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Abstract

For Brownian motion in an unbounded domain we study the influence of the “far away” behavior
of the domain on the probability that the modulus of the Brownian motion is large when it exits
the domain. Roughly speaking, if the domain expands at a sublinear rate, then the chance of
a large exit place decays in a subexponential fashion. The decay rate can be explicitly given in
terms of the sublinear expansion rate. Our results encompass and extend some known special
cases.
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1 Introduction

In this article we use a new approach to study the effect of the “far away” behavior of an unbounded
domain on the probability that the modulus of the Brownian motion is large when it exits the
domain. We study domains of the form

D =
�

(x1, x̃) ∈ R×Rd−1 : x1 >
1

2
, | x̃ |< a(x1)

�

, d ≥ 3 (1)

and

Ω =
�

(ρ, z) ∈ R2 : ρ >
1

2
, |z|< a(ρ)

�

× Sn−1, n≥ 2 (2)

where a :
�1

2
,∞
�

→ [0,∞) is continuous and positive on
�1

2
,∞
�

. In the case of Ω, we understand
it to be a subset of Rn+1 where the triple (ρ, z,θ) denotes the cylindrical coordinates of a point
( x̃ , xn+1) ∈ Rn×R with x̃ 6= 0:

ρ = | x̃ |, z = xn+1, θ =
x̃

| x̃ |
.

One way to understand the difference between the domains D and Ω is to look at them in three
dimensions. There D is obtained by revolving the set {(x , y): x > 1

2
, |y| < a(x)} about the x-axis,

while Ω is obtained by revolving about the y-axis.

Roughly speaking, we will show that if the growth of a is sublinear and the oscillations far away
are not too severe, then the probability the modulus of Brownian motion is large when it exits the
domain is subexponentially small and we can explicitly identify the decay rate.

An equivalent analytic formulation of this problem is to ask how the harmonic measure behaves
outside a compact set. A related problem is to determine the sharp order of integrability of the exit
position.

Several authors have studied these questions in various domains, using different tools. For a cone of
angle θ (which corresponds to D above with a(x) = cx), Burkholder (1977) used his Lp-inequalities
for Brownian motion to explicitly find p(θ)> 0 for which the p > 0 moment of the exit place is finite
iff p < p(θ). By classical estimates for harmonic measure (Haliste (1984) and Essén and Haliste
(1984)), there are positive C1 and C2 such that

C1r−p(θ) ≤ Px(|B(τ)|> r)≤ C2r−p(θ),

where B is Brownian motion and τ is the exit time from the cone. The analogue is also true for
more general cones. Using the explicit form of the heat kernel for a cone (due to Bañuelos and
Smits (1997)), Bañuelos and DeBlassie (2006) obtained a series expansion for d

dr
Px(|B(τ)| > r)

which implies the behavior

Px(|B(τ)|> r)∼ C r−p(θ) as r →∞,

and C was explicitly identified. Again, there is an analogous result for more general cones.
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Bañuelos and Carroll (2005) studied the domain D above with a(x) = Axα, where A > 0 and
0< α < 1. Denoting the exit time of Brownian motion from D by τD, those authors showed that

lim
t→∞

tα−1 log Pz(|B(τD)|> t) =−

p

λ1

A(1−α)
, (3)

where λ1 > 0 is the smallest eigenvalue for the Dirichlet Laplacian in the unit ball of Rd−1 (note
when d = 2,

p

λ1 =
π
2

). They also showed that for d = 2,

Ez[exp(b|B(τD)|1−α)]<∞ (4)

iff b < π
2A(1−α) . In dimension d ≥ 3, they proved the expectation is finite for b <

p
λ1

A(1−α) and infinite

for b >
p
λ1

A(1−α) . The critical case was left open. Their method was to use a conformal mapping and a
technique of Carleman to estimate harmonic measure.

For the domain Ω above with a(x) = Axα, 0 < α < 1, DeBlassie (2008b) reduced the computa-
tion of the probability the modulus of Brownian motion is large upon exiting the domain to the
two-dimensional case studied by Bañuelos and Carroll (2005). The method used conformal maps
coupled with the Feynman–Kac formula and the Comparison Theorem for stochastic differential
equations. The main result obtained was that

lim
N→∞

Nα−1 log Px(|B(τΩ)|> N) =−
π

2A(1−α)
. (5)

It is interesting to note that in contrast with the domains considered by Bañuelos and Carroll, the
limit is independent of the dimension. This is counter-intuitive; see DeBlassie (2008a) for more
explanation.

It does not seem possible to use the conformal method mentioned above for boundary functions
other than a(x) = Axα for α ∈ (0,1). This is because the method relies very much on delicate
estimates, due to Carroll and Hayman (2004), of the derivative of a certain conformal map. The
specific power law growth xα is crucial to their argument and it is not at all clear how to extend
their estimates to more general functions.

Instead, we take a new approach that will permit extension of (3) and (5) to much more gen-
eral functions a(x), and it will also resolve the critical case in dimension d ≥ 3 for finiteness of
Ex[exp(b|B(τD)|1−α] left open by Bañuelos and Carroll. The basic idea is to represent the density
(with respect to surface measure on the boundary) of harmonic measure as the normal derivative
of the Green function. Then we can use estimates of harmonic functions due to Cranston and Li
(1997) to estimate the normal derivative. The representation of the density of harmonic measure as
the normal derivative of the Green function is a classical fact for bounded smooth domains (Miranda
(1970), Garabedian (1986), Gilbarg and Trudinger (1983)). But here our domains are unbounded
and the classical proof must be modified. Basically, trouble arises because the proof requires the
Divergence Theorem to hold, and since the domain is unbounded, integrability issues become sig-
nificant.

Before stating our results, we present the basic assumptions on D from (1).
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Blanket Assumptions

• D is C3

• lim
t→∞
[|a′(t)|+ a(t)|a′′(t)|] = 0

• limsup
M→∞

sup{|a′′(M + ta(M))|a(M): − 1≤ t ≤ 1}<∞

• limsup
M→∞

sup{|a(3)(M + ta(M))|a2(M): − 1≤ t ≤ 1}<∞

Remark 1.1. i) The lim sup conditions as well as the condition a(t)a′′(t)→ 0 as t →∞ quantify
the statement that the oscillations of a(·) far away are not too severe.
ii) By the Mean Value Theorem, the requirement that a′(t) → 0 as t → ∞ implies a(t)/t → 0 as
t →∞, which in turn implies a(t) is sublinear and

lim
x→∞

∫ x

1

d t

a(t)
=∞. (6)

iii) If a(·) is C3, then the domain D satisfies the blanket assumptions in the following cases:

• a(t) = Atα for large t, where A> 0 and α < 1 with α 6= 0; note if α= 1, then D is a cone.

• a(t) = Ae−γtp
for large t, where A,γ and p are positive;

• a(t) = At(log t)−p for large t, where A and p are positive. �

For any ε > 0 and x ∈ Rd , write

Bε(x) = {y ∈ Rd : |x − y|< ε}.

For any process Zt in Rd , we will write

τD(Z) = inf{t > 0: Zt /∈ D}

for the exit time of Z from D.

Letting

Jν(z) =
� z

2

�ν ∞∑

k=0

(− z
2
)2k

k!Γ(ν + k+ 1)

be the Bessel function of the first kind, we denote its first positive zero by jν .

Theorem 1.2. Let D from (1) satisfy the Blanket Assumptions. For dimension d ≥ 3, if Bt is d-
dimensional Brownian motion and if τD = τD(B), then for ν = d−3

2
,

lim
N→∞





∫ N

1

d t

a(t)





−1

log Px(|B(τD)|> N) =− jν . �
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Remark 1.3. i) When d = 2, the problem is easily handled with conformal methods and the limiting
behavior given holds upon replacing ν by |ν |. Note too that jν = π/2 in this case.
ii) Note that the first Dirichlet eigenvalue of ∆Rd−1 on the unit ball in Rd−1 is in fact j2ν .

iii) If a(t) = Atα, where A > 0 and 0 6= α < 1, then
∫ N

1
d t

a(t) ∼
1

A(1−α)N
1−α as N → ∞. Thus we

recover the result (3) of Bañuelos and Carroll for 0< α < 1 and extend it to α < 0. �

With some additional conditions on a(·), Theorem 1.2 can be extended with no further effort:

Theorem 1.4. Let d ≥ 3. In addition to the Blanket Assumptions on D from (1), suppose

(a′)2/a, a′′, aa(3), a2a(4) ∈ L1

��

1
2
,∞
��

and
lim
t→∞
[a2(t)|a(3)(t)|+ a3(t)|a(4)(t)|] = 0.

Then for some positive C1 and C2, for all large N,

C1a(N)d−1 ≤ Px(|B(τD)|> N)exp

 

jν

∫ N

1

d t

a(t)

!

≤ C2a(N)d−1. �

Remark 1.5. If A > 0 and 0 6= α < 1, then a(t) = Atα satisfies the hypotheses of Theorem 1.4.
By Remark 1.3 iii), we can mimic the argument of Bañuelos and Carroll giving (4) for d = 2 and
resolve the critical case for d ≥ 3 they left open:

Ex[exp(b|B(τD)|1−α)]<∞

iff b <
p
λ1

A(1−α) . �

Next consider the domain Ω from (2). Then we can write

Ω = D× Sn−1,

where D is now given by (1) with d = 2, and we continue to make the Blanket Assumptions on D.

Theorem 1.6. Let n≥ 2 and suppose Bt is (n+ 1)-dimensional Brownian motion. Then

lim
N→∞





∫ N

1

d t

a(t)





−1

log Px(|B(τΩ)|> N) =−
π

2
. �

Remark 1.7. i) Analogous to Remark 1.3 iii), we recover our earlier result (5).
ii) Theorem 1.6 can be sharpened much like Theorem 1.2 was sharpened by Theorem 1.4.
iii) Note that in contrast with Theorem 1.2, there is dimensional independence in the limit. The
explanation for this counter-intuitive result is the same as that given in DeBlassie (2008a) for the
special case of a(x) = Axα.

In addition to the results of the authors mentioned above, there are other studies involving the
domains D and Ω. Ioffe and Pinsky (1994) identified the Martin boundary of Ω. This result was
extended by Aikawa and Murata (1996) and Murata (2002), (2005) to asymmetric versions of Ω
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and they also found a series expansion for the Martin kernel. Related results were announced in
Maz’ya (1977) and Kesten (1979). The growth of the Martin kernel at infinity for Ω and D was
determined in DeBlassie (2008b) and (2009), respectively.

Collet et al. (2006) proved a ratio limit theorem for the Dirichlet heat kernel in Ω for a(t) =
p

t
in two dimensions. They used their theorem to determine the probability that Brownian motion re-
mains in this particular domain for a long time. Using different methods, DeBlassie (2007) extended
the latter result to all dimensions for the functions a(t) = tα, where 0< α < 1.

Pinsky (2009) determined spectral properties of the Neumann Laplacian in Ω (and more general
domains) as well as a transience/recurrence dichotomy for Brownian motion in Ω with normal
reflection at the boundary.

In Bañuelos et al. (2001), Li (2003) and Lifshits and Shi (2002), the probability that Brownian
motion remains in D for a long time was derived in the case when a(t) = tα, 0 < α < 1. For this
particular domain, van den Berg (2003) found long-time asymptotics for the corresponding Dirichlet
heat kernel.

In the case of the domain D with a(t) → 0 as t → ∞, bounds on the Dirichlet eigenfunctions of
the Laplacian in D were obtained by Bañuelos and Davis (1992) and (1994), Bañuelos and van den
Berg (1996), Cranston and Li (1997) and Lindemann et al. (1997).

Here is the organization of the article. In section 2 we study the domain D from (1). A representation
theorem is stated, giving the density of harmonic measure as the normal derivative of the Green
function. In subsection 2.1, the representation theorem is used in conjunction with a result of
Cranston and Li on the asymptotics of harmonic functions to prove Theorems 1.2 and 1.4. Then in
subsections 2.2–2.4, the proof of the representation theorem is given.

In section 3 we shift attention to the domain Ω from (2). The problem is reduced to two-dimensions,
where now the relevant operator is the Laplacian plus a first order term, with corresponding pro-
cess X . In subsection 3.1, by suitably conditioning the process, we eliminate the drift and state a
representation theorem for the exit place density of X in terms of the conditioned process. Then we
proceed analogously to the case of D considered in section 2.

Please note that throughout the article, c will be a scalar whose exact value can change from line to
line.

Acknowledgement. I thank the Associate Editor for a detailed list of comments and suggestions
that improved the exposition of the article. I am especially grateful for the suggested way to prove
Lemma 3.3. It is much simpler and more elegant than my original cumbersome argument.

2 The Domain DDD from (1)

In this section we will prove Theorems 1.2 and 1.4. Since the domain D has a non-polar component,
the Brownian motion—killed upon exiting D—is transient in D. Hence it has a Green function we
denote by GD(x , y). Note that analytically one says (1

2
∆Rd , D) is subcritical and in fact GD(x , y)

is the (minimal) Green function for (1
2
∆Rd , D). As indicated in the introduction, the next result

describes the normal derivative of GD(x , ·) as more or less being the density of the harmonic measure
based at x .
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Theorem 2.1. For any Borel set A⊆ ∂ D,

Px(B(τD) ∈ A) =
1

2

∫

A

�

∂

∂ ny
GD(x , y)

�

σ(d y), x ∈ D,

where ∂
∂ ny

is the inward normal derivative at y ∈ ∂ D and σ(d y) is the surface measure on ∂ D induced

by the usual Riemannian structure on Rd . �

The unboundedness of D complicates the proof of Theorem 2.1. We will break up the proof into
several pieces, but before that, we now use it to prove Theorems 1.2 and 1.4.

2.1 Proof of Theorems 1.2 and 1.4

For d ≥ 3, let Ωd−1 be the unit ball in Rd−1 and set ν = d−3
2

. As pointed out earlier, the first
Dirichlet eigenvalue of ∆Rd−1 on Ωd−1 is j2ν , where jν is the first positive zero of the Bessel function
Jν . Furthermore, the corresponding eigenfunction is

w( x̃) = C0| x̃ |−ν Jν( jν | x̃ |), x̃ ∈ Ωd−1,

where C0 is chosen so that w(0) = 1.

The next theorem is due to Cranston and Li (1997)—see the two paragraphs just after the proof of
their Theorem 2.1. Note that although they make the blanket assumption a(t)→ 0 as t →∞, this
is not used to prove the version of their theorem that we use.

Theorem 2.2. Let a : [M ,∞)→ (0,∞) be continuous and, for sufficiently large t, twice differentiable
with

lim
t→∞
[|a′(t)|+ a(t)|a′′(t)|] = 0.

Set
DM = {(x1, x̃) ∈ R×Rd−1 : x1 > M , | x̃ |< a(x1)},

and suppose H is bounded and Hölder continuous on DM with

lim
t→∞

a(t)2 sup
|z|<a(t)

|H(t, z)|= 0.

If u satisfies

u> 0 on DM

(∆Rd +H)u= 0 on DM

u= 0 on {x1 > M} ∩ ∂ DM

lim
x1→∞

u(x1, x̃) = 0,

then for each δ ∈ (0, jν) there exist M1 > M and C > 0 such that

C−1w
�

x̃

a(x1)

�

exp

�

−( jν +δ)
∫ x1

M

d t

a(t)

�

≤ u(x1, x̃)≤ Cw
�

x̃

a(x1)

�

exp

�

−( jν −δ)
∫ x1

M

d t

a(t)

�

for all x = (x1, x̃) ∈ DM1
. �
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For y ∈ ∂ D, recall ny is the inward unit normal to ∂ D at y .

Lemma 2.3. Let y = (y1, ỹ) ∈ ∂ D with y1 >
1
2
. Then for z = (z1, z̃) = y + hny ,

lim
h→0+

w(z̃/a(z1))
h

=−C0 jν J ′ν( jν)

p

1+ [a′(y1)]2

a(y1)
.

Remark 2.4. It is known that J ′ν( jν)< 0.

Proof of Lemma 2.3. For y = (y1, ỹ) ∈ ∂ D with y1 >
1
2
, it is a simple matter to show that

ny = [1+ [a
′(y1)]

2]−1/2
�

a′(y1),−
ỹ

a(y1)

�

.

Since | ỹ|= a(y1), as h→ 0+ we get

�

�

�

�

z̃

a(z1)

�

�

�

�

=

�

�

�

�

�

�

�

ỹ
�

1− h
a(y1)
p

1+[a′(y1)]2

�

a
�

y1+ ha′(y1)/
p

1+ [a′(y1)]2
�

�

�

�

�

�

�

�

=
a(y1)

a
�

y1+ ha′(y1)/
p

1+ [a′(y1)]2
�

�

�

�

�

�

1−
h

a(y1)
p

1+ [a′(y1)]2

�

�

�

�

�

(7)

→ 1.

Thus

lim
h→0+

w(z̃/a(z1))
h

= lim
h→0+

C0

h

�

�

�

�

z̃

a(z1)

�

�

�

�

−ν

Jν

�

jν

�

�

�

�

z̃

a(z1)

�

�

�

�

�

= C0 lim
h→0+

1

h
Jν

�

jν

�

�

�

�

z̃

a(z1)

�

�

�

�

�

= C0 lim
h→0+

J ′ν

�

jν

�

�

�

�

z̃

a(z1)

�

�

�

�

�

∂

∂ h

�

�

�

�

z̃

a(z1)

�

�

�

�

jν

=−C0 jν J ′ν( jν)

p

1+ [a′(y1)]2

a(y1)
.

Proof of Theorem 1.2. Define x1(N) to be the first coordinate of the intersection of the circle ρ2 +
z2 = N2 with the curve z = a(ρ) in the ρz-plane:

x1(N)
2+ a(x1(N))

2 = N2. (8)

Fix x ∈ D and suppose M > |x | and δ ∈ (0, jν). Combined with the fact that GD(x , y) goes to 0
as the modulus of y ∈ D goes to infinity, Theorem 2.2 applied to u(·) = GD(x , ·) and H ≡ 0 on DM
shows that we can choose M1 > M and C > 0 such that
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C−1w
�

ỹ

a(y1)

�

exp

�

−( jν +δ)
∫ y1

M

d t

a(t)

�

≤ GD(x , y)≤ Cw
�

ỹ

a(y1)

�

exp

�

−( jν −δ)
∫ y1

M

d t

a(t)

�

(9)
for all y = (y1, ỹ) ∈ DM1

. Since GD(x , ·) = 0 on ∂ D, for y = (y1, ỹ) ∈ ∂ D with y1 > M ,

∂

∂ ny
GD(x , y) = lim

h→0+

GD(x , y + hny)

h
.

Using this and Lemma 2.3 in (9), we get that for some positive C1 and C2

C1

p

1+ [a′(y1)]2

a(y1)
exp

�

−( jν +δ)
∫ y1

M

d t

a(t)

�

≤
∂

∂ ny
GD(x , y)

≤ C2

p

1+ [a′(y1)]2

a(y1)
exp

�

−( jν −δ)
∫ y1

M

d t

a(t)

�

for y = (y1, ỹ) ∈ ∂ D with y1 > M1. Then by Theorem 2.1, also using that

Px(|B(τD)|> N) = Px(B1(τD)> x1(N))

(recall (8)), we get that for N > M1,

1

2
C1

∫

y1>x1(N)

p

1+ [a′(y1)]2

a(y1)
exp

�

−( jν +δ)
∫ y1

M

d t

a(t)

�

d y ≤ Px(|B(τD)|> N)

≤
1

2
C2

∫

y1>x1(N)

p

1+ [a′(y1)]2

a(y1)
exp

�

−( jν −δ)
∫ y1

M

d t

a(t)

�

d y.

The integrands depend only on y1, so this reduces to

1

2
C1

∫ ∞

x1(N)

p

1+ [a′(y1)]2

a(y1)
exp

�

−( jν +δ)
∫ y1

M

d t

a(t)

�

a(y1)
d−1d y1 ≤ Px(|B(τD)|> N)

≤
1

2
C2

∫ ∞

x1(N)

p

1+ [a′(y1)]2

a(y1)
exp

�

−( jν −δ)
∫ y1

M

d t

a(t)

�

a(y1)
d−1d y1. (10)

Since a′(t)→ 0 as t →∞, the identity

log a(t) =

∫ t

1

a′(u)
a(u)

du+ log a(1)

implies
�
∫ t

M

du

a(u)

�−1

log a(t)→ 0 as t →∞. (11)
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By l’Hôpital’s rule and the fact that a′(x)→ 0 as x →∞, for any γ > 0 that is close to jv ,

lim
N→∞

∫∞
N

p

1+ [a′(y1)]2 exp
�

−γ
∫ y1

M
dt

a(t)

�

a(y1)d−2d y1

a(N)d−1 exp
�

−γ
∫ N

M
dt

a(t)

� =
1

γ
.

Combining this with (10), we get that for some positive C3 and C4, for large N ,

C3

jν +δ
a(x1(N))

d−1 exp

 

−( jν +δ)
∫ x1(N)

M

d t

a(t)

!

≤ Px(|B(τD)|> N)

≤
C4

jν −δ
a(x1(N))

d−1 exp

 

−( jν −δ)
∫ x1(N)

M

d t

a(t)

!

. (12)

Take the natural logarithm, multiply by [
∫ x1(N)

M
dt

a(t)]
−1, let N →∞ and use (11) to get

−( jν +δ)≤ lim inf
N→∞





∫ x1(N)

M

d t

a(t)





−1

log Px(|B(τD)|> N)

≤ lim sup
N→∞





∫ x1(N)

M

d t

a(t)





−1

log Px(|B(τD)|> N)

≤−( jν −δ).

Let δ→ 0 and use the fact that
∫ x1(N)

M

d t

a(t)
∼
∫ x1(N)

1

d t

a(t)
as N →∞

to get

lim
N→∞





∫ x1(N)

1

d t

a(t)





−1

log Px(|B(τD)|> N) =− jν .

To complete the proof of Theorem 1.2, we show

∫ x1(N)

1

d t

a(t)
∼
∫ N

1

d t

a(t)
as N →∞.

Indeed, recalling the definition of x1(N) from (8) and writing x1 for x1(N), we have

N = x1

È

1+
�

a(x1)
x1

�2

.
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Then by the mean value theorem, there is x̃ ∈ (x1, N) such that

a(N)
a(x1)

− 1=
a(N)− a(x1)

a(x1)

=

a′( x̃)x1

�Ç

1+
�

a(x1)
x1

�2
− 1

�

a(x1)

=
a′( x̃)x1

a(x1)

�

1+
1

2

�

a(x1)
x1

�2

+ o

�

�

a(x1)
x1

�2�

− 1

�

= a′( x̃)
�

1

2

a(x1)
x1
+ o(1)

a(x1)
x1

�

→ 0

as N →∞, since a(u)
u
→ 0 and a′(u)→ 0 as u→∞. Thus

a(N)
a(x1)

→ 1 as N →∞.

Upon differentiating (8) with respect to N ,

x ′1 =
N

x1

�

1+ a(x1)
x1

a′(x1)
�

=

Ç

1+
�

a(x1)
x1

�2

1+ a(x1)
x1

a′(x1)

→ 1

as N →∞.

To finish, use these limits and l’Hôpital’s rule to get

lim
N→∞

∫ x1

M
dt

a(t)
∫ N

M
dt

a(t)

= lim
N→∞

x ′1a(N)

a(x1)

= 1,

as desired.

Proof of Theorem 1.4. Under the additional hypotheses of Theorem 1.2, the conclusion of Theorem
2.2 holds with δ = 0. Thus the argument leading to (12) goes through with δ = 0 there and we get
the conclusion of Theorem 1.4.
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2.2 Proof of Theorem 2.1: Preliminaries and a Reduction

To prove Theorem 2.1, it suffices to show that for each x ∈ D, for any nonnegative f ∈ C3(Rd) with
compact support in Rd\{x}, we have

Ex[ f (BτD
)] =

1

2

∫

∂ D

f (y)

�

∂

∂ ny
GD(x , y)

�

σ(d y). (13)

To this end, write
u(z) = Ez[ f (BτD

)], z ∈ D.

By the strong Markov property, u is harmonic in D, hence C∞ there. Given ε > 0, by uniform
continuity of f , choose δ > 0 such that |x − y| < δ implies | f (x)− f (y)| < ε. Then for x ∈ D and
y ∈ ∂ D with |x − y|< δ

2
,

|u(x)− f (y)| ≤ Ex[ | f (BτD
)− f (y)| ]

= Ex[ | f (BτD
)− f (y)| [ I(|BτD

− y|< δ) + I(|BτD
− y| ≥ δ) ] ]

≤ ε+ 2[ sup | f | ]Px(|BτD
− y| ≥ δ).

But since |x − y|< δ
2
, for any t > 0 we can apply Theorem 2.2.2 (ii) in Pinsky (1995) to get

Px(|BτD
− y| ≥ δ)≤ Px

�

|BτD
− x | ≥

δ

2

�

≤ Px

�

|BτD
− x | ≥

δ

2
,τD ≤ t

�

+ Px(τD > t)

≤ Px

�

sup
s≤t
|Bs − x | ≥

δ

2

�

+ Px(τD > t)

≤ 2d exp

�

−
δ2

8d t

�

+ Px(τD > t).

Choosing t > 0 so large that the first term is less than ε, we get

|u(x)− f (y)|< ε+ 2[ sup | f | ][ε+ Px(τD > t) ].

Now let x → y ∈ ∂ D and apply Corollary 2.3.4 in Pinsky (1995) to get

limsup
x→y

|u(x)− f (y)| ≤ ε(1+ 2sup | f |).

Since ε > 0 was arbitrary, we get that u(x)→ f (y) as x → y ∈ ∂ D. Thus










u ∈ C2,α(D)
1

2
∆u= 0 in D

u(x)→ f (y) as x → y ∈ ∂ D.

(14)
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For an unbounded set G ⊆ Rd , we define C2,α(G) to be the set of all functions in C2(G) whose
second order partials are uniformly Hölder continuous on any compact subset of G. Note we do not
require G to be open.

Since f ∈ C3(D), by the Elliptic Regularity Theorem (Lemma 6.18 in Gilbarg and Trudinger (1983)),
u ∈ C2,α(D). Thus (14) becomes











u ∈ C2,α(D)
1

2
∆u= 0 in D

u|∂ D = f

(15)

and so (13) amounts to the classical Green Representation of the solution to (15). As indicated in
the introduction, since D is unbounded, complications arise.

We will write
x0 = (1, 0) ∈ R×Rd−1.

Now we fix x = (x1, x̃) ∈ D and prove (13). For simplicity we will assume x 6= x0. Notice
1
2
∆GD(x , ·) = 0 on D\{x} and GD(x , ·) is continuous on D\{x} with boundary value 0 (Pinsky

(1995), Theorem 7.3.2). Then by another application of the Elliptic Regularity Theorem,

GD(x , ·) ∈ C2,α(D\{x}).

Let ε > 0 be so small that
B2ε(x)⊆ D\{x0}

and
supp( f )⊆ Bε(x)

c
,

where the over bar denotes Euclidean closure. Given M > 0 so large that

supp( f )⊆ BM (0),

define
E = E(M ,ε) = D ∩ {(x1, x̃): x1 < M} ∩ Bε(x)

c
. (16)

Then by Green’s Second Identity,

−
∫

∂ E

¨

u(y)

�

∂

∂ ny
GD(x , y)

�

− GD(x , y)
∂ u

∂ ny
(y)

«

σ(d y)

=

∫

E

[u(y)∆y GD(x , y)− GD(x , y)∆u(y)]d y

= 0. (17)

Writing
πM = {(x1, x̃): x1 = M},
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break up the surface integral over ∂ E into the pieces ∂ Bε(x), {x1 < M}∩ ∂ D and D∩πM to end up
with

∫

{x1<M}∩∂ D

=











−
∫

D∩πM

+

∫

∂ Bε(x)











¨

u(y)

�

∂

∂ ny
GD(x , y)

�

− GD(x , y)
∂ u

∂ ny
(y)

«

σ(d y) (18)

where now the ∂
∂ ny

in the ∂ Bε(x) integral is inward normal differentiation for Bε(x). Now u= f on

∂ D, supp( f )⊆ BM (0)∩ Bε(x)
c

and GD(x , ·) = 0 on ∂ D, so we have
∫

∂ D

f (y)

�

∂

∂ ny
GD(x , y)

�

σ(d y) =

∫

{x1<M}∩∂ D

¨

u(y)

�

∂

∂ ny
GD(x , y)

�

− GD(x , y)
∂ u

∂ ny
(y)

«

σ(d y)

=











−
∫

D∩πM

+

∫

∂ Bε(x)











{"}, by (18). (19)

Once we prove

lim
M→∞

∫

D∩πM

¨

u(y)

�

∂

∂ ny
GD(x , y)

�

− GD(x , y)
∂ u

∂ ny
(y)

«

σ(d y) = 0 (20)

and

lim
ε→0

∫

∂ Bε(x)

¨

u(y)

�

∂

∂ ny
GD(x , y)

�

− GD(x , y)
∂ u

∂ ny
(y)

«

σ(d y) = 2u(x), (21)

we can let M →∞ and ε→ 0 in (19) to get

u(x) =
1

2

∫

∂ D

f (y)

�

∂

∂ ny
GD(x , y)

�

σ(d y),

which is exactly (13), as desired.

Formulas (20)–(21) will be proved in the next two subsections.

2.3 Proof of (20)

The following result is a consequence of the proof of Lemma 6.5 in Gilbarg and Trudinger (1983)
combined with the comments subsequent to the proof.

Lemma 2.5. Let Ω be a domain in Rd with a C2,α boundary portion T. Suppose u ∈ C2,α(Ω∪ T ) is a
solution of

(∆Rd +H)u= 0 on Ω

u= 0 on T,
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where

Λ := |H|0,α;Ω = sup
Ω
|H|+ sup

x ,y∈Ω
x 6=y

|H(x)−H(y)|
|x − y|α

<∞.

Then for any z ∈ T there is δ > 0 such that for

B(z) = Bδ(z)∩Ω and T (z) = Bδ(z)∩ T

we have
sup{d(x ,∂ B(z)− T (z))|∇u(x)|: x ∈ B(z)∪ T (z)} ≤ C sup

B(z)
|u|.

Here δ depends only on the diameter of the domain of the C2,α diffeomorphism ψ that straightens the
boundary near z and C depends only on d,α,Λ and the C2,α bounds on ψ. �

We now apply Lemma 2.5.

Lemma 2.6. Suppose b : D→ R is bounded with

sup
M≥1

a(M)α+2 sup
� |b(z)− b(y)|
|z− y|α

: z, y ∈ D; z 6= y; z1, y1 ∈ (M − a(M), M + a(M))
�

<∞,

sup
M≥1

a(M)2 sup{|b(z)|: z ∈ D, z1 ∈ (M − a(M), M + a(M))}<∞.

If v ∈ C2,α(D\{x}) is a solution of

(∆+ b)v = 0 on D\{x}

with v = 0 on ∂ D outside a compact set, then for large M,

|∇v(z)| ≤ Ca(M)−1 sup{|v(y)|: y ∈ D, y1 ∈ (M − a(M), M + a(M))}, z ∈ D ∩πM .

Proof. Define

γM (t) =
a(ta(M) +M)

a(M)
, t ≥

1
2
−M

a(M)
.

Then for

HM =

(

(z1, z̃): z1 >

1
2
−M

a(M)
, |z̃|< γM (z1)

)

we have







z ∈ HM ⇔ a(M)z+M x0 ∈ D
z ∈ HM ∩ {−1< z1 < 1}⇔ a(M)z+M x0 ∈ D ∩ {(y1, ỹ): M − a(M)< y1 < M + a(M)}
z ∈ ∂ HM ∩ {−1< z1 < 1}⇔ a(M)z+M x0 ∈ ∂ D ∩ {(y1, ỹ): M − a(M)< y1 < M + a(M)}.

(22)
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Notice HM is obtained from D via translating by−M x0 and then scaling by 1/a(M). For any function
g on D, we define

gM (z) = g(a(M)z+M x0), z ∈ HM .

Then for
LM =∆+ a(M)2 bM

we have

LM vM = 0 on HM\
�

x −M x0

a(M)

�

.

Since a(M)
M
→ 0 as M →∞, for large M we have

x1 < M − a(M).

Thus for large M ,
LM vM = 0 on HM ∩ {−1< z1 < 1}.

Since v ∈ C2,α(D\{x}) and v = 0 on ∂ D outside a compact set, by making M larger if necessary, we
have that

vM ∈ C2,α(HM ∩ {−1≤ z1 ≤ 1})
vM = 0 on ∂ HM ∩ {−1≤ z1 ≤ 1}.

We are going to apply Lemma 2.5 to LM and vM on

Ω = HM ∩ {−1< z1 < 1}
T = ∂ HM ∩ {−1< z1 < 1}.

This is legitimate because by our hypotheses on b, there exists Λ> 0 such that for large M ,

|a(M)2 bM |0,α;Ω ≤ Λ. (23)

By symmetry, compactness and our Blanket Assumptions on a(·), for each z ∈ ∂ HM ∩{−
1
2
≤ z1 ≤

1
2
},

the C2,α bounds on the diffeomorphism straightening the boundary near z are independent of z
and large M . (Roughly speaking, for large M , the set HM ∩ {−1 < z1 < 1} looks like the set
{(z1, z̃): − 1 < z1 < 1, |z̃| < 1}). Combined with (23), it follows that the constant C appearing in
Lemma 2.5 is independent of such z and large M . Likewise, the δ in the lemma is also independent
of z and large M . The net effect is that for some δ > 0 and C > 0, for

B(z) = Bδ(z)∩Ω
T (z) = Bδ(z)∩ ∂Ω,

we have

sup
y∈B(z)∪T (z)

d(y,∂ B(z)− T (z))|∇vM (y)| ≤ C sup
B(z)
|vM |

≤ C sup
Ω
|vM | (24)

whenever z ∈ ∂ HM ∩ {−
1
2
≤ z1 ≤

1
2
} and M is large.
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In particular, given y ∈ π0 ∩HM ∩ {| ỹ|> 1− δ
2
}, choose z ∈ π0 ∩ ∂ HM such that d(y,π0 ∩ ∂ HM ) =

d(y, z). Then y ∈ Bδ(z) and by (24), for M large,

|∇vM (y)| ≤ Cd(y,∂ B(z)− T (z))−1 sup
Ω
|vM |.

Since y ∈ π0, d(y,∂ B(z)− T (z))≥ δ
2

and we get that for some C1 > 0, for large M ,

|∇vM (y)| ≤ C1δ
−1 sup

Ω
|vM |, y ∈ π0 ∩HM ∩

�

| ỹ| ≥ 1−
δ

2

�

. (25)

On the other hand, by the Schauder interior estimates (Gilbarg and Trudinger (1983), Theorem
6.2),

sup
Ω

d(y,∂Ω)|∇vM (y)| ≤ C2 sup
Ω
|vM |,

where C2 > 0 is independent of large M . Combined with (25), we get that for some C > 0, for all
large M ,

|∇vM (y)| ≤ Cδ−1 sup
Ω
|vM |, y ∈ π0 ∩HM .

Converting back to v and using (22), for all large M we have

|a(M)(∇v)(a(M)y +M x0)| ≤ Cδ−1 sup
z∈Ω
|v(a(M)z+M x0)|, a(M)y +M x0 ∈ D ∩πM ,

which is to say

|∇v(z)| ≤ Cδ−1a(M)−1 sup{|v(w)|: w ∈ D, w1 ∈ (M − a(M), M + a(M))}, z ∈ D ∩πM ,

as desired.

Now we can prove (20). Taking b = 0 in Lemma 2.6, v = u or GD(x , ·) satisfies the required
hypotheses, so for some C > 0, for all large M ,

�

�

�

�

�

∂ u

∂ ny
(y)

�

�

�

�

�

≤ Ca(M)−1 sup |u|, y ∈ πM ∩ D

�

�

�

�

�

∂

∂ ny
GD(x , y)

�

�

�

�

�

≤ Ca(M)−1 sup{GD(x , z): z ∈ D, M − a(M)< z1 < M + a(M)}, y ∈ πM ∩ D,

where ∂
∂ ny

is inward normal differentiation at the boundary part πM ∩ D of D ∩ {z1 < M}. But it is

well-known that |GD(x , y)| ≤ C |x − y|2−d , and since a(M)
M
→ 0 as M →∞, it follows that for large

M ,
�

�

�

�

�

∂

∂ ny
GD(x , y)

�

�

�

�

�

≤ Ca(M)−1M2−d , y ∈ πM ∩ D.

Since u is bounded, we end up with
�

�

�

�

�

u(y)
∂

∂ ny
GD(x , y)− GD(x , y)

∂ u

∂ ny
(y)

�

�

�

�

�

≤ Ca(M)−1M2−d , y ∈ πM ∩ D,
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for all large M . Hence as M →∞
�

�

�

�

�

�

�

�

∫

D∩πM

¨

u(y)
∂

∂ ny
GD(x , y)− GD(x , y)

∂ u

∂ ny
(y)

«

σ(d y)

�

�

�

�

�

�

�

�

≤ Ca(M)−1M2−d a(M)d−1

= C
�

a(M)
M

�d−2

→ 0,

as desired. �

2.4 Proof of (21)

Since u ∈ C2,α(D), ∂ u
∂ ny

is bounded in a neighborhood of x , hence

�

�

�

�

�

�

�

∫

∂ Bε(x)

GD(x , y)
∂ u

∂ ny
σ(d y)

�

�

�

�

�

�

�

≤ Cε2−dσ(∂ Bε(x))

= Cε→ 0 as ε→ 0.

Thus to prove (21), we need only check

lim
ε→0

∫

∂ Bε(x)

u(y)

�

∂

∂ ny
GD(x , y)

�

σ(d y) = 2u(x). (26)

Now for

p(t, y, z) =
1

(2πt)d/2
e−|y−z|2/2t ,

the transition density of Brownian motion killed upon exiting D is given by

pD(t, y, z) = p(t, y, z)− Ey[IτD<t p(t −τD, BτD
, z)].

Analytically, pD is the Dirichlet heat kernel for 1
2
∆Rd on D. Thus

GD(y, z) =

∫ ∞

0

pD(t, y, z)d t

= Kd |y − z|2−d − Kd Ey[|BτD
− z|2−d],

where

Kd =
Γ( d

2
− 1)

2πd/2
.
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Consequently, recalling that ∂
∂ ny

is differentiation along the inward unit normal to ∂ Bε(x),

∂

∂ ny
GD(x , y) = Kd(d − 2)

�

|x − y|1−d − Ey

�

|BτD
− y|−d

(BτD
− y) · (x − y)

ε

��

.

To justify the differentiation under the expectation, bound the difference quotients using the Mean
Value Theorem. Then dominated convergence applies because

sup{∇z|w− z|2−d : z ∈ B2ε(x), w ∈ ∂ D}<∞.

We have, as ε→ 0,
�

�

�

�

�

�

�

∫

∂ Bε(x)

u(y)Ex

�

|BτD
− y|−d

(BτD
− y) · (x − y)

ε

�

σ(d y)

�

�

�

�

�

�

�

≤ C

∫

∂ Bε(x)

Ex[|BτD
− y|1−d]σ(d y)

≤ Cd(∂ Bε(x),∂ D)1−dσ(∂ Bε(x))

≤ Cεd−1→ 0.

Thus to prove (26), we need only show

lim
ε→0

∫

∂ Bε(x)

Kd(d − 2)|x − y|1−du(y)σ(d y) = 2u(x).

But this is an immediate consequence of the continuity and boundedness of u, combined with the
identities Kd(d − 2)2πd/2

Γ( d
2
)
= 2 and σ(∂ Bε(x)) =

2πd/2

Γ( d
2
)
. �

3 The Domain ΩΩΩ from (2)

Recall n ≥ 2 and the horn Ω in Rn+1 is represented in cylindrical coordinates (ρ, z,θ) by Ω =
D× Sn−1, where

D =
�

(ρ, z): ρ >
1

2
,−a(ρ)< z < a(ρ)

�

.

The Laplacian expressed in the coordinates (ρ, z,θ) is

∆Rn+1 =
∂ 2

∂ ρ2 +
n− 1

ρ

∂

∂ ρ
+
∂ 2

∂ z2 +
1

ρ2∆Sn−1 ,

where ∆Sn−1 is the Laplace–Beltrami operator on Sn−1. Write L for the nonangular part of 1
2
∆Rn+1:

L =
1

2

�

∂ 2

∂ ρ2 +
n− 1

ρ

∂

∂ ρ
+
∂ 2

∂ z2

�

,
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and let X t be the diffusion associated with L in {(ρ, z): ρ > 0}. Then by symmetry, for x = (ρ, z,θ),

Px(|B(τΩ)|> N) = Py(|X (τD)|> N), y = (ρ, z).

Thus to prove Theorem 1.6, it suffices to show

lim
N→∞





∫ N

1

d t

a(t)





−1

log Py(|X (τD)|> N) =−
π

2
.

Using the relation
∫ x1(N)

1

d t

a(t)
∼
∫ N

1

d t

a(t)
as N →∞

derived in the proof of Theorem 1.2, we see the proof of Theorem 1.6 comes down to showing

lim
N→∞





∫ x1(N)

1

d t

a(t)





−1

log Py(|X (τD)|> N) =−
π

2
. (27)

3.1 The Analogue of Theorem 2.1 for XXX

Since n ≥ 2, starting at (ρ, z) with ρ > 0, the process X t stays in {(ρ, z): ρ > 0} forever. In
fact, the first component of X t is an n-dimensional Bessel process and the second component is
an independent one-dimensional Brownian motion. Thus the transition density p(t, y, w) of X t
(with respect to Lebesgue measure) is the product of the transition densities of the components: for
y = (y1, y2) and w = (w1, w2),

p(t, y, w) =
e−(w

2
1+y2

1 )/2t

t(y1w1)
n
2
−1

wn−1
1 I n

2
−1

� y1w1

t

� 1
p

2πt
e−(y2−w2)2/2t , (28)

where

Iν(z) =
� z

2

�ν ∞∑

k=0

( z
2
)2k

k!Γ(ν + k+ 1)

is the modified Bessel function (see Ikeda and Watanabe (1981) for the transition density of the
Bessel process).

Lemma 3.1. The operator L is subcritical on {(ρ, z): ρ > 0}; equivalently, X t is transient in
{(ρ, z): ρ > 0} and has a Green function G there. In fact, for y = (y1, y2) and w = (w1, w2),

G(y, w) = Knwn−1
1 [y2

1 +w2
1+(y2−w2)

2]−(n−1)/2F

 

n− 1

4
,

n+ 1

4
;

n

2
;

�

2y1w1

y2
1 +w2

1 + (y2−w2)2

�2!

,

where

Kn = π
−12(n−3)/2

Γ( n−1
4
)Γ( n+1

4
)

Γ( n
2
)

and

F(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞
∑

k=0

Γ(a+ k)Γ(b+ k)
Γ(c+ k)

zk

k!

is the hypergeometric function with interval of convergence (−1, 1).
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Proof. Writing

β =
y2

1 +w2
1 + (y2−w2)2

2
and changing variables u= β/t, we have

G(y, w) =

∫ ∞

0

p(t, y, w)d t

=
wn/2

1 y1−n/2
1p

2π

∫ ∞

0

t−3/2e−β/t I n
2
−1

� y1w1

t

�

d t

=
wn/2

1 y1−n/2
1p

2π
β−1/2

∫ ∞

0

u−1/2e−u I n
2
−1

�

y1w1

β
u
�

du

=
wn/2

1 y1−n/2
1p

2π
β−1/2

∞
∑

k=0

∫ ∞

0

u−1/2e−u

k!Γ( n
2
+ k)

�

y1w1

2β
u
�

n
2
−1+2k

du

=
wn−1

1 2(1−n)/2

p
π

β (1−n)/2
∞
∑

k=0

Γ( n
2
+ 2k− 1

2
)

Γ( n
2
+ k)

1

k!

�

y1w1

2β

�2k

.

Using the identity

Γ(2z) =
1
p

2π
22z− 1

2Γ(z)Γ
�

z+
1

2

�

(Abramowitz and Stegun (1972), 6.1.18), we get

G(y, w) =
1

2π
wn−1

1 β−(n−1)/2
∞
∑

k=0

Γ( n
4
+ k− 1

4
)Γ( n

4
+ k+ 1

4
)

k!Γ( n
2
+ k)

�

y1w1

β

�2k

=
1

2π
wn−1

1 β−(n−1)/2
Γ( n−1

4
)Γ( n+1

4
)

Γ( n
2
)

F

�

n− 1

4
,

n+ 1

4
;

n

2
;
�

y1w1

β

�2
�

.

Upon substituting for β , we get the desired expression.

Since D ⊆ {(ρ, z): ρ > 0}, by Lemma 3.1 (L, D) is subcritical and the corresponding Green func-
tion GD is associated with X t killed upon exiting D. Because L is not self-adjoint with respect to
Lebesgue measure, the analogue of Theorem 2.1 takes on a slightly different form. We h-transform
L, converting it into a self-adjoint operator that is easier to analyze. Here, if h ∈ C2,α(D) is positive,
then the h-transform of L is the operator Lh given by

Lh f =
1

h
L(hf ).

We will take

h(ρ, z) = ρ−p, p =
n− 1

2
. (29)

Then

Lh =
1

2

�

∂ 2

∂ ρ2 +
∂ 2

∂ z2 −
p(p− 1)
ρ2

�

.

2677



Since (L, D) is subcritical, so is (Lh, D) (Pinsky (1995) Proposition 4.2.2) and its Green function is

Gh
D(y, w) = GD(y, w)h(w)/h(y). (30)

Now we can state the analogue of Theorem 2.1.

Theorem 3.2. For any Borel set A⊆ ∂ D

Py(X (τD) ∈ A) =
1

2

∫

A

h(y)
h(w)

�

∂

∂ nw
Gh

D(y, w)
�

σ(dw), y ∈ D. �

Before proving this theorem, we show how it yields (27), hence Theorem 1.6. Indeed, Theorem 3.2
implies

Py(|XτD
|> N) =

1

2
h(y)

∫

|w|≥N

1

h(w)

�

∂

∂ nw
Gh

D(y, w)
�

σ(dw).

Fix y ∈ D and let M > |y|, δ ∈ (0, jν). Since a(t)
t
→ 0 as t → ∞, the function H(ρ, z) = − p(p−1)

ρ2

satisfies the hypotheses of Theorem 2.2 on DM ; below in (42) we show that Gh
D(y, w) → 0 as

w1→∞. Thus for u(w) = Gh
D(y, w), w ∈ DM ,

(∆R2 +H)u= 2LhGh
D(y, ·) = 0 on DM

and so we can apply Theorem 2.2. Then we can repeat the proof of Theorem 1.2 almost word-for-
word to end up with the analogue of (12), except that now d = 2 and the upper and lower bounds
have an extra factor of x1(N)−p—this is due to the extra factor 1

h(w) = w−p
1 in the integrand of the

expression above for Py(|XτD
|> N). The rest of the argument after (12) still goes through because

lim
N→∞

log x1(N)
∫ x1(N)

M
dt

a(t)

= lim
K→∞

log K
∫ K

M
dt

a(t)

= lim
K→∞

a(K)
K
= 0.

3.2 Proof of Theorem 3.2

Now Lh is formally self-adjoint and it satisfies Hypothesis eHloc in Pinsky (1995). Then by his Theo-
rems 4.2.5, 4.2.8, and 8.1.1,

• Gh
D(·, y), Gh

D(y, ·) ∈ C2,α(D\{y});

• Gh
D is positive and jointly continuous off the diagonal;

• LhGh
D(y, ·) = 0 on D\{y};

• for each y ∈ D, there exist positive C1 and C2 along with r0 ∈ (0, 1) such that

− C1 log |y −w| ≤ Gh
D(y, w)≤−C2 log |y −w| for 0< |y −w|< r0; (31)

• Gh
D(y, ·) is continuous on D\{y} with boundary value 0.
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In particular, by the Elliptic Regularity Theorem,

Gh
D(y, ·) ∈ C2,α(D\{y}).

Fix y ∈ D. Exactly as in the proof of Theorem 2.1, it suffices to show for any nonnegative f ∈ C3(R2)
with compact support in R2\{y},

Ey[ f (XτD
)] =

1

2

∫

∂ D

f (w)
h(y)
h(w)

�

∂

∂ nw
Gh

D(y, w)
�

σ(dw). (32)

The argument giving (15) also gives that

u(w) = Ew[ f (XτD
)]

solves






u ∈ C2,α(D)
Lu= 0 in D
u|∂ D = f .

(33)

So if we define
uh(w) = u(w)/h(w),

then






uh ∈ C2,α(D)
Lhuh = 0 in D
uh|∂ D = f /h.

(34)

Lemma 3.3. We have
lim

M→∞
sup{u(w): w ∈ D, w1 ≥ M}= 0.

Proof. It is expedient to convert back to Brownian motion B in Ω. For x = ( x̃ , xn+1) ∈ Rn×R, define

g(x) = f (| x̃ |, xn+1).

Then for v(x) = Ex[g(B(τΩ))], it suffices to prove

lim
M→∞

sup{v(x): x ∈ Ω, xn+1 ≥ M}= 0.

To this end, choose K so large that supp(g) ⊆ BK(0). For a Borel set E, we will use ηE to denote
the first hitting time of E by Bt . If we set G = supp(g)∩ ∂Ω and take M large, then for x ∈ Ω with
xn+1 ≥ M ,

v(x)≤ (sup |g|)Px(BτΩ ∈ G)

≤ (sup |g|)Px(ηG <∞)
≤ (sup |g|)Px(ηBK (0) <∞)

≤ (sup |g|) sup{Pz(ηBK (0) <∞) : |z|2 ≥ M2+ a(M)2}.
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It is well-known that

Pz(ηBK (0) <∞) =
� |x |

K

�2−d

(see Example 7.4.2 in Oksendal (2007)), and so we have

limsup
M→∞

sup{v(x): x ∈ Ω, xn+1 ≥ M}

≤ (sup |g|) limsup
M→∞

�

M2+ a(M)2

K2

�(2−d)/2

= 0,

as desired.

Let ∆w denote the two-dimensional Laplacian in the variable (w1, w2). Now since

1

2
∆wGh

D(y, w) =

�

Lh+
p(p− 1)

2w2
1

�

Gh
D(y, w) =

p(p− 1)

2w2
1

Gh
D(y, w)

and

1

2
∆wuh(w) =

�

Lh+
p(p− 1)

2w2
1

�

uh(w) =
p(p− 1)

2w2
1

uh(w),

by Green’s second identity,

−
∫

∂ E

�

uh(w)
�

∂

∂ nw
Gh

D(y, w)
�

− Gh
D(y, w)

∂ uh

∂ nw
(w)

�

σ(dw)

=

∫

E

[uh(w)∆wGh
D(y, w)− Gh

D(y, w)∆uh(w)]dw

= 0, (35)

where, analogous to (16),

E = E(M ,ε) = D ∩ {(ρ, z): ρ < M} ∩ Bε(y)
c
. (36)

Then exactly as in §2 (cf. (17) and what follows), we will have that

uh(y) =
1

2

∫

∂ D

f h(w)
�

∂

∂ nw
Gh

D(y, w)
�

σ(d y) (37)

once we prove the analogues of (20)–(21):

lim
M→∞

∫

D∩πM

�

uh(w)
�

∂

∂ nw
Gh

D(y, w)
�

− Gh
D(y, w)

∂ uh

∂ nw
(w)

�

σ(dw) = 0 (38)
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and

lim
ε→0

∫

∂ Bε(y)

�

uh(w)
�

∂

∂ nw
Gh

D(y, w)
�

− Gh
D(y, w)

∂ uh

∂ nw
(w)

�

σ(dw) = 2uh(y). (39)

Translating (37), we would then have

u(y)
h(y)

=
1

2

∫

∂ D

f (w)
h(w)

�

∂

∂ nw
Gh

D(y, w)
�

σ(dw),

which is equivalent to (32), since u(y) = Ey[ f (XτD
)].

It remains to verify (38) and (39).

Proof of (38). All the hard work was done in section 2. Taking b(ρ, z) =− p(p−1)
ρ2 , we have that b is

bounded on D and for z = (z1, z2) ∈ D with z1 ∈ (M − a(M), M + a(M)),

|b(z)| ≤
C

z2
1

≤
C

[M − a(M)]2
.

If also w = (w1, w2) ∈ D with w1 ∈ (M − a(M), M + a(M)) and w 6= z,

|b(w)− b(z)|
|w− z|α

≤ C
|w2

1 − z2
1 |

w2
1z2

1 |w− z|α

≤ C
(w1+ z1)|w1− z1|1−α

w2
1z2

1

≤ C
[a(M) +M][a(M) +M]1−α

M4[1− a(M)
M
]4

.

Since a(M)
M
→ 0 as M →∞, it follows that

sup
M≥1

a(M)2 sup{|b(z)|: z = (z1, z2), z1 ∈ (M − a(M), M + a(M))}<∞

and

sup
M≥1

a(M)α+2 sup
� |b(w)− b(z)|
|w− z|α

: w, z ∈ D; w 6= z; w1z2 ∈ (M − a(M), M + a(M))
�

<∞.

Now we can apply Lemma 2.6 to ∆+ b = 2Lh and v = uh or Gh(y, ·) to get that for some C > 0, for
all large M , for w ∈ πM ∩ D,

�

�

�

�

�

∂ uh

∂ nw
(w)

�

�

�

�

�

≤ Ca(M)−1 sup{|uh(z)|: z ∈ D, M − a(M)< z1 < M + a(M)} (40)

≤ Ca(M)−1[M + a(M)]p sup{|u(z)|: z ∈ D, z1 > M − a(M)}
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(since uh = u/h)

≤ Ca(M)−1M p sup
z1>M−a(M)

|u(z)|

(since a(M)/M → 0 as M →∞)

and
�

�

�

�

∂

∂ nw
Gh

D(y, w)

�

�

�

�

≤ Ca(M)−1 sup{Gh
D(y, z): z ∈ D, M − a(M)< z1 < M + a(M)}, w ∈ πM ∩ D.

(41)

By Lemma 3.1, for large w1, G(y, w) is bounded (recall y is fixed), and so

Gh
D(y, w) = GD(y, w)h(w)/h(y)

≤ G(y, w)h(w)/h(y)

≤ Cw−p
1 , w1 large.

Then using that a(M)
M
→ 0 as M →∞, we have for large M ,

sup{Gh
D(y, w): w ∈ D, M − a(M)< w1 < M + a(M)} ≤ C M−p. (42)

Combining this with (41), for large M , we get
�

�

�

�

∂

∂ nw
Gh

D(y, w)

�

�

�

�

≤ Ca(M)−1M−p, w ∈ πM ∩ D. (43)

Since |uh(w)| ≤ M p sup
z1≥M

|u(z)| for w ∈ πM ∩ D, the inequalities (40), (42) and (43) yield that for all

large M ,
�

�

�

�

�

uh(w)
∂

∂ nw
Gh

D(y, w)− Gh
D(y, w)

∂ uh

∂ nw
(w)

�

�

�

�

�

≤ Ca(M)−1 sup
z1≥M−a(M)

|u(z)|, w ∈ πM ∩ D.

Thus as M →∞,
�

�

�

�

�

�

�

�

∫

D∩πM

�

uh(w)
∂

∂ nw
Gh

D(y, w)− Gh
D(y, w)

∂ uh

∂ nw
(w)

�

σ(dw)

�

�

�

�

�

�

�

�

≤ Ca(M)−1 sup
z1≥M−a(M)

|u(z)|a(M)

= C sup
z1≥M−a(M)

|u(z)| → 0,

by Lemma 3.3. This completes the proof of (38).
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Proof of (39). Recall the ∂
∂ nw

appearing in (39) is the inward normal derivative at ∂ Bε(y). Since

uh ∈ C2,α(D), ∂ uh

∂ nw
is bounded on a neighborhood ∂ Bε(y); then by (31),

�

�

�

�

�

�

�

∫

∂ Bε(y)

Gh
D(y, w)

∂ uh

∂ nw
(w)σ(dw)

�

�

�

�

�

�

�

≤ C log
1

ε
σ(∂ Bε(y))

= Cε log
1

ε

→ 0 as ε→ 0.

Thus to prove (39), it suffices to show

lim
ε→0

∫

∂ Bε(y)

uh(w)
�

∂

∂ nw
Gh

D(y, w)
�

σ(dw) = 2uh(y). (44)

The transition density pD(t, w, z) of X t killed upon exiting D is given by

pD(t, w, z) = p(t, w, z)− Ew[IτD<t p(t −τD, XτD
, z)],

where p(t, w, z) is from (28). Then

GD(w, z) =

∫ ∞

0

pD(t, w, z)d t

= G(w, z)− Ew[G(XτD
, z)],

where G is from Lemma 3.1. Writing

Gh(w, z) = G(w, z)h(z)/h(w),

we get

Gh
D(w, z) = GD(w, z)h(z)/h(w)

= Gh(w, z)− Ew[G
h(XτD

, z)h(XτD
)]/h(w). (45)

Lemma 3.4. a) For ε > 0 so small that B2ε(y)⊆ D,

sup{|∇wGh(z, w)|: w ∈ B2ε(y), z ∈ ∂ D}<∞.

b) For ∂
∂ nw

denoting inward normal differentiation at the boundary of Bε(y),

sup
w∈∂ Bε(y)

�

�

�

�

∂

∂ nw
Gh(y, w)

�

�

�

�

≤ Cε−1, ε small

and

lim
ε→0

∫

∂ Bε(y)

∂

∂ nw
Gh(y, w)σ(dw) = 2 �
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We defer the technical proof to the next subsection. Differentiating (45) and using Lemma 3.4a to
justify differentiation inside the expectation,

∂

∂ nw
Gh

D(y, w) =
∂

∂ nw
Gh(y, w)− Ey

��

∂

∂ nw
Gh(XτD

, w)
�

h(XτD
)/h(y)

�

.

Moreover, since uh is bounded near y and since h is bounded on D, part a) of Lemma 3.4 also implies
that as ε→ 0,

∫

∂ Bε(y)

uh(w)Ey

��

∂

∂ nw
Gh(XτD

, w)
�

h(XτD
)/h(y)

�

σ(d y)

≤
C

h(y)
σ(∂ Bε(y))

→ 0.

Thus by (45), (44) comes down to showing

lim
ε→0

∫

∂ Bε(y)

uh(w)
�

∂

∂ nw
Gh(y, w)

�

σ(dw) = 2uh(y).

Rewriting the integral as
∫

∂ Bε(y)

[uh(w)− uh(y)]
�

∂

∂ nw
Gh(y, w)

�

σ(dw) + uh(y)

∫

∂ Bε(y)

�

∂

∂ nw
Gh(y, w)

�

σ(dw),

by part b) of Lemma 3.4, the first integral is bounded by C sup
w∈∂ Bε(y)

|uh(w)−uh(y)|, which converges

to 0 as ε → 0. Moreover, the limit in that part of the lemma also implies that the second integral
converges to 2uh(y) as ε→ 0. This completes the proof of (39).

3.3 Proof of Lemma 3.4

Recall Gh(z, w) = G(z, w)h(w)/h(z). By Lemma 3.1, writing

γ= γ(z, w) =
2w1z1

w2
1 + z2

1 + (w2− z2)2

and

H(x) =
1

2π

Γ( n−1
4
)Γ( n+1

4
)

Γ( n
2
)

F
�

n− 1

4
,

n+ 1

4
;

n

2
; x
�

,

we have
Gh(z, w) = γ

n−1
2 H(γ2). (46)

Taking the gradient of this gives

∇wGh(z, w) =
�

n− 1

2
γ

n−1
2 H(γ2) + 2γ

n−1
2
+2H ′(γ2)

� ∇wγ

γ
. (47)
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Notice

∂ γ

∂ w1
=
γ

w1

|w− z|2− 2w1(w1− z1)

w2
1 + z2

1 + (w2− z2)2
(48)

∂ γ

∂ w2
=−2γ

w2− z2

w2
1 + z2

1 + (w2− z2)2
. (49)

Proof of Lemma 3.4 a). Since B2ε(y)⊆ D,

γ1 := inf{w1 : w ∈ B2ε(y)} ≥
1

2
> 0

and

γ2 := inf{|z−w|: z ∈ ∂ D, w ∈ B2ε(y)}> 0.

Using the identity
w2

1 + z2
1 + (w2− z2)

2 = |w− z|2+ 2z1w1,

for z ∈ ∂ D and w ∈ B2ε(y) we have from (48)–(49)
�

�

�

�

1

γ

∂ γ

∂ w1

�

�

�

�

≤
1

w1

�

|w− z|2+ 2w1|w1− z1|
|w− z|2+ 2z1w1

�

≤
1

w1
+

2|w1− z1|
|w− z|2

≤
1

γ1
+

2

γ2

and
�

�

�

�

1

γ

∂ γ

∂ w2

�

�

�

�

≤ 2
|w2− z2|

|w− z|2+ 2z1w1
≤

2

γ2
.

Thus

sup

¨
�

�

�

�

∇wγ

γ
(z, w)

�

�

�

�

: z ∈ ∂ D, w ∈ B2ε(y)

«

<∞. (50)

Also, for w ∈ B2ε(y) and z ∈ ∂ D with z1 ≥ 4(y1+ 2ε),

γ(z, w)≤
2w1

z1

≤
2(y1+ 2ε)

z1

≤
1

2
.

Since γ(z, w) = 1 iff z = w and since B2ε(y)⊆ D, we see that

sup{γ(z, w): w ∈ B2ε(y), z ∈ ∂ D, z1 ≤ 4(y1+ 2ε)}< 1.
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Combining the last two bounds yields

sup{(γ(z, w): w ∈ B2ε(y), z ∈ ∂ D}< 1.

Then by the series representation for the hypergeometric function F from Lemma 3.1, it follows
that H(γ2) and H ′(γ2) are bounded for z ∈ ∂ D and w ∈ B2ε(y). Together with (50) and (47), this
implies that ∇wGh(z, w) is bounded for z ∈ ∂ D and w ∈ B2ε(y), as desired.

Proof of Lemma 3.4 b). By formula 15.3.10 on page 559 in Abramowitz and Stegun (1972),

H(x) =
1

2π

∞
∑

k=0

Γ( n−1
4
+ k)Γ( n+1

4
+ k)

Γ( n−1
4
)Γ( n+1

4
)(k!)2

�

2ψ(k+ 1)−ψ
�

n− 1

4
+ k
�

−ψ
�

n+ 1

4
+ k
�

− ln(1− x)
�

(1− x)k,

where ψ(x) = d
d x

lnΓ(x) is the Psi function and the interval of convergence is 0 < x < 1. Using the
asymptotic relation

ψ(x) = ln x −
1

2x
+O

�

1

x2

�

as x →∞

(Abramowitz and Stegun (19792), 6.3.18 on page 259), one can see that 2ψ(k+1)−ψ( n−1
4
+ k)−

ψ( n+1
4
+ k) is bounded in k. By Stirling’s formula, for some positive A and C ,

Γ( n−1
4
+ k)Γ( n+1

4
+ k)

Γ( n−1
4
)Γ( n+1

4
)(k!)2

≤ CkA, k large.

Thus we have as x → 1+,

H(x) =−
1

2π
[1+ o(1)] ln(1− x)

and

H ′(x) =
1

2π
[1+ o(1)]

1

1− x
.

Together these imply that as x → 1+,

n− 1

2
x

n−1
2 H(x2) + 2x

n−1
2
+2H ′(x2)

=
1

2π(1− x)

�

−
n− 1

2
x

n−1
2 [1+ o(1)](1− x) ln(1− x2) +

2

1+ x
x

n−1
2
+2[1+ o(1)]

�

=
1

2π(1− x)
[1+ o(1)]. (51)

Note that for w ∈ ∂ Bε(y),

γ(y, w) =
2y1w1

w2
1 + y2

1 + (w2− y2)2

=
2y1w1

|w− y|2+ 2y1w1

=
2y1w1

ε2+ 2y1w1

= 1− |o(1)| (52)
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as ε→ 0, uniformly for w ∈ ∂ Bε(y).

From (48)–(49), for w ∈ ∂ Bε(y),

∇wγ(y, w) =
γ(y, w)

[w2
1 + y2

1 + (w2− y2)2]

�

ε2− 2w1(w1− y1)
w1

,−2(w2− y2)

�

=
γ(y, w)

ε2+ 2y1w1

�

ε2− 2w1(w1− y1)
w1

,−2(w2− y2)

�

.

As a consequence, also using that |w− z|2 = ε2,

∂

∂ nw
γ(y, w) =

y −w

ε
· ∇wγ(y, w)

=
γ(y, w)

ε2+ 2y1w1

1

ε

�

ε2 y1−w1

w1
+ 2(w1− y1)

2+ 2(w2− y2)
2
�

=
γ(y, w)

ε2+ 2y1w1
ε

�

y1−w1

w1
+ 2
�

. (53)

Using (52) in (51), as ε→ 0, uniformly for w ∈ ∂ Bε(y), for γ= γ(y, w) we have

n− 1

2
γ

n−1
2 H(γ2) + 2γ

n−1
2
+2H ′(γ2) =

1

2π(1− γ)
[1+ o(1)]

=
(w2

1 + y2
1 + (w2− y2)2)

2πε2 [1+ o(1)]

(since |w− y|2 = ε2)

=
ε2+ 2y1w1

2πε2 [1+ o(1)].

Together with (53) we use this in (47) to get that as ε→ 0, uniformly for w ∈ ∂ Bε(y),

∂

∂ nw
Gh(y, w) =

�

n− 1

2
γ

n−1
2 H(γ2) + 2γ

n−1
2
+2H ′(γ2)

�

1

γ

∂ γ

∂ nw

=
ε2+ 2y1w1

2πε2

ε

ε2+ 2y1w1

�

y1−w1

w1
+ 2
�

[1+ o(1)]

=
1

2πε

�

y1−w1

w1
+ 2
�

[1+ o(1)]

=
1

2πε
[2+ o(1)].

This immediately yields the bound given in part b) of Lemma 3.4; moreover,

lim
ε→0

∫

∂ Bε(y)

∂

∂ nw
Gh(y, w)σ(dw) = lim

ε→0

∫

∂ Bε(y)

1

2πε
[2+ o(1)]σ(dw)

= 2,

as desired.
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