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Abstract

A continuous mass population model with local competition is constructed where every emi-

grant colonizes an unpopulated island. The population founded by an emigrant is modeled as

excursion from zero of an one-dimensional diffusion. With this excursion measure, we construct

a process which we call Virgin Island Model. A necessary and sufficient condition for extinction

of the total population is obtained for finite initial total mass.
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1 Introduction

This paper is motivated by an open question on a system of interacting locally regulated diffusions.

In [8], a sufficient condition for local extinction is established for such a system. In general, however,

there is no criterion available for global extinction, that is, convergence of the total mass process to

zero when started in finite total mass.

The method of proof for the local extinction result in [8] is a comparison with a mean field model

(Mt)t≥0 which solves

dMt = κ(EMt −Mt)d t + h(Mt)d t +
p

2g(Mt)dBt (1)

where (Bt)t≥0 is a standard Brownian motion and where h, g : [0,∞) → R are suitable functions

satisfying h(0) = 0 = g(0). This mean field model arises as the limit as N →∞ (see Theorem 1.4

in [19] for the case h ≡ 0) of the following system of interacting locally regulated diffusions on N
islands with uniform migration

dX N
t (i) =κ
� 1

N

N−1
∑

j=0

X N
t ( j)− X N

t (i)
�

d t

+ h
�

X N
t (i)
�

d t +
Æ

2g
�

X N
t (i)
�

dBt(i) i = 0, . . . , N − 1.

(2)

For this convergence, X N
0 (0), . . . , X N

0 (N − 1) may be assumed to be independent and identically

distributed with the law of X N
0 (0) being independent of N . The intuition behind the comparison

with the mean field model is that if there is competition (modeled through the functions h and g
in (2)) among individuals and resources are everywhere the same, then the best strategy for survival

of the population is to spread out in space as quickly as possible.

The results of [8] cover translation invariant initial measures and local extinction. For general h and

g, not much is known about extinction of the total mass process. Let the solution (X N
t )t≥0 of (2) be

started in X N
0 (i) = x1i=0, x ≥ 0. We prove in a forthcoming paper under suitable conditions on the

parameters that the total mass |X N
t | :=
∑N

i=1 X N
t (i) converges as N →∞. In addition, we show in

that paper that the limiting process dominates the total mass process of the corresponding system of

interacting locally regulated diffusions started in finite total mass. Consequently, a global extinction

result for the limiting process would imply a global extinction result for systems of locally regulated

diffusions.

In this paper we introduce and study a model which we call Virgin Island Model and which is the

limiting process of (X N
t )t≥0 as N → ∞. Note that in the process (X N

t )t≥0 an emigrant moves to

a given island with probability 1

N
. This leads to the characteristic property of the Virgin Island

Model namely every emigrant moves to an unpopulated island. Our main result is a necessary and

sufficient condition (see (28) below) for global extinction for the Virgin Island Model. Moreover,

this condition is fairly explicit in terms of the parameters of the model.

Now we define the model. On the 0-th island evolves a diffusion Y = (Yt)t≥0 with state space R≥0

given by the strong solution of the stochastic differential equation

dYt =−a(Yt) d t + h(Yt) d t +
p

2g(Yt)dBt , Y0 = y ≥ 0, (3)

where (Bt)t≥0 is a standard Brownian motion. This diffusion models the total mass of a population

and is the diffusion limit of near-critical branching particle processes where both the offspring mean
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and the offspring variance are regulated by the total population. Later, we will specify conditions

on a,h and g so that Y is well-defined. For now, we restrict our attention to the prototype example

of a Feller branching diffusion with logistic growth in which a(y) = κy , h(y) = γy(K − y) and

g(y) = β y with κ,γ, K ,β > 0. Note that zero is a trap for Y , that is, Yt = 0 implies Yt+s = 0 for all

s ≥ 0.

Mass emigrates from the 0-th island at rate a(Yt) d t and colonizes unpopulated islands. A new

population should evolve as the process (Yt)t≥0. Thus, we need the law of excursions of Y from the

trap zero. For this, define the set of excursions from zero by

U :=
�

χ ∈ C
�

(−∞,∞), [0,∞)
�

: T0 ∈ (0,∞], χt = 0 ∀ t ∈ (−∞, 0]∪ [T0,∞)
	

(4)

where Ty = Ty(χ) := inf{t > 0: χt = y} is the first hitting time of y ∈ [0,∞). The set U is furnished

with locally uniform convergence. Throughout the paper, C(S1,S2) and D(S1,S2) denote the set of

continuous functions and the set of càdlàg functions, respectively, between two intervals S1,S2 ⊂R.

Furthermore, define

D :=
�

χ ∈ D
�

(−∞,∞), [0,∞)
�

: χt = 0 ∀ t < 0
	

. (5)

The excursion measure QY is aσ-finite measure on U . It has been constructed by Pitman and Yor [16]

as follows: Under QY , the trajectories come from zero according to an entrance law and then move

according to the law of Y . Further characterizations of QY are given in [16], too. For a discussion

on the excursion theory of one-dimensional diffusions, see [18]. We will give a definition of QY

later.

Next we construct all islands which are colonized from the 0-th island and call these islands the first

generation. Then we construct the second generation which is the collection of all islands which

have been colonized from islands of the first generation, and so on. Figure 1 illustrates the resulting

tree of excursions. For the generation-wise construction, we use a method to index islands which

keeps track of which island has been colonized from which island. An island is identified with a

triple which indicates its mother island, the time of its colonization and the population size on the

island as a function of time. For χ ∈ D, let

I χ0 :=
��

;, 0,χ
�	

(6)

be a possible 0-th island. For each n≥ 1 and χ ∈ D, define

I χn :=
��

ιn−1, s,ψ
�

: ιn−1 ∈ I
χ
n−1, (s,ψ) ∈ [0,∞)×D

	

(7)

which we will refer to as the set of all possible islands of the n-th generation with fixed 0-th island

(;, 0,χ). This notation should be read as follows. The island ιn = (ιn−1, s,ψ) ∈ I χn has been

colonized from island ιn−1 ∈ I
χ
n−1 at time s and carries total mass ψ(t − s) at time t ≥ 0. Notice

that there is no mass on an island before the time of its colonization. The island space is defined by

I := {;} ∪
⋃

χ∈D
I χ where I χ :=

⋃

n≥0

I χn . (8)

Denote by σι := s the colonization time of island ι if ι = (ι
′
, s,ψ) for some ι′ ∈ I . Furthermore, let

{Πι : ι ∈ I \ {;}} be a set of Poisson point processes on [0,∞)×D with intensity measure

E
�

Π(ι,s,χ)(d t ⊗ dψ)
�

= a
�

χ(t − s)
�

d t ⊗QY (dψ) ι ∈ I . (9)
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Figure 1: Subtree of the Virgin Island Model. Only offspring islands with a certain excursion height are drawn. Note

that infinitely many islands are colonized e.g. between times s1 and s2.

For later use, let Πχ := Π(;,0,χ). We assume that the family {Πι : ι ∈ I χ} is independent for every

χ ∈ D.

The Virgin Island Model is defined recursively generation by generation. The 0-th generation only

consists of the 0-th island

V (0) :=
��

;, 0, Y
�	

. (10)

The (n+ 1)-st generation, n ≥ 0, is the (random) set of all islands which have been colonized from

islands of the n-th generation

V (n+1) :=
��

ιn, s,ψ
�

∈ I : ιn ∈ V (n),Πιn
�

{(s,ψ)}
�

> 0
	

. (11)

The set of all islands is defined by

V :=
⋃

n≥0

V (n). (12)

The total mass process of the Virgin Island Model is defined by

Vt :=
∑

�

ι,s,ψ
�

∈V

ψ(t − s), t ≥ 0. (13)

Our main interest concerns the behaviour of the law L
�

Vt
�

of Vt as t →∞.
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The following observation is crucial for understanding the behavior of (Vt)t≥0 as t → ∞. There

is an inherent branching structure in the Virgin Island Model. Consider as new “time coordinate”

the number of island generations. One offspring island together with all its offspring islands is

again a Virgin Island Model but with the path (Yt)t≥0 on the 0-th island replaced by an excursion

path. Because of this branching structure, the Virgin Island Model is a multi-type Crump-Mode-

Jagers branching process (see [10] under “general branching process”) if we consider islands as

individuals and [0,∞)×D as type space. We recall that a single-type Crump-Mode-Jagers process is

a particle process where every particle i gives birth to particles at the time points of a point process

ξi until its death at time λi , and (λi ,ξi)i are independent and identically distributed. The literature

on Crump-Mode-Jagers processes assumes that the number of offspring per individual is finite in

every finite time interval. In the Virgin Island Model, however, every island has infinitely many

offspring islands in a finite time interval because QY is an infinite measure.

The most interesting question about the Virgin Island Model is whether or not the process survives

with positive probability as t →∞. Generally speaking, branching particle processes survive if and

only if the expected number of offspring per particle is strictly greater than one, e.g. the Crump-

Mode-Jagers process survives if and only if Eξi[0,λi]> 1. For the Virgin Island Model, the offspring

of an island (ι, s,χ) depends on the emigration intensities a
�

χ(t − s)
�

d t. It is therefore not surpris-

ing that the decisive parameter for survival is the expected “sum” over those emigration intensities
∫ ∫ ∞

0

a
�

χt
�

d t QY (dχ). (14)

We denote the expression in (14) as “expected total emigration intensity” of the Virgin Island Model.

The observation that (14) is the decisive parameter plus an explicit formula for (14) leads to the

following main result. In Theorem 2, we will prove that the Virgin Island Model survives with strictly

positive probability if and only if
∫ ∞

0

a(y)

g(y)
exp
�

∫ y

0

−a(u) + h(u)

g(u)
du
�

d y > 1. (15)

Note that the left-hand side of (15) is equal to
∫∞

0
a(y)m(d y) where m(d y) is the speed measure

of the one-dimensional diffusion (3). The method of proof for the extinction result is to study

an integral equation (see Lemma 5.3) which the Laplace transform of the total mass V solves.

Furthermore, we will show in Lemma 9.8 that the expression in (14) is equal to the left-hand side

of (15).

Condition (15) already appeared in [8] as necessary and sufficient condition for existence of a

nontrivial invariant measure for the mean field model, see Theorem 1 and Lemma 5.1 in [8]. Thus,

the total mass process of the Virgin Island Model dies out if and only if the mean field model (1) dies

out. The following duality indicates why the same condition appears in two situations which seem

to be fairly different at first view. If a(x) = κx , h(x) = γx(K − x) and g(x) = β x with κ,γ,β > 0,

that is, in the case of Feller branching diffusions with logistic growth, then model (2) is dual to itself,

see Theorem 3 in [8]. If (X N
t )t≥0 indeed approximates the Virgin Island Model as N →∞, then –

for this choice of parameters – the total mass process (Vt)t≥0 is dual to the mean field model. This

duality would directly imply that – in the case of Feller branching diffusions with logistic growth –

global extinction of the Virgin Island Model is equivalent to local extinction of the mean field model.

An interesting quantity of the Virgin Island process is the area under the path of V . In Theorem 3, we

prove that the expectation of this quantity is finite exactly in the subcritical situation in which case
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we give an expression in terms of a, h and g. In addition, in the critical case and in the supercritical

case, we obtain the asymptotic behaviour of the expected area under the path of V up to time t

∫ t

0

Ex Vs ds (16)

as t → ∞ for all x ≥ 0. More precisely, the order of (16) is O(t) in the critical case. For the

supercritical case, let α > 0 be the Malthusian parameter defined by

∫ ∞

0

�

e−αu

∫

a
�

χu
�

QY (dχ)
�

du= 1. (17)

It turns out that the expression in (16) grows exponentially with rate α as t →∞.

The result of Theorem 3 in the supercritical case suggests that the event that (Vt)t≥0 grows expo-

nentially with rate α as t →∞ has positive probability. However, this is not always true. Theorem 7

proves that e−αt Vt converges in distribution to a random variable W ≥ 0. Furthermore, this variable

is not identically zero if and only if

∫
�
∫ ∞

0

a
�

χs
�

e−αs ds

�

log+
�
∫ ∞

0

a
�

χs
�

e−αs ds

�

QY (dχ)<∞ (18)

where log+(x) := max{0, log(x)}. This (x log x)-criterion is similar to the Kesten-Stigum Theorem

(see [14]) for multidimensional Galton-Watson processes. Our proof follows Doney [4] who estab-

lishes an (x log x)-criterion for Crump-Mode-Jagers processes.

Our construction introduces as new “time coordinate” the number of island generations. Readers

being interested in a construction of the Virgin Island Model in the original time coordinate – for

example in a relation between Vt and (Vs)s<t – are referred to Dawson and Li (2003) [3]. In that

paper, a superprocess with dependent spatial motion and interactive immigration is constructed

as the pathwise unique solution of a stochastic integral equation driven by a Poisson point pro-

cess whose intensity measure has as one component the excursion measure of the Feller branching

diffusion. In a special case (see equation (1.6) in [3] with x(s, a, t) = a, q(Ys, a) = κYs(R) and

m(da) = 1[0,1](a) da), this is just the Virgin Island Model with (3) replaced by a Feller branching

diffusion, i.e. a(y) = κy , h(y) = 0, g(y) = β y . It would be interesting to know whether existence

and uniqueness of such stochastic integral equations still hold if the excursion measure of the Feller

branching diffusion is replaced by QY .

Models with competition have been studied by various authors. Mueller and Tribe (1994) [15] and

Horridge and Tribe (2004) [7] investigate an one-dimensional SPDE analog of interacting Feller

branching diffusions with logistic growth which can also be viewed as KPP equation with branching

noise. Bolker and Pacala (1997) [2] propose a branching random walk in which the individual mor-

tality rate is increased by a weighted sum of the entire population. Etheridge (2004) [6] studies two

diffusion limits hereof. The “stepping stone version of the Bolker-Pacala model” is a system of inter-

acting Feller branching diffusions with non-local logistic growth. The “superprocess version of the

Bolker-Pacala model” is an analog of this in continuous space. Hutzenthaler and Wakolbinger [8],

motivated by [6], investigated interacting diffusions with local competition which is an analog of

the Virgin Island Model but with mass migrating on Zd instead of migration to unpopulated islands.
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2 Main results

The following assumption guarantees existence and uniqueness of a strong [0,∞)-valued solution

of equation (3), see e.g. Theorem IV.3.1 in [9]. Assumption A2.1 additionally requires that a(·) is

essentially linear.

Assumption A2.1. The three functions a : [0,∞)→ [0,∞), h: [0,∞)→ R and g : [0,∞)→ [0,∞)
are locally Lipschitz continuous in [0,∞) and satisfy a(0) = h(0) = g(0) = 0. The function g is strictly
positive on (0,∞). Furthermore, h and

p
g satisfy the linear growth condition

lim sup
x→∞

0∨ h(x) +
p

g(x)

x
<∞ (19)

where x ∨ y denotes the maximum of x and y. In addition, c1·x ≤ a(x)≤ c2·x holds for all x ≥ 0 and
for some constants c1, c2 ∈ (0,∞).

The key ingredient in the construction of the Virgin Island Model is the law of excursions of (Yt)t≥0

from the boundary zero. Note that under Assumption A2.1, zero is an absorbing boundary for (3),

i.e. Yt = 0 implies Yt+s = 0 for all s ≥ 0. As zero is not a regular point, it is not possible to apply the

well-established Itô excursion theory. Instead we follow Pitman and Yor [16] and obtain a σ-finite

measure Q̄Y – to be called excursion measure – on U (defined in (4)). For this, we additionally

assume that (Yt)t≥0 hits zero in finite time with positive probability. The following assumption

formulates a necessary and sufficient condition for this (see Lemma 15.6.2 in [13]). To formulate

the assumption, we define

s̄(z) := exp
�

−
∫ z

1

−a(x) + h(x)

g(x)
d x
�

, S̄(y) :=

∫ y

0

s̄(z) dz, z, y > 0. (20)

Note that S̄ is a scale function, that is,

Py�Tb(Y )< Tc(Y )
�

=
S̄(y)− S̄(c)

S̄(b)− S̄(c)
(21)

holds for all 0≤ c < y < b <∞, see Section 15.6 in [13].

Assumption A2.2. The functions a, g and h satisfy

∫ x

0

S̄(y)
1

g(y)s̄(y)
d y <∞ (22)

for some x > 0.

Note that if Assumption A2.2 is satisfied, then (22) holds for all x > 0.

Pitman and Yor [16] construct the excursion measure Q̄Y in three different ways one being as

follows. The set of excursions reaching level δ > 0 has Q̄Y -measure 1/S̄(δ). Conditioned on this

event an excursion follows the diffusion (Yt)t≥0 conditioned to converge to infinity until this process

reaches level δ. From this time on the excursion follows an independent unconditioned process.
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We carry out this construction in detail in Section 9. In addition Pitman and Yor [16] describe the

excursion measure “in a preliminary way as”

lim
y→0

1

S̄(y)
L y (Y ) (23)

where the limit indicates weak convergence of finite measures on C
�

[0,∞), [0,∞)
�

away from

neighbourhoods of the zero-trajectory. However, they do not give a proof. Having Q̄Y identified

as the limit in (23) will enable us to transfer explicit formulas for L (Y ) to explicit formulas for

Q̄Y . We establish the existence of the limit in (23) in Theorem 1 below. For this, let the topology

on C
�

[0,∞), [0,∞)
�

be given by locally uniform convergence. Furthermore, recall Y from (3), the

definition of U from (4) and the definition of S̄ from (20).

Theorem 1. Assume A2.1 and A2.2. Then there exists a σ-finite measure Q̄Y on U such that

lim
y→0

1

S̄(y)
Ey F(Y ) =

∫

F(χ)Q̄Y (dχ) (24)

for all bounded continuous F : C
�

[0,∞), [0,∞)
�

→ R for which there exists an ǫ > 0 such that
F(χ) = 0 whenever supt≥0χt < ǫ.

For our proof of the global extinction result for the Virgin Island Model, we need the scaling function

S̄ in (24) to behave essentially linearly in a neighbourhood of zero. More precisely, we assume S̄′(0)
to exist in (0,∞). From definition (20) of S̄ it is clear that a sufficient condition for this is given by

the following assumption.

Assumption A2.3. The integral
∫ 1

ǫ

−a(y)+h(y)
g(y)

d y has a limit in (−∞,∞) as ǫ→ 0.

It follows from dominated convergence and from the local Lipschitz continuity of a and h that

Assumption A2.3 holds if
∫ 1

0

y
g(y)

d y is finite.

In addition, we assume that the expected total emigration intensity of the Virgin Island Model is

finite. Lemma 9.6 shows that, under Assumptions A2.1 and A2.2, an equivalent condition for this is

given in Assumption A2.4.

Assumption A2.4. The functions a, g and h satisfy

∫ ∞

x

a(y)

g(y)s̄(y)
d y <∞ (25)

for some and then for all x > 0.

We mention that if Assumptions A2.1, A2.2 and A2.4 hold, then the process Y hits zero in finite

time almost surely (see Lemma 9.5 and Lemma 9.6). Furthermore, we give a generic example

for a, h and g namely a(y) = c1 y , h(y) = c2 yκ1 − c3 yκ2 , g(y) = c4 yκ3 with c1, c2, c3, c4 > 0.

The Assumptions A2.1, A2.2, A2.3 and A2.4 are all satisfied if κ2 > κ1 ≥ 1 and if κ3 ∈ [1,2).

Assumption A2.2 is not met by a(y) = κy , κ > 0, h(y) = y and g(y) = y2 because then s̄(y) =
yκ−1, S̄(y) = yκ/κ and condition (22) fails to hold.
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Next we formulate the main result of this paper. Theorem 2 proves a nontrivial transition from

extinction to survival. For the formulation of this result, we define

s(z) := exp
�

−
∫ z

0

−a(x) + h(x)

g(x)
d x
�

, S(y) :=

∫ y

0

s(z) dz, z, y > 0, (26)

which is well-defined under Assumption A2.3. Note that S̄(y) = S(y)S̄
′
(0). Define the excursion

measure

QY := S̄
′
(0)Q̄Y (27)

and recall the total mass process (Vt)t≥0 from (13).

Theorem 2. Assume A2.1, A2.2, A2.3 and A2.4. Then the total mass process (Vt)t≥0 started in x > 0

dies out (i.e., converges in probability to zero as t →∞) if and only if

∫ ∞

0

a(y)

g(y)s(y)
d y ≤ 1. (28)

If (28) fails to hold, then Vt converges in distribution as t →∞ to a random variable V∞ satisfying

Px(V∞ = 0) = 1− Px(V∞ =∞) = Ex exp
�

−q

∫ ∞

0

a(Ys) ds
�

(29)

for all x ≥ 0 and some q > 0.

Remark 2.1. The constant q > 0 is the unique strictly positive fixed-point of a function defined in
Lemma 7.1.

In the critical case, that is, equality in (28), Vt converges to zero in distribution as t →∞. However,

it turns out that the expected area under the graph of V is infinite. In addition, we obtain in

Theorem 3 the asymptotic behaviour of the expected area under the graph of V up to time t as

t →∞. For this, define

wa(x) :=

∫ ∞

0

S(x ∧ z)
a(z)

g(z)s(z)
dz, x ≥ 0, (30)

and similarly wid := wa with a(z) = z. If Assumptions A2.1, A2.2, A2.3 and A2.4 hold, then

wa(x) + wid(x) is finite for fixed x < ∞; see Lemma 9.6. Furthermore, under Assumptions A2.1,

A2.2, A2.3 and A2.4,

w
′

a(0) =

∫ ∞

0

a(z)

g(z)s(z)
dz <∞ (31)

by the dominated convergence theorem.

Theorem 3. Assume A2.1, A2.2, A2.3 and A2.4. If the left-hand side of (28) is strictly smaller than
one, then the expected area under the path of V is equal to

Ex

∫ ∞

0

Vs ds = wid(x) +
w
′

id(0) wa(x)

1−w
′
a(0)

∈ (0,∞) (32)
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for all x ≥ 0. Otherwise, the left-hand side of (32) is infinite. In the critical case, that is, equality
in (28),

1

t

∫ t

0

Ex Vs ds→
w
′

id(0) wa(x)
∫∞

0

wa(y)
g(y)s(y)

d y
∈ [0,∞) as t →∞ (33)

where the right-hand side is interpreted as zero if the denominator is equal to infinity. In the supercritical
case, i.e., if (28) fails to be true, let α > 0 be such that

∫ ∞

0

e−αs

∫

a
�

χs
�

QY (dχ) ds = 1. (34)

Then the order of growth of the expected area under the path of (Vs)s≥0 up to time t as t →∞ can be
read off from

e−αt

∫ t

0

Ex Vs ds→
∫∞

0
e−αs
∫

χsQY (dχ) ds ·
∫∞

0
e−αsEx a(Ys) ds

∫∞
0

�

αse−αs
∫

a(χs)QY (dχ)
�

ds
∈ (0,∞) (35)

for all x ≥ 0.

The following result is an analog of the Kesten-Stigum Theorem, see [14]. In the supercritical case,

e−αt Vt converges to a random variable W as t → ∞. In addition, W is not identically zero if and

only if the (x log x)-condition (18) holds. We will prove a more general version hereof in Theorem 7

below. Unfortunately, we do not know of an explicit formula in terms of a, h and g for the left-

hand side of (18). Aiming at a condition which is easy to verify, we assume instead of (18) that

the second moment
∫

(
∫∞

0
a(χs) ds)2Q(dχ) is finite. In Assumption A2.5, we formulate a condition

which is slightly stronger than that, see Lemma 9.8 below.

Assumption A2.5. The functions a, g and h satisfy
∫ ∞

x

a(y)
y +wa(y)

g(y)s̄(y)
d y <∞ (36)

for some and then for all x > 0.

Theorem 4. Assume A2.1, A2.2, A2.3 and A2.5. Suppose that (28) fails to be true (supercritical case)
and let α > 0 be the unique solution of (34). Then

Vt

eαt

w−→W as t →∞ (37)

in the weak topology and P{W > 0}= P{V∞ > 0}.

3 Outline

Theorem 1 will be established in Section 9. Note that Section 9 does not depend on the sections 4-

8. We will prove the survival and extinction result of Theorem 2 in two steps. In the first step,
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we obtain a criterion for survival and extinction in terms of QY . More precisely, we prove that the

process dies out if and only if the expression in (14) is smaller than or equal to one. In this step, we

do not exploit that QY is the excursion measure of Y . In fact, we will prove an analog of Theorem 2

in a more general setting where QY is replaced by some σ-finite measure Q and where the islands

are counted with random characteristics. See Section 4 below for the definitions. The analog of

Theorem 2 is stated in Theorem 5, see Section 4, and will be proven in Section 7. The key equation

for its proof is contained in Lemma 5.1 which formulates the branching structure in the Virgin Island

Model. In the second step, we calculate an expression for (14) in terms of a,h and g. This will be

done in Lemma 9.8. Theorem 2 is then a corollary of Theorem 5 and of Lemma 9.8, see Section 10.

Similarly, a more general version of Theorem 3 is stated in Theorem 6, see Section 4 below. The

proofs of Theorem 3 and of Theorem 6 are contained in Section 10 and Section 6, respectively.

As mentioned in Section 1, a rescaled version of (Vt)t≥0 converges in the supercritical case. This

convergence is stated in a more general formulation in Theorem 7, see Section 4 below. The proofs

of Theorem 4 and of Theorem 7 are contained in Section 10 and in Section 8, respectively.

4 Virgin Island Model counted with random characteristics

In the proof of the extinction result of Theorem 2, we exploit that one offspring island together

with all its offspring islands is again a Virgin Island Model but with a typical excursion instead of

Y on the 0-th island. For the formulation of this branching property, we need a version of the

Virgin Island Model where the population on the 0-th island is governed by QY . More generally, we

replace the law L (Y ) of the first island by some measure ν and we replace the excursion measure

QY by some measure Q. Given two σ-finite measures ν and Q on the Borel-σ-algebra of D, we

define the Virgin Island Model with initial island measure ν and excursion measure Q as follows.

Define the random sets of islands V (n),ν ,Q, n ≥ 0, and V ν ,Q through the definitions (9), (10), (11)

and (12) with L (Y ) and QY replaced by ν and Q, respectively. A simple example for ν and Q is

ν(dχ) = Q(dχ) = Eδt 7→1t<L
(dχ) where L ≥ 0 is a random variable and δψ is the Dirac measure on

the path ψ. Then the Virgin Island Model coincides with a Crump-Mode-Jagers process in which a

particle has offspring according to a rate a(1) Poisson process until its death at time L.

Furthermore, our results do not only hold for the total mass process (13) but more generally when

the islands are counted with random characteristics. This concept is well-known for Crump-Mode-

Jagers processes, see Section 6.9 in [10]. Assume that φι =
�

φι(t)
�

t∈R, ι ∈ I , are separable

and nonnegative processes with the following properties. It vanishes on the negative half-axis, i.e.

φι(t) = 0 for t < 0. Informally speaking our main assumption on φι is that it does not depend on

the history. Formally we assume that

�

φ�
ι,s,χ
�(t)
�

t∈R

d
=
�

φ�;,0,χ
�(t − s)
�

t∈R
∀ χ ∈ D, ι ∈ I , s ≥ 0. (38)

Furthermore, we assume that the family {φι,Πι : ι ∈ I χ} is independent for each χ ∈ D and

(ω, t,χ) 7→ φ(;,0,χ)(t)(ω) is measurable. As a short notation, define φχ(t) := φ(t,χ) := φ(;,0,χ)(t)
for χ ∈ D. With this, we define

Vφ,ν ,Q
t :=
∑

ι∈V ν ,Q

φι(t −σι), t ≥ 0, (39)
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and say that
�

Vφ,ν ,Q
t

�

t≥0 is a Virgin Island process counted with random characteristics φ. Instead

of V
φ,δχ ,Q
t , we write Vφ,χ ,Q

t for a path χ ∈ D and note that (ω, t,χ) 7→ Vφ,χ ,Q
t (ω) is measurable.

A prominent example for φχ is the deterministic random variable φχ(t) ≡ χ(t). In this case,

V ν ,Q
t := Vφ,ν ,Q

t is the total mass of all islands at time t. Notice that (Vt)t≥0 defined in (13) is a

special case hereof, namely Vt = VL (Y ),QY
t . Another example for φχ is φ(t,χ) = χ(t)1t≤t0

. Then

V φ,χ ,Q
t is the total mass at time t of all islands which have been colonized in the last t0 time units.

If φ(t,χ) =
∫∞

t
χs ds, then Vφ,χ ,Q

t =
∫∞

t
Vχ ,Q

s ds.

As in Section 2, we need an assumption which guarantees finiteness of Vφ,ν ,Q
t .

Assumption A4.1. The function a : [0,∞)→ [0,∞) is continuous and there exist c1, c2 ∈ (0,∞) such
that c1 x ≤ a(x)≤ c2 x for all x ≥ 0. Furthermore,

sup
t≤T

∫

�

a
�

χt
�

+ Eφ
�

t,χ
�

�

ν(dχ) + sup
t≤T

∫

�

a
�

χt
�

+ Eφ
�

t,χ
�

�

Q(dχ)<∞ (40)

for every T <∞

The analog of Assumption A2.4 in the general setting is the following assumption.

Assumption A4.2. Both the expected emigration intensity of the 0-th island and of subsequent islands
are finite:

∫

�

∫ ∞

0

a
�

χu
�

du
�

ν(dχ) +

∫

�

∫ ∞

0

a
�

χu
�

du
�

Q(dχ)<∞. (41)

In Section 2, we assumed that (Yt)t≥0 hits zero in finite time with positive probability. See Assump-

tion A2.2 for an equivalent condition. Together with A2.4, this assumption implied almost sure

convergence of (Yt)t≥0 to zero as t → ∞. In the general setting, we need a similar but somewhat

weaker assumption. More precisely, we assume that φ(t) converges to zero ”in distribution“ both

with respect to ν and with respect to Q.

Assumption A4.3. The random processes
��

φχ(t)
�

t≥0
: χ ∈ D
	

and the measures Q and ν satisfy

∫

�

1− Ee−λφ(t,χ)
�

�

ν +Q
�

(dχ)→ 0 as t →∞ (42)

for all λ ≥ 0.

Having introduced the necessary assumptions, we now formulate the extinction and survival result

of Theorem 2 in the general setting.

Theorem 5. Let ν be a probability measure on D and let Q be a measure on D. Assume A4.1, A4.2
and A4.3. Then the Virgin Island process (Vφ,ν ,Q

t )t≥0 counted with random characteristics φ with 0-th
island distribution ν and with excursion measure Q dies out (i.e., converges to zero in probability) if
and only if

ā :=

∫

�

∫ ∞

0

a
�

χu
�

du
�

Q(dχ)≤ 1. (43)
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In case of survival, the process converges weakly as t →∞ to a probability measure L
�

Vφ,ν ,Q
∞
�

with

support in {0,∞} which puts mass
∫

1− exp
�

−q

∫ ∞

0

a
�

χs
�

ds
�

ν(dχ) (44)

on the point∞ where q > 0 is the unique strictly positive fixed-point of

z 7→
∫

1− exp
�

−z

∫ ∞

0

a
�

χs
�

ds
�

Q(dχ), z ≥ 0. (45)

Remark 4.1. The assumption on ν to be a probability measure is convenient for the formulation in
terms of convergence in probability. For a formulation in the case of a σ-finite measure ν , see the proof
of the theorem in Section 7.

Next we state Theorem 3 in the general setting. For its formulation, define

f ν(t) :=

∫

Eφ(t,χ)ν(dχ), t ≥ 0, (46)

and similarly f Q with ν replaced by Q.

Theorem 6. Assume A4.1 and A4.2. If the left-hand side of (43) is strictly smaller than one and if both
f ν and f Q are integrable, then

∫

E
h

∫ ∞

0

Vφ,χ ,Q
s ds
i

ν(dχ) =

∫ ∞

0

f ν(s)ds+

∫∞
0

f Q(s) ds
∫ ∫∞

0
a
�

χs
�

dsν(dχ)

1−
∫

�

∫∞
0

a
�

χs
�

ds
�

Q(dχ)
(47)

which is finite and strictly positive. Otherwise, the left-hand side of (47) is infinite. If the left-hand side
of (43) is equal to one and if both f ν and f Q are integrable,

lim
t→∞

1

t

∫

E
h

∫ t

0

Vφ,χ ,Q
s ds
i

ν(dχ) =

∫∞
0

f Q(s) ds ·
∫ ∫∞

0
a
�

χs
�

ds ν(dχ)
∫∞

0
s
∫

a
�

χs
�

Q(dχ) ds
<∞ (48)

where the right-hand side is interpreted as zero if the denominator is equal to infinity. In the supercritical
case, i.e., if (43) fails to be true, let α >0 be such that

∫ ∞

0

�

e−αs

∫

a
�

χs
�

Q(dχ)
�

ds = 1. (49)

Additionally assume that f Q is continuous a.e. with respect to the Lebesgue measure,

∞
∑

k=0

sup
k≤t<k+1

|e−αt f Q(t)|<∞ (50)

and that e−αt f ν(t)→ 0 as t →∞. Then the order of convergence of the expected total intensity up to
time t can be read off from

lim
t→∞

e−αt

∫

E
h

∫ t

0

Vφ,χ ,Q
s ds
i

ν(dχ) =
1

α
lim
t→∞

e−αt

∫

E
�

Vφ,χ ,Q
t

�

ν(dχ) (51)
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and from

lim
t→∞

e−αt

∫

E
�

Vφ,χ ,Q
t

�

ν(dχ) =

∫∞
0

e−αs f Q(s) ds ·
∫∞

0
e−αs
∫

a
�

χs
�

ν(dχ) ds
∫∞

0
se−αs
∫

a
�

χs
�

Q(dχ) ds
. (52)

For the formulation of the analog of the Kesten-Stigum Theorem, denote by

m̄ :=

∫∞
0

e−αs f Q(s) ds
∫∞

0
se−αs
∫

a
�

χs
�

Q(dχ) ds
∈ (0,∞) (53)

the right-hand side of (52) with ν replaced by Q. Furthermore, define

Aα(χ) :=

∫ ∞

0

a
�

χs
�

e−αs ds (54)

for every path χ ∈ D. For our proof of Theorem 7, we additionally assume the following properties

of Q.

Assumption A4.4. The measure Q satisfies

∫

�

∫ T

0

a(χs) ds
�

2

Q(dχ)<∞ (55)

for every T <∞ and

sup
t≥0

∫
�

Eφχ(t)

∫ t

0

a
�

χs
�

ds

�

Q(dχ)<∞, sup
t≥0

∫

E
�

φ2
χ(t)
�

Q(dχ)<∞. (56)

Theorem 7. Let ν be a probability measure on D and let Q be a measure on D. Assume A4.1, A4.2,
A4.3 and A4.4. Suppose that ā > 1 (supercritical case) and let α > 0 be the unique solution of (49).
Then

Vφ,ν ,Q
t

eαt m̄
w−→W as t →∞ (57)

in the weak topology where W is a nonnegative random variable. The variable W is not identically zero
if and only if

∫

Aα(χ) log+
�

Aα(χ)
�

Q(dχ)<∞ (58)

where log+(x) :=max{0, log(x)}. If (58) holds, then

EW =

∫

h

∫ ∞

0

e−αsa
�

χs
�

ds
i

ν(dχ),P
�

W = 0
�

=

∫

h

e−q
∫∞

0
a(χs) ds
i

ν(dχ) (59)

where q > 0 is the unique strictly positive fixed-point of (45).

Remark 4.2. Comparing (59) with (44), we see that P(W > 0) = P(Vφ,ν ,Q
∞ > 0). Consequently, the

Virgin Island process
�

Vφ,ν ,Q
t

�

t≥0 conditioned on not converging to zero grows exponentially fast with
rate α as t →∞.
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5 Branching structure

We mentioned in the introduction that there is an inherent branching structure in the Virgin Island

Model. One offspring island together with all its offspring islands is again a Virgin Island Model

but with a typical excursion instead of Y on the 0-th island. In Lemma 5.1, we formalize this idea.

As a corollary thereof, we obtain an integral equation for the modified Laplace transform of the

Virgin Island Model in Lemma 5.3 which is the key equation for our proof of the extinction result of

Theorem 2. Recall the notation of Section 1 and of Section 4.

Lemma 5.1. Let χ ∈ D. There exists an independent family
n�

(s,ψ)V
φ,χ ,Q
t

�

t≥0
: (s,ψ) ∈ [0,∞)×D

o

(60)

of random variables which is independent of φχ and of Πχ such that

Vφ,χ ,Q
t = φχ(t) +

∑

(s,ψ)∈Πχ

(s,ψ)V
φ,χ ,Q
t ∀ t ≥ 0 (61)

and such that
�

(s,ψ)V
φ,χ ,Q
t

�

t≥0

d
=
�

Vφ,ψ,Q
t−s

�

t≥0
(62)

for all (s,ψ) ∈ [0,∞)×D.

Proof. Write V χ := V χ ,Q and V (n),χ := V (n),χ ,Q. Define

(s,ψ)V (1),χ :=
n

�

(;, 0,χ), s,ψ
�

o

⊂ I χ1 and (s,ψ)V χ :=
⋃

n≥1

(s,ψ)V (n),χ (63)

for (s,ψ) ∈ [0,∞)×D where

(s,ψ)V (n+1),χ :=
n

�

ιn, r,ζ
�

∈ I χn+1 : ιn ∈ (s,ψ)V (n),χ ,Πιn(r,ζ)> 0
o

(64)

for n≥ 1. Comparing (63) and (64) with (11), we see that

V (0),χ =
�

(;, 0,χ)
	

and V (n),χ =
⋃

(s,ψ)∈Πχ

(s,ψ)V (n),χ ∀ n≥ 1. (65)

Define V (0),φ,χ ,Q
t = φχ(t) for t ≥ 0 and for n≥ 1

V (n),φ,χ ,Q
t :=
∑

(s,ψ)∈Πχ

∑

ι∈ (s,ψ)V (n),χ
φι(t −σι) =:

∑

(s,ψ)∈Πχ

(s,ψ)V
(n),φ,χ ,Q
t .

(66)

Summing over n≥ 0 we obtain for t ≥ 0

Vφ,χ ,Q
t = φχ(t) +

∑

(s,ψ)∈Πχ

∑

n≥1

(s,ψ)V
(n),φ,χ ,Q
t =: φχ(t) +

∑

(s,ψ)∈Πχ

(s,ψ)V
φ,χ ,Q
t . (67)
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This is equality (61). Independence of the family (60) follows from independence of (Πι)ι∈I χ and

from independence of (φι)ι∈I χ . It remains to prove (62). Because of assumption (38) the random

characteristics φι only depends on the last part of ι. Therefore

(s,ψ)V(n),φ,χ ,Q
· =
∑

ι∈ (s,ψ)V (n),χ
φι
�

· −σι
�

d
=
∑

ι̃∈V (n−1),ψ,Q

φι̃(· − (σι̃ + s)) = V (n−1),ψ,Q
·−s .

(68)

Summing over n≥ 1 results in (62) and finishes the proof.

In order to increase readability, we introduce the following suggestive symbolic abbreviation

I
h

f
�

Vφ,ν ,Q
t

�

i

:=

∫

E f
�

Vφ,χ ,Q
t

�

ν(dχ) t ≥ 0, f ∈ C
�

[0,∞), [0,∞)
�

. (69)

One might want to read this as “expectation” with respect to a non-probability measure. However,

(69) is not intended to define an operator.

The following lemma proves that the Virgin Island Model counted with random characteristics as

defined in (39) is finite.

Lemma 5.2. Assume A4.1. Then, for every T <∞,

sup
t≤T

I
h

Vφ,ν ,Q
t

i

<∞. (70)

Furthermore, if

sup
t≤T

∫

E
�

φ2
χ(t)
�

+
�

∫ T

0

a(χs) ds
�

2

Q(dχ)<∞, (71)

then there exists a constant cT <∞ such that

sup
t≤T

I

�

�

Vφ,ν ,Q
t

�2
�

≤ cT

�

1+ sup
t≤T

∫

E
�

φ2
χ(t)
�

(ν +Q)(dχ) +

∫

�

∫ T

0

a(χs)ds
�

2

ν(dχ)
�

(72)

for all ν and the right-hand side of (72) is finite in the special case ν =Q.

Proof. We exploit the branching property formalized in Lemma 5.1 and apply Gronwall’s inequality.

Recall V(n),χ ,Q from the proof of Lemma 5.1. The two equalities (66) and (68) imply

I
h

V (0),φ,ν ,Q
t

i

=

∫

Eφχ(t)ν(dχ)≤ sup
s≤T

∫

Eφχ(s)ν(dχ) (73)
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for t ≤ T and for n≥ 1

I
h

V (n),φ,ν ,Q
t

i

=

∫

E
h ∑

(s,ψ)∈Πχ
E
�

V (n−1),φ,ψ,Q
t−s

�

i

ν(dχ)

=

∫
�
∫ t

0

∫

E
�

V (n−1),φ,ψ,Q
t−s

�

Q(dψ)a(χs)ds

�

ν(dχ)

≤ sup
u≤T

∫

a(χu)ν(dχ)

∫ t

0

I
h

V (n−1),φ,Q,Q
s

i

ds.

(74)

Using Assumption A4.1 induction on n ≥ 0 shows that all expressions in (73) and in (74) are finite

in the case ν =Q. Summing (74) over n≤ n0 we obtain

n0
∑

n=0

I
h

V (n),φ,ν ,Q
t

i

≤
∫

Eφχ(u)ν(dχ) +

∫ t

0

n0
∑

n=0

I
h

V (n),φ,Q,Q
s

i

∫

a(χt−s)ν(dχ) ds (75)

for t ≤ T . In the special case ν =Q Gronwall’s inequality implies

n0
∑

n=0

I
h

V (n),φ,Q,Q
t

i

≤ sup
u≤T

∫

Eφχ(u)Q(dχ)·exp
�

t sup
u≤T

∫

a(χu)Q(dχ)
�

. (76)

Summing (74) over n ≤ n0, inserting (76) into (74) and letting n0 → ∞ we see that (70) follows

from Assumption A4.1.

For the proof of (72), note that (75) with ν = δχ and (70) imply

∫

�

EVφ,χ ,Q
t

�2

Q(dχ)≤
∫

2
�

Eφχ(t)
�2

+ c̃T

�

∫ T

0

a(χs)ds
�2

Q(dχ)<∞ (77)

for some c̃T <∞. In addition the two equalities (66) and (68) together with independence imply

∫

Var
�

V (0),φ,χ ,Q
t

�

ν(dχ) =

∫

Var
�

φχ(t)
�

ν(dχ) (78)

for t ≥ 0 and for n≥ 1

∫

Var
�

V (n),φ,χ ,Q
t

�

ν(dχ)

=

∫

E

�

∑

(s,ψ)∈Πχ
Var
�

V (n−1),φ,ψ,Q
t−s

�

�

ν(dχ)

=

∫ ∫ t

0

�

a(χs)

∫

Var
�

V (n−1),φ,ψ,Q
t−s

�

Q(dψ)
�

ds ν(dχ)

≤
∫ t

0

∫

Var
�

V (n−1),φ,ψ,Q
s

�

Q(dψ)ds· sup
u≤T

∫

a(χu)ν(dχ).

(79)
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In the special case ν = Q induction on n ≥ 0 together with (71) shows that all involved expressions

are finite. A similar estimate as in (79) leads to
∫

E
h�

n0
∑

n=0

V (n),φ,χ ,Q
t

�2i

ν(dχ)−
∫

�

E

n0
∑

n=0

V (n),φ,χ ,Q
t

�2

ν(dχ)

=

∫

Var
�

φχ(t)
�

+ E

�

∑

(s,ψ)∈Πχ
Var
�

n0
∑

n=1

V (n−1),φ,ψ,Q
t−s

�

�

ν(dχ)

=

∫

Var
�

φχ(t)
�

+

∫ t

0

�

a(χs)

∫

Var
�

n0−1
∑

n=0

V (n),φ,ψ,Q
t−s

�

Q(dψ)
�

ds ν(dχ)

≤
∫

E
�

φ2
χ(t)
�

ν(dχ) +

∫ t

0

∫

E
h�

n0
∑

n=0

V (n),φ,ψ,Q
s

�2i

Q(dψ)ds· sup
u≤T

∫

a(χu)ν(dχ).

In the special case ν =Q Gronwall’s inequality together with (77) leads to
∫

E
h�

n0
∑

n=0

V (n),φ,χ ,Q
t

�2i

Q(dχ)

≤
�
∫

3E
�

φ2
χ(t)
�

+ c̃T

�

∫ T

0

a(χs) ds
�2

Q(dχ)

�

exp
�

sup
u≤T

∫

a(χu)Q(dχ)T
�

(80)

which is finite by Assumption A4.1 and assumption (71). Inserting (80) into (79) and letting n0→
∞ finishes the proof.

In the following lemma, we establish an integral equation for the modified Laplace transform of the

Virgin Island Model. Recall the definition of Vφ,ν ,Q
t from (39).

Lemma 5.3. Assume A4.1. The modified Laplace transform I
�

1− e−λVφ,ν ,Q
t
�

of the Virgin Island Model
counted with random characteristics φ satisfies

I
h

1− e−λVφ,ν ,Q
t

i

=

∫

E
h

1− exp
�

−λφχ(t)−
∫ ∞

0

I
�

1− e−λVφ,Q,Q
t−s
�

a(χs) ds
�i

ν(dχ)
(81)

for all λ, t ≥ 0.

Proof. Fix λ, t ≥ 0. Applying Lemma 5.1,

I
h

1− e−λVφ,ν ,Q
t

i

=

∫

h

1− E
�

e−λφχ (t)
�

·E
� ∏

(s,ψ)∈Πχ
Ee−λVφ,ψ,Q

t−s

�i

ν(dχ)

=

∫

h

1− E
�

e−λφχ (t)
�

·exp
�

−
∫ ∞

0

∫

1− Ee−λVφ,ψ,Q
t−s Q(dψ)a(χs) ds

�i

ν(dχ)

=

∫

E
h

1− exp
�

−λφχ(t)−
∫ ∞

0

I
�

1− e−λVφ,Q,Q
t−s
�

a(χs) ds
�i

ν(dχ).

This proves the assertion.
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6 Proof of Theorem 6

Recall the definition of (Vφ,ν ,Q
t )t≥0 from (39), f ν from (46) and the notation I from (69). We begin

with the supercritical case and let α > 0 be the Malthusian parameter which is the unique solution

of (49). Define

mν(t) := I
h

Vφ,ν ,Q
t

i

µν(ds) :=

∫

a
�

χs
�

ν(dχ) ds (82)

for t ≥ 0. In this notation, equation (74) with ν replaced by Q reads as

e−αt mQ(t) = e−αt f Q(t) +

∫ t

0

e−α(t−s)mQ(t − s)e−αsµQ(ds). (83)

This is a renewal equation for e−αt mQ(t). By definition of α, e−αsµQ(ds) is a probability measure.

From Lemma 5.2 we know that mQ is bounded on finite intervals. By assumption, f Q is continuous

Lebesgue-a.e. and satisfies (50). Hence, we may apply standard renewal theory (e.g. Theorem 5.2.6

of [10]) and obtain

lim
t→∞

e−αt mQ(t) =

∫∞
0

e−αs f Q(s) ds
∫∞

0
se−αsµQ(ds)

<∞. (84)

Multiply equation (74) by e−αt , recall e−αt f ν(t) → 0 as t → ∞ and apply the dominated conver-

gence theorem together with A4.2 to obtain

lim
t→∞

e−αt mν(t) =

∫ ∞

0

e−αs lim
t→∞

e−α(t−s)mQ(t − s)µν(ds). (85)

Insert (84) to obtain equation (52). An immediate consequence of the existence of the limit on the

left-hand side of (85) is equation (51)

e−αt

∫ t

0

mν(s) ds =

∫ ∞

0

e−αs·e−α(t−s)mν(t − s) ds
t→∞−−→

1

α
· lim
t→∞

e−αt mν(t) (86)

where we used the dominated convergence theorem.

Next we consider the subcritical and the critical case. Define

x̄ν(t) :=

∫ t

0

I
h

Vφ,ν ,Q
s

i

ds, t ≥ 0. (87)

In this notation, equation (74) integrated over [0, t] reads as

x̄ν(t) =

∫ t

0

f ν(s) ds+

∫ t

0

x̄Q(t − u)µν(du), t ≥ 0. (88)

In the subcritical case, f Q and f ν are integrable. Theorem 5.2.9 in [10] applied to (88) with ν

replaced by Q implies

lim
t→∞

x̄Q(t) =

∫∞
0

f Q(s)ds

1−µQ
�

[0,∞)
� . (89)
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Letting t →∞ in (88), dominated convergence and µν
�

[0,∞)
�

<∞ imply

lim
t→∞

x̄ν(t) =

∫ ∞

0

f ν(s)ds+

∫ ∞

0

lim
t→∞

x̄Q(t − u)µν(du). (90)

Inserting (89) results in (47). In the critical case, similar arguments lead to

lim
t→∞

1

t
x̄ν(t)

= lim
t→∞

1

t

∫ t

0

f ν(s)ds+

∫ ∞

0

lim
t→∞

t − u

t
lim
t→∞

1

t − u
x̄Q(t − u)µν(du)

=

∫∞
0

f Q(s) ds
∫∞

0
uµQ(du)

µν
�

[0,∞)
�

.

(91)

The last equality follows from (88) with ν replaced by Q and Corollary 5.2.14 of [10] with c :=
∫∞

0
f Q(s) ds, n := 0 and θ :=

∫∞
0

uµQ(du). Note that the assumption θ <∞ of this corollary is not

necessary for this conclusion.

7 Extinction and survival in the Virgin Island Model. Proof of Theo-

rem 5

Recall the definition of (Vφ,ν ,Q
t )t≥0 from (39) and the notation I from (69). As we pointed out in

Section 2, the expected total emigration intensity of the Virgin Island Model plays an important

role. The following lemma provides us with some properties of the modified Laplace transform of

the total emigration intensity. These properties are crucial for our proof of Theorem 5.

Lemma 7.1. Assume A4.2. Then the function

k(z) :=

∫

1− exp
�

−z

∫ ∞

0

a
�

χs
�

ds
�

Q(dχ), z ≥ 0, (92)

is concave with at most two fixed-points. Zero is the only fixed-point if and only if

k
′
(0) =

∫ ∫ ∞

0

a
�

χs
�

ds Q(dχ)≤ 1. (93)

Denote by q the maximal fixed-point. Then we have for all z ≥ 0:

z ≤ k(z) =⇒ z ≤ q (94)

z ≥ k(z)∧ z > 0 =⇒ z ≥ q. (95)

Proof. If
∫∞

0
a
�

χs
�

ds = 0 for Q-a.a. χ , then k ≡ 0 and zero is the only fixed-point. For the rest of

the proof, we assume w.l.o.g. that
∫
�
∫∞

0
a(χs) ds
�

Q(dχ)> 0.
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The function k has finite values because of 1− e−c ≤ c, c ≥ 0, and Assumption A4.2. Concavity of k
is inherited from the concavity of x 7→ 1− e−xc, c ≥ 0. Using dominated convergence together with

Assumption A4.2, we see that

k(z)

z
=

∫

1− exp
�

−z
∫∞

0
a(χs) ds
�

z
Q(dχ)

z→∞−−→ 0. (96)

In addition, dominated convergence together with Assumption A4.2 implies

k
′
(z) =

∫

h

∫ ∞

0

a
�

χs
�

ds exp
�

−z

∫ ∞

0

a
�

χs
�

ds
�i

Q(dχ) z ≥ 0. (97)

Hence, k is strictly concave. Thus, k has a fixed-point which is not zero if and only if k
′
(0)> 1. The

implications (94) and (95) follow from the strict concavity of k.

The method of proof (cf. Section 6.5 in [10]) of the extinction result for a Crump-Mode-Jagers

process (Jt)t≥0 is to study an equation for (Ee−λJt )t≥0,λ≥0. The Laplace transform (Ee−λJt )λ≥0

converges monotonically to P(Jt = 0) as λ→∞, t ≥ 0. Furthermore, P(Jt = 0) = P(∃s ≤ t : Js = 0)

converges monotonically to the extinction probability P(∃s ≥ 0: Js = 0) as t →∞. Taking monotone

limits in the equation for (Ee−λJt )t≥0,λ≥0 results in an equation for the extinction probability. In our

situation, there is an equation for the modified Laplace transform (Lt(λ))t>0,λ>0 as defined in (98)

below. However, the monotone limit of Lt(λ) as λ→∞ might be infinite. Thus, it is not clear how

to transfer the above method of proof. The following proof of Theorem 2 directly establishes the

convergence of the modified Laplace transform.

Proof of Theorem 5. Recall q from Lemma 7.1. In the first step, we will prove

Lt := Lt(λ) := I
�

1− e−λVφ,Q,Q
t
�

→ q (as t →∞) (98)

for all λ > 0. Set Lt(0) := 0. It follows from Lemma 5.2 that (Lt)t≤T is bounded for every finite T .

Lemma 5.3 with ν replaced by Q provides us with the fundamental equation

Lt =

∫

E
h

1− exp
�

−λφχ(t)−
∫ ∞

0

a
�

χs
�

Lt−s ds
�i

Q(dχ) ∀ t ≥ 0. (99)

Based on (99), the idea for the proof of (98) is as follows. The term λφχ(t) vanishes as t →∞. If

Lt converges to some limit, then the limit has to be a fixed-point of the function

k(z) =

∫

h

1− exp
�

−z

∫ ∞

0

a
�

χs
�

ds
�i

Q(dχ). (100)

By Lemma 7.1, this function is (typically strictly) concave. Therefore, it has exactly one attracting

fixed-point. Furthermore, this fact forces Lt to converge as t →∞.
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We will need finiteness of L∞ := lim supt→∞ Lt . Looking for a contradiction, we assume L∞ =∞.

Then there exists a sequence (tn)n∈N with tn→∞ such that Ltn
≤ supt≤tn

Lt ≤ Ltn
+1. We estimate

Ltn
≤
∫

h

1− Eexp
�

−λφχ(tn)−
∫ ∞

0

a
�

χs
�

sup
r≤tn

Lr ds
�i

Q(dχ)

≤ k(Ltn
+ 1) +

∫

exp
�

−
∫ ∞

0

a
�

χs
�

Ltn
ds
��

1− Ee−λφχ (tn)
�

Q(dχ)

≤ k(Ltn
+ 1) +

∫

�

1− Ee−λφχ (tn)
�

Q(dχ).

(101)

The last summand converges to zero by Assumption A4.3 and is therefore bounded by some constant

c. Inequality (101) leads to the contradiction

1≤ lim
n→∞

k(Ltn
+ 1)

Ltn

+ lim
n→∞

c

Ltn

= 0. (102)

The last equation is a consequence of (96) and the assumption L∞ = ∞. Next we prove L∞ ≤ q
using boundedness of (Lt)t≥0. Let (tn)n∈N be a sequence such that limn→∞ Ltn

= L∞ <∞. Then a

calculation as in (101) results in

lim
n→∞

Ltn
≤ lim sup

n→∞

∫

h

1− exp
�

−
∫ ∞

0

a
�

χs
�

sup
t≥tn

Lt−s ds
�i

Q(dχ)

+ lim sup
n→∞

∫

�

1− Ee−λφχ (tn)
�

Q(dχ).

(103)

The last summand is equal to zero by Assumption A4.3. The first summand on the right-hand side

of (103) is dominated by
�

sup
t>0

Lt

�

∫

�

∫ ∞

0

a
�

χs
�

ds
�

Q(dχ)<∞ (104)

which is finite by boundedness of (Lt)t≥0 and by Assumption A4.2. Applying dominated conver-

gence, we conclude that L∞ is bounded by

L∞ ≤
∫

h

1− exp
�

−
∫ ∞

0

a
�

χs
�

lim sup
t→∞

Lt−s ds
�i

Q(dχ) = k
�

L∞
�

. (105)

Thus, Lemma 7.1 implies lim supt→∞ Lt ≤ q.

Assume q > 0 and suppose that m := lim inft→∞ Lt = 0. Let (tn)n∈N be such that 0 < Ltn
≥

inf1≤t≤tn
Lt ≥ cLtn

→ 0 as n→∞ and tn+1≤ tn+1→∞. By Lemma 7.1, there is an n0 and a c < 1

such that c
∫ ∫ tn0

0
a
�

χs
�

dsQ(dχ)> 1. We estimate

Ltn
≥
∫

h

1− exp
�

−
∫ tn−1

0

a
�

χs
�

inf
1≤t≤tn

Lt ds
�i

Q(dχ)

≥
∫

h

1− exp
�

−c

∫ tn0

0

a
�

χs
�

Ltn
ds
�i

Q(dχ) ∀ n> n0.

(106)
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Using dominated convergence, the assumption m= 0 results in the contradiction

1≥ lim
n→∞

1

Ltn

∫

h

1− exp
�

−cLtn

∫ tn0

0

a
�

χs
�

ds
�i

Q(dχ)

= c

∫

�

∫ tn0

0

a
�

χs
�

ds
�

Q(dχ)> 1.

(107)

In order to prove m≥ q, let (tn)n∈N be such that limn→∞ Ltn
= m> 0. An estimate as above together

with dominated convergence yields

m= lim
n→∞

Ltn
≥ lim

n→∞

∫

h

1− exp
�

−
∫ tn

0

a
�

χs
�

inf
t≥tn

Lt−s ds
�i

Q(dχ)

=

∫

h

1− exp
�

−
∫ ∞

0

a
�

χs
�

lim inf
t→∞

Lt ds
�i

Q(dχ) = k(m).

(108)

Therefore, Lemma 7.1 implies lim inft→∞ Lt = m≥ q, which yields (98).

Finally, we finish the proof of Theorem 5. Applying Lemma 5.3, we see that

�

�

�I
h

1− e−λVφ,ν ,Q
t

i

−
∫

h

1− exp
�

−q

∫ ∞

0

a(χs) ds
�i

ν(dχ)
�

�

�

≤
∫

exp
�

−
∫ ∞

0

Lt−sa(χs) ds
�

E
h

1− e−λφχ (t)
i

ν(dχ)

+

�

�

�

�

�

∫

h

1− exp
�

−
∫ ∞

0

Lt−sa(χs) ds
�i

ν(dχ)

−
∫

h

1− exp
�

−q

∫ ∞

0

a(χs) ds
�i

ν(dχ)

�

�

�

�

�

.

(109)

The first summand on the right-hand side of (109) converges to zero as t →∞ by Assumption A4.3.

By the first step (98), Lt → q as t → ∞. Hence, by the dominated convergence theorem and

Assumption A4.2, the left-hand side of (109) converges to zero as t → ∞. As ν is a probability

measure by assumption, we conclude

lim
t→∞

Ee−λVφ,ν ,Q
t =

∫

exp
�

−q

∫ ∞

0

a
�

χ
�

ds
�

ν(dχ) ∀ λ ≥ 0. (110)

This implies Theorem 5 as the Laplace transform is convergence determining, see e.g. Lemma 2.1

in [5].

8 The supercritical Virgin Island Model. Proof of Theorem 7

Our proof of Theorem 7 follows the proof of Doney (1972) [4] for supercritical Crump-Mode-Jagers

processes. Some changes are necessary because the recursive equation (99) differs from the re-

spective recursive equation in [4]. Parts of our proof are analogous to the proof in [4] which we
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nevertheless include here for the reason of completeness. Lemma 8.9 and Lemma 8.10 below con-

tain the essential part of the proof of Theorem 7. For these two lemmas, we will need auxiliary

lemmas which we now provide.

We assume throughout this section that a solution α ∈ R of equation (34) exists. Note that this is

implied by A4.2 and Q
�
∫∞

0
a(χs) ds > 0
�

> 0. Recall the definition of µQ from (82).

8.1 Preliminaries

For λ ≥ 0, define

Hα(ψ)(λ) :=

∫

h

1− exp
�

−
∫ ∞

0

a
�

χs
�

ψ(λe−αs) ds
�i

Q(dχ) (111)

for ψ ∈ D.

Lemma 8.1. The operator Hα is contracting in the sense that

�

�Hα(ψ1)(λ)− Hα(ψ2)(λ)
�

�≤
∫ ∞

0

�

�ψ1(λe−αs)−ψ2(λe−αs)
�

�µQ(ds) (112)

for all ψ1,ψ2 ∈ D.

Proof. The lemma follows immediately from |e−x − e−y | ≤ |x − y | and from the definition (82) of

µQ.

Lemma 8.2. The operator Hα is nondecreasing in the sense that

Hα(ψ1)(λ)≤ Hα(ψ2)(λ) (113)

for all λ ≥ 0 if ψ1(λ)≤ψ2(λ) for all λ ≥ 0.

Proof. The lemma follows from 1− e−cx being increasing in x for every c > 0.

For every measurable function ψ : R× [0,∞)→ [0,∞), define

H̄α(ψ)(t,λ) :=

∫
�

f
�

∫ ∞

0

a
�

χs
�

ψ(t − s,λe−αs)ds
�

�

Q(dχ). (114)

for λ ≥ 0 and t ∈ R where f (x) := x − 1+ e−x ≥ 0, x ≥ 0. If ψ̃ : [0,∞)→ [0,∞) is a function of

one variable, then we set H̄α(ψ̃)(λ) := H̄α(ψ)(1,λ) where ψ(t,λ) := ψ̃(λ) for λ ≥ 0, t ∈R.

Lemma 8.3. The operator H̄α is nondecreasing in the sense that

H̄α(ψ1)(t,λ)≤ H̄α(ψ2)(t,λ) (115)

for all λ ≥ 0 and t ∈R if ψ1(t,λ)≤ψ2(t,λ) for all λ ≥ 0, t ∈R.

Proof. The assertion follows from the basic fact that f is nondecreasing.
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Lemma 8.4. Assume A4.2. Let id : λ 7→ λ be the identity map. The function

η(λ) := 1−
1

λ
Hα(id)(λ) =

1

λ
H̄α(id)(λ), λ > 0, (116)

is nonnegative and nondecreasing. Furthermore, η(0+) = 0.

Proof. Recall the definition of Aα(χ) from (54). By equation (114), we have λη(λ) =
∫

f (λAα) dQ.

Thus, η is nonnegative. Furthermore, η(0+) = 0 follows from the dominated convergence theorem

and Assumption A4.2. Let x , y > 0. Then

η(x + y)−η(x) =
∫

xAα f
�

(x + y)Aα
�

− (x + y)Aα f
�

xAα
�

x(x + y)Aα
dQ ≥ 0. (117)

The inequality follows from x̃ f ( x̃ + ỹ)− ( x̃ + ỹ) f ( x̃)≥ 0 for all x̃ , ỹ ≥ 0.

The following lemma, due to Athreya [1], translates the (x log x)-condition (58) into an integrability

condition on η . For completeness, we include its proof.

Lemma 8.5. Assume A4.2. Let η be the function defined in (116). Then
∫

0+

1

λ
η(λ) dλ <∞ and

∞
∑

n=1

η(crn)<∞ (118)

for some and then all c > 0, r < 1 if and only if the (x log x)-condition (58) holds.

Proof. By monotonicity of η (see Lemma 8.4), the two quantities in (118) are finite or infinite at the

same time. Fix c > 0. Using Fubini’s theorem and the substitution v := λAα, we obtain

∫ c

0

1

λ
η(λ) dλ=

∫
�
∫ c

0

hλAα − 1+ e−λAα

(λAα)
2

i

�

Aα
�2 dλ

�

dQ

=

∫
�

Aα

∫ cAα

0

v − 1+ e−v

v2
dv

�

dQ.

(119)

It is a basic fact that
∫ T

0

1

v2 (v − 1+ e−v)dv ∼ log T as T →∞.

8.2 The limiting equation

In the following two lemmas, we consider uniqueness and existence of a function Ψ which satisfies:

(a)
�

�Ψ(λ1)−Ψ(λ2)
�

�≤ |λ1−λ2| for λ1,λ2 ≥ 0, Ψ(0) = 0

(b) Ψ(λ) = Hα(Ψ)(λ)

(c)
Ψ(λ)

λ
→ 1 as λ→ 0

(d) 0≤Ψ(λ1)≤Ψ(λ2)≤ λ2 ∀ 0≤ λ1 ≤ λ2 and lim
λ→∞

Ψ(λ) = q

(120)

where q ≥ 0 is as in Lemma 7.1. Notice that the zero function does not satisfy (120)(c). First, we

prove uniqueness.
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Lemma 8.6. Assume A4.2 and α > 0. If Ψ1 and Ψ2 satisfy (120), then Ψ1 = Ψ2.

Proof. Notice that Ψ1(0) = Ψ2(0). Define Λ(λ) := 1

λ
|Ψ1(λ)−Ψ2(λ)| for λ > 0 and note that

Λ(0+) = 0 by (120)(c). From Lemma 8.1, we obtain for λ > 0

Λ(λ)≤
1

λ

∫ ∞

0

�

�Ψ1(λe−αs)−Ψ2(λe−αs)
�

�µQ(ds) =

∫ ∞

0

Λ(λe−αs)µQ
α(ds) (121)

where µQ
α(ds) := e−αsµQ(ds) is a probability measure because α solves equation (49). Let Ri , i ≥ 1,

be independent variables with distribution µQ
α and note that ER1 <∞. We may assume that ER1 > 0

because µQ�[0,∞)
�

= 0 implies Ψi = Hα(Ψi) = 0 for i = 1,2. Iterating inequality (121), we arrive

at

Λ(λ)≤ EΛ
�

λe−αR1
�

≤ EΛ
�

λe−α(R1+...+Rn)
�

−→ Λ(0+) = 0 as n→∞. (122)

The convergence in (122) follows from the weak law of large numbers.

Lemma 8.7. Assume A4.2 and α > 0. There exists a solution Ψ of (120) if and only if the (x log x)-
condition (58) holds.

Proof. Assume that (58) holds. DefineΨ0(λ) := λ,Ψn+1(λ) := Hα(Ψn)(λ) for λ ≥ 0 and Λn+1(λ) :=
1

λ

�

�Ψn+1(λ)−Ψn(λ)
�

� for λ > 0 and n≥ 0. Recall µQ
α and (Ri)i∈N from the proof of Lemma 8.6. Note

that ER1 > 0 because of α > 0. Arguments as in the proof of Lemma 8.6 imply

Λn+1(λ)≤ EΛn
�

λe−αR1
�

≤ EΛ1

�

λe−αSn
�

(123)

where Sn := R1+ . . .+ Rn for n≥ 0. Since η ≥ 0 by Lemma 8.4 and

Ψ0(λ)−Ψ1(λ) = λ− Hα(id)(λ) = λη(λ), (124)

we see that η = Λ1. In addition, we conclude from η ≥ 0 that Ψ1(λ) ≤ Ψ0(λ) = λ. By Lemma 8.2,

this implies inductively Ψn(λ) ≤ λ for n ≥ 0, λ ≥ 0. Let Λ(λ) :=
∑

n≥1Λn(λ). We need to prove

that Λ(λ)<∞. Clearly 0< Ee−R1 < 1, so we can choose ǫ > 0 with eǫEe−R1 < 1. Then

∞
∑

n=0

P
�

Sn ≤ nǫ
�

≤
∞
∑

n=0

enǫEe−Sn =

∞
∑

n=0

�

eǫEe−R1

�n
<∞. (125)

Define η̄(λ) := sup0<u≤λη(u). It follows from (123), (125), Lemma 8.4 and Lemma 8.5 that for all

λ > 0

Λ(λ)≤
∞
∑

n=0

Eη
�

λe−αSn
�

≤ η̄(λ)
∞
∑

n=0

P(Sn ≤ nǫ) +
∞
∑

n=0

η(λe−nαǫ)<∞. (126)

Thus, (Ψn(λ))n≥0 is a Cauchy sequence in [0,λ]. Hence, we conclude the existence of a function

Ψ such that Ψ(λ) = lim
n→∞
Ψn(λ) for every λ ≥ 0. By the dominated convergence theorem, Ψ satis-

fies (120)(b). To check (120)(a), we prove that Ψn is Lipschitz continuous with constant one. The

induction step follows from Lemma 8.1

�

�Ψn+1(λ1)−Ψn+1(λ2)
�

�≤
∫ ∞

0

�

�Ψn(λ1e−αs)−Ψn(λ2e−αs)
�

�µQ(ds)

≤
�

�λ1−λ2

�

�

∫ ∞

0

e−αsµQ(ds) =
�

�λ1−λ2

�

�.

(127)
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In order to check (120)(c), note that since η(0+) = 0, it follows from (126) that Λ(0+) = 0. Thus,

�

�

Ψ(λ)

λ
− 1
�

�≤ lim sup
n→∞

1

λ

�

�Ψn(λ)−λ
�

�≤ Λ(λ)−→ 0 as λ→ 0, (128)

as required. Finally, monotonicity of Ψn and Ψn(λ) ≤ λ for all n ∈ N imply monotonicity of Ψ and

Ψ(λ) ≤ λ, respectively. The last claim of (120)(d), namely Ψ(∞) = q, follows from letting λ→∞
in Ψ(λ) = Hα(Ψ)(λ), monotonicity of Ψ and from Lemma 7.1 together with Ψ(∞)> 0.

For the “only if”-part of the lemma, suppose that there exists a solution Ψ of (120). Write g̃(λ) :=
Ψ(λ)

λ
for λ > 0. Since g̃ ≥ 0 and g̃(0+) = 1, there exist constants c1, c2, c3 > 0 such that c2 ≤ g̃(λ)≤

c3 for all λ ∈ (0, c1]. Using (120)(b), Ψ(λ) ≥ λc2 for λ ∈ (0, c1] and Lemma 8.3, we obtain for

λ ∈ (0, c1]

g̃(λ) =
Hα(Ψ)(λ)

λ
=

1

λ

∫ ∞

0

Ψ(λe−αs)µQ(ds)−
1

λ
H̄α(Ψ)(λ)

≤
∫ ∞

0

g̃
�

λe−αs�µQ
α(ds)−

1

λ
H̄α(c2·)(λ) = E g̃

�

λe−αR1
�

− c2η(c2λ).

(129)

Let t0 be such that 0< c4 := µQ
α

�

[0, t0]
�

< 1 and write g̃∗(λ) := supu≤λ g̃(u). Then

g̃∗(λ)≤ c4 g̃∗(λ) + (1− c4) g̃
∗�λe−αt0
�

− c2η(c2λ) (130)

which we rewrite as g̃∗(λ) ≤ g̃∗(τλ) − c5η(c2λ) where τ := e−αt0 and c5 :=
c2

1−c4
. Iterating this

inequality results in g̃∗(λ) ≤ g̃∗(λτn+1) − c5

∑n
k=0η(c2λτ

k) for n ≥ 0. Since g̃∗ is bounded on

(0, c1] this implies that
∑∞

k=0η(c2λτ
k) < ∞. Therefore, by Lemma 8.5, the (x log x)-condition

holds.

8.3 Convergence

Recall m̄, I, mQ and Lt from (53), (69), (82) and (98), respectively. As before, let µQ
α(ds) :=

e−αsµQ(ds). Define

D(λ, t) :=
mQ(t)

eαt m̄
−

1

λ
Lt

� λ

eαt m̄

�

, (131)

DT (λ) := sups≤T |D(λ, s)| and D∞(λ) := limT→∞ DT (λ) for λ > 0 and t, T ≥ 0. The following two

lemmas follow Lemma 5.1 and Lemma 5.2, respectively, in [4].

Lemma 8.8. Assume A4.1, A4.2, A4.4 and α > 0. If the (x log x)-condition (58) holds, then D∞(λ)→
0 as λ→ 0.

Proof. Inserting the definitions (82) and (98) of mQ and Lt , respectively, into (131), we see that

D(λ, t) =
1

λ
I
h

f
�λVφ,Q,Q

t

eαt m̄

�i

≥ 0 λ, t > 0 (132)
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is nonnegative where f (x) := x − 1+ e−x , x ≥ 0. Insert the recursive equations (83) and (99) for

mQ and (Lt)t≥0, respectively, into (131) to obtain

D(λ, t) =

∫

Eφ(t,χ)

eαt m̄
Q(dχ) +

∫ t

0

mQ(t − s)

eα(t−s)m̄
µQ
α(ds)

−
1

λ

∫

h

1− Eexp
�

−λ
φχ(t)

eαt m̄
−
∫ t

0

a
�

χs
�

Lt−s
� λ

eαt m̄

�

ds
�i

Q(dχ)

=

∫ t

0

hmQ(t − s)

eα(t−s)m̄
−

1

λe−αs Lt−s

� λe−αs

eα(t−s)m̄

�i

µQ
α(ds)

+
1

λ

∫ t

0

Lt−s

� λe−αs

eα(t−s)m̄

�

µQ(ds)

−
1

λ

∫

h

1− exp
�

−
∫ t

0

a
�

χs
�

Lt−s
� λe−αs

eα(t−s)m̄

�

ds
�i

Q(dχ)

+

∫

E
h1− exp
�

−λφχ (t)
eαt m̄

�

λ

ih

1− exp
�

−
∫ t

0

a
�

χs
�

Lt−s
� λ

eαt m̄

�

ds
�i

Q(dχ)

+
1

λ

∫

E

�

λφ(t,χ)

eαt m̄
− 1+ exp
�

−
λφ(t,χ)

eαt m̄

�

�

Q(dχ)

=:

∫ t

0

D(λe−αs, t − s)µQ
α(ds) +

1

λ
H̄α
�

(t,λ) 7→ Lt
� λ

eαt m̄

�

�

+ T1+ T2

(133)

where T1 and T2 are suitably defined. Inequality (132) implies

Lt

� λ

eαt m̄

�

≤ λ
mQ(t)

eαt m̄
≤ λc1 t,λ ≥ 0 (134)

where c1 is a finite constant. The last inequality is a consequence of Theorem 6, equation (52), with

ν replaced by Q. Lemma 8.3 together with (134) implies

1

λ
H̄α
�

(t,λ) 7→ Lt
� λ

eαt m̄

�

�

≤
1

λ
H̄α
�

c1·id
�

= c1η(λc1). (135)

Using 1− e−x ≤ x , inequality (134) and x − 1+ e−x ≤ 1

2
x2, x ≥ 0, we see that the expressions T1

and T2 are bounded above by

T1 ≤
∫
�

Eφχ(t)

eαt m̄

∫ t

0

a
�

χs
�

λe−αsc1ds

�

Q(dχ)≤ c2λ

T2 ≤
λ

2

∫

E
�φχ(t)

eαt m̄

�

2

Q(dχ)≤ c3λ

(136)

for all λ, t > 0 where c2, c3 are finite constants which are independent of t > 0 and λ > 0. Such

constants exist by Assumption A4.4. Taking supremum over t ∈ [0, T] in (133) and inserting (135)

and (136) results in

DT (λ)≤
∫ T

0

DT (λe−αs)µQ
α(ds) + c1η(λc1) + c2λ+ c3λ ∀ λ > 0. (137)
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Choose t0 > 0 such that c4 := µQ
α([0, t0]) ∈ (0,1). Then, by monotonicity of DT ,

DT (λ)≤ c4DT (λ) + (1− c4)DT (λe−αt0) + c1η(λc1) + c2λ+ c3λ (138)

for all λ > 0. Hence, DT is bounded by

DT (λ)≤ DT (λe−αt0) + c5η(c1λ) + c6λ ∀ λ > 0 (139)

where c5 :=
c1

1−c4
and c6 :=

c2+c3

1−c4
. Iterate this inequality to obtain

DT (λ)≤ DT (λe−αt0n) +

n−1
∑

k=0

�

c5η(c1λe−αt0k) + c6λe−αt0k
�

n→∞−−−→ DT (0+)+

∞
∑

k=0

�

c5η(c1λe−αt0k) + c6λe−αt0k
�

.

(140)

Now we need to prove DT (0+) = 0. Looking at (132) and using f (x) ≤ x2/2, we see that DT (λ) is

bounded by λ

2m̄2 supt≤T I
��

Vφ,Q,Q
t

�2�
. This is finite because of inequality (72) with ν = Q together

with A4.4. Therefore DT (0+) = 0. Letting T →∞ in (140), we obtain

D∞(λ)≤ c5

∞
∑

k=0

η
�

λc1e−αt0k�+λc6

∞
∑

k=0

e−αt0k ∀ λ > 0. (141)

The right-hand side is finite by Lemma 8.5. By Lemma 8.4, we know that η(0+) = 0 and that η

is nondecreasing. Letting λ → 0 in (141) and using the dominated convergence theorem implies

D∞(λ)→ 0 as λ→ 0.

Lemma 8.9. Assume A4.1, A4.2, A4.3, A4.4 and α > 0 If the (x log x)-condition (58) holds, then

Lt

� λ

m̄eαt

�

→ Ψ(λ) as t →∞ (142)

for every λ ≥ 0 where Ψ is the unique solution of (120).

Proof. The case λ = 0 is trivial. For λ > 0, t ≥ 0, define

J(λ, t) :=
1

λ

�

Lt
� λ

m̄eαt

�

−Ψ(λ)
�

. (143)

Furthermore, let JT (λ) := supt≥T |J(λ, t)| and J∞(λ) := limT→∞ JT (λ) for λ > 0. We will prove

J∞(λ) = 0 for λ > 0. By Theorem 6 and (120)(c),

�

�J(λ, t) + D(λ, t)
�

�≤
�

�

mQ(t)

m̄eαt − 1
�

�+
�

�

Ψ(λ)

λ
− 1
�

�

t→∞−−→
�

�

Ψ(λ)

λ
− 1
�

�

λ→0−−→ 0. (144)
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Hence, J∞(0+) = 0 by Lemma 8.8. Using (99) and (120)(b), we estimate

�

�

�λJ(λ, 2t)−
∫

1− Eexp
�

− λ

m̄eα2tφχ(2t)−
∫ t

0

a
�

χs
�

L2t−s
� λ

m̄eα2t

�

ds
�

Q(dχ)

+

∫

1− exp
�

−
∫ t

0

a
�

χs
�

Ψ
�

λe−αs�ds
�

Q(dχ)
�

�

�

=

�

�

�

∫

Eexp
�

− λ

m̄eα2tφχ(2t)
�n

exp
�

−
∫ t

0

a
�

χs
�

L2t−s
� λ

m̄eα2t

�

ds
�

− exp
�

−
∫ 2t

0

a
�

χs
�

L2t−s
� λ

m̄eα2t

�

ds
�o

Q(dχ)

−
∫

exp
�

−
∫ t

0

a
�

χs
�

Ψ
�

λe−αs�ds
�

+ exp
�

−
∫ ∞

0

a
�

χs
�

Ψ
�

λe−αs�ds
�

Q(dχ)
�

�

�

≤
∫ ∫ ∞

t

a
�

χs
�

n

sup
u≥0

Lu
� λ

m̄

�

+Ψ
�

λe−αs�
o

ds Q(dχ)

≤ c

∫ ∫ ∞

t

a
�

χs
�

ds Q(dχ)

(145)

for a suitable constant c. The last inequality uses boundedness of (Lt)t≥0, see the proof of Theo-

rem 5, and of Ψ. By Assumption A4.2, the right-hand side of (145) converges to zero as t →∞. Fix

λ > 0 and let (tn)n≥1 be such that lim
n→∞
|J(λ, 2tn)|= J∞(λ). With this, we get

�

�

�

∫

1− Eexp
�

− λ

m̄eα2tn
φχ(2tn)−
∫ tn

0

a
�

χs
�

L2tn−s
� λ

m̄eα2tn

�

ds
�

Q(dχ)

−
∫

1− exp
�

−
∫ tn

0

a
�

χs
�

Ψ
�

λe−αs�ds
�

Q(dχ)
�

�

�

≤
∫

1− Eexp
�

− λ
m̄
φχ(2tn)
�

Q(dχ)

+

∫ ∫ tn

0

a
�

χs
�

�

�

�L2tn−s
� λe−αs

m̄eα(2tn−s)

�

−Ψ(λe−αs)

�

�

�ds Q(dχ)

≤
∫

1− Eexp
�

− λ
m̄
φχ(2tn)
�

Q(dχ) +λ

∫ tn

0

Jtn
(λe−αs)µQ

α(ds)

n→∞−−−→ λ
∫ ∞

0

J∞(λe−αs)µQ
α(ds).

(146)

The convergence in (146) follows from A4.3 and from the dominated convergence theorem together

with Assumption A4.2. Recall (Ri)i≥1 from the proof of Lemma 8.6. Putting (145) and (146)

together, we arrive at

J∞(λ) = lim
n→∞
|J(λ, 2tn)| ≤
∫ ∞

0

J∞
�

λe−αs�µQ
α(ds)

= EJ∞
�

λe−αR1
�

≤ . . .≤ EJ∞
�

λe−α(R1+...+Rm)
� m→∞−−−→ J∞(0+) = 0.

(147)
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This finishes the proof.

If the (x log x)-condition fails to hold, then the rescaled supercritical Virgin Island Model converges

to zero. The proof of this assertion follows Kaplan [12].

Lemma 8.10. Assume A4.1, A4.2, A4.3 and α > 0. If the (x log x)-condition (58) fails to hold, then

Lt

� λ

m̄eαt

�

−→ 0 as t →∞ (148)

for every λ ≥ 0

Proof. Define K(λ, t) := 1

λ
Lt(λe−αt) for λ > 0 and K(0, t) := I

�

Vφ,Q,Q
t

�

e−αt . It suffices to prove

K∞(λ) := lim
T→∞

KT (λ) := lim
T→∞

sup
t≥T

K(λ, t) = 0. (149)

Assume that K∞(λ0) =: δ > 0 for some λ0 > 0. We will prove that the (x log x)-condition (58)

holds. An elementary calculation shows that λ 7→ 1

λ
(1− e−λ) is decreasing. Thus, both K(λ, t) and

K∞(λ) are decreasing in λ. Furthermore, by Theorem 6,

δ ≤ K∞(λ)≤ sup
t≥0

K(λ, t)≤ sup
t≥0

EVφ,Q,Q
t

eαt =: C <∞ ∀ λ ≤ λ0. (150)

Fix t0 > 0, λ ≤ λ0 and let t ≥ 2t0. Inserting the recursive equation (99),

λK(λ, t) = Lt(λe−αt)

=

∫

h

1− Eexp
�

−
λ

eαtφχ(t)
�

exp
�

−
∫ t

0

a
�

χs
�

Lt−s(λe−αt)ds
�i

Q(dχ)

≤ sup
u≥t0

∫

�

1− Ee−λφχ (u)
�

Q(dχ)

+

∫

�

1− exp
�

−
∫ t−t0

0

a
�

χs
�

Lt−s(λe−αse−α(t−s))ds
��

Q(dχ)

+

∫

�

1− exp
�

−
∫ t

t−t0

a
�

χs
�

Lt−s(λe−αse−α(t−s))ds
��

Q(dχ)

=: T1+ T2+ T3.

(151)

By Assumption A4.3, the first term converges to zero uniformly in t ≥ 2t0 as t0→∞. For the third

term, we use inequality (150) to obtain

T3 =

∫

�

1− exp
�

−
∫ t

t−t0

a
�

χs
�

K(λe−αs, t − s)λe−αsds
�

�

Q(dχ)

≤
∫ ∫ ∞

t0

a
�

χs
�

Cλe−αs dsQ(dχ).

(152)
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The right-hand side converges to zero uniformly in t ≥ 2t0 as t0 → ∞ by Assumption A4.2. The

second term is bounded above by

T2 ≤
∫

�

1− exp
�

−
∫ ∞

0

a
�

χs
�

Kt0
(λe−αs)λe−αsds

�

�

Q(dχ). (153)

Recall (Ri)i≥1 from the proof of Lemma 8.6. Define S0 = 0 and Sn := R1 + . . .+ Rn, n ≥ 1. Taking

supremum over t ≥ 2t0 in (151) and letting t0→∞, we arrive at

K∞(λ)≤
1

λ

∫

�

1− exp
�

−
∫ ∞

0

a
�

χs
�

K∞(λe−αs)λe−αsds
�

�

Q(dχ)

=

∫ ∞

0

K∞
�

λe−αs�e−αsµQ(ds)−
1

λ
H̄α
�

λ̃ 7→ K∞(λ̃)λ̃
�

(λ)

≤ E
h

K∞
�

λe−αR1
�

i

−
1

λ
H̄α
�

λ̃ 7→ δλ̃
�

(λ) = E
h

K∞
�

λe−αR1
�

i

−δη(δλ)

≤ · · · ≤ E
h

K∞
�

λe−αSn
�

i

−δ
n−1
∑

k=0

Eη
�

δλe−αSk
�

(154)

for all n ≥ 0. The second inequality follows from δ ≤ K∞(λ̃) for λ̃ ≤ λ0 and Lemma 8.3. Bounded-

ness of K∞ on (0,λ0], see (150), implies

∞
∑

k=0

η
�

δλe−αSk
�

<∞ a.s.. (155)

By the law of large numbers, we know that Sk ≤ k(ER1+ ǫ) for large k a.s. Hence,

∞
∑

k=0

η
�

δλrk�<∞ (156)

where r = e−α(ER1+ǫ) ∈ (0,1). Therefore, the (x log x)-condition (58) holds by Lemma 8.5. This

finishes the proof.

Proof of Theorem 7. Assume that the (x log x)-condition (58) holds. Insert (142) into (81) and

use Assumption A4.3 to obtain

E

�

exp
�

−
λVφ,ν ,Q

t

m̄eαt

�

�

t→∞−−→
∫
�

exp
�

−
∫ ∞

0

Ψ(λe−αs)a(χs) ds
�

�

ν(dχ) (157)

for λ ≥ 0. For this, we applied the dominated convergence theorem together with Assumption A4.2.

Denote the right-hand side of (157) by Ψ̃(λ) and note that Ψ̃ is continuous and satisfies Ψ̃(0+) = 1.

A standard result, e.g. Lemma 2.1 in [5], provides us with the existence of a random variable W ≥ 0

such that Ee−λW = Ψ̃(λ) for all λ ≥ 0. This proves the weak convergence (37) as the Laplace

transform is convergence determining. Note that

P(W = 0) = Ψ̃(∞) =
∫
�

exp
�

−
∫ ∞

0

Ψ(∞)a(χs) ds
�

�

ν(dχ) (158)
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by the dominated convergence theorem. Furthermore,

EW = lim
λ→0

1− Ψ̃(λ)
λ

=

∫

h

∫ ∞

0

e−αsa(χs)ds
i

ν(dχ). (159)

If the (x log x)-condition fails to hold, then E
�

1− exp
�

−λVφ,ν ,Q
t /eαt�� → 0 as t → ∞ follows by

inserting (148) into (81) together with A4.3.

9 Excursions from a trap of one-dimensional diffusions.

Proof of Theorem 1

Recall the Assumptions A2.1, A2.2, A2.3, A2.4 and A2.5 from Section 2. The process (Yt)t≥0, the

excursion set U and the scale function S̄ have been defined in (3), in (4) and in (20), respectively.

The stopping time Tǫ has been introduced shortly after (4).

In this section, we define the excursion measure Q̄Y and prove the convergence result of Theo-

rem 1. We follow Pitman and Yor [16] in the construction of the excursion measure. Under As-

sumptions A2.1 and A2.2, zero is an absorbing point for Y . Thus, we cannot simply start in zero

and wait until the process returns to zero. Informally speaking, we instead condition the process to

converge to infinity. One way to achieve this is by Doob’s h-transformation. Note that
�

S̄(Yt∧Tǫ)
�

t≥0
is a bounded martingale for every ǫ > 0, see Section V.28 in [17]. In particular,

Ey�S̄(Yt∧Tǫ)
�

= S̄(y) (160)

for every y < ǫ. For ǫ > 0, consider the diffusion (Y ↑,ǫt )t≥0 on [0,∞) – to be called the ↑-diffusion

stopped at time Tǫ – defined by the semigroup (T ǫt )t≥0 where

T ǫt f (y) :=
1

S̄(y)
Ey�S̄(Yt∧Tǫ) f (Yt∧Tǫ)

�

, y > 0, t ≥ 0, f ∈ Cb
�

[0,∞),R
�

. (161)

The sequence of processes
�

(Y ↑,ǫt )t≥0,ǫ > 0
�

is consistent in the sense that

L y
�

Y ↑,ǫ+δ
�∧Tǫ

�

=L y
�

Y ↑,ǫ
�

�

(162)

for all 0 ≤ y ≤ ǫ and δ > 0. Therefore, we may define a process Y ↑ = (Y ↑t )0≤t≤T∞ which coincides

with (Y ↑,ǫt )t≥0 until time Tǫ for every ǫ > 0. Note that the ↑-diffusion possibly explodes in finite

time.

The following important observation of Williams has been quoted by Pitman and Yor [16]. Because

we assume that zero is an exit boundary for (Yt)t≥0, zero is an entrance boundary but not an exit

boundary for the ↑-diffusion. More precisely, the ↑-diffusion started at its entrance boundary zero

and run up to the last time it hits a level y > 0 is described by Theorem 2.5 of Williams [20] as

the time reversal back from T0 of the ↓-diffusion started at y , where the ↓-diffusion is the process

(Yt)t≥0 conditioned on T0 <∞. Hence, the process
�

Y ↑t
�

t≥0 may be started in zero but takes strictly

positive values at positive times.
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Pitman and Yor [16] define the excursion measure Q̄Y as follows. Under

Q̄Y (�|Tǫ < T0), (163)

that is, conditional on “excursions reach level ǫ”, an excursion follows the ↑-diffusion until time

Tǫ and then follows the dynamics of (Yt)t≥0. In addition, Q̄Y
�

Tǫ < T0

�

= 1

S̄(ǫ)
. With this in mind,

define a process Ŷ ǫ :=
�

Ŷ ǫt
�

t≥0
which satisfies

L y�(Ŷ ǫt∧Tǫ
)

t≥0

�

= L y�(Y ↑,ǫt )t≥0

�

(164)

L y�(Ŷ ǫTǫ+t)t≥0

�

= L ǫ
�

(Yt)t≥0

�

(165)

for y ≥ 0. In addition, (Ŷ ǫt , t ≤ Tǫ) and (Ŷ ǫt , t ≥ Tǫ) are independent. Define the excursion measure

Q̄Y on U by

1Tǫ<T0
Q̄Y (dχ) :=

1

S̄(ǫ)
P0
�

Ŷ ǫ ∈ dχ
�

, ǫ > 0. (166)

This is well-defined if

1Tǫ+δ<T0

1

S̄(ǫ)
P0
�

Ŷ ǫ ∈ dχ
�

=
1

S̄(ǫ+δ)
P0
�

Ŷ ǫ+δ ∈ dχ
�

(167)

holds for all ǫ,δ > 0. The critical part here is the path between Tǫ and Tǫ+δ. Therefore, (167)

follows from

1

S̄(ǫ)
Eǫ
�

F(Y )1Tǫ+δ<T0

�

=
1

S̄(ǫ+δ)
Eǫ
�

F(Y )|Tǫ+δ < T0

�

=
1

S̄(ǫ+δ)
Eǫ
�

F(Ŷ ǫ+δ)
�

=
1

S̄(ǫ+δ)
E0
�

F(Ŷ ǫ+δTǫ+�
)
�

.

(168)

The first equality is equation (21) with c = 0, y = ǫ and b = ǫ + δ. The last equality is the strong

Markov property of Y ↑,ǫ+δ. The last but one equality is the following lemma.

Lemma 9.1. Assume A2.1 and A2.2. Let 0< y < ǫ. Then

L y�Y | Tǫ < T0

�

=L y�Ŷ ǫ
�

. (169)

Proof. We begin with the proof of independence of (Ŷ ǫt , t ≤ Tǫ) and of (Ŷ ǫt , t ≥ Tǫ). Let F and G be

two bounded continuous functions on the path space. Denote by FTǫ the σ-algebra generated by

(Yt)t≤Tǫ . Then

Ey�F
�

YTǫ∧�
�

G
�

YTǫ+�
�

|Tǫ < T0

�

= Ey
h

F
�

YTǫ∧�
�

Ey�G
�

YTǫ+�
�

|FTǫ

�

|Tǫ < T0

i

= Ey�F
�

YTǫ∧�
�

|Tǫ < T0

�

Eǫ
�

G
�

Y
�

��

.

(170)

The last equality is the strong Markov property of Y . Choosing F ≡ 1 in (170) proves that the left-

hand side of (169) satisfies (165). In addition, equation (170) proves the desired independence.

For the proof of

Py�(Y ↑,ǫt )t≥0

�

= Py�(Yt∧Tǫ)t≥0|Tǫ < T0

�

, (171)
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we repeatedly apply the semigroup (161) of (Y ↑,ǫt )t≥0 to obtain

Ey
h

n
∏

i=1

fi
�

Y ↑,ǫt i

�

i

=
1

S̄(y)
Ey
h

S̄(Ytn∧Tǫ)

n
∏

i=1

fi
�

Yt i∧Tǫ

�

i

(172)

for bounded, continuous functions f1, ..., fn and time points 0≤ t1 < ...< tn. By equation (21) with

c = 0,

S̄(Ytn∧Tǫ) = S̄(ǫ)PYtn∧Tǫ
�

Tǫ < T0

�

= S̄(ǫ)Ey�1Tǫ<T0
|Ftn∧Tǫ

�

(173)

Py–almost surely where Ftn∧Tǫ is the σ-algebra generated by (Ys)s≤tn∧Tǫ . Insert this identity in the

right-hand side of (172) to obtain

Ey
h

n
∏

i=1

fi
�

Y ↑,ǫt i

�

i

=
1

Py
�

Tǫ < T0

�Ey
h

1Tǫ<T0

n
∏

i=1

fi
�

Yt i∧Tǫ

�

i

. (174)

This proves (171) because finite-dimensional distributions determine the law of a process.

Now we prove convergence to the excursion measure Q̄Y .

Proof of Theorem 1. Let F : C
�

[0,∞), [0,∞)
�

→ R be a bounded continuous function for which

there exists an ǫ > 0 such that F(χ)1T0<Tǫ = 0 for every path χ . Let 0 < y < ǫ. By Lemma 9.1, we

obtain

1

S̄(y)
Ey F(Y ) =

1

S̄(ǫ)Py(Tǫ < T0)
Ey�F(Y )1Tǫ<T0

�

=
1

S̄(ǫ)
Ey F(Ŷ ǫ) =

1

S̄(ǫ)
E0F(Ŷ ǫTy+�

).

(175)

The last equality is the strong Markov property of the ↑-diffusion. The random time Ty converges to

zero almost surely as y → 0. Another observation we need is that every continuous path (χt)t≥0 is

uniformly continuous on any compact set [0, T]. Hence, the sequence of paths
�

(χTy+t)t≥0
, y > 0
�

converges locally uniformly to the path
�

χt
�

t≥0 almost surely as y → 0. Therefore, the dominated

convergence theorem implies

lim
y→0

E0F(Ŷ ǫTy+�
) = E0 lim

y→0
F(Ŷ ǫTy+�

) = E0F(Ŷ ǫ
�

). (176)

Putting (175) and (176) together, we arrive at

lim
y→0

1

S̄(y)
Ey F(Y ) =

1

S̄(ǫ)
E0F(Ŷ ǫ) =

∫

F(χ)Q̄Y (dχ), (177)

which proves the theorem.

We will employ Lemma 9.1 to calculate explicit expressions for some functionals of Q̄Y . For example,

we will prove in Lemma 9.8 together with Lemma 9.6 that

∫

�

∫ ∞

0

a
�

χs
�

ds
�

Q̄Y (dχ) =

∫ ∞

0

a(z)

g(z)s̄(z)
dz (178)

provided that Assumptions A2.1, A2.2 and A2.4 hold. Equation (178) shows that condition (43)

and condition (28) are equivalent. The following lemmas prepare for the proof of (178).
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Lemma 9.2. Assume A2.1 and A2.2. Let f ∈ C
�

[0,∞), [0,∞)
�

have compact support in (0,∞).
Furthermore, let the continuous function ψ : [0,∞)→R be nonnegative and nondecreasing. Then

1

S̄(y)
Ey
�

�

∫ Tb

0

ψ(s) f (Ys) ds
�

m
�

y→0−−→
∫
�

�

∫ Tb

0

ψ(s) f (χs) ds
�

m
�

Q̄Y (dχ) (179)

for every b ≤∞ and m ∈N≥0.

Proof. W.l.o.g. assume m≥ 1. Let ǫ > 0 be such that ǫ < inf supp f and let y < ǫ. Using Lemma 9.1,

we see that the left-hand side of (179) is equal to

1

S̄(y)
Ey
�

�

∫ Tb

0

ψ(s) f (Ys) ds
�

m

1Tǫ<T0

�

=
1

S̄(ǫ)
Ey
�

�

∫ Tb

0

ψ(s) f (Ŷ ǫs ) ds
�

m
�

=
1

S̄(ǫ)
E0

�

�

∫ Tb

Ty

ψ(s− Ty) f (Ŷ
ǫ

s ) ds
�

m
�

y→0−−→
∫
�
∫ Tb

0

ψ(s) f (χs) ds

�
m

Q̄Y (dχ).

The second equality is the strong Markov property of Y ↑,ǫ and the change of variable s 7→ s−Ty . For

the convergence, we applied the monotone convergence theorem.

The explicit formula on the right-hand side of (178) originates in the explicit formula (180) below,

which we recall from the literature.

Lemma 9.3. Assume A2.1 and A2.2. If f ∈ Cb[0,∞) or f ∈ C
�

[0,∞), [0,∞)
�

, then

Ey
�

∫ T0∧Tb

0

f (Ys) ds
�

=

∫ b

0

�

f (z)
S̄(b)− S̄(y ∨ z)

S̄(b)

S̄(y ∧ z)

g(z)s̄(z)

�

dz (180)

for all 0≤ y ≤ b <∞.

Proof. See e.g. Section 15.3 of Karlin and Taylor [13].

Let (Ỹt)t≥0 be a Markov process with càdlàg sample paths and state space E which is a Polish space.

For an open set O ⊂ E, denote by τ the first exit time of (Ỹt)t≥0 from the set O. Notice that τ is a

stopping time. For m ∈N0, define

wm(y) := Ey
�

�

∫ τ

0

f (Ỹs) ds
�

m�

, y ∈ E, m ∈N0, (181)

for a given function f ∈ C
�

O, [0,∞)
�

. In the following lemma, we derive an expression for w2 for

which Lemma 9.3 is applicable.

Lemma 9.4. Let (Ỹt)t≥0 be a time-homogeneous Markov process with càdlàg sample paths and state
space E which is a Polish space. Let wm be as in (181) with an open set O ⊂ E and with a function
f ∈ C
�

O, [0,∞)
�

. Then

Ey
�

∫ τ

0

s f (Ỹs) ds
�

= Ey
�

∫ τ

0

w1(Ỹs) ds
�

(182)

Ey
�

�

∫ τ

0

f (Ỹs) ds
�

2�

= Ey
�

∫ τ

0

2 f (Ỹs)w1(Ỹs) ds
�

(183)

for all y ∈ E.

1152



Proof. Let y ∈ E be fixed. For the proof of (182), we apply Fubini to obtain

Ey
�

∫ τ

0

∫ s

0

dr f (Ỹs) ds
�

= Ey
�

∫ τ

0

∫ τ

r

f (Ỹs) ds dr
�

=

∫ ∞

0

Ey
�

1r<τ

∫ ∞

0

1s+r<τ f (Ỹs+r)ds
�

dr.

(184)

The last equality follows from Fubini and a change of variables. The stopping time τ can be ex-

pressed as τ= F
�

(Ỹu)u≥0

�

with a suitable path functional F . Furthermore, τ satisfies

{r < τ} ∩ {s+ r < τ}= {r < τ} ∩ {s < F
�

(Ỹu+r)u≥0

�

} (185)

for r, s ≥ 0. Therefore, the right-hand side of (184) is equal to

∫ ∞

0

Ey
�

1r<τ

∫ ∞

0

1
s<F
�

(Ỹu+r )u≥0

� f (Ỹs+r) ds
�

dr

=

∫ ∞

0

Ey
�

1r<τE
Ỹr
�

∫ ∞

0

1s<τ f (Ỹs) ds
�

�

dr = Ey
�

∫ τ

0

w1(Ỹr) dr
�

.

(186)

The last but one equality is the Markov property of (Ỹt)t≥0. This proves (182). For the proof

of (183), break the symmetry in the square of w2(y) to see that w2(y) is equal to

Ey
�

2

∫ τ

0

h

f (Ỹr)

∫ τ

r

f (Ỹs) ds
i

dr
�

= 2

∫ ∞

0

Ey
�

1r<τ f (Ỹr)E
Ỹr
�

∫ τ

0

f (Ỹs) ds
�

�

dr = Ey
�

∫ τ

0

2 f (Ỹs)w1(Ỹs) ds
�

.

(187)

This finishes the proof.

We will need that (Yt)t≥0 dies out in finite time. The following lemma gives a condition for this.

Recall S̄(∞) := limy→∞ S̄(y).

Lemma 9.5. Assume A2.1 and A2.2. Let y > 0. Then the solution (Yt)t≥0 of equation (3) hits zero in
finite time almost surely if and only if S̄(∞) =∞. If S̄(∞) <∞, then (Yt)t≥0 converges to infinity as
t →∞ on the event {T0 =∞} almost surely.

Proof. On the event {Yt ≤ K}, we have that

PYt
�

∃s : Ys = 0
�

≥ PK�T0 <∞
�

> 0 (188)

almost surely. The last inequality follows from Lemma 15.6.2 of [13] and Assumption A2.2. There-

fore, Theorem 2 of Jagers [11] implies that, with probability one, either (Yt)t≥0 hits zero in finite

time or converges to infinity as t →∞. With equation (21), we obtain

Py� lim
t→∞

Yt =∞
�

= lim
b→∞

Py�Y hits b before 0
�

= lim
b→∞

S̄(y)

S̄(b)
=

S̄(y)

S̄(∞)
. (189)

This proves the assertion.
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The following lemma makes Assumption A2.4 more transparent. It proves that A2.4 holds if and

only if the expected area under
�

a(Yt)
�

t≥0 is finite.

Lemma 9.6. Assume A2.1 and A2.2. Assumption A2.4 holds if and only if

Ey
�

∫ ∞

0

a(Ys) ds
�

<∞ ∀ y > 0. (190)

If Assumption A2.4 holds, then S̄(∞) =∞ and

Ey
�

∫ ∞

0

f
�

Ys
�

ds
�

=

∫ ∞

0

S̄
�

y ∧ z
� f (z)

g(z)s̄(z)
dz <∞ (191)

for all y ≥ 0 and f ∈ C
�

[0,∞), [0,∞)
�

with c f := supz>0 f (z)/z <∞.

Proof. Let c1, c2 be the constants from A2.1. In equation (180), let b → ∞ and apply monotone

convergence to obtain

Ey
�

∫ ∞

0

f (Ys) ds
�

=

∫ ∞

0

�

f (z)
h

1−
S̄(y ∨ z)

S̄(∞)

i S̄(y ∧ z)

g(z)s̄(z)

�

dz. (192)

Hence, if Assumption A2.4 holds, then Assumption A2.2 implies that the right-hand side of (192) is

finite because f (z) ≤ c f z ≤ c f

c1
a(z), z > 0. Therefore, the left-hand side of (192) with f (·) replaced

by a(·) is finite. Together with limx→∞ a(x) = ∞, this implies that (Yt)t≥0 does not converge to

infinity with positive probability as t →∞. Thus Lemma 9.5 implies S̄(∞) =∞ and equation (192)

implies (191).

Now we prove that Assumption A2.4 holds if the left-hand side of (192) with f (·) replaced by a(·)
is finite. Again, limx→∞ a(x) =∞ and Lemma 9.5 imply S̄(∞) =∞. Using monotonicity of S, we

obtain for x > 0

∫ ∞

x

a(z)

g(z)s̄(z)
dz ≤

1

S̄(x)

∫ ∞

0

a(z)
S̄(x ∧ z)

g(z)s̄(z)
dz. (193)

The right-hand side is finite because (192) with f (·) replaced by a(·) is finite. Therefore, Assump-

tion A2.4 holds.

Lemma 9.7. Assume A2.1, A2.3 and let n ∈N≥1. If
∫∞

1

yn

g(y)s̄(y)
d y <∞, then

sup
y∈(0,∞)

yn

S̄(y)
<∞. (194)

Proof. It suffices to prove lim infy→∞
S̄(y)

yn > 0 because
yn

S̄(y)
is locally bounded in (0,∞) and S̄

′
(0) ∈

(0,∞) by Assumption A2.3. By Assumption A2.1, g(y)≤ cg y2 for all y ≥ 1 and a constant cg <∞.

Let 0≤ x 7→ψ(x) := 1− (1− x)+ ∧ 1. Thus,

∞ >
∫ ∞

1

yn

g(y)s̄(y)
d y ≥

1

cg

∫ ∞

1

yn−1

ys̄(y)
d y ≥

1

cg

∫ ∞

1

1

y
·
�

1−ψ
� s̄(y)

yn−1

�

�

d y. (195)
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The last inequality follows from 1

z
≥ 1z≤1 ≥ 1−ψ(z), z > 0. Consequently,

1= lim
z→∞

∫ z

1

1

y
ψ
� s̄(y)

yn−1

�

d y

log(z)
= lim

z→∞

1

z
ψ
� s̄(z)

zn−1

�

1

z

= lim
z→∞

ψ
� s̄(z)

zn−1

�

. (196)

The proof of the second equation in (196) is similar to the proof of the lemma of L’Hospital.

From (196), we conclude lim infy→∞
s̄(y)
yn−1 ≥ 1 which implies

lim inf
z→∞

∫ z

0
s̄(y) d y

zn ≥ lim inf
z→∞

∫ z

0
yn−1 d y

zn =
1

n
. (197)

This finishes the proof.

Now we prove equation (178). Recall S̄(∞) := limy→∞ S̄(y). Define w̄0 ≡ 1 and

w̄1(z) :=

∫ ∞

0

f (u)
S̄(z ∧ u)

g(u)s̄(u)
du, z ≥ 0 (198)

for f ∈ C
�

[0,∞), [0,∞)
�

. If S̄(∞) = ∞, then w̄1(z) is the monotone limit of the right-hand side

of (180) as b→∞.

Lemma 9.8. Assume A2.1, A2.2 and S̄(∞) =∞. Let f ∈ C
�

[0,∞), [0,∞)
�

. Then

∫

�

∫ ∞

0

f (χs) ds
�

m

Q̄Y (dχ) =

∫ ∞

0

f (z)
mw̄m−1(z)

g(z)s̄(z)
dz (199)

∫

�

∫ ∞

0

s f (χs) ds
�

Q̄Y (dχ) =

∫ ∞

0

w̄1(z)
1

g(z)s̄(z)
dz (200)

for m = 1,2. If A2.4 holds and if f (z)/z is bounded, then (199) is finite for m = 1. If A2.5 holds and
if f (z)/z is bounded, then (199) is finite for m= 2.

Proof. Choose fǫ ∈ C
�

[0,∞), [0,∞)
�

with compact support in (0,∞) for every ǫ > 0 such that

fǫ ↑ f as ǫ→ 0. Fix ǫ > 0 and b ∈ (0,∞). Lemma 9.2 proves that

lim
y→0

1

S̄(y)
Ey
�

�

∫ Tb

0

fǫ(Ys) ds
�

m
�

=

∫

�

∫ Tb

0

fǫ(χs) ds
�

m

Q̄Y (dχ). (201)

Let wb
m(y) be as in (181) with τ replaced by Tb and f replaced by fǫ. Fix m ∈ {1,2}. Lemma 9.4

and Lemma 9.3 provide us with an expression for the left-hand side of equation (201). Hence,

∫

�

∫ Tb

0

fǫ(χs) ds
�

m

Q̄Y (dχ)

= lim
y→0

1

S̄(y)

∫ b

0

fǫ(z)m wb
m−1 (z)

S̄(b)− S̄(y ∨ z)

S̄(b)

S̄(y ∧ z)

g(z)s̄(z)
dz

=

∫ b

0

fǫ(z)m wb
m−1(z)
�

1−
S̄(z)

S̄(b)

� 1

g(z)s̄(z)
dz.

(202)
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The last equation follows from dominated convergence and Assumption A2.2. Note that the hitting

time Tb
�

(χt)t≥0

�

→ ∞ as b → ∞ for every continuous path (χt)t≥0. By Lemma 9.3 and the

monotone convergence theorem, wb
m−1(y) ր w̄m−1(y) as b ր ∞. Let b → ∞, ǫ → 0 and apply

monotone convergence to arrive at equation (199).

Similar arguments prove (200). Instead of (201), consider

lim
y→0

1

S̄(y)
Ey
�

∫ Tb

0

s fǫ(Ys) ds
�

=

∫

�

∫ Tb

0

s fǫ(χs) ds
�

Q̄Y (dχ) (203)

which is implied by Lemma 9.2. Furthermore, instead of applying Lemma 9.3 to equation (201),

apply equation (182) together with equation (180).

For the rest of the proof, assume that f (z)/z is bounded by c f . Let c1, c2 be the constants from A2.1.

Note that f (z) ≤ c f z ≤ c f

c1
a(z). Consider the right-hand side of (199). If m = 1, then the inte-

gral over [1,∞) is finite by Assumption A2.4. If m = 2, then the integral over [1,∞) is finite by

Assumption A2.5. The integral over [0,1) is finite because of A2.2 and

a(z)≤ c2z ≤ c̄S̄(z) z ∈ [0,1], (204)

where c̄ is a finite constant. The last inequality in (204) follows from Lemma 9.7.

The convergence (24) of Theorem 1 also holds for (χs)s≥0 7→ f (χt), t fixed, if f (y)/y is a bounded

function. For this, we first estimate the moments of (Yt)t≥0.

Lemma 9.9. Assume A2.1. Let (Yt)t≥0 be a solution of equation (3) and let T be finite. Then, for every
n ∈N≥2, there exists a constant cT such that

sup
t≤T

Ey�Yτ∧t
�

≤ cT y, Ey�sup
t≤T

Yt
n�≤ cT (y + yn) (205)

for all y ≥ 0 and every stopping time τ.

Proof. The proof is fairly standard and uses Itô’s formula and Doob’s Lp-inequality.

Lemma 9.10. Assume A2.1, A2.2 and A2.3. Let f : [0,∞)→ [0,∞) be a continuous function such that
f (y) ≤ c f y ∨ yn for some n ∈N≥1, some constant c f <∞ and for all y ≥ 0. If

∫∞
1

yn

g(y)s̄(y)
d y <∞,

then
∫

f (χt)Q̄Y (dχ) = lim
y→0

1

S̄(y)
Ey f (Yt) = E0
� 1

S̄(Y ↑t )
f (Y ↑t )1t<T∞

�

(206)

is bounded in t > 0.

Proof. Choose fǫ ∈ C
�

[0,∞), [0,∞)
�

with compact support in (0,∞) for every ǫ > 0 such that

fǫ ↑ f pointwise as ǫ→ 0. By Theorem 1,
∫

fǫ(χt)Q̄Y (dχ) = lim
y→0

1

S̄(y)
Ey fǫ(Yt). (207)

The left-hand side of (207) converges to the left-hand side of (206) as ǫ → 0 by the monotone

convergence theorem. Hence, the first equality in (206) follows from (207) if the limits lim
ǫ→0

and lim
y→0

can be interchanged. For this, we prove the second equality in (206).
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Let b ∈ (0,∞). The ↑-diffusion is a strong Markov process. Thus, by (161),

lim
y→0

1

S̄(y)
Ey
h

f (Yt)1t<Tb

i

= lim
y→0

Ey
h f (Y ↑t )

S̄(Y ↑t )
1t<Tb

i

= E0
h

lim
y→0

f (Y ↑t+Ty
)

S̄(Y ↑t+Ty
)
1t+Ty<Tb

i

= E0
h f (Y ↑t )

S̄(Y ↑t )
1t<Tb

i

.

(208)

The second equality follows from the dominated convergence theorem because of

sup
0<y≤b

f (y)

S̄(y)
≤ c f sup

0<y≤b

y ∨ yn

S̄(y)
<∞. (209)

Right-continuity of the function t 7→ f (Y ↑t )

S̄(Y ↑t )
1t<Tb

implies the last equality in (208). Now we let b→∞
in (208) and apply monotone convergence to obtain

lim
b→∞

lim
y→0

1

S̄(y)
Ey
h

f (Yt)1t<Tb

i

= E0
h f (Y ↑t )

S̄(Y ↑t )
1t<T∞

i

. (210)

The following estimate justifies the interchange of the limits lim
b→∞

and lim
y→0

�

�

� lim
y→0

1

S̄(y)
Ey f (Yt)− lim

b→∞
lim
y→0

1

S̄(y)
Ey� f (Yt)1t<Tb

�

�

�

�

≤ c f lim
b→∞

sup
y≤1

1

S̄(y)
Ey
h

Yt ∨ Y n
t 1sups≤t Ys≥b

i

≤ c f lim
b→∞

1

b
sup
y≤1

y

S̄(y)
sup
y≤1

1

y
Ey
h

sup
s≤t

�

Y 2
s + Y n+1

s

�

i

= 0.

(211)

The last equality follows from S̄
′
(0) ∈ (0,∞) and from Lemma 9.9. Putting (211) and (210) to-

gether, we get

lim
y→0

1

S̄(y)
Ey� f (Yt)
�

= lim
b→∞

lim
y→0

1

S̄(y)
Ey� f (Yt)1t<Tb

�

= E0
h f (Y ↑t )

S̄(Y ↑t )
1t<T∞

i

. (212)

Note that (212) is bounded in t > 0 because of f (y)≤ c f y ∨ yn and Lemma 9.7.

We finish the proof of the first equality in (206) by proving that the limits lim
ǫ→0

and lim
y→0

on the

right-hand side of (207) interchange.

�

�

�lim
ǫ→0

lim
y→0

1

S̄(y)
Ey fǫ(Yt)− lim

y→0

1

S̄(y)
Ey f (Yt)

�

�

�

≤ lim
ǫ→0

lim
y→0

1

S̄(y)
Ey� f (Yt)− fǫ(Yt)

�

= lim
ǫ→0

E0
h f (Y ↑t )− fǫ(Y

↑
t )

S̄(Y ↑t )
1t<T∞

i

= 0.

(213)

The first equality is (212) with f replaced by f − fǫ. The last equality follows from the dominated

convergence theorem. The function fǫ/S̄ converges to f /S̄ for every y > 0 as ǫ → 0. Note that

Y ↑t > 0 almost surely for t > 0. Integrability of
f (Y ↑t )

S̄(Y ↑t )
1t<T∞ follows from finiteness of (212).
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We have settled equation (178) in Lemma 9.8 (together with Lemma 9.6). A consequence of the

finiteness of this equation is that lim inft→∞
∫

χt dQ̄Y = 0. In the proof of the extinction result for

the Virgin Island Model, we will need that
∫

χt dQ̄Y converges to zero as t →∞. This convergence

will follow from equation (178) if [0,∞) ∋ t 7→
∫

χt dQ̄Y is globally upward Lipschitz continuous.

We already know that this function is bounded in t by Lemma 9.10.

Lemma 9.11. Assume A2.1, A2.2 and A2.3. Let n ∈N≥1. If
∫∞

1

yn

g(y)s̄(y)
d y <∞, then

lim
t→∞

∫

χn
t Q̄Y (dχ) = 0. (214)

Proof. We will prove that the function [0,∞) ∋ t 7→
∫

χn
t dQ̄Y is globally upward Lipschitz contin-

uous. The assertion then follows from the finiteness of (199) with f (z) replaced by zn and with

m = 1. Recall τK , ch and cg from the proof of Lemma 9.9. From (3) and Itô’s lemma, we obtain for

y > 0 and 0≤ s ≤ t

1

S̄(y)
Ey�Y n

t∧τK

�

−
1

S̄(y)
Ey
�

Y n
s∧τK

�

≤ c̃

∫ t

s

1

S̄(y)
Ey�Y n

r∧τK
+ Y n−1

r∧τK

�

dr (215)

where c̃ := n
�

ch+ (n− 1)cg
�

. Letting K → ∞ and then y → 0, we conclude from the dominated

convergence theorem, Lemma 9.9 and Lemma 9.10 that

∫

χn
t −χ

n
s Q̄Y (dχ)≤ c̃

∫ t

s

E0
h

�

Y ↑r
�n
+
�

Y ↑r
�n−1

S̄(Y ↑r )
1r<T∞

i

dr ≤ c̃cS|t − s| (216)

for some constant cS . The last inequality follows from Lemma 9.7. Inequality (216) implies upward

Lipschitz continuity which finishes the proof.

10 Proof of Theorem 2, Theorem 3 and of Theorem 4

We will derive Theorem 2 from Theorem 5 and Theorem 3 from Theorem 6. Thus, we need to

check that Assumptions A4.1, A4.2 and A4.3 with φ(t,χ) := χt , ν := L x (Y ) and Q := QY hold

under A2.1, A2.2, A2.3 and A2.4. Recall that QY = S̄
′
(0)Q̄Y and s̄(0) = S̄

′
(0)s(0). Assumption A4.1

follows from Lemma 9.9 and Lemma 9.10. Lemma 9.6 and Lemma 9.8 imply A4.2. Lemma 9.5

together with Lemma 9.6 implies that (Yt)t≥0 hits zero in finite time almost surely. The second

assumption in A4.3 is implied by Lemma 9.11 with n = 1 and Assumption A2.4. By Theorem 5,

we now know that the total mass process (Vt)t≥0 dies out if and only if condition (43) is satisfied.

However, by Lemma 9.8 with m = 1 and f (·) = a(·), condition (43) is equivalent to condition (28).

This proves Theorem 2

For an application of Theorem 6, note that f ν and f Q are integrable by Lemma 9.6 and Lemma 9.8,

respectively. In addition, Lemma 9.6 and Lemma 9.8 show that

wid(x) = Ex

∫ ∞

0

Yt d t =

∫ ∞

0

f ν(t) d t and w
′

a(0) =

∫
�
∫ ∞

0

a(χs) ds

�

QY (dχ).
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Similar equations hold for w
′

id(0) and wa(x). Moreover, the denominators in (33) and (48) are

equal by Lemma 9.8, equation (200), together with Lemma 9.6. Therefore, equations (32) and (33)

follow from equations (47) and (48), respectively. In the supercritical case, (50) holds because of

∞
∑

k=0

sup
k≤t≤k+1

e−αt

∫

χtQ(dχ)≤ sup
t≥0

∫

χtQ(dχ)
∞
∑

k=0

e−α(k+1) (217)

and Lemma 9.11 with n = 1 together with Assumption A2.4. Furthermore, Lemma 9.10 together

with Lemma 9.7 and the dominated convergence theorem implies continuity of f Q. Therefore,

Theorem 6 implies (51) which together with (52) reads as (35).

Theorem 4 is a corollary of Theorem 7. For this, we need to check A4.4. The expression in (55) is

finite because of Lemma 9.10 with f (·) = (a(·))2 and Assumption A2.5. Assumption A2.1 provides

us with c1 y ≤ a(y) for all y ≥ 0 and some c1 > 0. Thus,

∫ ∞

1

y2

g(y)s̄(y)
d y ≤

1

c1

∫ ∞

1

a(y)
y +wa(y)

g(y)s̄(y)
d y (218)

which is finite by A2.5. Lemma 9.11 with n = 2 and Lemma 9.9 show that
∫

χ2
t Q̄Y (dχ) is bounded

in t ≥ 0. Furthermore, Hölder’s inequality implies

�

∫

h

χt

∫ t

0

a(χs) ds
i

Q̄Y (dχ)
�

2

≤
∫

χ2
t Q̄Y (dχ)

∫

�

∫ ∞

0

a(χs) ds
�

2

Q̄Y (dχ) (219)

which is bounded in t ≥ 0 because of Lemma 9.8 with m = 2, f (·) = a(·) and because of Assump-

tion A2.5. Therefore, we may apply Theorem 7. Note that the limiting variable is not identically

zero because of

∫

�

Aα log+(Aα)
�

dQ ≤
∫

�

Aα
�2dQ ≤
∫

�

∫ ∞

0

a(χs) ds
�

2

Q̄Y (dχ)<∞. (220)

The right-hand side is finite because of Lemma 9.8 with m = 2, f (·) = a(·) and because of Assump-

tion A2.5.
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