL

Avu∈Λx ,`
b(u)

�

�6
1

|ΛL|

∑

x∈ΛL+`\ΛL−`

|b(x)| . (4.14)

Due to the above bound we conclude that

I1(η)6
g∗

N d(2εN + 1)d
∑

x∈ΛMN

∑

u∈Λx ,εN+`\Λx ,εN−`

η(u)a(u) .

In particular, using that f dνρ∗ ≺ dνρ0
, we conclude that

∫

I1(η) f (η)νρ∗(dη) 6 c`/(εN) . The sec-
ond term I2(η) can be estimated for ε 6 1 as

I2(η)6
1

N d

∑

x∈ΛMN

Avy∈Λx ,εN
V`(τzη,τzω)6

1

N d

∑

x∈Λ(M+1)N

V`(τxη,τxω) .

Due to the One block estimate one gets that

lim sup
N↑∞,ε↓0,`↑∞

sup
f ∈ΥC0,N

∫

I2(η) f (η)νρ∗(dη) = 0 .

The same result holds also for I3(η) due to the Lipschitz property of φ and the Two Blocks estimate.
The above observations together with (4.13) imply (4.7).

5 Proof of the Two Blocks Estimate

For simplicity of notation we set `∗ = (2`+ 1)d and we take M = 1 (the general case can be treated
similarly). Moreover, given ∆ ⊂ Zd , we write N (∆) for the number of particles in the region ∆,
namely N (∆) :=

∑

x∈∆∩C (ω)η(x).
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Let us set

A(η) :=
1

N d

∑

x∈ΛN

Avy∈Λx ,εN

�

�η`(y)−ηεN (x)
�

� , (5.1)

B(η) :=
1

N d

∑

x∈ΛN

Avy∈Λx ,εN
Avz∈Λx ,εN

�

�η`(y)−η`(z)
�

� , (5.2)

C(η) :=
1

N d |ΛεN |

∑

x∈ΛN

Avy∈Λx ,εN

∑

z∈Λx ,εN :
|z−y|∞ > 2`

�

�η`(y)−η`(z)
�

� . (5.3)

Since due to (4.14)

ηεN (x) = Avz∈Λx ,εN
η`(z) + E , |E |6 c|ΛεN |−1

∑

u∈Λx ,εN+`\Λx ,εN−`

η(u) ,

using that f dνρ∗ ≺ dνρ0
, in order to prove the Two Blocks estimate we only need to show that

limsup
N↑∞,ε↓0,`↑∞

sup
f ∈ΥC0,N

∫

B(η) f (η)νρ∗(dη) = 0 .

Since

B(η)6 C(η) +
1

N d |ΛεN |

∑

x∈ΛN

Avy∈Λx ,εN

∑

z∈Λx ,εN :
|z−y|∞ 6 2`

�

η`(y) +η`(z)
�

,

using again that f dνρ∗ ≺ dνρ0
, in order to prove the Two Blocks Estimate we only need to show

that

limsup
N↑∞,ε↓0,`↑∞

sup
f ∈ΥC0,N
∫

1

N d(εN)2d`d

∑

x∈ΛN

∑

y∈Λx ,εN

∑

z∈Λx ,εN :
|z−y|∞ > 2`

�

�N (Λy,`)−N (Λz,`)
�

� f (η)νρ∗(dη) = 0 . (5.4)

Let us now make an observation that will be frequently used below. Let X ⊂ Zd be a subset possibly
depending onω and on some parameters (for simplicity, we consider a real–value parameter L ∈ N).
Suppose that for Q–a.a. ω it holds

lim sup
N↑∞,L↑∞

|X ∩ΛN |
N d

= 0 .

Then, in order to prove (5.4) we only need to show that

limsup
N↑∞,ε↓0,`↑∞,L↑∞

sup
f ∈ΥC0,N

∫

1

N d(εN)2d`d

∑

x∈ΛN

∑

y∈Λx ,εN

∑

z∈Λx ,εN :
|z−y|∞ > 2`

�

�N (Λy,` \ X )−N (Λz,` \ X )
�

� f (η)νρ∗(dη) = 0 . (5.5)
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We know that there exists α0 > 0 such that for each α ∈ (0,α0] the random field ω̂α defined in (2.1)
is a supercritical Bernoulli bond percolation. Let us write Cα(ω) for the associated infinite cluster.
By ergodicity,

lim sup
N↑∞,α↓0

|(C \Cα)∩ΛN |/|ΛN |= lim
α↓0

Q(0 ∈ C \Cα) = 0 . (5.6)

Hence, due to the above considerations, (5.4) is proven if we show that, for each α ∈ (0,α0], it
holds (5.4) with C replaced by Cα. Moreover, since f dνρ∗ ≺ νρ0

, using Chebyshev inequality it is
simple to prove that

limsup
N↑∞,ε↓0,`↑∞,A↑∞

∫

1

N d(εN)2d

∑

x∈ΛN

∑

y∈Λx ,εN

∑

z∈Λx ,εN :
|z−y|∞ > 2`

I(N (Λy,` ∪Λz,`)> A`d
∗ ) f (η)νρ∗(dη) = 0 .

At this point, we only need to prove the following: Fixed α ∈ (0,α0] and A > 0, for Q–a.a. ω it
holds

limsup
N↑∞,ε↓0,`↑∞

sup
f ∈Υ∗C0,N

∫

1

N d(εN)2d`d

∑

x∈ΛN

∑

y∈Λx ,εN

∑

z∈Λx ,εN :
|z−y|∞ > 2`

�

�N (Cα ∩Λy,`)−N (Cα ∩Λz,`)
�

�I(N (Λy,` ∪Λz,`)6 A`d
∗ ) f (η)νρ∗(dη) = 0 , (5.7)

where Υ∗C0,N is the family of measurable functions f : NC (ω) → [0,∞) such that νρ∗( f ) = 1 and

D( f )6 C0N d−2.

We now use the results of [AP] about the chemical distance in the supercritical Bernoulli bond
percolation ω̂α, for some fixed α ∈ (0,α0]. We fix a positive integer K (this corresponds to the
parameter N in [AP], which is fixed large enough once for all). Given a ∈ Zd and s > 0, we set
∆a,s := Λ(2K+1)a,s. As in [AP], we call ω̂α the microscopic random field. The macroscopic one

σ = {σ(a) : a ∈ Zd} ∈ {0, 1}Z
d

is defined in [AP] stating that σ(a) = 1 if and only if the microscopic
field ω̂α satisfies certain geometric properties inside the box ∆a,5K/4. These properties are described
on page 1038 in [AP], but their content is not relevant here, hence we do not recall them. What
is relevant for us is that there exists a function p̄ : N → [0,1) with limK↑∞ p̄(K) = 1, such that
σ stochastically dominates a Bernoulli site percolation of parameter p̄(K) (see Proposition 2.1 in
[AP]). Below we denote by Pp̄(K) the law of this last random field, taking K large enough such that
p̄(K) is supercritical. As in [AP] we call a point a ∈ Zd white or black if σ(a) = 1 or 0 respectively,
and we write in boldface the sites referred to the macroscopic field. Recall that a subset of Zd is
∗–connected if it is connected with respect to the adjacency relation

x
∗∼ y⇔|x − y|∞ = 1 .

C ∗ is defined as the set of all ∗–connected macroscopic black clusters. Given a ∈ Zd , C∗a denotes the
element of C ∗ containing a (with the convention that C∗a = ; if a is white), while C̄∗a is defined as
C̄∗a = C∗a ∪ ∂

outC∗a. We recall that, given a finite subset Λ⊂ Zd , its outer boundary is defined as

∂ outΛ :=
�

x ∈ Λc : ∃y ∈ Λ, {x , y} ∈ Ed
	

.
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We use the convention that ∂ outC∗a = {a} for a white site a ∈ Zd . Hence, for a white it holds
C̄∗a = {a}.

Let us recall the first part of Proposition 3.1 in [AP]. To this aim, given x , y ∈ Zd , we write a(x)
and a(y) for the unique sites in Zd such that x ∈∆a,K and y ∈∆a,K . We set n := |a(x)−a(y)|1 and
choose a macroscopic path Ax ,y = (a0,a1, . . . ,an) with a0 = a(x) and an = a(y) (in particular, we
require that |ai − ai+1|∞ = 1). We build the path Ax ,y in the following way: we start in a(x), then
we move by unitary steps along the line a(x)+Ze1 until reaching the point a′ having the same first
coordinate as a(y), then we move by unitary steps along the line a′ +Ze2 until reaching the point
having the same first two coordinates as a(y) and so on. Then, Proposition 3.1 in [AP] implies (for
K large enough, as we assume) that given any points x , y ∈ Cα there exists a path γx ,y joining x to
y inside Cα such that γx ,y is contained in

Wx ,y := ∪a∈Ax ,y

�

∪w∈C̄∗a
∆w,5K/4

�

. (5.8)

These are the main results of [AP] that we will use below. Note that, since the sets C̄∗a can be
arbitrarily large, the information that γx ,y ⊂Wx ,y is not strong enough to allow to repeat the usual
arguments in order to prove the Moving Particle Lemma, and therefore the Two Blocks Estimate.
Hence, one needs some new ideas, that now we present.

First, we isolate a set of bad points as follows. We fix a parameter L > 0 and we define the subsets
B(L), B(L)⊂ Zd as

B(L) := {a ∈ Zd : |C∗a|> L} , (5.9)

B(L) := ∪a∈B(L)∆a,10K . (5.10)

Lemma 5.1. Given α in (0,α0], for Q–a.a. ω it holds

lim sup
N↑∞,L↑∞

|B(L)∩ΛN |
|ΛN |

= 0 . (5.11)

Proof. Since |B(L) ∩ ΛN | 6 c(K)|B(L) ∩ ΛN |, we only need to prove the thesis with B(L) replaced
by B(L). We introduce the nondecreasing function ρL : N→ [0,∞) defined as ρL(n) := I(n > L)n.
Then we can bound

|B(L)∩ΛN |6
∑

C∗∈C ∗:
C∗∩ΛN 6=;

ρL(C
∗) .

Since σ stochastically dominates the Bernoulli site percolation with law Pp̄(K) and due to Lemma
2.3 in [DP], we conclude that

Q(|B(L)∩ΛN |> a|ΛN |)6 Q
�
∑

C∗∈C ∗:
C∩ΛN 6=;

ρL(C
∗)> a|ΛN |

�

6

Pp̄(K)

�
∑

C∗∈C ∗:
C∩ΛN 6=;

ρL(C
∗)> a|ΛN |

�

6 P
�
∑

a∈ΛN

ρL(C̃
∗
a)> a|ΛN |

�

, (5.12)
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where the random variables C̃∗a (called pre–clusters) are i.i.d. and have the same law of C∗0 under
Pp̄(K). Their construction is due to Fontes and Newman [FN1], [FN2]. Due to formula (4.47) of
[AP], EPp̄(K)

(|C∗0|) is finite for K large, in particular

lim
L↑∞

E(ρL(C̃
∗
0)) = 0 . (5.13)

By applying Cramér’s theorem, we deduce that

P
�
∑

a∈ΛN

ρL(C̃
∗
a)> 2E(ρL(C̃

∗
0))|ΛN |

�

6 e−c(L)N d
,

for some positive constant c(L) and for all N > 1. Hence, due to (5.12) and Borel–Cantelli lemma,
we can conclude that for Q–a.a. ω it holds

|B(L)∩ΛN |/|ΛN |6 2E(ρL(C̃
∗
0)) , ∀N > N0(L,ω) .

At this point, the thesis follows from (5.13).

At this point, due to the arguments leading to (5.5), we only need to prove the following: given
α ∈ (0,α0] and A> 0, for Q–a.a. ω it holds

limsup
N↑∞,ε↓0,`↑∞,L↑∞

sup
f ∈Υ∗C0,N

∫

1

N d(εN)2d`d

∑

x∈ΛN

∑

y∈Λx ,εN

∑

z∈Λx ,εN :
|z−y|∞ > 2`

�

�N (Γy,`,α)−N (Γz,`,α)
�

�I(N (Γy,`,α ∪Γz,`,α)6 A`d
∗ ) f (η)νρ∗(dη) = 0 (5.14)

where
Γu,`,α =

�

Λu,` ∩Cα
�

\ B(L) , u ∈ Zd . (5.15)

Above we have used also that

I(N (Λy,` ∪Λz,`)6 A`d
∗ )6 I(N (Γy,`,α ∪Γz,`,α)6 A`d

∗ ) .

Note that in the integral of (5.14), the function f multiplies anFN –measurable function, whereFN
is the σ–algebra generated by the random variables {η(x) : x ∈ GN} and GN is the set of good points
define as

GN := (ΛN+1 ∩Cα) \ B(L) . (5.16)

Since D(·) is a convex functional (see Corollary 10.3 in Appendix 1 of [KL]), it must be

D(νρ∗( f |FN ))6 D( f )6 C0N d−2 .

Hence, by taking the conditional expectation w.r.t. FN in (5.14), we conclude that we only need
to prove (5.14) by substituting Υ∗C0,N with Υ]C0,N defined as the family of FN –measurable functions

f : NC (ω)→ [0,∞) such that ν( f ) = 1 and D( f )6 C0N d−2.

Recall the definition of the function ϕ(·) given before (2.4). By the change of variable η→ η− δx
one easily proves the identity

νρ∗

h

g(ηx)
�

p

f (ηx ,y)−
p

f (η)
�2
i

= ϕ(ρ∗)νρ∗
h

�

p

f (ηx ,+)−
p

f (ηy,+)
�2
i

, (5.17)
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where in general ηz,+ denotes the configuration obtained from η by adding a particle at site z, i.e.
ηz,+ = η+δz . Let us write ∇x ,y for the operator

∇x ,yh(η) := h(ηx ,+)− h(ηy,+) .

We can finally state our weak version of the Moving Particle Lemma:

Lemma 5.2. For Q–a.a. ω the following holds. Fixed α ∈ (0,α0] and L > 0, there exists a positive
constant κ= κ(L,α) such that

ε−2ϕ(ρ∗)

N d(εN)2d`2d
∗

∑

x∈ΛN

∑

y∈Λx ,εN

∑

z∈Λx ,εN :
|z−y|∞ > 2`

∑

u∈Γy,`,α

∑

v∈Γz,`,α

νρ∗
�

(∇u,v

p

f )2
�

6 N2−dD( f )/κ6 C0/κ , (5.18)

for any function f ∈Υ]C0,N and for any N ,`, C0.

Proof. Recall the definition of the path γx ,y given for x , y ∈ Cα in the discussion before (5.8). Given

a bond b non intersecting GN , since f is FN –measurable it holds ∇b

p

f = 0. Using this simple
observation, by a standard telescoping argument together with Schwarz inequality, we obtain that

νρ∗
�

(∇u,v

p

f )2
�

6
n

n−1
∑

i=0

I({ui , ui+1} ∩ GN 6= ;)
o

·
n

n−1
∑

i=0

νρ∗
�

(∇ui ,ui+1

p

f )2
�

o

, (5.19)

where the path γu,v is written as (u= u0, u1, . . . , un = v). Recall that if νρ∗
�

(∇ui ,ui+1

p

f )2
�

6= 0 then
the set {ui , ui+1} must intersect the set of good points GN defined in (5.16).

If b is a bond of γu,v , then b must be contained in the set Wu,v defined in (5.8). In particular,
there exists a ∈ Au,v and w ∈ C̄∗a such that b is contained in ∆w,5K/4. Denoting d∞(·, ·) the distance
between subsets of Zd induced by the uniform norm | · |∞, we can write

d∞(b, (2K + 1)w)6 5K/4 . (5.20)

We claim that, if b intersects GN , then |C∗a| 6 L. If a is white then |C∗a| = 1 and the claim is trivally
true. Let us suppose that a is black and that |C∗a| > L. By definition of C̄∗a, there exists some point
a′ ∈ C∗a such that |w− a′|∞ 6 1, i.e.

d∞
�

(2K + 1)w, (2K + 1)a′
�

6 2K + 1 . (5.21)

Due to (5.20) and (5.21) we conclude that b ⊂∆a′,10K = Λ(2K+1)a′,10K . On the other hand, C∗a′ = C∗a
and by definition of the set of bad points we get that ∆a′,10K ⊂ B(L). The above observations
imply that b ⊂ B(L) in contradiction with the fact that b intersects the set of good points GN . This
concludes the proof of our claim: |C∗a|6 L.

We define |γu,v|∗ :=
∑n−1

i=0 I({ui , ui+1} ∩ GN 6= ;). We claim that for almost all conductance field ω
there exists a constant c(K , L) depending only on K and L such that, for all (x , y, z, u, v) as in (5.18),
|γu,v|∗ 6 cεN . Indeed, by the above claim, we get that

|γu,v|∗ 6 |Λ5K/4|
∑

a∈Au,v

|C̄∗a |I(|C
∗
a|6 L)6 c(d)L|Λ5K/4| |Au,v|6 C(K , L)εN .
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Given a bond b ∈ Ed let us estimate the cardinality of the set X(b), given by the strings (x , y, z, u, v)
with x , y, z, u, v as in the l.h.s. of (5.18), such that b is a bond of the path γu,v and b intersects
GN . Up to now we know that there exist w,a such that b intersects ∆w,5K/4, a ∈ Au,v , w ∈ C̄∗a and
|C∗a|6 L. In particular, it must be

d∞(b, (2K + 1)Au,v)6

d∞(b, (2K + 1)w) + (2K + 1)d∞(w,Ca) + (2K + 1)diam(C∗a)6

5K/4+ (2K + 1)(1+ L) . (5.22)

Hence, if (x , y, z, u, v) ∈ X(b), then the distance between b and (2K + 1)Au,v is bounded by some
constant depending only on K and L. Note that the macroscopic path Au,v has length bounded by
cεN/K . Let us consider now the set Y(b) of macroscopic path (a0,a1, . . . ,ak) such that

k 6 cεN/K , (5.23)

d∞
�

b, (2K + 1)
�

a0,a1, . . . ,ak
	�

6 5K/4+ (2K + 1)(1+ L) . (5.24)

By the same computations used in the proof of the standard Moving Particle Lemma, one easily
obtains that |Y(b)| 6 c(K , L)(εN)d+1. Fixed a macroscopic path in Y(b) there are at most c(K)
ways to choose microscopic points u, v such that the macroscopic path equals Au,v . Fixed also u and
v, we have at most `2d

∗ ways to choose (y, z) as in (5.18). Fixed (y, z) we have at most c(εN)d ways
to choose x as in (5.18). Hence |X(b)| 6 c(K , L)(εN)2d+1`2d

∗ . Finally, recall that the length of γu,v
is bounded by cεN . Since moreover all paths γu,v are in Cα, from the above observations and from
(5.17) we derive that

l.h.s. o f (5.18) 6
(cεN)ε−2ϕ(ρ∗)

N d(εN)2d`2d
∗

∑

b∈Ed

|X(b)|νρ∗((∇b

p

f )2)6

c(K , L)(εN)2d+2ε−2`2d
∗

N d(εN)2d`2d
∗ α

D( f )6 C(K , L,α)N2−dD( f )6 C(K , L,α)C0 . (5.25)

Since α is fixed, we will stress only the dependence of the constant κ(L,α) in Lemma 5.2 on L
writing simply κ(L). We introduce the function

Z (η) :=
1

N d(εN)2d

∑

x∈ΛN

∑

y∈Λx ,εN

∑

z∈Λx ,εN :
|z−y|∞ > 2`

�

�

�

N (Γy,`,α)

`d
∗

−
N (Γz,`,α)

`d
∗

�

�

�I(N (Γy,`,α ∪Γz,`,α)6 A`d
∗ ) .

Recall that we need to prove (5.14) where Υ∗C0,N is substituted by the family Υ]C0,N defined before

(5.17). Due to the above Lemma, we can substitute Υ]C0,N with the family Υ\C0/κ(L),N
of measurable
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functions f : NC (ω) → [0,∞) such that ν( f ) = 1 and such that the l.h.s. of (5.18) is bounded by
C0/κ(L). Namely, we need to prove that, given α ∈ (0,α0] and A> 0, for Q–a.a. ω it holds

lim sup
N↑∞,ε↓0,`↑∞,L↑∞

sup
f ∈Υ\C0/κ(L),N

νρ∗
�

Z (η) f (η)
�

= 0 . (5.26)

Since by Lemma 5.2

sup
f ∈Υ\C0/κ(L),N

νρ∗(
p

f ,−
ε−2κ(L)

N d(εN)2d`2d
∗

∑

x∈ΛN

∑

y∈Λx ,εN

∑

z∈Λx ,εN :
|z−y|∞ > 2`

∑

u∈Γy,`,α

∑

v∈Γz,`,α

∇u,v

p

f )6 C ,

we only need to prove that, given α ∈ (0,α0] and A,γ > 0, for Q–a.a. ω it holds

limsup
N↑∞,ε↓0,`↑∞,L↑∞

sup specL2(νρ∗ )

n

Z (η) +
γκ(L)

ε2`2d

∑

u∈Γy,`,α

∑

v∈Γz,`,α

∇u,v

io

6 0 , (5.27)

where sup specL2(νρ∗ )
(·) denotes the supremum of the spectrum in L2(νρ∗) of the given operator.

Now we use the subadditivity property

sup specL2(νρ∗ )
(
∑

i

X i)6
∑

i

sup specL2(νρ∗ )
(X i)

to bound the l.h.s. of (5.27) by

limsup
N↑∞,ε↓0,`↑∞,L↑∞

1

N d(εN)2d

∑

x∈ΛN

∑

y∈Λx ,εN

∑

z∈Λx ,εN :
|z−y|∞ > 2`

sup specL2(νρ∗ )

n
�

�

�

N (Γy,`,α)

`d
∗

−
N (Γz,`,α)

`d
∗

�

�

�·

I(N (Γy,`,α ∪Γz,`,α)6 A`d
∗ ) +

γκ(L)

ε2`2d
∗

∑

u∈Γy,`,α

∑

v∈Γz,`,α

∇u,v

o

. (5.28)

We observe that the operator inside the {·}–brackets depends only on η restricted to Γy,z := Γy,`,α ∪
Γz,`,α. By calling νk,y,z the canonical measure on Sk,y,z := {η ∈ NΓy,z : N (Γy,z) = k} obtained by
conditioning the marginal of νρ∗ on NΓy,z to the event {N (Γy,z) = k}, we can bound (5.28) by

lim sup
N↑∞,ε↓0,`↑∞,L↑∞

1

N d(εN)2d

∑

x∈ΛN

∑

y∈Λx ,εN

∑

z∈Λx ,εN :
|z−y|∞ > 2`∗

sup
k∈{0,1,...,A`d

∗ }

sup specL2(νk,y,z)

n
�

�

�

N (Γy,`,α)

`d
∗

−
N (Γz,`,α)

`d
∗

�

�

�+
γκ(L)

ε2`2d
∗

∑

u∈Γy,`,α

∑

v∈Γz,`,α

∇u,v

o

. (5.29)

Given integers k, n1, n2 ∈ N, define for j = 1, 2 the set Γ j := {1,2, . . . , n j}, with the convention that
Γ j = ; if n j = 0. Then define the space

Sk,n1,n2
:= {(ζ1,ζ2) ∈ NΓ1 ×NΓ2 :

∑

a1∈Γ1

ζ1(a1) +
∑

a2∈Γ2

ζ2(a2) = k}

282



and set N (ζi) =
∑

ai∈Γi
ζi(ai). Finally, call νk,n1,n2

the probability measure on Sk,n1,n2
obtained by

first taking the product measure on NΓ1 ×NΓ2 with the same marginals as νρ∗ , and afterwards by
conditioning this product measure to the event that the total number of particles is k. Finally, define

F(k, n1, n2,ε,`, L) := sup specL2(νk,n1,n2
)

n

`−d
∗

�

�N (ζ1)−N (ζ2)
�

�+
γκ(L)

ε2`2d
∗

∑

u∈Γ1

∑

v∈Γ2

∇u,v

o

. (5.30)

Note that the operator γκ(L)`−2d
∗
∑

u∈Γ1

∑

v∈Γ2
∇u,v is the Markov generator of a process on Sk,n1,n2

such that the measure νk,n1,n2
is reversible and ergodic. In particular, 0 is a simple eigenvalue for

this process. Fixed `, we will vary the triple (k, n1, n2) in a finite set, more precisely we will take
n1, n2 6 `d

∗ and 0 6 k 6 A`d
∗ . Then, applying Perturbation Theory (see Corollary 1.2 in Appendix

3.1 of [KL]), we conclude that

limsup
ε↓0

sup
k,n1,n2

�

�

�F(k, n1, n2,ε,`, L)− G(k,`, n1, n2)
�

�

�= 0 (5.31)

where
G(k,`, n1, n2) = νk,n1,n2

�

`−d
∗

�

�N (ζ1)−N (ζ2)
�

�

�

. (5.32)

The above result implies that in order to prove that (5.29) is nonnegative we only need to show that

lim sup
N↑∞,ε↓0,`↑∞,L↑∞

1

N d(εN)2d

∑

x∈ΛN

∑

y∈Λx ,εN

∑

z∈Λx ,εN

sup
k∈{0,1,...,A`d

∗ }
G(k,`, ny , nz) 6 0 , (5.33)

where
ny = |Γy,`,α| , nz = |Γz,`,α| .

Lemma 5.3. Given δ > 0, for Q–a.a. ω it holds

limsup
N↑∞,ε↓0,`↑∞,L↑∞

1

N d(εN)2d

∑

x∈ΛN

∑

y∈Λx ,εN

∑

z∈Λx ,εN

I
�

|ny/`
d
∗ −mα|> δ or |nz/`

d
∗ −mα|> δ

�

= 0 , (5.34)

where mα =Q(0 ∈ Cα).

Proof. Recall definition (5.15) and set Ny = |Cα ∩Λy,`|, Nz = |Cα ∩Λz,`|. Then

1

N d(εN)2d

∑

x∈ΛN

∑

y∈Λx ,εN

∑

z∈Λx ,εN

I
�

|ny − Ny |> δ`d
∗
�

6

c

N d(εN)d
∑

x∈ΛN

∑

y∈Λx ,εN

I(|B(L)∩Λy,`|> δ`d
∗ )6

c

δN d(εN)d`d
∗

∑

x∈ΛN

∑

y∈Λx ,εN

|B(L)∩Λy,`|6
C

δN d
|B(L)∩ΛN+εN | .
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Due to the above bound, the same bound for nz and Nz , Lemma 5.1 and finally a δ/2–argument,
we conclude that it is enough to prove (5.34) substituting ny and nz with Ny and Nz respectively.
Moreover, due to ergodicity, for Q–a.a. ω it holds

limsup
N↑∞,ε↓0,`↑∞

1

N d(εN)d
∑

x∈ΛN

∑

y∈Λx ,εN

I
�

|Ny/`
d
∗ −mα|> δ

�

6 c lim sup
N↑∞,`↑∞

1

N d

∑

y∈Λ2N

I
�

|Ny/`
d
∗ −mα|> δ

�

= c lim sup
`↑∞

Q
�

|Ny/`
d
∗ −mα|> δ

�

= 0 . (5.35)

A similar bound can be obtained for z instead of y , thus implying (5.34).

Since G(k,`, n1, n2)6 A and since

G(k,`, n1, n2)6 νk,n1,n2

�
�

�

�

N (ζ1)

`d
∗
−

k

n1+ n2

n1

`d
∗

�

�

�

�

+

νk,n1,n2

�
�

�

�

N (ζ2)

`d
∗
−

k

n1+ n2

n2

`d
∗

�

�

�

�

+ A
|n1− n2|
n1+ n2

, (5.36)

by the above Lemma in order to prove (5.33) we only need to prove for j = 1, 2 that

lim sup
`↑∞,δ↓0

sup
(k,n1,n2)∈I

νk,n1,n2

�
�

�

�

N (ζ j)

`d
∗
−

k

ny + n2

n j

`d
∗

�

�

�

�

= 0 , (5.37)

where

I =
n

(k, n1, n2) ∈ N3 :

k

`d
∗

6 A ,
n1

`d
∗
∈ [mα−δ, (mα+δ)∧ 1] ,

n2

`d
∗
∈ [mα−δ, (mα+δ)∧ 1]

o

. (5.38)

At this point (5.33) derives from the local central limit theorem as in in [KL][page 89, Step 6].

6 Proof of the One Block Estimate

We use here several arguments developed in the previous section. In order to avoid repetitions, we
will only sketch the proof. As before, for simplicity of notation we take M = 1.

Let us define mα :=Q(0 ∈ Cα). Note that m= limα↓0 mα. Setting a = η`(y), b =N (Cα ∩Λy,`)/`d
∗ ,

since φ is Lipschitz we can bound

�

�

�mφ(
a

m
)−mαφ(

b

mα
)
�

�

�6 |m−mα|φ(
a

m
) +mα|φ(

a

m
)−φ(

b

m
)
�

�+mα|φ(
b

m
)−φ(

b

mα
)
�

�6

|m−mα|
m

g∗a+ g∗
mα
m
|a− b|+ g∗bmα

�

�

1

m
−

1

mα

�

�6

|m−mα|
m

g∗η`(y) + g∗
mα
m`d
∗
N (Λy,` \Cα) + g∗N (Cα ∩Λy,`)`

−d
∗ mα

�

�

1

m
−

1

mα

�

�=: G (η,ω) .
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Note that G (η) is increasing in η. Hence, using that f (η)νρ∗(dη) ≺ f (η)νρ0
(dη), we easily obtain

that

limsup
N↑∞,`↑∞,α↓0

sup
f ∈ΥC0,N

∫

1

N d

∑

x∈ΛN

G (τxη,τxω) f (η)νρ∗(dη) = 0 . (6.1)

Due to the above result and reasoning as in the derivation of (5.14) where Υ∗C0,N can be replaced

by Υ]C0,N (see the discussion after (5.14)), we only need to prove that given C0 > 0, A > 0 and
α ∈ (0,α0], for Q–a.a. ω it holds

lim sup
N↑∞,`↑∞,L↑∞

sup
f ∈Υ]C0,N

∫

Avx∈ΛN

�

�

�`−d
∗

∑

y∈Γx ,`,α

g(η(y))−mαφ
�

N (Γx ,`,α)/mα`
d
∗
�

�

�

�I
�

N (Γx ,`,α)6 A`d
∗
�

f (η)νρ∗(η) = 0 .

(6.2)

At this point by the same arguments of Lemma 5.2, one can prove that

Lemma 6.1. For Q–a.a. ω the following holds. Fixed α ∈ (0,α0] and L > 0, there exists a positive
constant κ= κ(α, L) such that

ϕ(ρ∗)N
2`−2d−2
∗ Avx∈ΛN

∑

u∈Γx ,`,α

∑

v∈Γx ,`,α

νρ∗
�

(∇u,v

p

f )2
�

6 N−d+2D( f )/κ 6 C0/κ , (6.3)

for any function f ∈Υ]C0,N and for any N ,`, C0.

Due to the above lemma, as in the derivation of (5.27) we only need to prove that given α ∈ (0,α0],
A,γ > 0, for Q–a.a. ω it holds:

lim sup
N↑∞,`↑∞,L↑∞

sup specL2(νρ∗ )

n

Avx∈ΛN

�

�

�`−d
∗

∑

y∈Γx ,`,α

g(η(y))−mαφ
�

N (Γx ,`,α)/mα`
d
∗
�

�

�

�I
�

N (Γx ,`,α)6 A`d
∗
�

+
γκ(L)N2

`2d+2

∑

u∈Γx ,`,α

∑

v∈Γx ,`,α

∇u,v

io

6 0 . (6.4)

Using subadditivity as in the derivation of (5.28) we can bound the above l.h.s. by

lim sup
N↑∞,`↑∞,L↑∞

Avx∈ΛN
sup specL2(νρ∗ )

n
�

�

�`−d
∗

∑

y∈Γx ,`,α

g(η(y))−mαφ
�

N (Γx ,`,α)/mα`
d
∗
�

�

�

�I
�

N (Γx ,`,α)6 A`d
∗
�

+
γκ(L)N2

`2d+2

∑

u∈Γx ,`,α

∑

v∈Γx ,`,α

∇u,v

io

. (6.5)
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Again by conditioning on the number of particles in Γx ,`,α and afterwards applying perturbation
theory (see (5.29), (5.31) and (5.33)), one only needs to show that

limsup
N↑∞,`↑∞,L↑∞

Avx∈ΛN
sup

k∈{0,1,...,A`d
∗ }

G(k,`, nx) = 0 , (6.6)

where nx := |Γx ,α,`|, νk,n is the measure on {ζ ∈ Nn :
∑n

i=1 ζ(i) = k} obtained by taking the product
measure with the same marginals as νρ∗ and then conditioning on the event that the total number
of particles equals k, and where

G(k,`, n) := νk,n

h

�

�`−d
∗

n
∑

i=1

g(ζ(i))−mαφ(k/mα`
d
∗ )
�

�

i

.

One can prove that for Q–a.a. ω it holds

limsup
N↑∞,`↑∞,L↑∞

Avx∈ΛN
I(|nx/`

d
∗ −mα|> δ) = 0 , (6.7)

for each positive constant δ > 0. As in [KL][Chapter 5], one has that

lim
`↑∞

sup
(k,n)∈J

νk,n

h

�

�n−1
n
∑

i=1

g(ζ(i))−φ(k/n)
�

�

i

= 0 . (6.8)

where

J :=
n

(k, n) ∈ N2 :
k

`d
∗

6 A ,
n

`d
∗
∈ (mα−δ, (mα+δ)∧ 1)

o

.

At this point (6.6) follows from (6.7) and (6.8).

A Zero range process on Zd with random conductances

Recall that the enviroment ω =
�

ω(b) : b ∈ Ed
�

is given by a family of i.i.d. random variables
parameterized by the set Ed of non–orientied bonds in Zd , d > 2. We denote by Q the law of ω,
we assume that Q(ω(b) ∈ [0, c0]) = 1 and that Q(ω(b) > 0) is supercritical. We fix a function
g : N→ [0,∞) as in Subsection 2.2. Given a realization of ω, we consider the zero range process
η(t) on Zd whose Markov generator N2L acts on local functions as

N2L f (η) = N2
∑

e∈B

∑

x∈Zd

g(η(x))ω(x , x + e)
�

f (ηx ,x+e)− f (η)
�

, (A.1)

whereB = {±e1,±e2, . . . ,±ed}, e1, . . . , ed being the canonical basis of Zd . Given an admissible ini-
tial distribution µ̄N on {0, 1}Z

d
(i.e. such that the corresponding zero range process is well defined),

we denote by Pω,µ̄N the law of (ηt : t > 0). Trivially, the zero range process behaves independently
on the different clusters of the conductance field.

If Q(ω(b) > 0) = 1, then Q–a.s. the infinite cluster C (ω) coincides with Zd and the hydrodynamic
behavior of the zero range process on Zd is described by Theorem 2.1. If Q(ω(b)> 0)< 1 the bulk
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behavior of the zero range process on Zd is different due to the presence of finite clusters acting as
traps, as we now explain.

First, we observe that the finite clusters cannot be too big. Indeed, as byproduct of Borel–Cantelli
Lemma and Theorems (8.18) and (8.21) in [G], there exists a positive constant γ > 0 such that for
Q–a.a. ω the following property (P1) holds:

(P1) for each N > 1 and each finite cluster C intersecting the box [−N , N]d , the diameter of C is
bounded by γ ln(1+ N).

Lemma A.1. Suppose thatω has a unique infinite clusterC (ω) and thatω satisfies the above property
(P1). Let G ∈ Cc(Rd) and η ∈ NZd

be such that η(x) = 0 for all x ∈ C (ω). Call ∆G the support of
G and call ∆̄G the set of points z ∈ Rd having distance from ∆G at most 1. Then there exist positive
constants N0(G,γ), C(G,γ) depending only on G and γ such that the zero range process on Zd with
initial configuration η satisfies a.s. the following properties: ηt(x) = 0 for all x ∈ C (ω) and, for
N > N0(G,γ),
�

�

�N−d
∑

x∈Zd

G(x/N)η(x)− N−d
∑

x∈Zd

G(x/N)ηt(x)
�

�

�6 C(G,γ)
ln(1+ N)

N d+1

∑

x∈Zd :x/N∈∆̄G

η(x) . (A.2)

We point out that the zero range process is well defined when starting in η, indeed the dynamics
reduces to a family of independent zero range processes on the finite clusters, while the infinite
cluster C (ω) remains empty.

Proof. The fact that ηt(x) = 0 with x 6∈ C (ω) is trivial. Let us prove (A.2). Without loss of generality
we can suppose that G has support in [−1, 1]d (the general case is treated similarly). Let us write
CN

1 , CN
2 , . . . , CN

kN
for the family of finite clusters intersecting the box [−N , N]d . For each cluster CN

i

we fix a point xN
i ∈ CN

i . Since by the property (P1) each CN
i has diameter at most γ ln(1+ N), we

have
|G(x/N)− G(xN

i /N)|6 C(G)γ ln(1+ N)/N , ∀i : 1 6 i 6 kN , ∀x ∈ CN
i .

The above estimate implies that

�

�

�N−d
∑

x∈Zd

G(x/N)ηt(x)− N−d
kN
∑

i=1

G(xN
i /N)

∑

x∈CN
i

ηt(x)
�

�

�6

C(G)γN−d−1 ln(1+ N)
kN
∑

i=1

∑

x∈CN
i

ηt(x) .

Using now that the number of particles in each cluster is time–independent and that for N large
enough CN

i ⊂ [−2N , 2N] for all i = 1, . . . , kN , we get the thesis.

As a consequence of Lemma A.1, if ω has a unique infinite cluster and if ω satisfies property (P1),
then for any admissible initial configuration η0 (i.e. such that the zero range process on Zd is well
defined when starting in η0) and any G ∈ Cc(Rd), it holds

N−d
∑

x∈Zd

G(x/N)ηt(x) = N−d
∑

x∈C (ω)

G(x/N)ηt(x) + N−d
∑

x 6∈C (ω)

G(x/N)η0(x) + o(1) , (A.3)
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where |o(1)|6 C(G,γ) ln(1+N)
N d+1

∑

x∈Zd :x/N∈∆̄G
η(x). At this point, denoting by µ̄N the initial distribu-

tion of the zero range process ηt on Zd , one can derive the hydrodynamic limit of ηt if the marginals
of µ̄N on C (ω) and Zd \C (ω), respectively, are associated to suitable macroscopic profiles. In what
follows, we discuss a special case where this last property is satisfied.

We fix a smooth, bounded nonnegative function ρ0 : Rd → [0,∞) and for each N we define µ̄N as
the product probability measure on NZd

such that for all x ∈ Zd it holds

µ̄N�η(x) = k
�

= νρ0(x/N)(η(x) = k) , (A.4)

where νρ is defined as in Subsection 2.2 with the difference that now it is referred to all Zd and not
only to C (ω).

We call µN the marginal of µ̄N on C (ω): µN is a product probability measure on NC (ω) satisfying
(A.4) for all x ∈ C (ω) (note that µN depends on ω). Similarly, we call νρ,C (ω) the marginal of νρ
on C (ω). By the discussion at the end of Section 2, if the smooth profile ρ0 converges sufficiently
fast at infinity to a positive constant ρ∗, it holds

limsup
N↑∞

N−d H(µN |νρ∗,C (ω))<∞ Q–a.s. (A.5)

Theorem A.2. Suppose that the bounded smooth profile ρ0 : Rd → [0,∞) satisfies (A.5). Then for all
t > 0, G ∈ Cc(Rd) and δ > 0, for Q–a.a. ω it holds

lim
N↑∞

Pω,µ̄N

�
�

�

�N−d
∑

x∈Zd

G(x/N)ηt(x)−
∫

Rd

G(x)ρ(x , t)d x
�

�

�> δ
�

= 0 (A.6)

where, setting m=Q(0 ∈ C (ω)),

ρ(x , t) = mρ̃(x , t) + (1−m)ρ0(x) (A.7)

and ρ̃ : Rd × [0,∞)→ R is the unique weak solution of the heat equation

∂t ρ̃ =∇ · (D∇φ(ρ̃)) (A.8)

with boundary condition ρ̃0 = ρ at t = 0.

Proof. Since µ̄N is a product measure and the dynamics on different clusters is independent, the
process restricted to C (ω) has law Pω,µN . As discussed at the end of Section 2, to this last process
we can apply Theorem 2.1. Since, for Q-a.a. ω the initial distributions µN are associated to the
macroscopic profile mρ0, we conclude that for Q-a.a. ω it holds

lim
N↑∞

Pω,µ̄N

�
�

�

�N−d
∑

x∈C (ω)

G(x/N)ηt(x)−m

∫

Rd

G(x)ρ̃(x , t)d x
�

�

�> δ
�

= 0 . (A.9)

Let us now consider the evolution outside the infinite cluster. Let us write

N−d
∑

x 6∈C (ω)

G(x/N)η0(x) = N−d
∑

x∈Zd

G(x/N)η0(x)− N−d
∑

x∈C (ω)

G(x/N)η0(x) .
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We know that, when η is sampled with distribution µ̄N , the addenda in the r.h.s. converge in prob-
ability to

∫

G(x)ρ0(x) and m
∫

G(x)ρ0(d x), for Q–a.a. ω. As a consequence the l.h.s. converges in

probability to (1−m)
∫

G(x)ρ0(x) for Q–a.a. ω. In addition,

sup
N > 1

n

∫

µ̄N (dη)N−d
∑

x:x/N∈∆̄G

η(x)
o

<∞ .

The above observations and Lemma A.1 (cf. (A.3)) imply that

lim
N↑∞

Pω,µ̄N

�
�

�

�N−d
∑

x 6∈C (ω)

G(x/N)ηt(x)− (1−m)

∫

Rd

G(x)ρ0(x)d x
�

�

�> δ
�

= 0 . (A.10)

The thesis then follows from (A.9) and (A.10).
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