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Abstract

We give a new proof of a result of Kenyon that the growth exponent for loop-erased random
walks in two dimensions is 5/4. The proof uses the convergence of LERW to Schramm-Loewner
evolution with parameter 2, and is valid for irreducible bounded symmetric random walks on
any discrete lattice of R2.
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1 Introduction

1.1 Overview

Let S be a random walk on a discrete lattice Λ ⊂ Rd , started at the origin. The loop-erased random
walk (LERW) bSn is obtained by running S up to the first exit time of the ball of radius n and then
chronologically erasing its loops.

The LERW was introduced by Lawler [9] in order to study the self-avoiding walk, but it was soon
found that the two processes are in different universality classes. Nevertheless, LERW is extensively
studied in statistical physics for two reasons. First of all, LERW is a model that exhibits many simi-
larities to other interesting models: there is a critical dimension above which its behavior is trivial,
it satisfies a domain Markov property, and it has a conformally invariant scaling limit. Furthermore,
LERWs are often easier to analyze than these other models because properties of LERWs can often
be deduced from facts about random walks. The other reason why LERWs are studied is that they
are closely related to certain models in statistical physics like the uniform spanning tree (through
Wilson’s algorithm which allows one to generate uniform spanning trees from LERWs [30]), the
abelian sandpile model [6] and the b-Laplacian random walk [10] (LERW is the case b = 1).

Let Gr(n) be the expected number of steps of a d-dimensional LERW bSn. Then the d dimensional
growth exponent αd is defined to be such that

Gr(n)≈ nαd

where f (n)≈ g(n) if

lim
n→∞

log f (n)
log g(n)

= 1.

For d ≥ 4, it was shown by Lawler [10, 11] that αd = 2 (roughly speaking, in these dimensions,
random walks do not produce many loops and LERWs have the same growth exponent as random
walks). For d = 3, numerical simulations suggest that α3 is approximately 1.62 [1] but neither
the existence of α3, nor its exact value has been determined rigorously (it is not expected to be a
rational number). In the two dimensional case, it was shown by Kenyon [7] that α2 exists for simple
random walk on the integer lattice Z2 and is equal to 5/4. His proof uses domino tilings to compute
asymptotics for the number of uniform spanning trees of rectilinear regions of R2 and then uses the
relation between uniform spanning trees and LERW to conclude that α2 = 5/4.

In this paper, we give a substantially different proof that α2 = 5/4. Namely, we prove

Theorem 1.1. Let S be an irreducible bounded symmetric random walk on a two-dimensional discrete
lattice started at the origin and let σn be the first exit time of the ball of radius n. Let bSn be the
loop-erasure of S[0,σn] and Gr(n) be the expected number of steps of bSn. Then

Gr(n)≈ n5/4.

The proof of Theorem 1.1 uses the fact that LERW has a conformally invariant scaling limit called
radial SLE2. Radial Schramm-Loewner evolution with parameter κ ≥ 0 is a continuous random
process from the unit circle to the origin in D. It was introduced by Schramm [23] as a candidate
for the scaling limit of various discrete models from statistical physics. Indeed, he showed that if
LERW has a conformally invariant scaling limit, then that limit must be SLE2. In the later paper by
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Lawler, Schramm and Werner [20], the convergence of LERW to SLE2 was proved. Other models
known to scale to SLE include the uniform spanning tree Peano curve (κ = 8, Lawler, Schramm
and Werner [20]), the interface of the Ising model at criticality (κ = 16/3, Smirnov [26]), the
harmonic explorer (κ= 4, Schramm and Sheffield [24]), the interface of the discrete Gaussian free
field (κ= 4, Schramm and Sheffield [25]), and the interface of critical percolation on the triangular
lattice (κ = 6, Smirnov [27] and Camia and Newman [4, 5]). There is also strong evidence to
suggest that the self-avoiding walk converges to SLE8/3, but so far, attempts to prove this have been
unsuccessful [21].

One of the reasons to show convergence of discrete models to SLE is that properties and exponents
for SLE are usually easier to derive than those for the corresponding discrete model. It is also widely
believed that the discrete model will share the exponents of its corresponding SLE scaling limit.
However, the equivalence of exponents between the discrete models and their scaling limits is not
immediate. For instance, Lawler and Puckette [17] showed that the exponent associated to the
non-intersection of two random walks is the same as that for the non-intersection of two Brownian
motions. In the case of discrete models converging to SLE, different techniques must be used,
since the convergence is weaker than the convergence of random walks to Brownian motion. To
the author’s knowledge, the derivation of arm exponents for critical percolation from disconnection
exponents for SLE6 by Lawler, Schramm and Werner [19] and Smirnov and Werner [28] is the only
other example of exponents for a discrete model being derived from those for its SLE scaling limit.

There are three main reasons for giving a new proof that α2 = 5/4. The first is to give another
example where an exponent for a discrete model is derived from its corresponding SLE scaling limit.
The second reason is that the convergence of LERW to SLE2 holds for a general class of random
walks on a broad set of lattices. This allows us to establish the exponent 5/4 for irreducible bounded
symmetric random walks on discrete lattices of R2, and thereby generalize Kenyon’s result which
holds only for simple random walks on Z2. Finally, in the course of the proof we establish some facts
about LERWs that are of interest on their own. Indeed, in a forthcoming paper with Martin Barlow
[2], we use a number of the intermediary results in this paper to obtain second moment estimates
for the growth exponent.

There are two properties of SLE2 that suggest that α2 = 5/4. The first is that the Hausdorff dimen-
sion of the SLE curves was established by Beffara [3], and is equal to 5/4 for SLE2. However, we
have not found a proof that uses this fact directly. Instead, we use the fact that the probability that a
complex Brownian motion from the origin to the unit circle does not intersect an independent SLE2
curve from the unit circle to the circle of radius 0 < r < 1 is comparable to r3/4. This and other
exponents for SLE were established by Lawler, Schramm and Werner [18]. We use this fact to show
that the probability that a random walk and an independent LERW started at the origin and stopped
at the first exit time of the ball of radius n do not intersect is logarithmically asymptotic to n−3/4.
We then relate this intersection exponent 3/4 to the growth exponent α2 and show that α2 = 5/4.

1.2 Outline of the proof of Theorem 1.1

While many of the details are quite technical, the main steps in the proof are fairly straightforward.
Let Es(n) be the probability that a LERW and an independent random walk started at the origin do
not intersect each other up to leaving Bn, the ball of radius n. As we mentioned in the previous
section, the fact that Gr(n) ≈ n5/4 follows from the fact that Es(n) ≈ n−3/4. Intuitively, this is not
difficult to see. Let z be a point in Bn that is not too close to the origin or the boundary. In order for
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z to be on the LERW path, it must first be on the random walk path; the expected number of times
the random walk path goes through z is of order 1. Then, in order for z to be on the LERW path, it
cannot be part of a loop that gets erased; this occurs if and only if the random walk path from z to
∂ Bn does not intersect the loop-erasure of the random walk path from 0 to z. This is comparable to
Es(n). Therefore, since there are on the order of n2 points in Bn, Gr(n) is comparable to n2 Es(n),
and so it suffices to show that Es(n) ≈ n−3/4. The above heuristic does not work for points close to
the origin or to the circle of radius n, and so the actual details are a bit more complicated.

Given l ≤ m≤ n, decompose the LERW path bSn as

bSn = η1⊕η∗⊕η2

(see Figure 1). Define Es(m, n) to be the probability that a random walk started at the origin leaves

n

m

l

η∗

η2

η1

Figure 1: Decomposition of a LERW path into η1, η2 and η∗

the ball Bn before intersecting η2. Notice that Es(m, n) is the discrete analog of the probability that
a Brownian motion from the origin to the unit circle does not intersect an independent SLE2 curve
from the unit circle to the circle of radius m/n. As mentioned in the previous section, the latter
probability is comparable to (m/n)3/4 [18]. Therefore, using the convergence of LERW to SLE2
and the strong approximation of Brownian motion by random walks one can show that there exists
C <∞ such that the following holds (Theorem 5.6). For all 0 < r < 1, there exists N such that for
all n> N ,

1

C
r3/4 ≤ Es(rn, n)≤ C r3/4. (1)

Unfortunately, N in the previous statement depends on r, so one cannot simply take r → 0 to recover
Es(n). Therefore, one has to relate Es(n) to Es(m, n). This is not as easy as it sounds because the
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probability that a random walk avoids a LERW is highly dependent on the behavior of the LERW
near the origin. Nevertheless, we show (Propositions 5.2 and 5.3) that there exists C <∞ such that

C−1 Es(m)Es(m, n)≤ Es(n)≤ C Es(m)Es(m, n). (2)

It is then straightforward to combine (1) and (2) to deduce that Es(n)≈ n−3/4 (Theorem 5.7).

To prove (2), we let l = m/4 in the decomposition given in Figure 1. Then in order for a random
walk S and a LERW bSn not to intersect up to leaving Bn, they must first reach the circle of radius l
without intersecting; this is Es(l). Next, we show that with probability bounded below by a constant,
η∗ is contained in a fixed half-wedge (Corollary 3.8). We then use a separation lemma (Theorem
4.7) which states that on the event Es(l), S and bSn are at least a distance cl apart at the circle of
radius l. This allows us to conclude that, conditioned on the event Es(l), with a probability bounded
below by a constant, S will not intersect η∗. Finally, we use the fact that η1 and η2 are “independent
up to constants” (Proposition 4.6) to deduce that

1

C
Es(l)Es(m, n)≤ Es(n)≤ C Es(l)Es(m, n).

Formula (2) then follows because m= 4l and thus Es(l) is comparable to Es(m).

1.3 Structure of the paper

In Chapter 2, we give precise definitions of random walks, LERWs and SLE and state some of the
basic facts and properties that we require.

In Chapter 3, we prove some technical lemmas about random walks. Section 3.1 establishes some
estimates about Green’s functions and the probability of a random walk hitting a set K1 before
another set K2. Section 3.2 examines the behavior of random walks conditioned to avoid certain
sets. Finally, in Section 3.3 we prove Proposition 3.12 which states the following. For a fixed
continuous curve α in the unit disc D, the probability that a continuous random walk on the lattice
δΛ exits D before hitting α tends to the probability that a Brownian motion exits D before hitting
α. Furthermore, if one fixes r, then the convergence is uniform over all curves whose diameter is
larger than r.

Chapter 4 is devoted to proving two results for LERW that are central to the main proof of the paper.
The first is Proposition 4.6 which states that if 4l ≤ m ≤ n then η1 and η2 are independent up to
a multiplicative constant (see Figure 1). The second result is a separation lemma for LERW. This
key lemma states the following intuitive fact about LERW: there exist positive constants c1 and c2 so
that, conditioned on the event that a random walk and a LERW do not intersect up to leaving the
ball Bn, the probability that the random walk and the LERW are at least distance c1n apart when
they exit the ball Bn is bounded below by c2. Separation lemmas like this one are often quite useful
in establishing exponents; a separation lemma was used in [12] to establish the existence of the
intersection exponent for two Brownian motions and in [28] to derive arm exponents for critical
percolation.

In Chapter 5, we prove that the growth exponent α2 = 5/4. To do this, we first relate the non-
intersection of a random walk and a LERW to the non-intersection of a Brownian motion and an
SLE2. Using the fact that the exponent for the latter is 3/4, we deduce the same result for the
former (Theorem 5.7). Finally, we show how this implies that the growth exponent α2 for LERW is
5/4 (Theorem 1.1).
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2 Definitions and background

2.1 Irreducible bounded symmetric random walks

Throughout this paper, Λ will be a two-dimensional discrete lattice of R2. In other words, Λ is an
additive subgroup of R2 not generated by a single element such that there exists an open neighbor-
hood of the origin whose intersection with Λ is just the origin. It can be shown (see for example
[16, Proposition 1.3.1]) that Λ is isomorphic as a group to Z2.

Now suppose that V ⊂ Λ\{0} is a finite generating set for Λ with the property that the first nonzero
component of every x ∈ V is positive. Suppose that κ : V → (0, 1) is such that

∑

x∈V

κ(x)≤ 1.

Let p(x) = p(−x) = κ(x)/2 for x ∈ V and p(0) = 1−
∑

x∈V κ(x). Define the random walk S with
distribution p to be

Sn = X1+ X2+ · · ·+ Xn.

where the random variables Xk are independent with distribution p. Then S is a symmetric, irre-
ducible random walk with bounded increments. It is a Markov chain with transition probabilities
p(x , y) = p(y − x).

If X = (X 1, X 2) has distribution p, then

Γi, j = E
�

X iX j
�

i, j = 1, 2

is the covariance matrix associated to S. There exists a unique symmetric positive definite matrix
A such that Γ = A2. Therefore, if eS j = A−1S j , then eS is a random walk on the discrete lattice A−1Λ
with covariance matrix the identity. Since a linear transformation of a circle is an ellipse, it is clear
that if we can show that the growth exponent α2 is 5/4 for random walks whose covariance matrix
is the identity, then α2 will be 5/4 for random walks with arbitrary covariance matrix. Therefore, to
simplify notation and proofs, throughout the paper S will denote a symmetric, irreducible random
walk on a discrete lattice Λ with bounded increments and covariance matrix equal to the identity.

2.2 A note about constants

For the entirety of the paper, we will use the letters c and C to denote constants that may change
from line to line but will only depend on the random walk S (which will be fixed throughout).

Given two functions f (n) and g(n), we write f (n)≈ g(n) if

lim
n→∞

log f (n)
log g(n)

= 1,
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and f (n)� g(n) if there exists 0< C <∞ such that for all n

1

C
g(n)≤ f (n)≤ C g(n).

If f (n)→∞ and g(n)→∞ then f (n) � g(n) implies that f (n) ≈ g(n), but the converse does not
hold.

2.3 Subsets of C and Λ

Recall that our discrete lattice Λ and our random walk S with distribution p are fixed throughout.

Given z ∈ C, let
Dr(z) = D(z, r) = {w ∈ C : |w− z|< r}

be the open disk of radius r centered at z in C, and

Bn(z) = B(z, n) = D(z, n)∩Λ

be the ball of radius n centered at z in Λ. We write Dr for Dr(0), Bn for Bn(0) and let D= D1 be the
unit disk in C.

We use the symbol ∂ to denote both the usual boundary of subsets of C and the outer boundary of
subsets of Λ, where the outer boundary of a set K ⊂ Λ (with respect to the distribution p) is

∂ K = {x ∈ Λ \ K : there exists y ∈ K such that p(x , y)> 0}.

The context will make it clear whether we are considering a given set as a subset of C or of Λ. We
will also sometimes consider the inner boundary

∂iK = {x ∈ K : there exists y ∈ Λ \ K such that p(x , y)> 0}.

We let K = K ∪ ∂ K and K◦ = K \ ∂iK .

A path with respect to the distribution p is a sequence of points

ω= [ω0,ω1, . . . ,ωk]⊂ Λ

such that

p(ω) := P
�

Si =ωi : i = 0, . . . , k
	

=
k
∏

i=1

p(ωi−1,ωi)> 0.

We say that a set K ⊂ Λ is connected (with respect to the distribution p) if for any pair of points
x , y ∈ K , there exists a path ω⊂ K connecting x and y .

Given l ≤ m≤ n, let Ωl be the set of pathsω= [0,ω1, . . . ,ωk]⊂ Λ such thatω j ∈ Bl , j = 1, . . . , k−1
and ωk ∈ ∂ Bl . Let eΩm,n be the set of paths λ = [λ0,λ1, . . . ,λk′] such that λ0 ∈ ∂ Bm, λ j ∈ Am,n,
j = 0, 1, . . . , k′− 1 and λk′ ∈ ∂ Bn, where Am,n denotes the annulus Bn \ Bm.

Suppose that l ≤ m≤ n and that η= [0,η1, . . . ,ηk] ∈ Ωn. Let

k1 =min{ j ≥ 1 : η j /∈ Bl} k2 =max{ j ≥ 1 : η j ∈ Bm}.

Then (see Figure 1), η can be decomposed as η= η1⊕η∗⊕η2 where

η1 = η1
l (η) = [0, . . . ,ηk1

] ∈ Ωl

η2 = η2
m,n(η) = [ηk2+1, . . . ,ηk] ∈ eΩm,n

η∗ = η∗l,m,n(η) = [ηk1+1, . . . ,ηk2
].
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2.4 Basic facts about Brownian motion and random walks

Throughout this paper, Wt , t ≥ 0 will denote a standard complex Brownian motion. Given a set
K ⊂ Λ, let

σK =min{ j ≥ 1 : S j /∈ K} σK =min{ j ≥ 0 : S j /∈ K}

be first exit times of the set K . We also let

ξK =min{ j ≥ 1 : S j ∈ K} ξK =min{ j ≥ 0 : S j ∈ K}

be the first hitting times of the set K . We let σn = σBn
and use a similar convention for σn, ξn and

ξn. We also define the following stopping times for Brownian motion: given a set D ⊂ C, let

τD =min{t ≥ 0 : Wt ∈ ∂ D}.

Depending on whether the Brownian motion is started inside or outside D, τD will be either an exit
time or a hitting time.

Suppose that X is a Markov chain on Λ and that K ⊂ Λ. Let

σX
K =min{ j ≥ 1 : X j /∈ K}.

For x , y ∈ K , we let

GX
K (x , y) = Ex







σX
K−1
∑

j=0

1{X j = y}







denote the Green’s function for X in K . We will sometimes write GX (x , y; K) for GX
K (x , y) and also

abbreviate GX
K (x) for GX

K (x , x). When X = S is a random walk, we will omit the superscript S.

Recall that a function f defined on K ⊂ Λ is discrete harmonic (with respect to the distribution p) if
for all z ∈ K ,

L f (z) :=− f (z) +
∑

x∈Λ
p(x − z) f (x) = 0.

For any two disjoint subsets K1 and K2 of Λ, it is easy to verify that that the function

h(z) = Pz
¦

ξK1
< ξK2

©

is discrete harmonic on Λ\(K1∪K2). The following important theorem concerning discrete harmonic
functions will be used repeatedly in the sequel [16, Theorem 6.3.9].

Theorem 2.1 (Discrete Harnack Principle). Let U be a connected open subset of C and A a compact
subset of U. Then there exists a constant C(U , A) such that for all n and all positive harmonic functions
f on nU ∩Λ

f (x)≤ C(U , A) f (y)

for all x , y ∈ nA∩Λ.

Suppose that X is a Markov chain with hitting times

ξ
X
K =min{ j ≥ 0 : X ∈ K}.
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Given two disjoint subsets K1 and K2 of Λ, let Y be X conditioned to hit K1 before K2 (as long as

this event has positive probability). Then if we let h(z) = Pz
n

ξ
X
K1
< ξ

X
K2

o

, Y is a Markov chain with
transition probabilities

pY (x , y) =
h(y)
h(x)

pX (x , y).

Therefore, if ω= [ω0, . . . ,ωk] is a path with respect to pX in Λ \ (K1 ∪ K2),

pY (ω) =
h(ωk)
h(ω0)

pX (ω). (3)

Using this fact, the following lemma follows readily.

Lemma 2.2. Suppose that X is a Markov Process and let Y be X conditioned to hit K1 before K2.
Suppose that K ⊂ Λ \ (K1 ∪ K2). Then for any x , y ∈ K,

GY
K (x , y) =

h(y)
h(x)

GX
K (x , y).

In particular, GY
K (x) = GX

K (x).

Finally, we recall an important theorem concerning the intersections of random walks and Brownian
motion with continuous curves.

Theorem 2.3 (Beurling estimates).

1. There exists a constant C <∞ such that the following holds. Suppose that α : [0, tα]→ C is a
continuous curve such that α(0) = 0 and α(tα) ∈ ∂ Dr . Then if z ∈ Dr ,

Pz �W[0,τr]∩α[0, tα] = ;
	

≤ C
� |z|

r

�1/2

.

2. There exists a constant C <∞ such that the following holds. Suppose that ω is a path from the
origin to ∂ Bn. Then if z ∈ Bn,

Pz �S[0,σn]∩ω= ;
	

≤ C
� |z|

n

�1/2

.

Proof. The statement about Brownian motion can be found, for example, in [14, Theorem 3.76].
The statement about random walks was originally proved in [8]; a formulation that is closer to the
one given above can be found in [15].

2.5 Loop-erased random walk

We now describe the loop-erasing procedure and various definitions of the loop-erased random walk
(LERW). Given a path λ = [λ0, . . . ,λm] in Λ, we let L(λ) = [λ̂0, . . . , λ̂n] denote its chronological
loop-erasure. More precisely, we let

s0 = sup{ j : λ( j) = λ(0)},

1020



and for i > 0,
si = sup{ j : λ( j) = λ(si−1+ 1)}.

Let
n= inf{i : si = m}.

Then
L(λ) = [λ(s0),λ(s1), . . . ,λ(sn)].

Note that one may obtain a different result if one performs the loop-erasing procedure backwards
instead of forwards. In other words, if we let λR = [λm, . . . ,λ0], then in general, L(λR) 6= L(λ)R.
However, if λ has the distribution of a random walk, then L(λR) has the same distribution as L(λ)R

[10, Lemma 7.2.1].

Now suppose that S is a random walk on Λ and K is a proper subset of Λ. We define the LERW bSK

to be the process
bSK = L(S[0,σK]).

In other words, we run S up to the first exit time of K and then erase loops. We write bSn for bSBn . We
also define the following stopping times. Given A⊂ K , we let

bσK
A =min{ j ≥ 1 : bSK

j /∈ A}.

If either A or K is a ball Bn, we replace A or K by n in the subscript or superscript.

Different sets K will produce different LERWs bSK , but one can define an “infinite LERW" as follows.
For ω ∈ Ωl , and n> l let

µl,n(ω) = P
¦

bS[0, bσn
l ] =ω

©

.

Then one can show [10, Proposition 7.4.2] that there exists a limiting measure µl such that

lim
n→∞

µl,n(ω) = µl(ω).

The µl are consistent and therefore there exists a measure µ on infinite self-avoiding paths. We call
the associated process the infinite LERW and denote it by bS. In this paper, we will consider both the
infinite LERW bS, and LERWs bSK obtained by stopping a random walk at the first exit time of K and
then erasing loops.

Suppose that X is a Markov chain and ω = [ω0, . . . ,ωk] is a path in Λ with respect to pX . One can
write down an exact formula for the probability that the first k steps of the loop-erased process bX K

are equal to ω. Letting A j = {ω0, . . . ,ω j}, j = 0, . . . , k, A−1 = ;, and GX (.; .) be the Green’s function
for X , we define

GX
K (ω) =

k
∏

j=0

GX (ω j; K \ A j−1). (4)

Then [13],

P
¦

bX K[0, k] =ω
©

= pX (ω)GX
K (ω)P

ωk
¦

σX
K < ξ

X
ω

©

. (5)

We can use the previous formula to show that while LERW is certainly not a Markov chain, it does
satisfy the following “domain Markov property”: for any Markov chain X , if we condition the initial
part of bX to be equal to ω, the rest of bX can be obtained by running X conditioned to avoid ω and
then loop-erasing.
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Lemma 2.4 (Domain Markov Property). Let X be a Markov chain, K ⊂ Λ and ω = [ω0,ω1, . . . ,ωk]
be a path in K (with respect to pX ). Define a new Markov chain Y to be X started at ωk conditioned on
the event that X [1,σX

K]∩ω = ;. Suppose that ω′ = [ω′0 . . . ,ω′k′] is such that ω⊕ω′ is a path from
ω0 to ∂ K. Then,

P
¦

bX K[0, bσX
K] =ω⊕ω

′
bX K[0, k] =ω

©

= P
¦

bY K[1, bσY
K] =ω

′
©

.

Proof. Let GX (.; .) and GY (.; .) be the Green’s functions for X and Y respectively. Then by formula
(5),

P
¦

bX K[0, bσX
K] =ω⊕ω

′
©

= pX (ω⊕ω′)GX
K (ω)G

X
K\ω(ω

′);

P
¦

bX K[0, k] =ω
©

= pX (ω)GX
K (ω)P

ωk
¦

σX
K < ξ

X
ω

©

;

P
¦

bY K[0, bσY
K] =ω

′
©

= pY (ω′)GY
K (ω

′).

However,
pX (ω⊕ω′) = pX (ω)pX (ω′),

pY (ω′) =
pX (ω′)

Pωk
¦

σX
K < ξ

X
ω

© ,

and by Lemma 2.2,
GY

K (ω
′) = GY

K\ω(ω
′) = GX

K\ω(ω
′).

2.6 Schramm-Loewner evolution

In this subsection, we give a brief description of Schramm-Loewner evolution. For a much more
thorough introduction to SLE, see for instance [14] or [29].

Suppose that γ : [0,∞] → D is a simple continuous curve such that γ(0) ∈ ∂D, γ(0,∞] ⊂ D and
γ(∞) = 0. Then by the Riemann mapping theorem, for each t ≥ 0, there exists a unique conformal
map gt : D \ γ(0, t] → D such that gt(0) = 0 and g ′t(0) > 0. The quantity log g ′t(0) is called the
capacity of D \ γ(0, t] from 0. By the Schwarz Lemma, g ′t(0) is increasing in t and therefore, one
can reparametrize γ so that g ′t(0) = et ; this is the capacity parametrization of γ. For each t ≥ 0, one
can verify that

Ut := lim
z→γ(t)

gt(z)

exists and is continuous as a function of t. Also, gt and Ut satisfy Loewner’s equation

ġt(z) = gt(z)
Ut + gt(z)
Ut − gt(z)

, g0(z) = z. (6)

Therefore, given a simple curve γ as above, one produces a curve Ut on the unit circle satisfying (6).
One calls Ut the driving function of γ.

The idea behind the Schramm-Loewner evolution is to start with a driving function Ut and use that
to generate the curve γ. Indeed, given a continuous curve U : [0,∞] → ∂D and z ∈ D, one can
solve the ODE (6) up to the first time Tz that gt(z) = Ut . If we let Kt = {z ∈ D : Tz ≤ t} then one
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can show that gt is a conformal map from D \ Kt onto D such that gt(0) = 0 and g ′t(0) = et . We
note that there does not necessarily exist a curve γ such that Kt = γ[0, t] as was the case above.

The radial Schramm-Loewner evolution arises as a special choice of the driving function Ut . For
each κ > 0, we let Ut = ei

p
κBt where Bt is a standard one dimensional Brownian motion. Then

the resulting random maps gt and sets Kt are called radial SLEκ. It is possible to show that with
probability 1, there exists a curve γ such that D \ Kt is the connected component of D \ γ[0, t]
containing 0 (see [22] for the case κ 6= 8 and [20] for κ = 8). In [22] it was shown that if κ ≤ 4
then γ is a.s. a simple curve and if κ > 4, γ is a.s. not a simple curve. One refers to γ as the radial
SLEκ curve.

One defines radial SLEκ in other simply connected domains to be such that SLEκ is conformally
invariant. Given a simply connected domain D 6= C, z ∈ D and w ∈ ∂ D, there exists a unique
conformal map f : D→ D such that f (0) = z and f (1) = w. Then SLEκ in D from w to z is defined
to be the image under f of radial SLEκ in D from 1 to 0.

We will focus on the case κ= 2, and throughout γ : [0,∞]→ D will denote radial SLE2 in D started
uniformly on ∂D. If D ⊂ D, we let

bτD = inf{t ≥ 0 : γ(t) ∈ ∂ D}.

We conclude this section with precise statements of the two facts about SLE2 that were mentioned
in the introduction: the intersection exponent for SLE2 and the weak convergence of LERW to SLE2.

Theorem 2.5 (Lawler, Schramm, Werner [18]). Let γ be radial SLEκ from 1 to 0 in D and for
0 < r < 1, let bτr be the first time γ enters the disk of radius r. Let W be an independent complex
Brownian motion started at 0. Then

P
�

W[0,τD]∩ γ[0, bτr] = ;
	

� rν ,

where

ν(κ) =
κ+ 4

8
.

In particular, ν = 3/4 for SLE2.

In order to state the convergence of LERW to SLE2 we require some notation. Let Γ denote the set
of continuous curves α : [0, tα]→ D (we allow tα to be∞) such that α(0) ∈ ∂D, α(0, tα] ⊂ D and
α(tα) = 0. We can make Γ into a metric space as follows. If α,β ∈ Γ, we let

d(α,β) = inf sup
0≤t≤tα

�

�α(t)− β(θ(t))
�

� ,

where the infimum is taken over all continuous, increasing bijections θ : [0, tα]→ [0, tβ]. Note that
d is a pseudo-metric on Γ, and is a metric if we consider two curves to be equivalent if they are the
same up to reparametrization.

Let f be a continuous function on Γ, γ be radial SLE2, and extend bSn to a continuous curve by linear
interpolation (so that the time reversal of n−1

bSn is in Γ), then

Theorem 2.6 (Lawler, Schramm, Werner [20]).

lim
n→∞

E
�

f (n−1
bSn)
�

= E
�

f (γ)
�

.
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3 Some results for random walks

In this section we establish some technical lemmas concerning random walks that will be used
repeatedly in the sequel.

3.1 Hitting probabilities and Green’s function estimates

Recall that ξK is the first hitting time of the set K and G(.;Λ \ K) is the Green’s function in the set
Λ \ K .

Lemma 3.1. Let K1, K2 ⊂ Λ be disjoint and z ∈ Λ \ (K1 ∪ K2). Then,

Pz
¦

ξK1
< ξK2

©

=
G
�

z;Λ \ (K1 ∪ K2)
�

G(z;Λ \ K1)

∑

y∈∂i K1

Py
¦

ξz < ξK2
ξz < ξK1

©

Pz
¦

S(ξK1
) = y

©

.

Proof. We begin by showing that for any K ⊂ Λ, z ∈ Λ \ K and y ∈ ∂iK ,

Pz �S(ξK) = y
	

= G(z;Λ \ K)Pz �S(ξK ∧ ξz) = y
	

.

To prove this, we proceed as in the proof of [10, Lemma 2.1.1]. Let

τ= sup{ j < ξK : S j = z}.

Note that τ is not a stopping time. However, since τ < ξK ,

Pz �S(ξK) = y
	

=
∞
∑

k=1

Pz �ξK = k; Sk = y
	

=
∞
∑

k=1

k−1
∑

j=0

Pz �ξK = k; Sk = y;τ= j
	

=
∞
∑

j=0

∞
∑

k= j+1

Pz
¦

S j = z; Sk = y; Si /∈ K , 0≤ i ≤ j; Si /∈ K ∪ {z}, j+ 1≤ i < k
©

=
∞
∑

j=0

Pz
¦

S j = z; Si /∈ K , 0≤ i ≤ j
©

∞
∑

k=1

Pz �Sk = y, Si /∈ K ∪ {z}, 1≤ i < k
	

= GΛ\K(z)P
z �S(ξK ∧ ξz) = y

	

Applying the previous equality to K = K1 ∪ K2, we get that

Pz
¦

ξK1
< ξK2

©

=
∑

y∈∂i K1

Pz
¦

S(ξK1∪K2
) = y

©

= G(z;Λ \ (K1 ∪ K2))
∑

y∈∂i K1

Pz
¦

S(ξK1
∧ ξK2

∧ ξz) = y
©
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By reversing paths, one sees that

Pz
¦

S(ξK1
∧ ξK2

∧ ξz) = y
©

= Py
¦

S(ξK1
∧ ξK2

∧ ξz) = z
©

.

Thus,

Pz
¦

ξK1
< ξK2

©

= G(z;Λ \ (K1 ∪ K2))
∑

y∈∂i K1

Py
¦

S(ξK1
∧ ξK2

∧ ξz) = z
©

= G(z;Λ \ (K1 ∪ K2))
∑

y∈∂i K1

Py
¦

ξz < ξK2
ξz < ξK1

©

Py
¦

ξz < ξK1

©

However, by reversing paths yet again,

Py
¦

ξz < ξK1

©

= Pz
¦

S(ξK1
∧ ξz) = y

©

=
Pz
¦

S(ξK1
) = y

©

GΛ\K1
(z)

,

which completes the proof of the lemma.

Lemma 3.2.

1. There exists c > 0 and N such that for all l ≥ N the following holds. Suppose that K ⊂ Λ contains
a path connecting 0 to ∂ Bl . Then for any x ∈ Bl ,

Px �ξK < σ2l
	

≥ c.

2. There exists c > 0 and N such that for all N ≤ 2l < n, the following holds. Suppose that K ⊂ Λ
contains a path connecting ∂ B2l to ∂ Bn. Then for any x ∈ ∂ B2l ,

Px �ξK ∧σn < ξl
	

≥ c.

Proof. Proof of (1): We assume that N is sufficiently large so that for all l ≥ N , each of the steps
below works.

First of all, we may assume that z ∈ Bl/4 since if z ∈ Bl ,

Pz
¦

ξl/4 < σ2l

©

> c.

If p is the distribution of the random walk S, let

m=max{|x | : p(x)> 0}.

Since K connects 0 to ∂ Bl , there exists a subset K ′ of K such that for each i = 1, . . . , bl/mc, there
is exactly one point x ∈ K ′ such that (i − 1)m ≤ |x | < im. It is clear that if the lemma holds for K ′

then it will hold for K . Therefore, we assume that K has this property.

By [16, Proposition 6.3.5], there exists a constant C such that if z ∈ Bl ,

GBl
(0, z) = C

�

log l − log |z|
�

+O(|z|−1).
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Therefore, if y, z ∈ Bl with
�

�z− y
�

�< l/2, and l is large enough,

GB2l
(z, y) ≥ GBl

(0, y − z)

≥ C
�

log l − log
�

�z− y
�

�

�

+O(
�

�z− y
�

�

−1
)

≥ c1 > 0.

Similarly, if z, y ∈ Bl ,

GB2l
(z, y)≤ GB4l

(0, y − z)≤ C
�

log l − log
�

�z− y
�

�

�

+ C ′.

Let V be the number of visits to K before leaving B2l . Then for any z ∈ Bl/4, since there are at least
l/(4m) points within distance l/2 from z,

Ez [V ] =
∑

y∈K

GB2l
(z, y)≥

c1l

4m
.

Also, since there are at most 2 j/m points in K within distance j from z ∈ Bl ,

Ez [V ]≤ C







l log l

m
− 2

l/(2m)
∑

j=1

log j






+ C ′

l

m
≤ C2

l

m
.

Therefore, for any x ∈ Bl ,

Px �ξK < σ2l
	

=
Ex [V ]

Ex �V ξK < σ2l
� ≥

c1

4C2
.

Proof of (2): We again let N be large enough so that if l ≥ N the following steps work. For x ∈ ∂ B2l ,
there exists c > 0 such that for all l large enough,

Px �σ4l < ξl
	

≥ c.

Therefore, we may assume that n> 4l. We will show that if K ⊂ Λ contains a path connecting ∂ B2l
to ∂ B4l , then

Px �ξK < ξl
	

≥ c.

It suffices to show that for all z, y ∈ B4l \ B2l ,

c1 ≤ G(z, y; Bc
l )≤ C2

�

log l − log
�

�z− y
�

�+ C ′
�

. (7)

For if we can show (7), then we can proceed as in the proof of (1).

To prove the left inequality, we note that for z ∈ ∂ Bl/4(y),

G(z, y; Bc
l )≥ GBl/2(y)(z, y)≥ c

by the estimate in (1). Therefore, for any z, y ∈ B4l \ B2l ,

G(z, y; Bc
l )≥ cPz

n

ξBl/4(y) < ξl

o

,
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and by approximation by Brownian motion, one can bound the latter from below by a uniform
constant.

We now prove the right inequality in (7). By the monotone convergence theorem,

G(z, y; Bc
l ) = lim

m→∞
G(z, y; Bm \ Bl).

However, since Bm \ Bl is a finite set, we can apply [16, Proposition 4.6.2] which states that

G(z, y; Bm \ Bl) = Ez
�

a(S(σBm\Bl
)− y)

�

− a(z− y),

where a denotes the potential kernel. By [16, Theorem 4.4.3],

a(z) = C∗ log |z|+ C ′+O(|z|−2).

Therefore,

G(z, y; Bm \ Bl)

≤ [C∗ log 5l]Pz �ξl < σm
	

+ [C∗ log(m+ 4l)]Pz �σm < ξl
	

− C∗ log
�

�z− y
�

�+ C ′′.

However, because |z|< 4l, a standard estimate [16, Proposition 6.4.1] shows that

Pz �σm < ξl
	

≤
log(4l)− log l + C

log m− log l
≤

C

log m− log l
.

Therefore,

G(z, y; Bc
l ) = lim

m→∞
G(z, y; Bm\Bl

)

≤ lim
m→∞

C∗ log5l + C
log(m+ 4l)
log m− log l

− C∗ log
�

�z− y
�

�+ C ′′

= C∗
�

log l − log
�

�z− y
�

�+ C ′′
�

.

Lemma 3.3. There exists C < ∞ and N such that for all N ≤ 2l ≤ n, the following holds. Suppose
that K ⊂ Λ contains a path connecting ∂ B2l to ∂ Bn. Then for any z ∈ Bl ,

G(z; Bn \ K)≤ CG(z; B2l).

Proof. Without loss of generality, we may assume that K ⊂ Λ \ B2l . In that case, σ2l < ξK ∧σn for
all walks started in Bl and therefore,

G(z; Bn \ K) = Pz �ξK ∧σn < ξz
	−1

=







∑

w∈∂ B2l

Pw �ξK ∧σn < ξz
	

Pz �S(σ2l) = w;σ2l < ξz
	







−1

.

However, by Lemma 3.2, for any w ∈ ∂ B2l ,

Pw �ξK ∧σn < ξz
	

≥ c > 0.

Therefore,
G(z; Bn \ K)≤ CPz �σ2l < ξz

	−1 = CG(z; B2l).
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Lemma 3.4. There exists c > 0 and N such that for N ≤ 2l ≤ n the following holds. Suppose K ⊂ Λ\B2l
contains a path connecting ∂ B2l to ∂ Bn. Then for z ∈ Bl ,

Pz �ξ0 < σ2l ξ0 < ξK ∧σn
	

≥ c.

Proof. To begin with, we claim that it suffices to show that

Pz �ξ0 < ξK ∧σn
	

≤ CPz �ξ0 < σ2l
	

(8)

for z ∈ ∂ Bl such that
Pz �ξ0 < ξK ∧σn

	

= max
y∈∂ Bl

Py �ξ0 < ξK ∧σn
	

.

To see this, note that

Pz �ξ0 < σ2l ξ0 < ξK ∧σn
	

=
Pz �ξ0 < σ2l

	

Pz �ξ0 < ξK ∧σn
	 .

Therefore it suffices to show that for all z ∈ Bl ,

Pz �ξ0 < ξK ∧σn
	

≤ CPz �ξ0 < σ2l
	

.

However, for z ∈ Bl ,

Pz �ξ0 < ξK ∧σn
	

= Pz �ξ0 < σl
	

+
∑

w∈∂ Bl

Pw �ξ0 < ξK ∧σn
	

Pz �S(ξ0 ∧σl) = w
	

and
Pz �ξ0 < σ2l

	

= Pz �ξ0 < σl
	

+
∑

w∈∂ Bl

Pw �ξ0 < σ2l
	

Pz �S(ξ0 ∧σl) = w
	

.

Furthermore, by the discrete Harnack inequality, for any y, y ′ ∈ ∂ Bl ,

Py �ξ0 < ξK ∧σn
	

� Py ′ �ξ0 < ξK ∧σn
	

and
Py �ξ0 < σ2l

	

� Py ′ �ξ0 < σ2l
	

.

Therefore, the lemma will follow once we prove (8).

Let z ∈ ∂ Bl be such that

Pz �ξ0 < ξK ∧σn
	

= max
y∈∂ Bl

Py �ξ0 < ξK ∧σn
	

.

Then,

Pz �ξ0 < ξK ∧σn
	

= Pz �ξ0 < σ2l
	

+ Pz �σ2l < ξ0;ξ0 < ξK ∧σn
	

.

Now,

Pz �σ2l < ξ0;ξ0 < ξK ∧σn
	

=
∑

w∈∂ B2l

Pw �ξ0 < ξK ∧σn
	

Pz �S(σ2l) = w;σ2l < ξ0
	

.
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By Lemma 3.2, for any w ∈ ∂ B2l ,

Pw �ξ0 < ξK ∧σn
	

=
∑

y∈∂ Bl

Pw �S(ξl) = y;ξl < ξK ∧σn
	

Py �ξ0 < ξK ∧σn
	

≤ Pw �ξl < ξK ∧σn
	

Pz �ξ0 < ξK ∧σn
	

≤ (1− c)Pz �ξ0 < ξK ∧σn
	

.

Thus,

Pz �ξ0 < ξK ∧σn
	

≤ Pz �ξ0 < σ2l
	

+ (1− c)Pz �ξ0 < ξK ∧σn
	

Pz �σ2l < ξ0
	

≤ Pz �ξ0 < σ2l
	

+ (1− c)Pz �ξ0 < ξK ∧σn
	

,

and therefore

Pz �ξ0 < ξK ∧σn
	

≤
1

c
Pz �ξ0 < σ2l

	

,

which completes the proof.

3.2 Random walks conditioned to avoid certain sets

Proposition 3.5. There exist constants N and c > 0 such that for all n ≥ N the following holds.
Suppose that K ⊂ Λ \ Bn(n, 0) where Bn(n, 0) denotes the ball of radius n centered at (n, 0) (see Figure
2). Then,

P0
§

arg(S(σn)) ∈ [−
π

4
,
π

4
] σn < ξK

ª

≥ c.

−π
4

π
4

0

K

Figure 2: The setup for Proposition 3.5

Proof. For z ∈ D, let

h(z) = Pz
§

arg[W (τD)] ∈ [−
π

4
,
π

4
]
ª
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where W denotes standard two-dimensional Brownian motion. Then h is the solution to the Dirichlet
problem with boundary value 1[−π/4,π/4]. Therefore, we can express h as

h(z) =
1

2π

∫
π
4

−π
4

HD(z, eiθ ) dθ

where

HD(z, eiθ ) =
1− |z|2
�

�eiθ − z
�

�

2

is the Poisson kernel for the unit disk.

One can compute h (it is easier to consider the problem on H and then map back via a conformal
transformation):

h(z) =
1

π

�

arctan

�

(
p

2− 1) |1+ z|2+ 2 Im(z)

1− |z|2

�

+ arctan

�

(
p

2− 1) |1+ z|2− 2 Im(z)

1− |z|2

��

.

We now establish three basic facts about h that we will use below.

1. Let D1(1) be the disk of radius 1 centered at the point 1. We claim that for all z ∈ D \ D1(1),
h(z) ≤ h(0). By the maximal principle for harmonic functions, h restricted to D \ D1(1) takes
its maximal value on ∂ D1(1)∩D (since h vanishes on ∂D \ D1(1)). Thus, to prove the claim,
it suffices to show that

f (t) = h(1+ cos t, sin t)

takes its maximal value at t = π for 2π/3 ≤ t ≤ 4π/3. Since one has an explicit formula for
h, this is left as an exercise for the reader or the reader’s Calculus students.

2. Next, fixing w = eiθ , it is a basic calculation to show that

∂ HD(., w)
∂ x

(0) = 2 cosθ ,
∂ HD(., w)
∂ y

(0) = 2sinθ .

Therefore,
∂ h

∂ x
(0) =

1

2π

∫
π
4

−π
4

(2cosθ) dθ =

p
2

π
,

and
∂ h

∂ y
(0) =

1

2π

∫
π
4

−π
4

(2 sinθ) dθ = 0.

These results can also be obtained from the explicit formula for h.
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3. Finally, there exists 0< r < 1 such that for all r < |z|< 1, and
�

�arg(z)
�

�> π/3, h(z)< 1/8. This
follows from the fact that if |z|> r and |arg(z)|> π/3 then for w ∈ ∂D with |arg(w)|< π/4,

HD(z, w) =
1− |z|2

|w− z|2
≤ c(1− r2),

which can be made to be arbitrarily close to 0.

Assume that n is large enough so that Brn ⊂ nD where r is as in the previous paragraph. We let
hn(z) = h(z/n) which is harmonic in nD. Then for z ∈ Brn, define

ehn(z) = Ez �hn(S(σrn))
�

.

Then ehn is discrete harmonic in Brn and agrees with hn on ∂ Brn.

A natural question to ask is how close does the discrete harmonic solution ehn approximate the
continuous harmonic solution hn? By [16, Corollary 6.2.4], for all z ∈ Brn,

hn(z) =ehn(z)− Ez







σrn−1
∑

j=0

L hn(S j)






,

whereL f (x) =− f (x)+
∑

y∈Λ p(y) f (x+ y) is the generator for S. Consider the associated operator

fL f (x) =
1

2

∑

y∈Λ
κ(y)

∂ 2 f

∂ y2 (x).

By Taylor’s theorem, for any C4 function f and z ∈ Λ,
�

�L f (z)− fL f (z)
�

�≤ CR4M4( f )(z),

where R is the range of the walk S and M4( f ) is the L∞ norm of the sum of the fourth derivatives
of f in the disk DR(z).
Since the random walk S has covariance matrix the identity (we have been assuming that S has
this property but this is the first place we use it), one can show that fL is actually a multiple of the
continuous Laplacian. Thus, fL hn = 0. Furthermore, since the fourth derivatives of h are bounded
on rD, M4(hn) is bounded by Cn−4 in Brn. Therefore, combining all the previous remarks (and
letting CR4 = C since R depends only on the random walk S which we’ve fixed), we obtain that for
z ∈ Brn,

�

�

�hn(z)−ehn(z)
�

�

� ≤ Ez







σrn−1
∑

j=0

CR4M4(hn)(z)







≤ Cn−4Ez �σrn− 1
�

= Cn−4
∑

x∈Bn

Gn(z, x)

≤ Cn−4
∑

x∈B2n

G2n(0, x)

≤ Cn−4
∑

x∈B2n

�

log 2n− log |x |+ C ′
�

≤ Cn−2.
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We now have all the pieces we need to prove the proposition. Let z be any point in Brn \ Bn(n, 0),
and fix x ∈ Λ such that Re(x) > 0. Then by Taylor’s theorem and our previous observations about
h, if n is large enough so that x is in Brn,

ehn(x)−ehn(z)

= [ehn(x)− hn(x)] + [hn(x)− hn(0)] + [hn(0)− hn(z)] + [hn(z)−ehn(z)]

≥ −Cn−2+
�

n−1 ∂ h

∂ x
(0)Re(x)− n−2M2(h) |x |

2
�

+ 0− Cn−2

where M2(h) is the L∞ norm of the sum of the second order derivatives of h in rD. Since ∂ h
∂ x
(0)> 0,

it is clear that for n sufficiently large,
ehn(x)≥ehn(z),

for all z ∈ Brn \ Bn(n, 0).

Since K ⊂ Λ \ Bn(n, 0),

Ex �hn(S(σrn)) ξK < σrn
�

≤ max
z∈K∩Brn

Ez �hn(S(σrn))
�

= max
z∈K∩Brn

ehn(z)

≤ ehn(x)

= Ex �hn(S(σrn))
�

.

Thus,

Ex �hn(S(σrn))
�

= Ex �hn(S(σrn)) ξK < σrn
�

Px �ξK < σrn
	

+ Ex �hn(S(σrn)) σrn < ξK
�

Px �σrn < ξK
	

≤ Ex �hn(S(σrn))
�

Px �ξK < σrn
	

+ Ex �hn(S(σrn)) σrn < ξK
�

Px �σrn < ξK
	

.

This implies that

Ex �hn(S(σrn)) σrn < ξK
�

≥ Ex �hn(S(σrn))
�

= ehn(x)

≥ ehn(0)

≥ h(0)− Cn−2 ≥
1

5

for n sufficiently large, since h(0) = 1/4.

Recall that r was defined so that for all z such that r < |z| < 1, and
�

�arg(z)
�

� > π/3, h(z) < 1/8.
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Therefore,

1

5
≤ Ex �hn(S(σrn)) σrn < ξK

�

=
∑

|arg(z)|>π/3

hn(z)P
x �S(σrn) = z σrn < ξK

	

+
∑

|arg(z)|≤π/3

hn(z)P
x �S(σrn) = z σrn < ξK

	

≤
1

8

�

1− Px
§

�

�arg S(σrn)
�

�≤
π

3
σrn < ξK

ª�

+ Px
§

�

�arg S(σrn)
�

�≤
π

3
σrn < ξK

ª

.

Thus,

Px
§

�

�arg S(σrn)
�

�≤
π

3
σrn < ξK

ª

≥ c > 0.

Since x is independent of K and n,

P0 �ξx < ξK ∧σrn
	

≥ c,

and hence,

P0
§

�

�arg S(σrn)
�

�≤
π

3
σrn < ξK

ª

≥ c > 0.

Finally,

P0
§

�

�arg S(σn)
�

�≤
π

4
σn < ξK

ª

≥ P0
§

�

�arg S(σn)
�

�≤
π

4
;σn < ξK σrn < σK

ª

≥ cP0
§

�

�arg S(σrn)
�

�≤
π

3
σrn < ξK

ª

≥ c.

Lemma 3.6. For 0< θ < π, there exist c(θ), N(θ) and α(θ) such that the following holds. For n> N,
and z ∈ Λ with N < |z|< n, let W be the wedge

W = {x ∈ Λ : 0≤ |x | ≤ n,
�

�arg(x)− arg(z)
�

�≤ θ}.

Then,

Pz �σW = σn
	

≥ c
� |z|

n

�α

.

Remark By comparison with Brownian motion, one expects that α(θ) = π/θ would be the optimal
constant. However, in this paper we will only need the existence of α and not its exact value.

Proof. It is clear that we can make α(θ) non-increasing in θ , therefore, without loss of generality,
take θ < π/2. Also, without loss of generality, assume arg(z) = 0.

Let fW be the cone
fW = {x ∈ Λ :

�

�arg(x)
�

�≤ θ}.
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We define a random sequence of points {zk} ⊂ fW as follows. We let z0 = z. Then, given zk, we let
Bk be the largest ball centered at zk such that Bk ⊂ fW , rk be the radius of Bk and let zk+1 = S(σBk

)
where S is a random walk starting at zk.

We note that z j = zk for all j ≥ k if and only if zk ∈ ∂ifW . We make N(θ) large enough to ensure that
if |z|> N then z /∈ ∂ifW . In this case, there exists c′(θ)> 0 such that r0 ≥ c′(θ) |z|.
Let Ek denote the event that zk+1 6= zk and that

�

�arg(zk+1− zk)
�

�≤
θ

2
.

On the event Ek,
rk+1 ≥ (1+ 2 sin(θ/4))rk = ec(θ)rk,

and
�

�zk+1

�

�

2 ≥
�

�zk

�

�

2
+ r2

k

(we use the fact that θ < π/2 for the second assertion). Therefore, if E0, . . . , E j all hold, then

rk ≥ eckr0 ≥ eckc′ |z|

for k = 1, . . . , j. Therefore,

�

�z j+1

�

�

2 ≥ |z|2+
j
∑

k=0

r2
k

≥ |z|2+
j
∑

k=0

(c′)2ec2k |z|2

≥ (c′)2ec2 j |z|2 .

Since ec > 1, it follows that if we let j be the smallest integer such that

j ≥
log(n/c′ |z|)

log(ec)
,

then
j
⋂

k=0

E j ⊂ {σW = σn}.

Finally, by the invariance principle, there exists a constant c′′(θ) and N such that for n≥ N , P
�

Ek
�

≥
c′′ for all k. Therefore,

Pz �σW = σn
	

≥ P







j
⋂

k=0

Ek






=

j
∏

k=0

P
�

Ek
�

≥ (c′′) j+1 ≥ c(θ)
� |z|

n

�α(θ)

,

where α=− log(c′′)/ log(ec) and c = c′′(c′)α.

Corollary 3.7. Fix θ1,θ2 ∈ (0,π/2). There exist N, α and c > 0 depending only on θ1 + θ2 such that
the following holds. Let N ≤ l < m< n, and z ∈ ∂ Bm. Let W be the half-wedge

W = {x ∈ Λ : l ≤ |x | ≤ n,−θ1 ≤ arg(x)− arg(z)≤ θ2}.
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1. Let r =min{m sinθ1, m sinθ2, m− l}. Then for any K ⊂ Bm,

Pz �S[0,σn]⊂W σn < ξK
	

≥ c
� r

n

�α

.

2. Let r ′ = min{m sinθ1, m sinθ2, n − m}. There exists β = β(θ1 + θ2, l/m) such that for any
K ⊂ Λ \ Bm,

Pz �S[0,ξl]⊂W ξl < ξK
	

≥ c

�

r ′

m

�β

.

Notice that in both cases, the right hand side depends only on θ1, θ2, and the ratios l/n and m/n.

n

m

l

zK

W

Figure 3: The setup for part 1 of Corollary 3.7

Proof. Both parts of the corollary are proved similarly. We prove 1 in detail, and indicate the modi-
fications needed to prove 2.

Without loss of generality, assume that arg(z) = 0. The quantity r defined in the statement of the
corollary is the radius of the largest ball with center z whose closure is contained in the half-infinite
wedge

cW = {x ∈ Λ : |x | ≥ l,−θ1 ≤ arg(x)≤ θ2}.

We can apply Proposition 3.5 to the ball B = B(z, r), to obtain that there exists a constant c > 0 such
that

Pz
§

�

�arg(S(σB)− z)
�

�≤
π

4
σB < ξK

ª

≥ c.

Let y be any point on ∂ B such that
�

�arg(y − z)
�

�≤ π/4, and let eB = B(y, r/2). Note that eB ⊂cW \Bm.
There exists a point w ∈ ∂ eB such that y is on the bisector of the angle formed from the lines joining
w to the two outermost "corners" of W , x1 = ne−iθ1 and x2 = neiθ2 . Let

s =max{
�

�x1−w
�

� ,
�

�x2−w
�

�} ≤ 2n,
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and let fW be the wedge with vertex w, radius s and such that x1 and x2 are on ∂fW . The wedge
fW will have aperture θ ≥ (θ1 + θ2)/2 and y will be on the axis of symmetry of fW . Therefore, by
Lemma 3.6,

Py �S[0,σn]⊂W ;σn < ξK
	

≥ Py
¦

σ
fW = σB(w,s)

©

≥ c(θ)
� r

s

�α(θ)

≥ c(θ1+ θ2)
� r

n

�α(θ1+θ2)
.

To finish the proof of 1, let

c∗ = c
� r

n

�α

.

Then,

Pz �S[0,σn]⊂W ;σn < ξK
	

≥
∑

y∈∂ B(z,R)
|arg(y−z)|≤π/4

Py �S[0,σn]⊂W ;σn < ξK
	

Pz �σB < ξK ; S(σB) = y
	

≥ c∗Pz
§

�

�arg(S(σB)− z)
�

�≤
π

4
;σB < ξK

ª

≥ c∗Pz �σB < ξK
	

≥ c∗Pz �σn < ξK
	

.

The proof of 2 is similar. In this case, the angle θ of the wedge fW will be such that

θ ≥ tan−1
�

2l sin((θ1+ θ2)/2)
m

�

.

This is why β will also depend on l/m. Besides this observation, the proof of 2 is identical to the
proof of 1.

The following corollary is similar to the previous one, except that here we are conditioning to avoid
sets that are on either side of the half-wedge.

Corollary 3.8. Let θ ∈ (0, 2π] and 0 < a < 1 < b <∞. Then there exists N and c > 0 depending on
a, b and θ such that for n> N the following holds. Let W be the half-wedge

W = {x : an≤ |x | ≤ 4bn,
�

�arg(x)
�

�≤ θ}.

Suppose that K1 ⊂ Bn contains a path connecting ∂ Ban to ∂iBn, and K2 ⊂ Λ \ B4n contains a path
connecting ∂ B4n to ∂ B4bn. Let K = K1 ∪ K2. Then for any z ∈ ∂ Bn, y ∈ ∂ B4n with

�

�arg(z)
�

� < θ/2,
�

�arg(y)
�

�< θ/2,
Pz
¦

S[0,ξy]⊂W ξy < ξK

©

≥ c.
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����

z

yan

n

4n

4bn

K1

K2

Figure 4: The setup for Corollary 3.8

Proof. Applying part 1 of Corollary 3.7 to the half-wedge

W ∗ = {x : an≤ |x | ≤ 2n,
�

�arg(x)− arg(z)
�

�≤
θ

4
},

one obtains that there exists a constant c = c(a,θ) such that

Pz �S[0,σ2n]⊂W ∗ σ2n < ξK
	

≥ c.

Now suppose that w ∈ ∂ B2n ∩W ∗. Then by Lemma 3.1,

Pw
¦

S[0,ξy]⊂W ξy < ξK

©

=
Pw
¦

ξy < σW ∧ ξK

©

Pw
¦

ξy < ξK

©

=
G(w; W \ ({y} ∪ K))Py

¦

ξw < σW ∧ ξK ∧ ξy

©

G(w;Λ \ ({y} ∪ K))Py
¦

ξw < ξK ∧ ξy

© .

However, for w ∈ ∂ B2n ∩W ∗,

G(w; W \ ({y} ∪ K))≥ G(w; Bc(θ)n(w)),

and therefore by Lemma 3.3,
G(w; W \ ({y} ∪ K))
G(w;Λ \ ({y} ∪ K))

≥ c(θ , b).

Thus,

Pw
¦

S[0,ξy]⊂W ξy < σK

©

≥ c(θ , b)
Py
¦

ξw < σW ∧ ξK ∧ ξy

©

Py
¦

ξw < ξK ∧ ξy

© .
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By the strong Markov property,

Py
¦

ξw < σW ∧ ξK ∧ ξy

©

≥
∑

x∈∂i B3n∩W ∗

Px
¦

ξw < σW ∧ ξK ∧ ξy

©

Py
¦

S(ξ3n) = x;ξ3n < σW ∗ ∧ ξK ∧ ξy

©

.

However, by Lemma 3.4, there exists c(θ , b) such that for x ∈ ∂iB3n ∩W ∗,

Px
¦

ξw < σW ∧ ξK ∧ ξy

©

≥ c(θ , b)Px
¦

ξw < ξK ∧ ξy

©

.

Furthermore, by the discrete Harnack inequality, there exists c > 0 such that for all x , x ′ ∈ ∂iB3n,

Px
¦

ξw < ξK ∧ ξy

©

≥ cPx ′
¦

ξw < ξK ∧ ξy

©

.

Thus, fixing x ′ ∈ ∂iB3n,

Py
¦

ξw < σW ∧ ξK ∧ ξy

©

≥ c(θ , b)Px ′
¦

ξw < ξK ∧ ξy

©

Py
¦

ξ3n < σW ∗ ∧ ξK ∧ ξy

©

.

Similarly,
Py
¦

ξw < ξK ∧ ξy

©

≤ cPx ′
¦

ξw < ξK ∧ ξy

©

Py
¦

ξ3n < ξK ∧ ξy

©

.

Therefore using part 2 of Corollary 3.7,

Pw
¦

S[0,ξy]⊂W ξy < σK

©

≥ c(θ , b)
Py
¦

ξw < σW ∧ ξK ∧ ξy

©

Py
¦

ξw < ξK ∧ ξy

©

≥ c(θ , b)
Py
¦

ξ3n < σW ∗ ∧ ξK ∧ ξy

©

Py
¦

ξ3n < ξK ∧ ξy

©

= c(θ , b)Py
¦

ξ3n < σW ∗ ξ3n < ξK ∧ ξy

©

≥ c(θ , b).

3.3 Random walk approximations to hitting probabilities of curves by Brownian mo-
tion

Given a random walk S on a discrete lattice Λ, we can make S into a continuous curve St by linear
interpolation and define S(n)t = n−1Sn2 t . Now fix a continuous curve α : [0, tα]→ D. In this section,
we will compare the probability that a Brownian motion Wt started at the origin leaves the unit disk
before hitting α to the probability that S(n)t started at the origin leaves the unit disk before hitting α.
By the invariance principle, one can show that as n tends to infinity, the latter probability approaches
the former. What is more difficult is to show that this convergence is uniform in α as long as the
diameter of α is sufficiently large. This is Proposition 3.12 and is the main result of the section.

For 0< δ < 1, let Aδ denote the annulus

Aδ = {z ∈ C : 1−δ < |z|< 1}.
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Given a curve α : [0, tα]→ D, let

Cδ(α) = {eiθ : θ = arg(z) for some z ∈ α[0, tα]∩ Aδ},

and
eCδ(α) = {z ∈ ∂D : dist(z, Cδ)< δ}.

Recall that Dδ(z) is the disk of radius δ centered at z.

Lemma 3.9. For all 0< δ < 1 and all simple continuous curves α : [0, tα]→ D, there exist two points
z1, z2 ∈ ∂D such that Dδ(z1)∪α[0, tα]∪ Dδ(z2) disconnects 0 from eCδ(α) in D.

Proof. If 0 ∈ α[0, tα], then the result is immediate, so we will assume that 0 /∈ α[0, tα]. In that
case, Arg(α(t)), the continuous argument of α(t) is well defined for all t ∈ [0, tα], where we let
Arg(α(0)) = arg(α(0)) ∈ (−π,π]. Let

θ1 = inf{Arg(α(t)) : α(t) ∈ Aδ} and θ2 = sup{Arg(α(t)) : α(t) ∈ Aδ}.

We consider two cases: θ2− θ1 < 2π, and θ2− θ1 ≥ 2π.

Suppose first that θ2 − θ1 < 2π. For k = 1,2, let zk = eiθk , rk = sup{r : reiθk ∈ α[0, tα]} and tk be
such that α(tk) = rkeiθk (the tk exist because α[0, tα] is compact). See Figure 5.

Cδ

z1

α(t2)
Cδ

α

δ

0

α(t1)

z2

Figure 5: The set Cδ and the points z1, z2 and α(t1), α(t2)

We construct a continuous curve ω as follows. Given any z = eiθ ∈ ∂D, let

rδ(z) = {reiθ : 1−δ ≤ r ≤ 1}.
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ω

Figure 6: The curve ω in the case θ2− θ1 < 2π

We let ω(0) = α(t1), then follow the curve α from α(t1) to α(t2) (we might be following the curve
backwards), then the ray rδ(z2) from α(t2) to z2, then ∂D clockwise from z2 to z1, and finally the
ray rδ(z1) back to α(t1). See Figure 6.

From the definition of the tk and zk, and the fact that α is simple, ω is a closed simple curve. There-
fore, by the Jordan curve theorem, ω separates the plane into two disjoint connected components.
Furthermore, because θ2 − θ1 < 2π, the winding number of ω with respect to 0 is 0. Therefore, 0
is in the unbounded component defined by ω. Furthermore, Cδ ⊂ [z1, z2], where [z1, z2] is the arc
{eiθ : θ1 ≤ θ ≤ θ2}. Therefore, Dδ(z1)∪α[0, tα]∪ Dδ(z2) disconnects 0 from eCδ in D.

Now suppose that θ2 − θ1 ≥ 2π. Let z1 = eiθ1 and z2 = eiθ2 . In order to prove the lemma for this
case, we claim that it suffices to show that either rδ(z1)∩α[0, tα] or rδ(z2)∩α[0, tα] contains two
points whose Argument differs by a nonzero multiple of 2π. For suppose that w1 =

�

�w1

�

� eiθ1 = α(s1)
and w2 =

�

�w2

�

� eiθ1 = α(s2) are such that Arg(w2) − Arg(w1) = 2kπ, k 6= 0, and w1 and w2 are
chosen so that arg(α(t)) 6= θ1 for t between s1 and s2. Also, without loss of generality,

�

�w1

�

� <
�

�w2

�

�.
Then we can consider the curve ω that starts at w1, follows α from w1 to w2, and then returns to
w1 along the ray rδ(z1) (see Figure 7). By construction, ω is a closed simple curve whose winding
number is nonzero. Therefore,ω contains 0, and sinceω⊂ D, it disconnects 0 from ∂D. This shows
that rδ(z1)∪α[0, tα]∪ rδ(z2) disconnects 0 from ∂D, from which the lemma follows.

In order to show that either rδ(z1)∩α[0, tα] or rδ(z2)∩α[0, tα] contains two points whose Argument
differs by a nonzero multiple of 2π, we let rk and tk be such that rk = sup{|α(t)| : Arg(α(t)) = θk}
and α(tk) = rkeiθk , k = 1, 2. We assume to the contrary that both {reiθ1 : r1 < r ≤ 1} ∩α[0, tα] = ;
and {reiθ2 : r2 < r ≤ 1} ∩ α[0, tα] = ;. Then we can define two curves ω1 and ω2 as follows.
ω1 starts at r1eiθ1 , travels along α to r2eiθ2 , follows the ray rδ(z2) to z2, then travels along ∂D
clockwise to z1, and finally returns to r1eiθ1 along rδ(z1). We define ω2 in the same way except that
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Cδ

z2

Cδ

z1

ω

w2

w1

Figure 7: The curve ω in the case θ2− θ1 > 2π

we travel along ∂D clockwise. Then by our assumptions, ω1 and ω2 are both closed simple curves
with nonzero winding number, and hence both contain the origin, a contradiction.

Lemma 3.10. For all r > 0 and ε > 0, there exists N such that for all n ≥ N, the following holds.
There exists a Brownian motion W and a random walk S defined on the same probability space such
that if S(n)t = n−1Sn2 t , then for all continuous curves α : [0, tα]→ D, with diam(α[0, tα])≥ r,

P0
§�

�

�W (τα ∧τD)− S(n)(ξα ∧σD)
�

�

�> r
ª

< ε.

Proof. Let T be large enough so that P0 �τD > T
	

< ε. By the strong approximation of Brownian
motion by random walk [16, Theorem 3.5.1], there exists a sequence eSn of random walks defined
on the same probability space as W so that if S(n)t = n−1

eSn
n2 t

is defined as above, then almost surely,

lim
n→∞

sup
0≤t≤T

�

�

�S(n)t −Wt

�

�

�= 0.

Therefore, we can let N be such that for n≥ N ,

P0

¨

sup
0≤t≤T

�

�

�S(n)t −Wt

�

�

�>
ε2r

C2

«

< ε,

where C is the larger of the constants in the Beurling estimates (Theorem 2.3).

Now fix n≥ N and let τ∗ = τα∧τD and σ∗ = ξα∧σD. Suppose first that τ∗ < σ∗, and let Wτ∗ = w,
S(n)
τ∗
= z. Suppose further that τD < T and that

sup
0≤t≤T

�

�

�S(n)t −Wt

�

�

�≤
ε2r

C2 .
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Then on this event, |z−w| ≤ C−2ε2r. Since both α and ∂D are continuous curves, by the Beurling
estimates, letting D = Dr(w),

Pz
§�

�

�S(n)σ∗ −w
�

�

�> r
ª

≤ Pz
¦

S(n)[0,σD]∩ (α∪ ∂D) = ;
©

≤ C

�

ε2r/C2

r

�1/2

= ε.

The case where σ∗ < τ∗ is proved in the same way, using the Beurling estimates for Brownian
motion.

Lemma 3.11. Recall the definition of eCδ from the beginning of the section.

1. For all ε > 0, there exists δ > 0 such that for all α : [0, tα]→ D,

P0
¦

W[0,τD]∩α[0, tα] = ;; W (τD) ∈ eCδ
©

< ε.

2. For all ε > 0, there exists δ > 0 and N such that for all n≥ N and α : [0, tα]→ D,

P0
¦

S(n)[0,σD]∩α[0, tα] = ;; S(n)(σD) ∈ eCδ
©

< ε

where S(n)t = n−1Sn2 t .

Proof. By Lemma 3.9, there exist z1, z2 ∈ ∂D such that

P0
¦

W[0,τD]∩α[0, tα] = ;, W (τD) ∈ eCδ
©

≤ P0 �W[0,τD]∩ Dδ(z1) 6= ;
	

+ P0 �W[0,τD]∩ Dδ(z2) 6= ;
	

.

However, by rotational symmetry of Brownian motion,

P0 �W[0,τD]∩ Dδ(z) 6= ;
	

is the same for all z ∈ ∂D. Since, Dδ(z) shrinks to a single point as δ tends to 0, the right-hand side
above can be made to be less than ε by making δ small enough. This proves 1.

The proof of 2 is the same as 1, except that we cannot use any sort of rotational symmetry. Therefore,
we must show that there exists δ > 0 and N such that for all n≥ N and z ∈ ∂D,

P0
¦

S(n)[0,σD]∩ Dδ(z) 6= ;
©

< ε.

Let δ > 0 be small enough so that for all z ∈ ∂D,

P
�

W[0,τ2]∩ Dδ(z) 6= ;
	

< ε,

where τ2 is the hitting time of the circle of radius 2 by the Brownian motion W . We now apply
Lemma 3.10 to obtain that there exists N such that for all n≥ N , there exists a simple random walk
S, defined on the same probability space as W such that

P0
§�

�

�W (τDδ(z) ∧τ2)− S(n)(ξDδ(z) ∧σ2)
�

�

�> δ

ª

< ε.
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This implies that

P0
¦

S(n)[0,σD]∩ Dδ(z) 6= ;
©

≤ P0
¦

ξDδ(z) < σ2

©

= P0
¦

ξDδ(z) < σ2;τDδ(z) < τ2

©

+ P
¦

ξDδ(z) < σ2;τDδ(z) > τ2

©

≤ P0
¦

τDδ(z) < τ2

©

+ P0
§�

�

�W (τDδ(z) ∧τ2)− S(n)(ξDδ(z) ∧σ2)
�

�

�> δ

ª

< 2ε.

Proposition 3.12. For all ε > 0 and r > 0, there exists N such that for all n ≥ N and all continuous
curves α : [0, tα]→ D with diam(α[0, tα])≥ r,

�

�

�P0 �W[0,τD]∩α[0, tα] = ;
	

− P0
¦

S(n)[0,σD]∩α[0, tα] = ;
©

�

�

�< ε,

where S(n)t = n−1Sn2 t .

Proof. By Lemmas 3.10 and 3.11 , there exists δ > 0 and N such that for all n ≥ N , the following
holds. There exists a Brownian motion W and a random walk S defined on the same probability
space such that for all continuous curves α : [0, tα]→ D with diam(α[0, tα])> r,

P0
¦

W[0,τD]∩α[0, tα] = ;; W (τD) ∈ eCδ
©

< ε; (9)

P0
¦

S(n)[0,σD]∩α[0, tα] = ;; S(n)(σD) ∈ eCδ
©

< ε; (10)

P0
§�

�

�W (τ∗)− S(n)(σ∗)
�

�

�> δ

ª

< ε, (11)

where τ∗ = τα ∧τD and σ∗ = ξα ∧σD.
We will show that the proposition holds with this choice of N . Note that

�

�

�P0 �W[0,τD]∩α[0, tα] = ;
	

− P0
¦

S(n)[0,σD]∩α[0, tα] = ;
©

�

�

�

≤ P0 (E) + P0 (F) ,

where
E = {W (τ∗) ∈ ∂D; S(n)(σ∗) ∈ α[0, tα]},

F = {W (τ∗) ∈ α[0, tα]; S(n)(σ∗) ∈ ∂D}.

We will show that P0 (E)< ε. The proof that P0 (F)< ε is entirely similar. Recall that D1−δ denotes
the ball of radius 1−δ and that Aδ denotes the annulus D \ D1−δ. Then,

P0 (E)≤ P0 �E1
�

+ P0 �E2
�

+ P0 �E3
�

,

where
E1 = {W (τ∗) ∈ eCδ; S(n)(σ∗) ∈ α[0, tα]};

E2 = {W (τ∗) ∈ ∂D; S(n)(σ∗) ∈ α[0, tα]∩ D1−δ};

E3 = {W (τ∗) ∈ ∂D \ eCδ; S(n)(σ∗) ∈ α[0, tα]∩ Aδ}.

However by (9), P0 �E1
�

< ε, and by (11), P0 �E2
�

< ε and P0 �E3
�

< ε.
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4 Some results for loop-erased random walks

4.1 Up to constant independence of the initial and terminal parts of a LERW path

For this section only, we no longer restrict our random walks to be two-dimensional. When it is
necessary to specify what dimension we are in, we will denote the dimension by d.

Although we have avoided using it up to now, it will be convenient to use “big-O” notation in this
section. Recall that f (n) = O(a(n)) if there exists C <∞ such that

f (n)≤ Ca(n).

Here, C can depend on the dimension but on no other quantity. We will also write

f (n) = [1+O(a(n))] g(n),

if there exists C <∞ such that

1− Ca(n)≤
f (n)
g(n)

≤ 1+ Ca(n).

Recall that for a natural number l, Ωl denotes the set of paths

ω= [0,ω1, . . . ,ωk]

such that ω j ∈ Bl , j = 0, 1, . . . , k− 1 and ωk ∈ ∂ Bl .

Given a set K such that Bl ⊂ K , and such that

P0 �σK <∞
	

= 1,

we define µl,K on Ωl to be the measure obtained by running a random walk up to the first exit time
σK of K , loop-erasing and restricting to Bl . More precisely, for ω ∈ Ωl ,

µl,K(ω) = P0
¦

bSK[0, bσl] =ω
©

.

If Bl ⊂ K1 and Bl ⊂ K2 are such that
P0
¦

σKi
<∞

©

= 1

for either i = 1 or i = 2, we define a measure µl,K1,K2
on Ωl as follows. Let X denote random

walk conditioned to leave K1 before K2 (as long as this has positive probability; if not, µl,K1,K2
is not

defined). Then for ω ∈ Ωl , we let

µl,K1,K2
(ω) = P0

¦

bX K1[0, bσl] =ω
©

.

This is the measure on Ωl obtained by running X up to σX
K1

, loop-erasing and restricting to Bl . Note
that µl,K is equal to µl,K ,Λ.

In this section, we establish some relations between the measures defined above. In fact we will
show that for n≥ 4 and any K1 and K2 such that Bnl ⊂ K1 and Bnl ⊂ K2,

µl,K1,K2
(ω) =

( h

1+O( 1
log n
)
i

µl,K1∩K2
(ω) d = 2;

�

1+O(n−1)
�

µl,K1∩K2
(ω) d ≥ 3.

(Proposition 4.2)

µl,K1
(ω) =

( h

1+O( 1
log n
)
i

µl,K2
(ω) d = 2;

�

1+O(n2−d)
�

µl,K2
(ω) d ≥ 3.

(Proposition 4.4)
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This implies that if B4l ⊂ K1 and B4l ⊂ K2 then

µl,K1,K2
(ω) � µl,K1∩K2

(ω)

µl,K1
(ω) � µl,K2

(ω)

(recall that the symbol � means that each side is bounded by a constant multiple of the other side,
the constant depending on the random walk S and on nothing else). We use these facts to prove
that for a LERW bSn, η1

l (bS
n) and η2

4l,n(bS
n) (see the definitions in section 2.3) are independent up to

constants (Proposition 4.6).

Lemma 4.1. Let d = 2. For ω ∈ Ωl and y ∈ ∂ Bl ,

Py �σnl < ξω
	

= O(
1

log n
).

Proof. Let y0 be such that

Py0
�

σnl < ξω
	

= max
y∈∂ Bl

Py �σnl < ξω
	

.

We will show that

Py0
�

σnl < ξω
	

≤
C

log n

which will clearly imply the result for all y ∈ ∂ Bl .

Py0
�

σnl < ξω
	

= Py0
�

σ2l < ξω
	

∑

z∈∂ B2l

Pz �σnl < ξω
	

Py �S(σnl) = z σ2l < ξω
	

.

By part (1) of Lemma 3.2, there exists c > 0 such that

Py0
�

σ2l < ξω
	

≤ 1− c.

Furthermore, for z ∈ ∂ B2l ,

Pz �σnl < ξω
	

= Pz �σnl < ξl
	

+
∑

y∈∂ Bl

Pz �S(ξl) = y;ξl < σnl
	

Py �σnl < ξω
	

≤ Pz �σnl < ξl
	

+ Py0
�

σnl < ξω
	

.

By [16, Proposition 6.4.1],
Pz �σnl < ξl

	

� (log n)−1.

Therefore,

Py0
�

σnl < ξω
	

≤ (1− c)
�

C(log n)−1+ Py0
�

σnl < ξω
	

�

which gives the desired result.
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Proposition 4.2. Suppose that n ≥ 4, K1 and K2 are such that Bnl ⊂ K1 and Bnl ⊂ K2, and that
ω= [0,ω1, . . . ,ωk] ∈ Ωl . Then,

µl,K1,K2
(ω) =

( h

1+O( 1
log n
)
i

µl,K1∩K2
(ω) d = 2;

�

1+O(n−1)
�

µl,K1∩K2
(ω) d ≥ 3.

In particular, if B4l ⊂ K1 and B4l ⊂ K2 then

µl,K1,K2
(ω)� µl,K1∩K2

(ω).

Proof. Let K = K1 ∩ K2. Let X be a random walk conditioned to exit K1 before K2. Then by formula
(5),

µl,K(ω) = p(ω)GK(ω)P
ωk
�

σK < ξω
	

,

and
µl,K1,K2

(ω) = pX (ω)GX
K (ω)P

ωk
¦

σK1
< ξω σK1

< σK2

©

.

By Lemma 2.2, GX
K (ω) = GK(ω). Furthermore, if we let h(z) = Pz

¦

σK1
< σK2

©

, then by (3),

pX (ω) =
h(ωk)
h(0)

p(ω).

The function h is harmonic in Bnl and ωk ∈ Bl . Therefore, by the difference estimates for harmonic
functions [16, Theorem 6.3.8],

h(ωk) =
�

1+O(n−1)
�

h(0),

and thus,
pX (ω) =

�

1+O(n−1)
�

p(ω).

Hence, it suffices to show that

Pωk
¦

σK1
< ξω ∧σK2

©

=

( h

1+O( 1
log n
)
i

Pωk
¦

σK1
< σK2

©

Pωk
�

σK < ξω
	

d = 2;
�

1+O(n−1)
�

Pωk
¦

σK1
< σK2

©

Pωk
�

σK < ξω
	

d ≥ 3.

Let y0 ∈ω be such that
Py0
¦

σK1
< σK2

©

=max
y∈ω

Py
¦

σK1
< σK2

©

.

Then

Py0
¦

σK1
< σK2

©

= Py0
¦

σK1
< σK2

σK < ξω
©

Py0
�

σK < ξω
	

+ Py0
¦

σK1
< σK2

ξω < σK

©

Py0
�

ξω < σK
	

≤ Py0
¦

σK1
< σK2

σK < ξω
©

Py0
�

σK < ξω
	

+ Py0
¦

σK1
< σK2

©

Py0
�

ξω < σK
	

.

Therefore,

Py0
¦

σK1
< σK2

©

≤ Py0
¦

σK1
< σK2

σK < ξω
©

=
Py0
¦

σK1
< σK2

∧ ξω
©

Py0
�

σK < ξω
	 ,
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and hence

Pωk
¦

σK1
< σK2

©

≤max
y∈ω

Py
¦

σK1
< σK2

∧ ξω
©

Py �σK < ξω
	 . (12)

A similar argument shows that

Pωk
¦

σK1
< σK2

©

≥min
y∈ω

Py
¦

σK1
< σK2

∧ ξω
©

Py �σK < ξω
	 . (13)

Now let y be any point on the path ω. Then since Bnl is a subset of both K1 and K2,

Py
¦

σK1
< σK2

∧ ξω
©

= Py �σnl < ξω
	

∑

z∈∂ Bnl

Pz
¦

σK1
< σK2

∧ ξω
©

Py �S(σnl) = z σnl < ξω
	

,

and

Py �σK < ξω
	

= Py �σnl < ξω
	

∑

z∈∂ Bnl

Pz �σK < ξω
	

Py �S(σnl) = z σnl < ξω
	

.

However [10, Lemma 2.1.2],

Py �S(σnl) = z σnl < ξω
	

=

( h

1+O( log n
n
)
i

P0 �S(σnl) = z
	

d = 2;
�

1+O(n−1)
�

P0 �S(σnl) = z
	

d ≥ 3;

Let y1 be such that
Py1
¦

σK1
< σK2

∧ ξω
©

Py1
�

σK < ξω
	 =max

y∈ω

Py
¦

σK1
< σK2

∧ ξω
©

Py �σK < ξω
	 ,

and y2 be such that

Py2
¦

σK1
< σK2

∧ ξω
©

Py2
�

σK < ξω
	 =min

y∈ω

Py
¦

σK1
< σK2

∧ ξω
©

Py �σK < ξω
	 .

Then by (12) and (13), if d = 2,

Pωk
¦

σK1
< σK2

∧ ξω
©

Pωk
¦

σK1
< σK2

©

Pωk
�

σK < ξω
	
≤

Py1
¦

σK1
< σK2

∧ ξω
©

Py2
�

σK < ξω
	

Py1
�

σK < ξω
	

Py2
¦

σK1
< σK2

∧ ξω
©

≤
(1+ C log n/n)2

(1− C log n/n)2

≤ 1+
C ′ log n

n
.

The lower bound and the case d ≥ 3 follows in the same way.
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We now define a measure on unrooted loops in Λ. See [16, Chapter 9] for more details.

A rooted loop η = [η0,η1, . . . ,ηk] is a path in Λ such that η0 = ηk; η0 is called the root of the
loop. We say that two rooted loops η and η′ are equivalent if η′ = [η j ,η j+1, . . . ,ηk−1,η0, . . . ,η j]
for some j. We call the equivalence classes under this relation unrooted loops. We will denote by eη
the unrooted loop corresponding to the rooted loop η. Recall the notation

p(η) :=
k
∏

i=1

p(ηi−1,ηi) = Pη0
�

Si = ηi , i = 0, . . . k
	

.

Notice that this does not depend on the root of η and therefore p(eη) is well defined for unrooted
loops eη.

We define a measure m on the set of unrooted loops as follows. Given an unrooted loop eη, let α(eη)
be the number of distinct rooted representatives of eη. Then we define

m(eη) =
α(eη)p(eη)
|eη|

,

where |eη| denotes the number of steps of a representative of eη. Any two representatives of eη have
the same number of steps so that m is well defined.

Recall the definition of GK(ω) given in (4). The following lemma allows us to express GK(ω) in
terms of the unrooted loop measure.

Lemma 4.3.
GK(ω) = exp

�

m(eη : eη⊂ K; eη∩ω 6= ;)
	

.

Proof. We will first show that for any z ∈ Λ,

GK(z) = exp{m(eη : eη⊂ K; z ∈ eη)}. (14)

Let ρ = Pz �ξz < σK
	

. Then by the strong Markov property for random walk,

GK(z) = 1+ρGK(z),

and thus,

GK(z) =
1

1−ρ
= e− ln(1−ρ) = exp







∞
∑

j=1

ρ j

j







.

Given an unrooted loop eη, let κ(eη) be the largest integer m that divides
�

�

eη
�

� = n such that ηk =
ηk+(n/m) for all k ≤ n− (n/m). Then κ(eη) =

�

�

eη
�

�/α(eη) and therefore

m(eη) =
p(η)
κ(eη)

.

Let
β(eη) = βz(eη) := #{ j : η j = z}
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be the number of times that eη hits z. Then the number of representatives of eη that are rooted at z
is β(eη)/κ(eη). Hence,

ρ j =
∑

η rooted at z
η⊂K
β(η)= j

p(η)

=
∑

eη unrooted
z∈eη, eη⊂K
β(eη)= j

∑

η rooted at z

p(η)

=
∑

eη unrooted
z∈eη, eη⊂K
β(eη)= j

β(eη)p(eη)
κ(eη)

= j ·m(z ∈ eη; eη⊂ K;β(eη) = j).

Therefore,
∞
∑

j=1

ρ j

j
=
∞
∑

j=1

m(z ∈ eη; eη⊂ K;β(eη) = j) = m(z ∈ eη; eη⊂ K),

which proves (14).

Let E j , j = 0, . . . , k, be the set of unrooted loops eη such that ω j ∈ eη and eη ⊂ K \ {ω0, . . . ,ω j−1}.
Then the E j are disjoint and their union is the set of all unrooted loops eη such that eη ∩ω 6= ; and
eη⊂ K . This observation along with (14) finishes the proof.

Proposition 4.4. Suppose that n ≥ 4, K1 and K2 are such that Bnl ⊂ K1 and Bnl ⊂ K2, and that
ω ∈ Ωl . Then

µl,K1
(ω) =

( h

1+O( 1
log n
)
i

µl,K2
(ω) d = 2;

�

1+O(n2−d)
�

µl,K2
(ω) d ≥ 3.

In particular, if B4l ⊂ K1 and B4l ⊂ K2 then

µl,K1
(ω)� µl,K2

(ω).

Proof. By Formula (5), for any ω ∈ Ωl ,

µl,Ki
(ω) = p(ω)GKi

(ω)Pωk
¦

σKi
< ξω

©

i = 1, 2.

Let e(n) = (log n)−1 if d = 2 and e(n) = n2−d if d ≥ 3. Let ω′ = [ω′0, . . . ,ω′k′] be any other path in
Ωl . We will show that

Pωk
¦

σK1
< ξω

©

Pωk
¦

σK2
< ξω

© ≤ [1+ Ce(n)]
Pω

′
k′
¦

σK1
< ξω′

©

Pω
′
k′
¦

σK2
< ξω′

©
(15)

and

GK1
(ω)

GK2
(ω)
≤ [1+ Ce(n)]

GK1
(ω′)

GK2
(ω′)

. (16)
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For this will imply that
µl,K1
(ω′)

µl,K2
(ω′)

≤ [1+ Ce(n)]
µl,K1
(ω)

µl,K2
(ω)

and

1 =
∑

ω′∈Ωl

µl,K1
(ω′)

=
∑

ω′∈Ωl

µl,K1
(ω′)

µl,K2
(ω′)

µl,K2
(ω′)

≤ [1+ Ce(n)]
µl,K1
(ω)

µl,K2
(ω)

∑

ω′∈Ωl

µl,K2
(ω′)

= [1+ Ce(n)]
µl,K1
(ω)

µl,K2
(ω)

.

One then gets the other bound by reversing the roles of K1 and K2.

We first show (15). Since Bnl ⊂ K1

Pωk
¦

σK1
< ξω

©

= Pωk
�

σnl < ξω
	

∑

z∈∂ Bnl

Pz
¦

σK1
< ξω

©

Pωk
�

S(σnl) = z σnl < ξω
	

.

If d ≥ 3, then [16, Proposition 6.4.2] for z ∈ ∂ Bnl ,

Pz
¦

σK1
< ξω

©

≥ Pz �ξl =∞
	

≥ 1− Cn2−d .

Therefore, if d ≥ 3,
�

1− Cn2−d
�

Pωk
�

σnl < ξω
	

≤ Pωk
¦

σK1
< ξω

©

≤ Pωk
�

σnl < ξω
	

.

One gets a similar formula with K2 replacing K1 and ω′ replacing ω, from which (15) follows for
the case d ≥ 3.

To prove (15) for the case d = 2, we first note that [10, Lemma 2.1.2]

Pωk
�

S(σnl) = z σnl < ξω
	

=
�

1+O
�

log n

n

��

P0 �S(σnl) = z
	

.

Furthermore, for z ∈ ∂ Bnl ,

Pz
¦

σK1
< ξω

©

= Pz
¦

σK1
< ξl

©

+
∑

y∈∂i Bl

Py
¦

σK1
< ξω

©

Pz
¦

S(ξl) = y;ξl < σK1

©

.

By applying Lemma 4.1 and [10, Lemma 2.1.2] again we get that for y ∈ ∂iBl ,

Py
¦

σK1
< ξω

©

= Py �σnl < ξω
	

∑

w∈∂ Bnl

Pw
¦

σK1
< ξω

©

Py �S(σnl) = z σnl < ξω
	

≤
C

log n

∑

w∈∂ Bnl

Pw
¦

σK1
< ξω

©

P0 �S(σnl) = w
	

≤
C

log n

Pωk
¦

σK1
< ξω

©

Pωk
�

σnl < ξω
	 .
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Thus,

Pz
¦

σK1
< ξω

©

≤ Pz
¦

σK1
< ξl

©

+
C

log n

Pωk
¦

σK1
< ξω

©

Pωk
�

σnl < ξω
	 Pz

¦

ξl < σK1

©

≤ Pz
¦

σK1
< ξl

©

+
C

log n

Pωk
¦

σK1
< ξω

©

Pωk
�

σnl < ξω
	 .

Therefore,

Pωk
¦

σK1
< ξω

©

= Pωk
�

σnl < ξω
	

∑

z∈∂ Bnl

Pz
¦

σK1
< ξω

©

Pωk
�

S(σnl) = z σnl < ξω
	

≤
�

1+
C log n

n

�

Pωk
�

σnl < ξω
	

∑

z∈∂ Bnl

Pz
¦

σK1
< ξω

©

P0 �S(σnl) = z
	

≤
�

1+
C log n

n

�

Pωk
�

σnl < ξω
	

∑

z∈∂ Bnl

Pz
¦

σK1
< ξl

©

P0 �S(σnl) = z
	

+
C

log n
Pωk

¦

σK1
< ξω

©

,

and hence,

Pωk
¦

σK1
< ξω

©

≤
�

1+
C

log n

�

Pωk
�

σnl < ξω
	

∑

z∈∂ Bnl

Pz
¦

σK1
< ξl

©

P0 �S(σnl) = z
	

,

with a similar lower bound. We get similar bounds with ω′ replacing ω and K2 replacing K1 from
which (15) follows.

We now show (16). By Lemma 4.3,

GK1
(ω)GK2

(ω′)

GK2
(ω)GK1

(ω′)

= exp{m(eη∩ω 6= ;; eη∩ω′ = ;; eη⊂ K1; eη∩ (Λ \ K2) 6= ;)
+ m(eη∩ω= ;; eη∩ω′ 6= ;; eη∩ (Λ \ K1) 6= ;; eη⊂ K2)

− m(eη∩ω 6= ;; eη∩ω′ = ;; eη∩ (Λ \ K1) 6= ;; eη⊂ K2)

− m(eη∩ω= ;; eη∩ω′ 6= ;; eη⊂ K1; eη∩ (Λ \ K2) 6= ;)}
≤ exp{m(eη∩ω′ = ;; eη∩ (Λ \ K2) 6= ;) +m(eη∩ω= ;; eη∩ (Λ \ K1) 6= ;)}.

We also get a similar lower bound by exchanging the roles of K1 and K2. Therefore, it suffices to
show that there exists C <∞ such that for all l and all ω ∈ Ωl ,

m(eη∩ Bl 6= ;; eη∩ω= ;; eη∩ (Λ \ Bnl) 6= ;)≤ Ce(n).

Given an unrooted loop eη with representative η= [η0, . . . ,ηk], let

< eη >=min{
�

�ηi

�

� : i = 0, . . . , k}.
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Let eη∗ be such that
�

�

eη∗
�

�=< eη > and such that

arg(eη∗) =min{arg(ηi) :
�

�ηi

�

�=< eη >}.

Suppose first that d = 2. Then for j ≤ l/2 and z ∈ ∂ B j ,

m(eη∩ω= ;; eη∩ (Λ \ Bnl) 6= ;; d< eη >e= j; eη∗ = z)

≤ Pz
¦

σ2 j < ξ j−1

©

�

max
y∈∂ B2 j

Py �σl < ξω
	

�

×
�

max
v∈∂ Bl

Pv
¦

σnl < σ j−1

©

��

max
w∈∂ Bnl

Pw
¦

ξz < ξ j−1

©

�

≤ C
1

j

�

2 j

l

�
1
2
�

log l − log( j− 1)
log nl − log l

�

1

j

≤ Cl−
1
2 (log n)−1 j−

3
2 log

l

j
,

where the exponent 1/2 comes from the Beurling estimates (Theorem 2.3).

If l/2< j ≤ l, then

m(eη∩ω= ;, eη∩ (Λ \ Bnl) 6= ;, d< eη >e= j, eη∗ = z)

≤ Pz
¦

σnl < ξ j−1

©

�

max
w∈∂ Bnl

Py
¦

ξz < ξ j−1

©

�

≤ C
�

log j− log( j− 1)
log nl − log l

�

j−1

≤ C j−2(log n)−1.

Therefore,

m(eη∩ Bl 6= ;; eη∩ω= ;; eη∩ (Λ \ Bnl) 6= ;)

=
l/2
∑

j=1

∑

z∈∂ B j

m(eη∩ω= ;; eη∩ (Λ \ Bnl) 6= ;;< eη >= j; eη∗ = z)

+
l
∑

j=l/2

∑

z∈∂ B j

m(eη∩ω= ;; eη∩ (Λ \ Bnl) 6= ;;< eη >= j; eη∗ = z)

≤
C

log n






l−

1
2

l/2
∑

j=1

j−
1
2 log

l

j
+

l
∑

j=l/2

1

j







≤
C

log n
.
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The case d ≥ 3 is easier. In this case,

m(eη∩ω= ;, eη∩ (Λ \ Bnl) 6= ;, d< eη >e= j)

≤
�

max
z∈∂ B j

Pz
¦

σnl < ξ j−1

©

�

�

max
w∈∂ Bnl

Pw
¦

ξ j <∞
©

�

≤ C

�

j2−d − ( j− 1)2−d

(nl)2−d − l2−d

��

(nl)2−d

l2−d

�

≤ C

�

j1−d

l2−d − (nl)2−d

�

n2−d

≤ Cn2−d ld−2 j1−d .

Thus,

m(eη∩ Bl 6= ;; eη∩ω= ;; eη∩ (Λ \ Bnl) 6= ;)

=
l
∑

j=1

m(eη∩ω= ;, eη∩ (Λ \ Bnl) 6= ;, d< eη >e= j)

≤ Cn2−d ld−2
l
∑

j=1

j1−d

≤ Cn2−d .

Corollary 4.5. Recall that bS denotes an infinite LERW. Suppose that n≥ 4, K is such that Bnl ⊂ K, and
ω ∈ Ωl . Then,

P
¦

bS[0, bσl] =ω
©

=

( h

1+O( 1
log n
)
i

P
¦

bSK[0, bσl] =ω
©

d = 2;
�

1+O(n2−d)
�

P
¦

bSK[0, bσl] =ω
©

d ≥ 3.

In particular,
P
¦

bS[0, bσl] =ω
©

� P
¦

bS4l[0, bσl] =ω
©

.

Proof. This follows immediately from Proposition 4.4 and the definition of the infinite LERW bS:

P
¦

bS[0, bσl] =ω
©

= lim
m→∞

P
¦

bSm[0, bσl] =ω
©

= lim
m→∞

µl,Bm
(ω).

We conclude this section with the proof that η1 and η2 are independent (up to constants) for the
LERW bSn.

Proposition 4.6. Let 4l ≤ m≤ n. Then for any ω ∈ Ωl , λ ∈ eΩm,n,

P
n

η1
l

�

bSn
�

=ω;η2
m,n

�

bSn
�

= λ
o

=







�

1+O(log(m/l)−1)
�

P
¦

η1
l

�

bSn
�

=ω
©

P
n

η2
m,n

�

bSn
�

= λ
o

d = 2;
�

1+O( l
m
)
�

P
¦

η1
l

�

bSn
�

=ω
©

P
n

η2
m,n

�

bSn
�

= λ
o

d ≥ 3.
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In particular,

P
n

η1
l

�

bSn
�

=ω;η2
m,n

�

bSn
�

= λ
o

� P
¦

η1
l

�

bSn
�

=ω
©

P
n

η2
m,n

�

bSn
�

= λ
o

,

i.e. η1 and η2 are “independent up to constants”.

Proof. We fix l, m and n throughout and let η1 = η1
l , η2 = η2

m,n.

Let X be a random walk started at 0 conditioned to leave Bn before returning to 0. Then bX and bSn

have the same distribution. Let Y be a random walk started on ∂ Bn according to harmonic measure
from 0 and conditioned to hit 0 before returning to ∂ Bn. By reversing paths, for all z ∈ ∂ Bn,

P0 �S(ξ0 ∧σn) = z
	

= Pz �S(ξ0 ∧σn) = 0
	

.

Therefore, X and Y R (the time-reversal of Y ) have the same distribution. Recall that one obtains the
same distribution on LERW by erasing loops from random walks forwards or backwards. Therefore,
if ω and λ are as above,

P
¦

η1
�

bSn
�

=ω η2
�

bSn
�

= λ
©

= P
¦

η1
�

bY [0, bξ0]
�

=ωR η2
�

bY [0, bξ0]
�

= λR
©

.

Now let Z be a random walk starting at λ0, conditioned to hit 0 before leaving Bn \λ. Then by the
domain Markov property for LERW (Lemma 2.4),

P
¦

η1
�

bY [0, bξ0]
�

=ωR η2
�

bY [0, bξ0]
�

= λR
©

= P
¦

η1(bZ[0, bξ0]) =ω
R
©

.

However, by again reversing paths as above, and noting that the loop-erasure of a random walk
starting at 0 and conditioned to avoid 0 after the first step has the same distribution as the loop-
erasure of an unconditioned random walk,

P
¦

η1
�

bZ[0, bξ0]
�

=ωR
©

= µl,Λ\{λ0},K(ω),

where K = Bn \ {λ1, . . . ,λk}.
Let k = m/l, e(k) = (log k)−1 if d = 2 and e(k) = k−1 if d ≥ 3. Since k ≥ 4, Bm ⊂ K and
Bm ⊂ Λ \ {λ0}, we can apply Propositions 4.2 and 4.4 to conclude that

µl,Λ\{λ0},K(ω) = [1+O(e(k))]µl,Bn\λ(ω)

= [1+O(e(k))]µl,n(ω)

= [1+O(e(k))]P
¦

η1
�

bSn
�

=ω
©

.

4.2 The separation lemma

Throughout this section S will be a random walk and bS will be an independent infinite LERW. Let
Fk denote the σ-algebra generated by

{Sn : n≤ σk} ∪ {bSn : n≤ bσk}.
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For positive integers j and k, let Ak be the event

Ak = {S[1,σk]∩ bS[0, bσk] = ;},

Dk be the random variable

Dk = k−1 min{dist(S(σk), bS[0, bσk]), dist(bS(bσk), S[0,σk])},

and T k
j be the integer valued random variable

T k
j =min{l ≥ k : Dl ≥ 2− j}.

The goal of this section is to prove the following separation lemma which states that, conditioned
on the event Ak that the random walk S and the infinite LERW bS do not intersect up to the circle of
radius k, the probability that they are further than some fixed distance apart from each other at the
circle of radius k (Dk ≥ c1) is bounded from below by a constant c2 > 0.

Theorem 4.7 (Separation Lemma). There exist constants c1, c2 > 0 such that for all k,

P
�

Dk ≥ c1 Ak
	

≥ c2.

The proof of Theorem 4.7 depends on two lemmas. Lemma 4.8 roughly states that the probability
that S and bS stay close together without intersecting each other is very small. More precisely, the
probability that T j−1 ≥ (1+ c j22− j)T j and that the paths don’t intersect is less than 2−β j2 . Lemma
4.9 states that if S and bS are separated, then there is a substantial probability that they stay separated
and don’t intersect. To wit, if {T j > k} and AT j

hold, then the probability that A2k and {D2k ≥ 2− j}
hold is greater than 2−α j . The proof of the separation lemma then combines the two lemmas to
show that

P
¦

T j−1 ≤ (1+ c j22− j)T j A2k

©

≥ 1− 2α j−β j2 .

Since
∞
∏

j=1

(1+ c j22− j)<∞,

and
∞
∏

j= j0

(1− 2α j−β j2)> 0,

then conditioned on A2k, there is a probability bounded below that S and bS separate to some fixed
distance before leaving the ball of radius 2k no matter how close the two paths were upon leaving
the ball of radius k.

Lemma 4.8. For all c > 0, there exists β = β(c)> 0 and j0(c) such that for all j ≥ j0 and all k,

P
§

T k
j−1 ≥ (1+ c j22− j)T k

j ; A2k FT k
j

ª

1
�

T k
j ≤

3k

2

�

≤ 2−β j2 .
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Proof. We let j0 be such that for all j ≥ j0, c j22− j < 1/2.

Since k is fixed we will write T j for T k
j from now on. We suppose that bS[0, bσ(T j)] and S[0,σ(T j)]

are any paths such that T j ≤
3k
2

holds. We also assume that DT j
< 2− j+1 or else there is nothing to

prove.

Now consider K := bS[0, bσ((1+ c j22− j)T j)] and let

ρ = inf{n≥ σ(T j) : dist(Sn, K)≤ 2− j+1
�

�Sn

�

�}.

Notice that even though we assume that DT j
< 2− j+1, ρ is not necessarily equal to σ(T j).

If ρ > σ((1+4·2− j)T j) then this means that T j−1 < (1+4·2− j)T j . However, if ρ ≤ σ((1+4·2− j)T j),
then by the Beurling estimates for random walk (Theorem 2.3), there exists c′ < 1 such that

P
¦

S[ρ,σ((1+ 8 · 2− j)T j)]∩ K = ;
©

≤ c′.

The same estimate will hold starting at T j + 8k2− j , k = 0, 1, . . . , bc j2/8c. Therefore,

P
n

T j−1 ≥ (1+ c j22− j)T j; A2k FT j

o

1
�

T j ≤
3k

2

�

≤ P
n

T j−1 ≥ (1+ c j22− j)T j; AT j+c j22− j FT j

o

1
�

T j ≤
3k

2

�

≤ (c′)bc j2/8c = 2−β j2 .

Lemma 4.9. There exists α <∞ and c > 0 such that for all j and k,

P
§

A2k; D2k ≥ c2− j FT k
j

ª

≥ c2−α j1(AT k
j
).

Proof. Since k is fixed, we will omit the superscript k from now on. Let z1 = S(σT j
) and z2 = bS(bσT j

).
Without loss of generality, we may assume that T j < 2k (or else there is nothing to prove) and also
that arg(z2)< arg(z1). Note that

�

�z1

�

�=
�

�z2

�

�= T j and k ≤ T j ≤ 2k.

Suppose that AT j
holds. By definition of T j , there exists c > 0 and half-wedges

W1 = {z : (1− c2− j)T j ≤ |z| ≤ (1+ c2− j)T j ,−c2− j ≤ arg(z)− arg(z1)≤ c2− j}

and
W2 = {z : (1− c2− j)T j ≤ |z| ≤ (1+ c2− j)T j ,−c2− j ≤ arg(z)− arg(z2)≤ c2− j}

such that S[0,σT j
]∩W2 = ;, bS[0, bσT j

]∩W1 = ;, and dist(W1, W2)≥ c2− j T j .

Using Lemma 2.4 and Proposition 3.5, it is easy to verify that there exists a global constant c′ such
that

Pz1
¦�

�S(σW1
)
�

�≥ (1+ c2− j)T j

©

≥ c′,

and
Pz2
¦�

�
bS(bσW2

)
�

�≥ (1+ c2− j)T j

©

≥ c′.
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Now consider the half-wedges

W ′
1 = {z : T j ≤ |z| ≤ 2k,−

3c

2
2− j ≤ arg(z)− arg(z1)≤

π

6
}

and

W ′
2 = {z : T j ≤ |z| ≤ 2k,

π

6
≤ arg(z)− arg(z1)≤

3c

2
2− j}.

Applying Lemma 2.4 and Corollary 3.7 to W ′
1 and W ′

2, one obtains that for any z′1 ∈ ∂W1 such that
�

�z′1
�

�≥ (1+ c2− j)T j

Pz′1

§�

�

�S(σW ′
1
)
�

�

�= 2k
ª

≥ c′2−α j ,

and for any z′2 ∈ ∂W2 such that
�

�z′2
�

�≥ (1+ c2− j)T j

Pz′2

§�

�

�

bS(bσW ′
2
)
�

�

�= 2k
ª

≥ c′2−α j ,

The result then follows since W ′
1 and W ′

2 are distance c2− j T j apart and S and bS are independent.

Proof of Theorem 4.7. We again fix k and let T j = T k/2
j . Let

s =
∞
∏

j=1

(1+ c j22− j)

where c is chosen so that s ≤ 3/2. We also let j0 be such that for j ≥ j0, 2−β j2+α j < 1, where α and
β = β(c) are as in Lemmas 4.8 and 4.9.

To prove the theorem, it suffices to show that for all m,

P
¦

Dk ≥ c1 Ak; 2−m ≤ Dk/2 < 2−m+1
©

≥ c2.

By Lemma 4.9, it is enough to find a constant c′2 such that

P
¦

T j0 ≤ 3k/4 Ak; 2−m ≤ Dk/2 < 2−m+1
©

≥ c′2.

In fact, we will show that

P
¦

T j0 ≤ ks/2 Ak; 2−m ≤ Dk/2 < 2−m+1
©

≥ c′2.

Let
Bm = {2−m ≤ Dk/2 < 2−m+1},

and
C j = {T j−1 ≤ (1+ c j22− j)T j}.
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Then,

P
¦

T j0 ≤ 3k/4 Ak; Bm

©

≥ P







m
⋂

j= j0+1

C j Ak; Bm







=
m
∏

j= j0+1

P






C j Ak; Bm;

m
⋂

l= j+1

Cl







=
m
∏

j= j0+1

P






C j Ak; Bm; AT j

;
m
⋂

l= j+1

Cl







=
m
∏

j= j0+1






1−

P
�

C c
j ; Ak Bm; AT j

;
⋂m

l= j+1 Cl

�

P
�

Ak Bm; AT j
;
⋂m

l= j+1 Cl

�






.

However,

Bm ∩ AT j
∩

m
⋂

l= j+1

Cl ∈ FT j
,

Bm ∩ AT j
∩

m
⋂

l= j+1

Cl ⊂ {T j ≤
3k

2
},

and

Bm ∩ AT j
∩

m
⋂

l= j+1

Cl ⊂ AT j
.

Therefore, by Lemmas 4.8 and 4.9,

P
¦

T j0 ≤ 3k/4 Ak; Bm

©

≥
m
∏

j= j0+1

(1− 2−β j2+α j)≥
∞
∏

j= j0+1

(1− 2−β j2+α j) = c2 > 0.

Using the same techniques, one can prove a “reverse” separation lemma. Let eS be a random walk
started uniformly on the circle ∂ Bn and conditioned to hit 0 before leaving Bn. Let X be the time
reversal of bSn (so that X is also a process from ∂ Bn to 0). As before, for k ≤ n, let

eAk = {eS[0, eσk]∩ X [0, bσk] = ;},

eDk = k−1 min{dist(eS(eσk), X [0, bσk]), dist(X (bσk), eS[0, eσk])}.

Then,

Theorem 4.10 (Reverse Separation Lemma). There exists c1, c2 > 0 such that

P
¦

eDk ≥ c1 eAk

©

≥ c2.
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5 The growth exponent

5.1 Introduction

Recall that Wt denotes standard complex Brownian motion and γ denotes radial SLE2 in D started
uniformly on ∂D.

In this chapter we will consider random walks and independent LERWs. We will view them as being
defined on different probability spaces so that bP {.} and bE [.] denote probabilities and expectations
with respect to the LERW, while P {.} and E [.]will denote probabilities and expectations with respect
to the random walk. For m≤ n, we define Es(m, n), Es(n) and eEs(n) as follows.

Es(m, n) = bE
h

P
n

S[1,σn]∩η2
m,n(bS

n[0, bσn]) = ;
oi

,

Es(n) = bE
�

P
¦

S[1,σn]∩ bSn[0, bσn] = ;
©�

= Es(0, n),

eEs(n) = bE
�

P
¦

S[1,σn]∩ bS[0, bσn] = ;
©�

.

Es(m, n) is the probability that a random walk from the origin to ∂ Bn and the terminal part of an
independent LERW from m to n do not intersect. Es(n) is the probability that a random walk from
the origin to ∂ Bn and the loop-erasure of an independent random walk from the origin to ∂ Bn do
not intersect. eEs(n) is the probability that a random walk from the origin to ∂ Bn and an infinite
LERW from the origin to ∂ Bn do not intersect.

In section 5.2, we prove that for m< n, Es(n) can be decomposed as

Es(n)� Es(m)Es(m, n).

In section 5.3, we use the convergence of LERW to SLE2 (Theorem 2.6) and the intersection expo-
nent 3/4 for SLE2 (Theorem 2.5) to show that

Es(m, n)�
�m

n

�3/4
.

We then combine these two results to show that Es(n)≈ n−3/4. Finally, in section 5.4, we show how
the fact that Es(n)≈ n−3/4 implies that Gr(n)≈ n5/4.

Before proceeding, we prove the following lemma which shows that eEs(n) and Es(4n) are on the
same order of magnitude.

Lemma 5.1.
eEs(n)� Es(4n).

Proof. By Corollary 4.5, it suffices to show that

bE
�

P
¦

S[1,σn]∩ bS4n[0, bσn] = ;
©�

� bE
�

P
¦

S[1,σ4n]∩ bS4n[0, bσ4n] = ;
©�

.

It is clear that the left hand side is greater than or equal to the right hand side. To prove the other
direction, we will use the separation lemma (Theorem 4.7). Given a point z ∈ ∂ Bn, let W (z) be the
half-wedge

W (z) = {w ∈ Λ : (1− c1)n≤ |w| ≤ 4n,
�

�arg(w)− arg(z)
�

�< c1/2},
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where c1 is as in the statement of the separation lemma. We also let

An = {S[1,σn]∩ bS4n[0, bσn] = ;},

z0 = bS
4n(bσn),

and
Dn = n−1 min{dist(S(σn), bS

4n[0, bσn]), dist(z0, S[0,σn])}.

By the strong Markov property for random walk,

bE
�

P
¦

S[1,σ4n]∩ bS4n[0, bσ4n] = ;
©�

≥ cbE
�

1{bS4n[bσn, bσ4n]⊂W (z0)}P
�

An; Dn ≥ c1
	

�

.

By Lemma 2.4 and Corollary 3.7,

bE
�

1{bS4n[bσn, bσ4n]⊂W (z0)}P
�

An; Dn ≥ c1
	

�

≥ cbE
�

P
�

An; Dn ≥ c1
	�

.

Finally, by the separation lemma,

bE
�

P
�

An; Dn ≥ c1
	�

≥ cbE
�

P
�

An
��

,

and therefore,

bE
�

P
¦

S[1,σ4n]∩ bS4n[0, bσ4n] = ;
©�

≥ cbE
�

P
¦

S[1,σn]∩ bS4n[0, bσn] = ;
©�

.

5.2 Proof that Es(n)� Es(m)Es(m, n)

Proposition 5.2. There exists C <∞ such that for all m and n with m≤ n,

Es(n)≤ C Es(m)Es(m, n).

Proof. Let l = bm/4c and fix η1 = η1
l and η2 = η2

m,n.

For any path η in Ωn,

P
�

S[1,σn]∩η= ;
	

≤ P
¦

S[1,σl]∩η1(η) = ;; S[1,σn]∩η2(η) = ;
©

=
∑

z∈∂ Bl

P
¦

S[1,σl]∩η1(η) = ;; S(σl) = z
©

Pz
¦

S[1,σn]∩η2(η) = ;
©

.

However, η2(η)⊂ Λ \ Bm, and thus by the discrete Harnack principle, for any z, z′ ∈ ∂ Bl ,

Pz
¦

S[1,σn]∩η2(η) = ;
©

� Pz′
¦

S[1,σn]∩η2(η) = ;
©

.

Therefore,

P
�

S[1,σn]∩η= ;
	

≤ CP
¦

S[1,σl]∩η1(η) = ;
©

P
¦

S[1,σn]∩η2(η) = ;
©

.
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We now let η= bSn[0, bσn]. By Proposition 4.6, for any ω ∈ Ωl , λ ∈ eΩm,n,

P
¦

η1(bSn[0, bσn]) =ω;η2(bSn[0, bσn]) = λ
©

� P
¦

η1(bSn[0, bσn]) =ω
©

P
¦

η2(bSn[0, bσn]) = λ
©

.

Therefore,

Es(n) = bE
�

P
¦

S[1,σn]∩ bSn[0, bσn] = ;
©�

≤ CbE
�

P
¦

S[1,σl]∩η1(bSn[0, bσn]) = ;
©

P
¦

S[1,σn]∩η2(bSn[0, bσn]) = ;
©�

≤ CbE
�

P
¦

S[1,σl]∩ bSn[0, bσl] = ;
©�

bE
�

P
¦

S[1,σn]∩η2(bSn[0, bσn]) = ;
©�

= CbE
�

P
¦

S[1,σl]∩ bSn[0, bσl] = ;
©�

Es(m, n).

By corollary 4.5, since 4l ≤ n,

bE
�

P
¦

S[1,σl]∩ bSn[0, bσl] = ;
©�

� bE
�

P
¦

S[1,σl]∩ bS[0, bσl] = ;
©�

= eEs(l).

Finally, by Lemma 5.1, eEs(l)� Es(m), which finishes the proof of the proposition.

Proposition 5.3. There exists c > 0 such that for all m and n with m≤ n/2,

Es(n)≥ c Es(m)Es(m, n).

Proof. We will use the following abbreviations. Let l = bm/4c and let

η1 = η1
l (bS

n[0, bσn]);

η2 = η2
m,n(bS

n[0, bσn]);

η∗ = η∗l,m,n(bS
n[0, bσn]).

Then bSn[0, bσn] = η1 ⊕η∗ ⊕η2. We also decompose S[1,σn] into S1 = S[1,σ2l] and S2 = S[σ2l +
1,σn].

Let c1 be as in the statement of the separation lemma (Theorem 4.7). Let W and W ∗ be the half-
wedges

W = {z : (1−
c1

4
)l ≤ |z| ≤ (1+

c1

4
)m,
�

�arg(z)
�

�≤
c1

4
};

W ∗ = {z : (1−
c1

4
)l ≤ |z| ≤ (1+

c1

4
)m,
�

�arg(z)
�

�≤
c1

2
}.

and let A= Bl ∪W .

Let K1 be the set of η1 such that

η1 ∩ ∂ Bl ⊂ {z : arg(z) ∈ (−
c1

8
,

c1

8
)},

and K2 be the set of η2 such that

η2 ∩ ∂ Bm ⊂ {z : arg(z) ∈ (−
c1

8
,

c1

8
)}.
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Then,

Es(n)

= bE
�

P
¦

S[1,σn]∩ bSn[0, bσn] = ;
©�

= bE
�

P
¦

S1 ∩η1⊕η∗ = ;; S2 ∩η1⊕η∗⊕η2 = ;
©�

≥ bE
�

1{η1∈K1}1{η2∈K2}1{η∗⊂W}P
¦

S1 ∩ (η1 ∪W ∗) = ;; S2 ∩ (η2 ∪ A) = ;
©�

= bE
�

1{η1∈K1}P
¦

S1 ∩ (η1 ∪W ∗) = ;
©

× 1{η2∈K2}P
¦

S2 ∩ (η2 ∪ A) = ; S1 ∩ (η1 ∪W ∗) = ;
©

1{η∗⊂W}
�

Therefore,
Es(n)≥ bE

�

X (η1)Y (η2)1{η∗⊂W}
�

,

where
X (η1) = 1{η1∈K1}P

¦

S1 ∩ (η1 ∪W ∗) = ;
©

,

and
Y (η2) = 1{η2∈K2} inf

z∈∂ B2l\W ∗
Pz
¦

S[1,σn]∩ (η2 ∪ A) = ;
©

.

By Lemma 2.4 and Corollary 3.8, for any ω1 ∈ K1 and ω2 ∈ K2,

bP
¦

η∗ ⊂W η1 =ω1,η2 =ω2

©

≥ c,

and therefore

Es(n)≥ cbE
�

X (η1)Y (η2)
�

.

However, by Proposition 4.6, η1 and η2 are independent up to constants, and therefore,

Es(n)≥ cbE
�

X (η1)
�

bE
�

Y (η2)
�

.

To prove the Proposition, it therefore suffices to show that

bE
�

X (η1)
�

≥ c Es(m), (17)

and

bE
�

Y (η2)
�

≥ c Es(m, n). (18)

To prove (17), note that

bE
�

X (η1)
�

= bE
�

1{η1∈K1}P
¦

S1 ∩ (η1 ∪W ∗) = ;
©�

≥ cbE
�

P
¦

S1 ∩ (η1 ∪W ∗) = ;
©�

≥ cbE
�

P
¦

S[1,σl]∩η1 = ;; dist(S(σl),η
1)≥ cl; S[1,σl]∩W ∗ = ;

©�

≥ cbE
�

P
¦

S[1,σl]∩η1 = ;
©�

,

where the last inequality is justified by the separation lemma (Theorem 4.7). However, by Corollary
4.5 and Lemma 5.1,

bE
�

P
¦

S[1,σl]∩η1 = ;
©�

� bE
�

P
¦

S[1,σl]∩ bS[0, bσl] = ;
©�

= eEs(l)� Es(m).
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We now prove (18). Since η2 ⊂ Λ\Bm, by the discrete Harnack inequality, for any z1, z2 ∈ ∂ B2l \W ∗,

Pz1
¦

S[1,σn]∩ (η2 ∪ A) = ;
©

� Pz2
¦

S[1,σn]∩ (η2 ∪ A) = ;
©

.

Therefore, fixing a z ∈ ∂ B2l \W ∗,

Y (η2)≥ c1{η2∈K2}P
z
¦

S[1,σn]∩ (η2 ∪ A) = ;
©

.

By Lemma 3.1,

Pz
¦

S[1,σn]∩ (η2 ∪ A) = ;
©

=
G(z; Bn \ (η2 ∪ A))

G(z; Bn)

∑

y∈∂ Bn

Py
¦

ξz < ξA∧ ξη2 ξz < σn

©

Pz �S(σn) = y
	

.

For any y ∈ ∂ Bn,

Py
¦

ξz < ξA∧ ξη2 ξz < σn

©

≥
∑

w∈∂ Bm\W ∗

Pw
¦

ξz < ξA∧ ξη2 ξz < σn

©

Py
¦

ξw < ξW ∗ ∧ ξη2 ξz < σn

©

For any w ∈ ∂ Bm \W ∗,

Pw
n

ξBcl/4(z) < ξA∧ ξη2 ξz < σn

o

≥ c.

Furthermore, by Lemma 3.4, for any u ∈ ∂ Bcl/4(z),

Pu
¦

ξz < ξA∧ ξη2 ξz < σn

©

Pu
¦

ξz < ξη2 ξz < σn

© ≥ Pu
n

ξz < ξBcl/2(z) ξz < ξη2 ∧σn

o

≥ c.

It also follows from (8) in Lemma 3.4 that for any two paths η2, eη2 ∈ eΩm,n and any u ∈ ∂ Bcl/4(z),

Pu
¦

ξz < ξη2 ξz < σn

©

� Pu
¦

ξz < ξeη2 ξz < σn

©

,

and therefore there exists f (n, m) such that for all η2 ∈ eΩm,n and u ∈ ∂ Bcl/4(z),

Pu
¦

ξz < ξη2 |ξz < σn

©

� f (n, m).

Thus,

Pz
¦

S[1,σn]∩ (η2 ∪ A) = ;
©

≥ c f (n, m)
G(z; Bn \ (η2 ∪ A))

G(z; Bn)

×
∑

y∈∂ Bn

Py
¦

ξm < ξη2 ∧ ξW ∗ |ξz < σn

©

Pz �S(σn) = y
	

.

Let r1 = dist(z,η2 ∪ ∂ Bn) and r2 = dist(z,η2 ∪ A∪ ∂ Bn). Then r2 > c1l > c1r1. Therefore,

G(z; Bn \ (η2 ∪ A))≥ G(z; Br2
(z))≥ cG(z; Bl(z))
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and by Lemma 3.3 applied to the ball B(z, r1),

G(z; Bl(z))≥ cG(z; Br1
(z))≥ cG(z; Bn \η2).

Finally, by the reverse separation lemma (Theorem 4.10),

bE
�

Py
¦

ξm < ξη2 ∧ ξW ∗ |ξz < σn

©�

≥ cbE
�

Py
¦

ξm < ξη2 |ξz < σn

©�

,

and thus

bE
�

Y (η2)
�

≥ cbE
�

1{η2∈K2}P
z
¦

S[1,σn]∩ (η2 ∪ A) = ;
©�

≥ cbE
�

Pz
¦

S[1,σn]∩ (η2 ∪ A) = ;
©�

≥ c
G(z; Bl)
G(z; Bn)

f (n, m)bE







∑

y∈∂ Bn

Py
¦

ξm < ξη2 ∧ ξW ∗ |ξz < σn

©

Pz �S(σn) = y
	







≥ cbE







G(z; Bn \η2)
G(z; Bn)

f (n, m)
∑

y∈∂ Bn

Py
¦

ξm < ξη2 |ξz < σn

©

Pz �S(σn) = y
	







≥ cbE







G(z; Bn \η2)
G(z; Bn)

∑

y∈∂ Bn

Py
¦

ξz < ξη2 |ξz < σn

©

Pz �S(σn) = y
	






.

However, by applying Lemma 3.1 again,

G(z; Bn \η2)
G(z; Bn)

∑

y∈∂ Bn

Py
¦

ξz < ξη2 |ξz < σn

©

Pz �S(σn) = y
	

= Pz
¦

S[1,σn]∩η2 = ;
©

.

and thus
bE
�

Y (η2)
�

≥ c Es(m, n).

5.3 Intersection exponents for SLE2 and LERW

In this section, we use the convergence of LERW to SLE2 to show that for 0< r < 1, Es(rn, n)� r3/4.
We combine this result with the decomposition

Es(n)� Es(rn)Es(rn, n)

from the previous section to obtain that Es(n)≈ n−3/4.

We recall the notation introduced in Section 2.6. Let Γ denote the set of continuous curves α :
[0, tα]→ D (we allow tα to be∞) such that α(0) ∈ ∂D, α(0, tα] ⊂ D and α(tα) = 0. We can make
Γ into a metric space as follows. If α,β ∈ Γ, we let

d(α,β) = inf sup
0≤t≤tα

�

�α(t)− β(θ(t))
�

� ,
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where the infimum is taken over all continuous, increasing bijections θ : [0, tα]→ [0, tβ]. Note that
d is a pseudo-metric on Γ, and is a metric if we consider two curves to be equivalent if they are the
same up to reparametrization.

Recall (Theorem 2.6) that LERW converges weakly to SLE2 on the space (Γ, d). We want to apply
this result to the functions fr defined as follows. Given 0< r < 1 and α ∈ Γ, we let

fr(α) = P0 �W[0,τD]∩α[0,ρr] = ;
	

,

where
ρr = inf{t : |α(t)|= r}.

We also define fr to be identically 1 for r ≥ 1 (think of ρr = 0 in that case, so that the above
probability is 1). Recall that Theorem 2.5 states that if γ is SLE2 then

E
�

fr(γ)
�

� r3/4.

Unfortunately, the fr are not continuous on the space (Γ, d). However, the following lemma shows
that they can be approximated by continuous functions.

Lemma 5.4. For all 0 < r < 1, there exists a function efr that is uniformly continuous on the space
(Γ, d) such that for all α ∈ Γ

fr/2(α)≤ efr(α)≤ f2r(α).

Proof. We define

efr(α) =
2

3r

∫ 2r

r/2

fs(α) ds.

Note that for a fixed α, fs(α) is increasing, and therefore fs(α) is integrable. In addition, the second
assertion in the statement of the lemma follows immediately. It remains to show that efr is uniformly
continuous.

First of all, we claim that for all ε > 0, there exists δ > 0 such that for all 0 < r < 1 and all α, β
with d(α,β)< δ,

fr(α)≤ fr+δ(β) + ε. (19)

To prove this note that

fr(α)− fr+δ(β)≤ P0 �W[0,τD]∩ β[0,ρr+δ] 6= ;; W[0,τD]∩α[0,ρr] = ;
	

.

By Lemma 3.11, there exists ν > 0 depending only on ε such that

P0
¦

W[0,τD]∩α[0,ρr] = ;; W (τD) ∈ eCν(α)
©

< ε.

Furthermore, if d(α,β) < δ, then for every z ∈ β[0,ρr+δ], there exists y ∈ α[0,ρr] such that
�

�z− y
�

� < δ. Therefore, by the Beurling estimates (Theorem 2.3), one can make δ small enough so
that

P0
§�

�

�W (τ∗α)−W (τ∗β)
�

�

�> ν

ª

< ε

where τ∗α = τα[0,ρr] ∧τD and τ∗β = τβ[0,ρr+δ] ∧τD.
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Therefore, for such a δ,

P0 �W[0,τD]∩ β[0,ρr+δ] 6= ;; W[0,τD]∩α[0,ρr] = ;
	

≤ P
�

E1
�

+ P
�

E2
�

+ P
�

E3
�

,

where

E1 = {W (τ∗α) ∈ Cν(α)}
E2 = {W[0,τD]∩α[0,ρr] = ;; W (τ∗β) ∈ D1−ν}

E3 = {W (τ∗α) ∈ ∂D \ Cν(α); W (τ∗β) ∈ Aν}

(recall that Aν denotes the annulus D \ D1−ν).

By our choice of ν , P
�

E1
�

< ε. Provided we take δ < ν/2, the events E2 and E3 are subsets of the
event

§�

�

�W (τ∗α)−W (τ∗β)
�

�

�>
ν

2

ª

,

and therefore P
�

E2
�

and P
�

E3
�

can be made less than ε. This proves the claim (19).

Fix 0 < r < 1. Given ε > 0, let δ > 0 be such that (19) holds (recall that δ depends only on ε and
not on r) and suppose that d(α,β)< δ. Then since fs(β)≤ 1 for all s and β ,

efr(α)− efr(β) =
2

3r

∫ 2r

r/2

fs(α) ds−
2

3r

∫ 2r

r/2

fs(β) ds

≤
2

3r

∫ 2r

r/2

fs+δ(β) ds+ ε−
2

3r

∫ 2r

r/2

fs(β) ds

≤
2

3r
(δ+δ) + ε.

The latter can be made arbitrarily small by choosing δ small enough. By reversing the roles of α
and β , one gets a similar lower bound, proving that efr is uniformly continuous.

Lemma 5.5. There exists C < ∞ such that the following holds. Given a random walk S and an
independent LERW bSn, we extend them to continuous curves St and bSn

t by linear interpolation. Then for
all 0< r < 1, there exists N = N(r) such that for n≥ N,

1

C
r3/4 ≤ bE

h

P
n

S[0,σn]∩η2
rn,n(bS

n) = ;
oi

≤ C r3/4.

Proof. We’ll prove the upper bound. The lower bound is proved in exactly the same fashion.

Fix 0 < r < 1. Recall that S(n)t = n−1Sn2 t . By Proposition 3.12, there exists N1 such that for n ≥ N1,
and any realization of bSn

t ,

P
n

S[0,σn]∩η2
rn,n(bS

n) = ;
o

= P
n

S(n)[0,σD]∩
�

n−1η2
rn,n(bS

n)
�

= ;
o

≤ P
n

W[0,τD]∩
�

n−1η2
rn,n(bS

n)
�

= ;
o

+ r3/4

= fr(n
−1
bSn) + r3/4.
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By Lemma 5.4,
fr(n

−1
bSn)≤ ef2r(n

−1
bSn),

and ef2r is continuous in the metric (Γ, d). Therefore, by the weak convergence of LERW to SLE2
described at the beginning of this section, there exists N2 such that for n≥ N2,

bE
�

ef2r(n
−1
bSn)
�

≤ E
�

ef2r(γ)
�

+ r3/4

where γ denotes SLE2. Furthermore, applying first Lemma 5.4, and then Theorem 2.5,

E
�

ef2r(γ)
�

≤ E
�

f4r(γ)
�

� r3/4.

Therefore, the upper bound holds for N = max{N1, N2}. The lower bound is proved in the same
fashion.

We now prove the analogue of the previous lemma for the case where S and bSn are discrete pro-
cesses. The reason why the discrete case does not follow immediately from the continuous case is
that we allow random walks that “jump”, and therefore it’s possible for two realizations of S and bSn

to avoid each other on the lattice Λ but to intersect after they are made continuous curves by linear
interpolation.

Theorem 5.6. There exists a constant C such that the following holds. For all 0 < r < 1, there exists
N = N(r) such that for n≥ N,

1

C
r3/4 ≤ Es(rn, n)≤ C r3/4.

Proof. Fix 0< r < 1. The lower bound follows immediately from Lemma 5.5 and the fact that if the
discrete processes intersect each other so too will the continuous curves.

To prove the upper bound we introduce some notation that will be used only in this proof. Let

S[0, . . . ,σn]

denote the discrete set of points in Λ visited by S between S0 and S(σn). We will write

S[0,σn]

to denote the continuous set of points in C visited by the continuous curve St from S0 to S(σn). We
use similar notation for bSn. In addition, we let

η2 = η2
rn,n

�

bSn[0, . . . , bσn]
�

be the terminal part of the discrete LERW curve and

eη2 = η2
rn,n

�

bSn[0, bσn]
�

be the terminal part of the continuous LERW curve.

As in the proof of Lemma 3.11, one can choose δ > 0 small enough so that for all n sufficiently
large, and for all z ∈ ∂ Bn,

P0 �S[0,σn]∩ Bδn(z) 6= ;
	

< r3/4.
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Furthermore, given such a δ, we can choose ε > 0 and N such that for all n ≥ N , and all z ∈ ∂ Bn,
the following holds. Let y ∈ Λ be the closest point to (1− ε)z. Then,

Py �S[0,σn]⊂ Bδn(z)
	

> 1− r3/4.

Since the LERW path bSn is a subset of a random walk path, one can combine the previous two
observations to show that there exists ε > 0 and N such that for all n≥ N ,

bE
�

P
¦

S[0,σn]∩
�

bSn[0, bσn]∩ Aεn

�

6= ;
©�

< 2r3/4,

where Aεn denotes the annulus Bn \ B(1−ε)n.

By the Beurling estimates (Theorem 2.3), if R is the range of S, then for any realization of bSn,

P0
¦

S[0,σn]∩
�

eη2 ∩ B(1−ε)n
�

6= ;; S[0, . . . ,σn]∩η2 = ;
©

≤ C
�

R

εn

�1/2

.

Therefore, we can select N large enough so that for all n≥ N ,

Es(rn, n) = bE
�

P
¦

S[0, . . . ,σn]∩η2 = ;
©�

= bE
�

P
¦

S[0,σn]∩ eη2 = ;
©�

+ bE
�

P
¦

S[0,σn]∩
�

eη2 ∩ Aεn

�

6= ;
©�

+ bE
�

P
¦

S[0,σn]∩
�

eη2 ∩ B(1−ε)n
�

6= ;; S[0, . . . ,σn]∩η2 = ;
©�

≤ C r3/4.

Theorem 5.7.
Es(n)≈ n−3/4.

Proof. We prove the upper bound using Proposition 5.2. One gets the lower bound in exactly the
same way using Proposition 5.3. Let δ > 0 be given. Let C denote the larger of the constants in
Theorem 5.6 and Proposition 5.2. Let 0< r < 1/4 be small enough so that

ln C

ln(1/r)
< δ.

By Theorem 5.6 and our choice of r, there exists N such that for n≥ N ,
�

�

�

�

lnEs(rn, n)
ln 1/r

+
3

4

�

�

�

�

< δ.

Any n≥ N can be written uniquely as n= r− js for some j = 0,1, 2, . . . and N ≤ s < r−1N . Therefore,
by Proposition 5.2,

lnEs(n) = ln Es(r− js)

≤ ln



C j Es(s)
j
∏

k=1

Es(rk− js, rk−1− js)





≤ j ln C + ln Es(s) + j(−
3

4
+δ) ln(1/r).
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Thus,

lnEs(n)
ln n

≤
j ln C + ln Es(s) + j(−3

4
+δ) ln1/r

j ln 1/r + ln s

≤
j ln C + ln Es(N) + j(−3

4
+δ) ln1/r

j ln 1/r + ln N
.

Therefore,

lim sup
n→∞

lnEs(n)
ln n

≤ limsup
j→∞

j ln C + lnEs(N) + j(−3
4
+δ) ln 1/r

j ln1/r + ln N

=
ln C

ln 1/r
+−

3

4
+δ

≤ −
3

4
+ 2δ.

This proves the upper bound, since δ was arbitrary. As mentioned before, an identical proof will
work for the lower bound.

5.4 Deriving the growth exponent from the intersection exponent

In this section, we show that Gr(n)≈ n5/4. We first prove a lemma which relates the probability that
a point z is on the LERW path to an intersection probability for a LERW.

Lemma 5.8. Fix z ∈ Bn. Let S be a random walk and let X be an independent random walk started at
z conditioned to hit 0 before leaving Bn. Then

P
¦

z ∈ bSn[0, bσn]
©

= Gn(0, z)Pz
¦

L(X [0,ξX
0 ])∩ S[1,σn] = ;

©

.

Proof. Let

eσz =

¨

max{k ≤ σn : Sk = z} if ξz < σn;
σn if σn < ξz ,

and let eσz
0 =max{k ≤ eσz : Sk = 0}.

By the definition of the loop-erasing procedure,

P
¦

z ∈ bSn[0, bσn]
©

= P
¦

ξz < σn; L(S[eσz
0, eσz])∩ S[eσz + 1,σn] = ;

©

.

Conditioned on the event {ξz < σn}, S[eσz
0, eσz] and S[eσz ,σn] are independent. S[eσz ,σn] has the

same distribution as a random walk started at z, conditioned to leave Bn before returning to z.
S[eσz

0, eσz] has the same distribution as the time reversal of X [0,ξX
0 ] and therefore L(S[eσz

0, eσz]) has
the same distribution as the time reversal of L(X [0,ξX

0 ]) Thus,

P
¦

ξz < σn; L(S[eσz
0, eσz])∩ S[eσz + 1,σn] = ;

©

= P
�

ξz < σn
	

Pz
¦

L(X [0,ξX
0 ])∩ S[1,σn] = ; σn < ξz

©

= P
�

ξz < σn
	

Pz �σn < ξz
	−1 Pz

¦

L(X [0,ξX
0 ])∩ S[1,σn] = ;

©

.
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The lemma now follows from the fact that

P
�

ξz < σn
	

Pz �σn < ξz
	−1 = P

�

ξz < σn
	

Gn(z) = Gn(0, z).

We finally have all the tools needed to prove our main theorem.

Proof of Theorem 1.1. We first prove the upper bound. For z ∈ Bn, let

r = r(z) =
1

4
min{|z| , n− |z|}.

Then by Lemma 5.8,

P
¦

z ∈ bSn[0, bσn]
©

= Gn(0, z)Pz
¦

L(X [0,ξX
0 ])∩ S[1,σn] = ;

©

≤ Gn(0, z)Pz
n

bX [0, bσX
Br (z)
]∩ S[1,σBr (z)] = ;

o

.

By Propositions 4.2 and 4.4, bX [0, bσX
Br (z)
] has the same distribution up to a constant as bS[0, bσBr (z)].

Therefore, by Lemma 5.1,

P
¦

z ∈ bSn[0, bσn]
©

≤ CGn(0, z)Pz
¦

bS[0, bσBr (z)]∩ S[1,σBr (z)] = ;
©

= CGn(0, z) eEs(r)

≤ CGn(0, z)Es(4r).

By Theorem 5.7, for all ε > 0, there exists M such that for all k > M/4,

Es(k)≤ k−3/4+ε.

Also, by [16, Proposition 6.3.5], for all z ∈ Bn \ {0},

Gn(0, z)� ln
n

|z|
.

Thus, for n> 3M ,

Gr(n) =
∑

z∈Bn

P
¦

z ∈ bSn[0, bσn]
©

≤ C






M2+

n/2
∑

k=M

k ln
n

k
Es(4k) +

n−M
∑

k=n/2

k ln
n

k
Es(4(n− k)) +Mn







≤ C






M2+

n/2
∑

k=M

k ln
n

k
k−3/4+ε+

n−M
∑

k=n/2

k ln
n

k
(n− k)−3/4+ε+Mn







≤ C
�

M2+ n5/4+ε+Mn
�

.

Since M does not depend on n, for all n sufficiently large one gets that

Gr(n)≤ Cn5/4+ε
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which gives the upper bound since ε > 0 was arbitrary.

We now prove the lower bound. As before, let

r = r(z) =
1

4
min{|z| , n− |z|},

and suppose that r > n/16 so that n/4< |z|< 3n/4.

Let c1 be as in the statement of the separation lemma (Theorem 4.7) and let

Dr := r−1 min{dist(S(σBr (z)), bX [0, bσX
Br (z)
]), dist(bX (bσX

Br (z)
), S[0,σBr (z)])}.

Then using a similar argument to the one in the proof of 5.1,

Pz
n

S[1,σn]∩ (bX [0, bξX
n/16]∪ Bn/8) = ; S[1,σBr (z)]∩ bX [0, bσBr (z)] = ;; Dr > c1

o

can be bounded below by a constant c > 0. Furthermore, by [10, Proposition 1.6.7], for any
w ∈ ∂ Bn/16,

Pw
¦

ξ0 < σn/8 ξ0 < σn

©

=
Pw
¦

ξ0 < σn/8

©

Pw �ξ0 < σn
	 ≥ c.

Hence,
Pz
¦

S[1,σn]∩ bX [0, bξX
0 ] = ; S[1,σBr (z)]∩ bX [0, bσBr (z)] = ;; Dr > c1

©

≥ c.

Therefore, by the separation lemma (Theorem 4.7),

Pz
¦

S[1,σn]∩ bX [0, bξX
0 ] = ;

©

≥ Pz
¦

S[1,σn]∩ bX [0, bξX
0 ] = ;; S[1,σBr (z)]∩ bX [0, bσBr (z)] = ;; Dr ≥ c1

©

≥ cPz
¦

S[1,σBr (z)]∩ bX [0, bσBr (z)] = ;; Dr > c1

©

≥ cPz
¦

S[1,σBr (z)]∩ bX [0, bσBr (z)] = ;
©

.

As before, the last quantity is comparable to Es(r). Therefore, for all z such that n/4≤ |z| ≤ 3n/4,

P
¦

z ∈ bSn[0, bσn]
©

≥ cGn(0, z)Es(r).

Now let ε > 0. By Theorem 5.7, there exists M such that for all k > M ,

Es(k)≥ k−3/4−ε.

Therefore, for n> 16M ,

Gr(n) =
∑

z∈Bn

P0
¦

z ∈ bSn[0, bσn]
©

≥
∑

n/4≤|z|≤3n/4

P0
¦

z ∈ bSn[0, bσn]
©

≥ c







n/2
∑

k=n/4

k ln
n

k
Es(k) +

3n/4
∑

k=n/2

k ln
n

k
Es(n− k)







≥ c







n/2
∑

k=n/4

k ln
n

k
k−3/4−ε+

3n/4
∑

k=n/2

k ln
n

k
(n− k)−3/4−ε







≥ cn5/4−ε.

This proves the lower bound since ε was arbitrary.
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