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Abstract

Let {X , X i , i ≥ 1} be i.i.d. random variables, Sk be the partial sum and V 2
n
=
∑n

i=1
X 2

i
. Assume

that E(X ) = 0 and E(X 4)<∞. In this paper we discuss the moderate deviations of the maximum

of the self-normalized sums. In particular, we prove that P(max1≤k≤n Sk ≥ x Vn)/(1−Φ(x))→ 2

uniformly in x ∈ [0, o(n1/6)).
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1 Introduction and main results

Let X , X1, X2, · · · be a sequence of i.i.d. random variables with mean zero. Set

Sn =

n∑

j=1

X j and V 2
n =

n∑

j=1

X 2
j .

The past decade has witnessed a significant development on the limit theorems for the so-called

self-normalized sum Sn/Vn. Griffin and Kuelbs (1989) obtained a self-normalized law of the iter-

ated logarithm for all distributions in the domain of attraction of a normal or stable law. Shao

(1997) showed that no moment conditions are needed for a self-normalized large deviation result

P(Sn/Vn ≥ x
p

n) and that the tail probability of Sn/Vn is Gaussian like when X1 is in the domain of

attraction of the normal law and sub-Gaussian like when X is in the domain of attraction of a stable

law, while Giné, Götze and Mason (1997) proved that the tails of Sn/Vn are uniformly sub-Gaussian

when the sequence is stochastically bounded. Shao (1999) established a Cramér type result for self-

normalized sums only under a finite third moment condition. Jing, Shao and Wang (2003) proved

a Cramér type large deviation result (for independent random variables) under a Lindeberg type

condition. Jing, Shao and Zhou (2004) obtained the saddlepoint approximation without any mo-

ment condition. Other results include Wang and Jing (1999) as well as Robinson and Wang (2005)

for an exponential non-uniform Berry-Esseen bound, Csörgő, Szyszkowicz and Wang (2003a, b)

for Darling-Erdős theorems and Donsker’s theorems, Wang (2005) for a refined moderate deviation,

Hall and Wang (2004) for exact convergence rates, and Chistyakov and Götze (2004) for all possible

limiting distributions when X is in the domain of attraction of a stable law. These results show that

the self-normalized limit theorems usually require fewer moment conditions than the classical limit

theorems do. On the other hand, self-normalization is commonly used in statistics. Many statistical

inferences require the use of classical limit theorems. However, these classical results often involve

some unknown parameters, one needs to first estimate the unknown parameters and then substi-

tute the estimators into the classical limit theorems. This commonly used practice is exactly the

self-normalization. Hence, the development on self-normalized limit theorems not only provides a

theoretical foundation for statistical practice but also gives a much wider applicability of the results

because they usually require much less moment assumptions.

In contrast with the achievements for the self-normalized partial sum Sn/Vn, there is little work on

the maximum of self-normalized sums. This paper is part of our efforts to develop limit theorems

for the maximum of self-normalized sums. Using a different approach from some known techniques

for self-normalized sum, we establish a Cramér type large deviation result for the maximum of self-

normalized sums under a finite fourth moment. Note that the Cramér type large deviation result

holds under a finite third moment for partial sum, we conjecture that a finite third moment is

sufficient for (1.1). Our main result is as follows.

Theorem 1.1. If EX 4 <∞, then

lim
n→∞

P
�

max1≤k≤n Sk ≥ x Vn

�

1−Φ(x) = 2 (1.1)

uniformly for x ∈ [0, o(n1/6)).

This theorem is comparable to the large deviation result for the maximum of partial sum given in

Aleshkyavichene (1979). However the latter requires a finite exponential moment condition. We
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also note that Berry-Esseen type results for the maximum of non-self-normalized sums are available

in literature and one can refer to Arak (1974) and Arak and Nevzorov (1973). For a Chernoff type

large deviation, the fourth moment condition can be relaxed to a finite second moment condition.

Indeed, we have the following theorem.

Theorem 1.2. If X is in the domain of attraction of the normal law, then

lim
n→∞

x−2
n log P
�

max
1≤k≤n

Sk ≥ xn Vn

�
=−

1

2
(1.2)

for any xn→∞ with xn = o(
p

n).

This paper is organized as follows. In the next section, we give the proof of Theorem 1.1 as well as

two propositions. The proofs of the two propositions are postponed to Section 3. Finally, the proof

of Theorem 1.2 is given in Section 4.

2 Proof of Theorem 1.1

Throughout this section, without loss of generality, we assume E(X 2) = 1. The proof is based on the

following two propositions. Their proofs will be given in the next section.

Proposition 2.1. If E|X |3 <∞, then for 0≤ x ≤ n1/6,

P( max
1≤k≤n

Sk ≥ xVn) ≤ C e−x2/2, (2.1)

where C is a constant not depending on x and n.

Let x ≥ 2 and 0< α < 1. Write

X̄ i = X i I
�
|X i | ≤ (

p
n/x)α
�

, S̄n =

n∑

i=1

X̄ i , V̄ 2
n =

n∑

i=1

X̄ 2
i . (2.2)

Proposition 2.2. If E|X |max{(α+2)/α, 4} <∞, then

lim
n→∞

P
�

max1≤k≤n S̄k ≥ x V̄n

�

1−Φ(x) = 2, (2.3)

uniformly in x ∈ [2,εnn1/6), where εn→ 0 is any sequence of constants.

We are now ready to prove Theorem 1.1. Let Mn =max1≤k≤n Sk. It is well-known that if the second

moment of X is finite, then by the law of large numbers and the weak convergence

sup
x≥0

|P(Mn ≥ xVn)− 2(1−Φ(x))| → 0.

Hence (1.1) holds for x ∈ [0, 2] and we can assume 2≤ x = o(n1/6). We first prove

lim
n→∞

P
�

Mn ≥ x Vn

�

1−Φ(x) ≤ 2, (2.4)
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uniformly in the range 2≤ x = o(n1/6). Put

S
( j)

k
=

¨
Sk, if 1≤ k ≤ j − 1

Sk − X j , if j ≤ k ≤ n

and V
( j)
n =
Æ

V 2
n − X 2

j
. Noting that for any real numbers s and t and non-negative number c and

x ≥ 1

{s+ t ≥ x
p

c + t2} ⊂ {s ≥
p

x2− 1
p

c}

(see p. 2181 in Jing, Shao and Wang (2003)), we have

{Mn ≥ xVn} ⊂ { max
1≤k≤n

S
( j)

k
≥
p

x2− 1 V ( j)n }

for each 1 ≤ j ≤ n. Let α = 7/8 in (2.2). It is readily seen by the independence of X j and

max1≤k≤n S
( j)

k
/V
( j)
n , the iid properties of X i and Proposition 2.1 that if EX 4 <∞, then for each j

P
�

Mn ≥ xVn, X j 6= X̄ j

�

≤ P
�

max
1≤k≤n

S
( j)

k
≥
p

x2− 1 V ( j)n , X j 6= X̄ j

�

= P(|X j|> (
p

n/x)7/8)P
�

max
1≤k≤n

S
( j)

k
≥
p

x2− 1 V ( j)n

�

= P(|X |> (
p

n/x)7/8)P
�

Mn−1 ≥
p

x2− 1 Vn−1

�

= O(1)(x/
p

n)7/2e−x2/2

= O(1)x9/2n−7/4(1−Φ(x))
= o(n−1)(1−Φ(x))

uniformly in x ∈ [2, o(n1/6)). This, together with Proposition 2.2 yields

P
�

Mn ≥ x Vn

�
≤ P
�

max
1≤k≤n

S̄k ≥ x V̄n

�
+

n∑

j=1

P
�

Mn ≥ x Vn, X j 6= X̄ j

�

= (2+ o(1)) (1−Φ(x)) (2.5)

uniformly in x ∈ [2, o(n1/6)). This proves (2.4).

We next prove

lim
n→∞

P
�

Mn ≥ x Vn

�

1−Φ(x) ≥ 2, (2.6)

uniformly in the range 2 ≤ x ≤ o(n1/6). Let α = 3/4 in (2.2). It follows from EX 4 <∞ and the iid
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properties of X i that

P
�

max
1≤k≤n

S̄k ≥ x V̄n

�

≤ P
�

Mn ≥ x Vn

�
+

n∑

j=1

P
�

max
1≤k≤n

S̄k ≥ x V̄n, X j 6= X̄ j

�

≤ P
�

max
1≤k≤n

Sk ≥ x Vn

�

+

n∑

j=1

P(|X j|> (
p

n/x)3/4)P
�

max
1≤k≤n

S̄
( j)

k
≥
p

x2− 1 V̄ ( j)n

�

≤ P
�

max
1≤k≤n

Sk ≥ x Vn

�

+o(1)x3n−1/2P
�

max
1≤k≤n−1

S̄k ≥
p

x2− 1 V̄n−1

�
, (2.7)

where S̄
( j)

k
and V̄

( j)
n are defined similarly as S

( j)

k
and V

( j)
n with X̄ i to replace X i . By (2.7), result (2.6)

follows immediately from Proposition 2.2. The proof of Theorem 1.1 is now complete. �

3 Proofs of Propositions

3.1 Preliminary lemmas

This subsection provides several preliminary lemmas. Some of which are interesting by themselves.

For each n ≥ 1, let Xn,i , 1 ≤ i ≤ n, be a sequence of independent random variables with zero mean

and finite variance. Write S∗
n,k
=
∑k

i=1 Xn,i , k = 1,2, ...n, B2
n =
∑n

i=1 EX 2
n,i and

L(t) =

n∑

i=1

E
�
|Xn,i |3 max{etXn,i , 1}

�
.

Lemma 3.1. If L 3n :=
∑n

i=1 E|Xn,i |3/B3
n → 0, and there exists an R0 (that may depend on x and n)

such that R0 ≥ 2 max{x , 1}/Bn and L(R0)≤ C0

∑n
i=1 E|Xn,i |3, where C0 ≥ 1 is a constant, then

lim
n→∞

P(S∗n,n ≥ xBn)

1−Φ(x) = 1, (3.1)

uniformly in 0 ≤ x ≤ εnL−1/3
3n , where 0 < εn → 0 is any sequence of constants. Furthermore we also

have

lim
n→∞

P(max1≤k≤n S∗
n,k
≥ xBn)

1−Φ(x) = 2, (3.2)

uniformly in 0≤ x ≤ εnL−1/3
3n .

Proof. The result (3.1) follows immediately from (4) and (5) of Sakhanenko (1991). In order to

prove (3.2), without loss of generality, assume x ≥ 1. The result for 0 ≤ x ≤ 1 follows from the
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well-known Berry-Esseen bound. See Nevzorov (1973), for instance. For each ε > 0, write, for

k = 1,2, ..., n,

S
(1)

n,k
=

k∑

i=1

Xn,i I(Xn,i≤ε), S
(2)

n,k
=

k∑

i=1

Xn,i I(Xn,i≥−ε)

and An =
∑n

i=1

�
|EXn,i I(Xn,i≥−ε)|+ |EXn,i I(Xn,i≤ε)|

�
. We have

2P
�
S(1)n,n ≥ xBn+ (c0+ 1)ε+ An

�

≤ P( max
1≤k≤n

S∗n,k ≥ xBn)≤ 2P
�
S(2)n,n ≥ xBn− c0ε− An

�
, (3.3)

where c0 > 0 is an absolute constant.

The statement (3.3) has been established in (8) of Nevzorov (1973). We present a proof here for

the convenience of the reader. Let S
(3)

n,k
=
∑k

i=1 Xn,i I(|Xn,i |≤ε) for k = 1,2, ..., n. We first claim that

there exists an absolute constant c0 > 0 such that, for any n≥ 1, 1≤ l ≤ n and ε > 0,

I1n ≡ P{S(3)n,n− S
(3)

n,l
− E(S(3)n,n− S

(3)

n,l
)≥ c0 ε} ≤ 1/2, (3.4)

I2n ≡ P{S(3)n,n− S
(3)

n,l
− E(S(3)n,n− S

(3)

n,l
)≥−c0ε} ≥ 1/2. (3.5)

In fact, by letting s2
n = var(S(3)n,n − S

(3)

n,l
) and Yi = Xn,i I(|Xn,i |≤ε) − EXn,i I(|Xn,i |≤ε), it follows from the

non-uniform Berry-Esseen bound that, for any n≥ 1, 1≤ l ≤ n and ε > 0,

I1n ≤
�

1−Φ(c0ε/sn)
�
+ A0 (1+ c0ε/sn)

−3
n∑

j=l+1

E|Yj |3/s3
n

≤
1

2
−

1
p

2π

∫ t0

0

e−s2/2ds +
2A0

c0

(1+ t0)
−3 t0,

where A0 is an absolute constant and t0 = c0ε/sn. Note that
∫ t

0
e−s2/2ds ≥ t(1 + t)−3/2 for any

t ≥ 0. Simple calculations yield (3.4), by choosing c0 ≥ 4A0

p
2π. The proof of (3.5) is similar, we

omit the details. Now, by noting Xn,i I(|Xn,i |≤ε) ≤ Xn,i I(Xn,i≥−ε) and Xn,i ≤ Xn,i I(Xn,i≥−ε), we obtain, for

all 1≤ l ≤ n,

P{S(2)n,n− S
(2)

n,l
≥−c0ε− An} ≥ P{S(3)n,n− S

(3)

n,l
− E(S(3)n,n− S

(3)

n,l
)≥−c0ε} ≥

1

2
,

and hence for y = x Bn,

P{ max
1≤k≤n

S∗n,k ≥ y} ≤ P{ max
1≤k≤n

S
(2)

n,k
≥ y}

=

n∑

k=1

P{S(2)n,1 < y, · · · ,S(2)
n,k
≥ y}

≤ 2

n∑

k=1

P{S(2)n,1 < y, · · · ,S(2)
n,k
≥ y} × P{S(2)n,n− S

(2)

n,k
≥ −c0ε− An}

≤ 2

n∑

k=1

P{S(2)n,1 < y, · · · ,S(2)
n,k
≥ y, S(2)n,n ≥ y − c0ε− An}

≤ 2 P{S(2)n,n ≥ y − c0ε− An}.
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Similarly, it follows from Xn,i I(Xn,i≤ε) ≤ Xn,i I(|Xn,i |≤ε) and Xn,i I(Xn,i≤ε) ≤ Xn,i that, for all 1≤ l ≤ n,

P{S(1)n,n− S
(1)

n,l
≥ c0ε+ An} ≤ P{S(3)n,n− S

(3)

n,l
− E(S(3)n,n− S

(3)

n,l
)≥ c0ε} ≤

1

2
.

and hence for y = x Bn,

P{ max
1≤k≤n

S∗n,k ≥ y} ≥ P{ max
1≤k≤n

S
(1)

n,k
≥ y}

=

n∑

k=1

P{S(1)n,1 < y, · · · , S
(1)

n,k−1
< y, S

(1)

n,k
≥ y}

=

n∑

k=1

P{S(1)n,1 < y, · · · , S
(1)

n,k−1
< y, y ≤ S

(1)

n,k
≤ y + ε}

≥ 2

n∑

k=1

P{S(1)n,1 < x , · · · , S
(1)

n,k−1
< y, y ≤ S

(1)

n,k
≤ y + ε}

×P{S(1)n,n− S
(1)

n,k
≥ c0ε+ An}

≥ 2

n∑

k=1

P{S(1)n,1 < y, · · · , S
(1)

n,k−1
< y, y ≤ S

(1)

n,k
≤ y + ε,

S(1)n,n ≥ y + (1+ c0)ε+ An}
= 2 P{S(1)n,n ≥ y + (1+ c0)ε+ An}.

This completes the proof of (3.3).

In the following proof, take ε = εn Bn/x in (3.3). By recalling EXn,i = 0, we have |ES(t)n,n| ≤ An ≤
ε−2
∑n

i=1 E|Xn,i |3 ≤ εnBn/x and

var(S(t)n,n) = B2
n + r(n), t = 1,2, (3.6)

where |r(n)| ≤ 2ε−1
∑n

i=1 E|Xn,i |3 ≤ 2ε2
nB2

n/x
2, whenever 1 ≤ x ≤ εnL−1/3

3n . Therefore, for n large

enough such that εn ≤ 1/4,

P
�
S(2)n,n ≥ xBn− c0ε− An

�
≤ P
�

S(2)n,n− ES(2)n,n ≥ xBn[1− (c0+ 1)εn/x
2]
�

= P
�

S(2)n,n− ES(2)n,n ≥ x

Æ
var(S

(2)
n,n)(1+η2n)
�

, (3.7)

where |η2n| = |
Ç

B2
n

var(S
(2)
n,n)
[1− (c0 + 1)εn/x

2]− 1| ≤ 2(c0 + 2)εn/x
2 by (3.6), uniformly in 1 ≤ x ≤

εnL−1/3
3n . Similarly, we have

P
�
S(1)n,n ≥ xBn+ (c0+ 1)ε+ An

�

≥ P
�

S(1)n,n− ES(1)n,n ≥ x

Æ
var(S

(1)
n,n)(1+η1n)
�

, (3.8)

where |η1n| ≤ 2(c0+3)εn/x
2 by (3.6), uniformly in 1≤ x ≤ εnL−1/3

3n . By virtue of (3.3), (3.7)-(3.8)

and the well-known fact that if |δn| ≤ Cεn/x
2, then

lim
n→∞

1−Φ
�

x(1+ δn)
�

1−Φ(x) = 1, (3.9)
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uniformly in x ∈ [1,∞), the result (3.2) will follow if we prove

lim
n→∞

P
�
S(t)n,n− ES(t)n,n ≥ x

Æ
var(S

(t)
n,n)
�

1−Φ(x) = 1, for t = 1,2, (3.10)

uniformly in 0 ≤ x ≤ εnL−1/3
3n . In fact, by noting var(S(t)n,n) ≥ B2

n/2, for t = 1,2, whenever 1 ≤ x ≤
εnL−1/3

3n and n sufficient large, (3.10) follows immediately from (3.1). The proof of Lemma 3.1 is

now complete. �

Lemma 3.1 will be used to establish Craḿer type large deviation result for truncated random vari-

ables under finite moment conditions. Indeed, as a consequence of Lemma 3.1, we have the follow-

ing lemma.

Lemma 3.2. If EX 2 = 1 and E|X |(α+2)/α <∞, 0< α≤ 1, then we have

lim
n→∞

P
�
S̄n ≥ x

p
n
�

1−Φ(x) = 1 (3.11)

and

lim
n→∞

P
�

max1≤k≤n S̄k ≥ x
p

n
�

1−Φ(x) = 2. (3.12)

uniformly in the range 2 ≤ x ≤ εnn1/6, where 0 < εn→ 0 is any sequence of constants, and X̄ j and S̄k

are defined as in (2.2).

Proof. Write Xn,i = X i I
�
|X i | ≤ (

p
n/x)α
�
− EX i I
�
|X i | ≤ (

p
n/x)α
�

and B2
n = n Var(X I
�
|X | ≤

(
p

n/x)α
�
). It is easy to check that, for R0 = 2 max{x , 1}/Bn,

n∑

i=1

E
�
|Xn,i |3 max{eR0Xn,i , 1}

�
≤ C0

n∑

i=1

E|Xn,i |3 ≤ C0 nE|X |3,

and L3n := nE|X1n|3/B3
n ∼ n−1/2E|X |3, uniformly in the range 2 ≤ x ≤ εnn1/6, where C0 is a

constant not depending on x and n. So, by (3.1) in Lemma 3.1,

lim
n→∞

P
�
S̄n− ES̄n ≥ x
p

var(S̄n)
�

1−Φ(x) = 1, (3.13)

uniformly in the range 2≤ x ≤ εnn1/6. Now, by noting

|ηn| :=

���
r

n

var(S̄n)

�
1−
p

n

x
E(X I
�
|X | ≤ (

p
n/x)α
�
)
�
− 1

���

≤ O(1)
h

E(X 2 I
�
|X | ≥ (

p
n/x)α
�
) +

p
n

x
E(|X |I
�
|X | ≥ (

p
n/x)α
�
)
i

= o(x/
p

n),

it follows from (3.13) and then (3.9) that

lim
n→∞

P
�
S̄n ≥ x

p
n
�

1−Φ(x) = lim
n→∞

P
�

S̄n− ES̄n ≥ x
p

var(S̄n)(1+ηn)
�

1−Φ(x) = 1,
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uniformly in the range 1 ≤ x ≤ εnn1/6. This proves (3.11). The proof of (3.12) is similar except we

make use of (3.2) in replacement of (3.1) and hence the details are omitted. The proof of Lemma

3.2 is now complete. �

Lemma 3.3. Suppose that EX 2 = 1 and E|X |3 <∞.

(i). For any 0< h< 1, λ > 0 and θ > 0,

f (h) := EeλhX−θh2X 2

= 1+ (λ2/2− θ )h2+Oλ,θh3E|X |3, (3.14)

where |Oλ,θ | ≤ eλ
2/θ + 2λ+ θ + (λ+ θ )3eλ.

(ii). For any 0< h< 1, λ > 0 and θ > 0,

Eeλhmax1≤k≤n Sk−θh2V 2
n = f n(h) +

n−1∑

k=1

f k(h)ϕn−k(h), (3.15)

where

ϕk(h) = Ee−θh2V 2
k
�
1− eλhmax1≤ j≤k S j

�
I(max1≤ j≤k S j<0).

(iii). Write b = x/
p

n. For any λ > 0 and θ > 0, there exists a sufficient small constant b0 (that may

depend on λ and θ) such that, for all 0< b < b0,

Eeλb max1≤k≤n Sk−θ b2V 2
n

≤ C exp
�
(λ2/2− θ )x2+Oλ,θ x3E|X |3/

p
n
	
, (3.16)

where C is a constant not depending on x and n.

Proof. We only prove (3.15) and (3.16). The result (3.14) follows from (2.7) of Shao (1999). Set

γ−1(h) = 0, γ0(h) = 1, γn(h) = Eeλhmax{0,max1≤k≤n Sk}−θh2V 2
n , for n≥ 1,

Φ(h, z) =

∞∑

n=0

γn(h) z
n, Ψ(h, z) = (1− f (h)z)Φ(h, z).

Also write γ̄n(h) = γn(h) − f (h)γn−1(h), bSk = max1≤ j≤k S j and f ∗(h) = Eeλh|X |−θ h2X 2

. Note that

f ∗(h) ≤ eλ
2/4θ and γn(h) ≤

�
f ∗(h)
�n

by independence of X j . It is readily seen that, for all |z| <
min{1,1/ f ∗(h)},

Ψ(h, z) = 1+

∞∑

n=0

γn+1(h) z
n+1−

∞∑

n=0

f (h)γn(h) z
n+1

= 1+

∞∑

n=0

�
γn+1(h)− f (h)γn(h)

�
zn+1

=

∞∑

n=0

γ̄n(h) z
n.
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This, together with f (h)≤ f ∗(h), implies that, for all z satisfying |z|<min{1,1/| f (h)|},

[1− f (h)z]−1Ψ(h, z) =

∞∑

m=0

∞∑

n=0

f (h)m γ̄n(h) z
m+n

=

∞∑

n=0

h n∑

k=0

f k(h) γ̄n−k(h)
i

zn. (3.17)

By virtue of (3.17) and the identity Φ(h, z) = [1− f (h)z]−1Ψ(h, z), for all n≥ 0,

γn(h) =

n∑

k=0

f k(h) γ̄n−k(h). (3.18)

Now, by noting that

λh max
1≤k≤n

Sk − θh2V 2
n

= (λhX1− θh2X 2
1) +max{0,λh(S2− X1), ...,λh(Sn− X1)} − θh2(V 2

n − X 2
1),

it follows easily from (3.18) and the i.i.d. properties of X j , j ≥ 1 that

Eeλhmax1≤k≤n Sk−θh2V 2
n = f (h)γn−1(h) =

n∑

k=1

f k(h) γ̄n−k(h).

This, together with the facts that γ̄0(h) = 1 and

γ̄k(h) = γk(h)− f (h)γk−1(h)

= EeλhbSk−θh2V 2
k I(bSk≥0)+ Ee−θh2V 2

k I(bSk<0)− EeλhbSk−θh2V 2
k

= ϕk(h), for 1≤ k ≤ n− 1,

gives (3.15).

We next prove (3.16). In view of (3.14) and (3.15), it is enough to show that

n∑

k=1

f −k(b)ϕk(b) ≤ C , (3.19)

where C is a constant not depending on x and n. In order to prove (3.19), let ε0 be a constant such

that 0< ε0 <min{1,λ2/(6θ )}, and t0 > 0 sufficiently small such that

ǫ1 := ǫ0 t0− 2t
3/2
0 (1+ E|X |3)et0 > 0.

First note that

ϕk(b) = Ee−θ b2V 2
k
�
1− eλbbSk
�

I(bSk<0)

≤ P
�

V 2
k ≤ (1− ǫ0)k
�
+ e−(1−ǫ0)θkb2

E
�
1− eλbbSk
�

I(bSk<0). (3.20)
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It follows from the inequality ex − 1− x ≤ |x |3/2ex∨0 and the iid properties of X j that

P
�

V 2
k ≤ (1− ǫ0)k
�
= P(k− V 2

k ≥ ǫ0k)≤ e−ǫ0 t0k(Eet0(1−X 2))k

≤ e−ǫ0 tok(1+ t
3/2
0 E(|1− X 2|)3/2et0)k

≤ exp
�
− ǫ0 t0k+ 2t

3/2
0 (1+ E|X |3)ket0

	
= e−ǫ1k.

As in the proof of Lemma 1 of Aleshkyavichene(1979) [see (26) and (28) there], we have

E
�
1− eλbbSk
�

I(bSk<0) = λb
� 1
p

2πk
+ rk

�
+O
�λ2 b2

p
k

�
≤ C b k−1/2+λb|rk|,

for all k ≥ 1 and sufficient small b, where
∑∞

k=1 |rk|= O(1) and C is a constant not depending on x

and n. Taking these estimates into (3.20), we obtain

ϕk(b) ≤ e−ǫ1k + b
�
C k−1/2+λ|rk|
�

e−(1−ǫ0)θkb2

,

for sufficient small b. On the other hand, it follows easily from (3.14) that there exists a sufficient

small b0 such that for all 0< b ≤ b0

f (b) = EeλbX−θ (bX )2 ≥ 1+ (λ2/2− θ − ǫ0θ/2)b2 ≥ e(λ
2/2−θ−ǫ0θ )b2

,

and also f (b) ≥ e−ǫ1/2. Now, by recalling ε0 < λ
2/(6θ ) and using the relation [see (39) in Nagaev

(1969)]

1
p
π

∞∑

k=1

zk

p
k
=

1
p

1− z
+

∞∑

k=0

ρkzk =
1
p

1− z
+O(1), |z|< 1,

where ρk = O(k−3/2), simple calculations show that there exists a sufficient small b0 such that for

all 0< b ≤ b0

n∑

k=1

f −k(b)ϕk(b) ≤
n∑

k=1

e−ǫ1k/2+ b

n∑

k=1

�
C k−1/2+λ|rk|
�

e(2ǫ0θ−λ
2/2)kb2

≤
1

1− e−ε1/2
+ C b

n∑

k=1

k−1/2e−ǫ0θkb2

+λb

∞∑

k=1

|rk|

≤ C1+ C
p
πb/

p
1− e−ε0θ b2 ≤ C2,

where C1 and C2 are constants not depending on x and n. This proves (3.19) and hence completes

the proof of (3.16). �

3.2 Proofs of propositions.

Without loss of generality, assume EX 2 = 1. Otherwise we only need to replace X j by X j/
p

EX 2.
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Proof of Proposition 2.1. Since (2.1) is trivial for 0 ≤ x < 1, we assume x ≥ 1. Write b = x/
p

n.

Observe that

P( max
1≤k≤n

Sk ≥ xVn) ≤ P
�
2b max

1≤k≤n
Sk ≥ b2V 2

n + x2− 1
�

+ P
�

max
1≤k≤n

Sk ≥ xVn, 2bxVn ≤ b2V 2
n + x2− 1
�

= P
�
2b max

1≤k≤n
Sk ≥ b2V 2

n + x2− 1
�

+P
�

max
1≤k≤n

Sk ≥ xVn, (bVn− x)2 ≥ 1)

≤ P
�
2b max

1≤k≤n
Sk − b2V 2

n ≥ x2− 1
�

+ P
�

max
1≤k≤n

Sk ≥ xVn, b2V 2
n ≥ x2+ x
�

+ P
�

max
1≤k≤n

Sk ≥ xVn, b2V 2
n ≤ x2− x
�

:= Λ1,n(x) +Λ2,n(x) +Λ3,n(x), say. (3.21)

By (3.16) with λ = 1 and θ = 1/2 in Lemma 3.3 and the exponential inequality, we have

Λ1,n(x) ≤
p

e e−x2/2E exp
�

b max
1≤k≤n

Sk −
1

2
b2V 2

n

	

≤ C e−x2/2, (3.22)

whenever 0≤ x ≤ n1/6, where C is a constant not depending on x and n. By (3.16) again, it follows

from the similar arguments as in the proofs of (2.12) and (2.28) in Shao (1999) that

Λ2,n(x) ≤ P
�

max
1≤k≤n

Sk ≥ xVn, b2V 2
n ≥ 9x2
�

+ P
�

max
1≤k≤n

Sk ≥ xVn, x2+ x ≤ b2V 2
n ≤ 9x2
�

≤ C exp{−x2+O(x3/
p

n)}+ C exp
�
− x2/2− x/4+O(x3/

p
n)
	

≤ C1e−x2/2,

whenever 0 ≤ x ≤ n1/6, where C and C1 are constants not depending on x and n. Similarly to

(2.29) of Shao (1999), we obtain Λ3,n(x)≤ Ce−x2/2 whenever 0≤ x ≤ n1/6. Taking these estimates

into (3.21), we prove (2.1). The proof of Proposition 2.1 is now complete. �

Proof of Proposition 2.2. First note that, by (3.9) and Lemma 3.2, we have

lim
n→∞

P
�

max1≤k≤n S̄k ≥ x
p

n(1+δn)
�

1−Φ(x) = 2, (3.23)

uniformly in the range 2≤ x ≤ εnn1/6, where |δn| ≤ εn/x
2. Also note that it follows from

Eet(1−X̄ 2) ≤ 1+ tEX 2 I{|X |≥(pn/x)α}+ t2EX 4et
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and E|X |max{(α+2)/α,4} <∞ that (by letting t = x/
p

n)

P
�

n− V̄ 2
n ≥ εnn/x2
�
≤ e−tεnn/x2

Πn
j=1Ee

t(1−X̄ 2
j
)

≤ exp
�
− tεnn/x2+ ntEX 2 I|X |≥(pn/x)α + nt2EX 4et

	

≤ exp
�
− tεnn/x2+ o(1)n(x/

p
n)2−α t + nt2EX 4et

	

= exp
n
− εn

p
n/x +O(x2)
o

≤ o(1)
�

1−Φ(x)
�

,

uniformly in the range 2≤ x ≤ εnn1/6. It is now readily seen that

P
�

max
1≤k≤n

S̄k ≥ x V̄n

�
≤ P( max

1≤k≤n
S̄k ≥ x

p
n(1− εn/x

2)1/2) + P
�

n− V̄ 2
n ≥ εnn/x2
�

=
h

2+ o(1)
i�

1−Φ(x)
�

,

uniformly in the range 2 ≤ x ≤ εn n1/6. Therefore, in order to prove Proposition 2.2, it suffices to

show that

lim
n→∞

P
�

max1≤k≤n S̄k ≥ x V̄n

�

1−Φ(x) ≥ 2, (3.24)

In fact, by noting x V̄n ≤ (x2+ b2V̄ 2
n )/2b where b = x/

p
n, we have

P
�

max
1≤k≤n

S̄k ≥ x V̄n

�
≥ P
�

max
1≤k≤n

S̄k − x V̄ 2
n /(2
p

n)≥ x
p

n/2, V̄ 2
n ≤ n(1+ εn/x

2)
�

≥ P
�

max
1≤k≤n

S̄k ≥ x
p

n(1+ εn/x
2), V̄ 2

n ≤ n(1+ εn/x
2)
�

= P
�

max
1≤k≤n

S̄k ≥ x
p

n(1+ εn/x
2)
�
− Rn,

where

Rn = P
�

max
1≤k≤n

S̄k ≥ x
p

n(1+ εn/x
2), V̄ 2

n ≥ n(1+ εn/x
2)
�
.

This, together with (3.23), implies that (3.24) will follow if we prove

Rn = o(1)
h

1−Φ(x)
i

, (3.25)

uniformly in the range 2≤ x ≤ εn n1/6.

In order to prove (3.25), write ξ= X̄ 2− EX̄ 2, η= X̄ − EX̄ , Wn = V̄ 2
n − EV̄ 2

n and Tn =max1≤k≤n(S̄k−
ES̄k). Recall that |ξ| ≤ (pn/x)2α and |η| ≤ 2(

p
n/x)α. For any 0< θ0 ≤ (

p
n/x)1−α and b = x/

p
n,

it follows easily from EX 2 = 1, E|X |max{(2+α)/α,4} <∞ and |es − 1− s− s2/2| ≤ |s|3es∨0 that

f̄ (b) := Eebη+θ0 b2ξ

= 1+
1

2
E(bη+ θ0 b2ξ)2+O(1)E|bη+ θ0 b2ξ|3e3

= 1+
1

2
b2Eη2+ θ0 b3E(ηξ) +

1

2
θ2

0 b4Eξ2+O(1)e3(b3E|η|3+ θ3
0 b6E|ξ|3)

= 1+
1

2
b2(EX̄ 2− (EX̄ )2) +O(1) (1+ θ0) b3

= 1+
1

2
b2+O(1) (1+ θ0) b3, (3.26)
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and

Eeθ0 b2ξ ≤ 1+ E(θ0 b2ξ)2e/2= 1+O(1)(1+ θ0)b
3. (3.27)

Therefore, by a similar argument as in the proof of (3.15) in Lemma 3.3 and noting

ϕ̄k(b) := Eeθ0 b2Wk
�
1− ebTk
�

ITk<0 ≤ Eeθ0 b2Wk ≤ exp
�
O(1)k(1+ θ0)b

3
	
,

we have

EebTn+θ0 b2Wn = f̄ n(b) +

n−1∑

k=1

f̄ k(b) ϕ̄n−k(b)

≤
� n∑

k=1

ekb2/2
�

exp{O(1)n(1+ θ0)b
3}

≤ 4b−2 exp{nb2/2+O(1)n(1+ θ0)b
3}, (3.28)

where we have used the fact that, for sufficient small b,

n∑

k=1

e−b2k/2 ≤
1

1− e−b2/2
≤ 4b−2.

Now, for any 0< θ0 ≤ (
p

n/x)1−α and b = x/
p

n, we have

Rn ≤ P( max
1≤k≤n

S̄k ≥ x
p

n, V̄ 2
n > n(1+ ǫn/x

2))

≤ P(b max
1≤k≤n

S̄k + θ0 b2V̄ 2
n > x2+ θ0(x

2+ ǫn))

≤ P(b max
1≤k≤n

(S̄k − ES̄k) + θ0 b2(V̄ 2
n − EV̄ 2

n )> x2+ θ0ǫ
′
n)

≤ exp{−(x2+ θ0ǫ
′
n)}EebTn+θ0 b2Wn

≤ 4b−2 exp
�
− x2/2− θ0εn+O(1)(1+ θ0)x

3/
p

n
	

≤ O(1) b−2 exp
�
− x2/2− θ0εn/2}, (3.29)

uniformly in the range 1≤ x ≤ εnn1/6, where we have used the fact that

ǫ′n := ǫn+ θ0 b2(n− EV̄ 2
n )− nb|EX I(|X | ≤ (

p
n/x)α)|

= ǫn+ θ0nb2EX 2 I(|X |> (
p

n/x)α)− nb|EX I(|X |> (
p

n/x)α)|
= ǫn+ o(1)nb3 = ǫn+ o(1)x3/

p
n. (3.30)

Since we may choose εn → 0 sufficient slow so that εn ≥ (x/
p

n)−(1−α)/2, by recalling 0 < α < 1

and taking θ0 = (
p

n/x)1−α in (3.29), we obtain

Rn ≤ 4b−2 exp{−x2/2− b−(1−α)/2}= o(1)
h

1−Φ(x)
i

,

uniformly in the range 1 ≤ x ≤ εnn1/6. This proves (3.25) and also completes the proof of Proposi-

tion 2.2. �
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4 Proof of Theorem 1.2

By (4.2) in Shao(1997) and the fact max1≤k≤n Sk ≥ Sn, it suffices to show that

lim
n→∞

x−2
n log P
�

max
1≤k≤n

Sk ≥ xnVn

�
≤−

1

2
.

Put

l(x) = EX 2 I(|X | ≤ x), b = inf{x ≥ 1 : l(x)> 0},

zn = inf
n

s : s ≥ b+ 1,
l(s)

s2
≤

x2
n

n

o
.

Then zn→∞ and nl(zn) = x2
nz2

n for n large enough. For any 0< ǫ < 1/2, we have

P
�

max
1≤k≤n

Sk ≥ xnVn

�

≤ P
�

max
1≤k≤n

S′k ≥ (1− ǫ)xnVn

�

+ P
� n∑

i=1

|X i |I(|X i |> zn)≥ ǫxnVn, Vn > 0
�
+ P(X = 0)n

:= J1+ J2+ P(X = 0)n,

where S′
k
=
∑k

i=1 X i I(|X i | ≤ zn). To see this, it sufficies to note that

max
1≤k≤n

Sk = max
1≤k≤n

�
S′k +

k∑

i=1

X i I(|X i|> zn)
�

≤ max
1≤k≤n

S′k +
n∑

i=1

|X i |I(|X i|> zn).

As in Shao(1997), we have

J2 ≤
�o(1)
ǫ

�ǫ2 x2
n
.

As for J1, we have

J1 ≤ P
�

max
1≤k≤n

S′k ≥ (1− ǫ)xnV ′n

�

≤ P
�

max
1≤k≤n

S′k ≥ (1− ǫ)
2 xn

p
nl(zn)
�
+ P(V ′2n ≤ (1− ǫ)nl(zn))

:= J3+ J4,

where V ′2n =
∑k

i=1 X 2
i I(|X i | ≤ zn). It follows from Shao(1997) again

J4 ≤ exp{−x2
n + o(x2

n)}.

Since EX 2 I(|X | ≤ x) is slowly varying as x →∞,

|ES′k| ≤ nE|X |I(|X | ≥ zn) = o(nl(zn)/zn), k = 1, · · · , n.
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Then by a Lévy inequality, we have

J3 ≤ P
�

max
1≤k≤n

(S′k − ES′k)≥ (1− ǫ)
2 xn

p
nl(zn)− o(nl(zn)/zn)

�

≤ 2P
�

S′n− ES′n ≥ [(1− ǫ)
2− o(1)]xn

p
nl(zn)
�

≤ 2P
�

S′n ≥ [(1− ǫ)
2− o(1)]xn

p
nl(zn)
�

= exp
�
−
�
(1− ǫ)2− 1/2
�

x2
n + o(x2

n)
�

where the last equality is from Shao(1997).

Now (4.1) follows from the above inequalities and the arbitrariness of ǫ. The proof of Theorem 1.1

is complete. �
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