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Abstract

We consider competing particle systems in Rd , i.e. random locally finite upper bounded configu-

rations of points in Rd evolving in discrete time steps. In each step i.i.d. increments are added to

the particles independently of the initial configuration and the previous steps. Ruzmaikina and

Aizenman characterized quasi-stationary measures of such an evolution, i.e. point processes for

which the joint distribution of the gaps between the particles is invariant under the evolution,

in case d = 1 and restricting to increments having a density and an everywhere finite moment

generating function. We prove corresponding versions of their theorem in dimension d = 1 for

heavy-tailed increments in the domain of attraction of a stable law and in dimension d ≥ 1 for

lattice type increments with an everywhere finite moment generating function. In all cases we

only assume that under the initial configuration no two particles are located at the same point.

In addition, we analyze the attractivity of quasi-stationary Poisson point processes in the space

of all Poisson point processes with almost surely infinite, locally finite and upper bounded con-

figurations.
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1 Introduction

Recently, evolutions of point processes on the real line by discrete time steps were successfully

analyzed for quasi-stationary states, i.e. demanding the stationarity of the distances between the

points rather than the positions of the points, see e.g. [2], [14]. In particular, the processes for

which the joint distribution of the gaps stays invariant under the evolution were determined in

the cases that Gaussian or i.i.d. increments having a density and an everywhere finite moment

generating function are added to the particles. In the i.i.d. case Ruzmaikina and Aizenman proved

that these quasi-stationary point processes are of a particularly simple form, given by superpositions

of Poisson point processes with exponential densities. In the context of spin glass models their

result says that quasi-stationary states in the free energy model starting with infinitely many pure

states and adding a spin variable in each time step are given by superpositions of random energy

model states introduced in [13]. The connection between the cavity method in the theory of spin

glasses and quasi-stationary measures of evolutions of points on the real line is explained in full

extent in [1] and [2]. For an introduction to spin glass models see for instance [11], [15].

The crucial assumption in [14] is that the distribution of the increments possesses a density

and has an everywhere finite moment-generating function. In particular, the increments are

in the domain of attraction of a normal law. Although this is the case in the context of the

Sherrington-Kirkpatrick model of spin glasses, it is of interest to determine the quasi-stationary

states for more general increments. Here we treat increments in the domain of attraction of a stable

law and multidimensional evolutions with increments having exponential moments, thus being in

the domain of attraction of a multidimensional normal law. The results for lattice type and heavy-

tailed increments in dimension d = 1 may be as well applicable in the context of non-Gaussian

spin glass models. The resulting quasi-stationary measures are superpositions of Poisson point

processes, whose intensities vary with the type of the increments considered. In addition to the

Ruzmaikina-Aizenman type quasi-stationary states we find completely new quasi-stationary states

in the case of lattice type increments with either exponential moments or heavy tails. We also prove

attractivity of the quasi-stationary Poisson point processes in the space of all Poisson point processes

in Rd with almost surely infinite, locally finite and upper bounded configurations.

To determine the quasi-stationary measures in the case of increments with heavy tails we ob-

serve that the Poissonization Theorem of [14] can be generalized to apply in our context. Hence,

we are able to write each quasi-stationary measure as a weak limit of superpositions of Poisson

point processes. Subsequently, we present a direct argument in which we evaluate the limit in the

Generalized Poissonization Theorem in order to conclude that it is itself a superposition of Poisson

point processes. In the case of increments in the domain of attraction of a normal law we follow the

approach of [14]. In our case we use a version of the Bahadur-Rao Theorem which gives the sharp

asymptotics of large deviations for infinite rectangles in Rd and is an analog of the results in [10]

for smooth domains in Rd . This allows us to perform a compactness argument similiar to the one in

[14] allowing us to pass to the limit in the Poissonization Theorem through a subsequence. One of

the main obstacles hereby is the lack of a natural total order on Rd . After proving that in both cases

the quasi-stationary measures are given by superpositions of Poisson point processes we show that

the intensities of the latter are solutions of Choquet-Deny type equations. This is done by extending

the steepness relation on tail distribution functions to the multidimensional setting and generalizing

the monotonicity argument in [14]. In our more general setting we find new intensities in addition
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to the ones in [14]. To prove the attractivity of certain quasi-stationary Poisson point processes in

the space of all Poisson point processes with almost surely infinite, locally finite and upper bounded

configurations we analyze the corresponding evolution of intensity measures and exploit the fact

that the weak convergence of intensity measures implies the weak convergence of the Poisson point

processes.

To define the evolution in Rd in full generality we consider the partial order ≥ on Rd where

a ≥ b when a j ≥ b j , 1 ≤ j ≤ d. Let l ⊂ Rd be any line in Rd for which ≥ is a total order and which

contains infinitely many lattice points in the case that the increments are of lattice type. Moreover,

let p : Rd → l be the affine map which assigns to every point x the closest point y on l with x ≥ y .

Finally, we set a º b if p(a) > p(b) or if a = b and define a º b in an arbitrary, but deterministic

and measurable way for which a ≥ b implies a º b if p(a) = p(b), a 6= b (one can use induction on

d to prove that this is possible). Note that º is a total order on Rd in agreement with the partial

order ≥ and its level sets are infinite rectangles up to a modification of the boundary. We consider

competing particle systems with a random µ-distributed starting configuration (xn)n≥1 ordered by

º and evolving by i.i.d. increments (πn)n≥1 of distribution π, i.e. each step of the evolution is

described by the mapping

(xn)n≥1 7→
�
(xn+πn)n≥1

�
↓

where ↓ denotes the sequence rearranged in non-ascending order º.

From now on all considered evolutions will satisfy one of the following two assumptions: as-

sumption 1.1 in the case of a one-dimensional evolution with heavy-tailed increments belonging to

the domain of attraction of a stable law and assumption 1.2 in the case of increments being in the

domain of attraction of a (possibly multidimensional) normal law.

Assumption 1.1. d = 1 and there exist sequences (an)n≥1, (bn)n≥1 of real numbers such that

Sn− an

bn

≡
∑n

i=1πi − an

bn

converges in distribution to an α-stable law with α ∈ (0,2). Further, the initial distribution µ is simple,

i.e.:

µ
�⋃

i 6= j

{x i = x j}
�
= 0, (I.1)

and both the evolution with increments distributed according to π and the one with increments

distributed according to the corresponding α-stable law make sense (which means that the particle

configuration can be reordered with probability 1 after each step of the evolution). Finally, without loss

of generality E[πn] = 0 and the πn are not almost surely equal to 0.

An example of a robust condition on µ and π which assures that the evolution makes sense

is the following. Denote by λ the intensity measure of µ, i.e. define

λ(A)≡ Eµ
h∑

n≥1

1{xn∈A}
i

(I.2)
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for Borel sets A⊂ R. If λ∗π is finite on all intervals of the type [x ,∞), then the particle configuration

can be reordered with probability 1, since it can be checked by a direct computation that λ∗π is the

intensity measure of the point process resulting from µ after one step of the evolution.

Assumption 1.2. The sequence of i.i.d. Rd -valued random variables (πn)n≥1 which describes the

increments of the evolution satisfies

∀ζ ∈ Rd , n ∈ N : exp (Λ(ζ))≡ E[exp(ζ ·πn)]<∞ (I.3)

and each component of the πn is of positive variance. For d > 1 assume further that the πn have a

density or take values in a lattice AZd+ b for a fixed real d×d matrix A and a vector b ∈ Rd . Moreover,

the initial measure µ on particle configurations is simple and such that

∀1≤ i ≤ d ∃ζi > 0 :
∑

n≥1

exp(ζi x
i
n)<∞ (I.4)

µ-a.s. where x i
n is the i-th coordinate of xn. Finally, without loss of generality E[πn] = 0.

In the case d = 1 assumption 1.2 allows us to deal with the evolutions considered in [14],

as well as various lattice-type evolutions of interest, e.g. πn being Bernoulli {−1,1}-valued or

following a signed Poisson distribution. Moreover, assumption 1.2 ensures that starting with a

locally finite, upper bounded configuration

x1 º x2 º x3 . . .

we get a configuration of the same type after each step of the evolution (apply the remark in section

1.2 of [2] to each of the d coordinate processes). We will denote the space of such configurations by

Ω and equip it with the σ-algebra fB which is generated by the shift invariant functions measurable

with respect to the σ-algebra B generated by occupancy numbers of finite boxes. For the sake of

full generality we include the case of configurations with finitely many particles by allowing the xn

to take the value (−∞, . . . ,−∞). Our main result is the following:

Theorem 1.3. Let µ be a quasi-stationary measure under an evolution satisfying assumption 1.1 or

assumption 1.2. Then

(a) µ is a superposition of Poisson point processes.

(b) The intensity measures λ of the latter are exactly those solutions of the Choquet-Deny equations

λ ∗ πa = λ with translates πa of π, going over all a ∈ Rd which have no point masses and for

which the corresponding Poisson point process is supported on upper bounded configurations.

(c) In case that d = 1 and supp π contains a non-trivial interval the intensity measures are given by

dλ = se−sx d x with s > 0. In case that d = 1 and supp π ⊂ pZ+ r the intensity measures are

either of the form

λ(A) =

∫

R+×[0,p)

∑

x∈(Zp+y)∩An

e−
sx

n dα(s, y), n ∈ N

or

λ(A) =

∫

R+×R+×[0,p)×[0,w)

∑

k,l∈Z: kp+lw+y∈A

e−s1k−s2 l dβ(s1, s2, y), w ∈ R+ : Zw ∩Zp = {0}
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where α, β are positive Radon measures such that α(R+, d y), β(R+,R+, d y) have no pure point

components and we have identified [0, p) × [0, w) with a system of representatives of cosets of

Zp⊕Zw in R in a canonical way.

In addition, we prove

Proposition 1.4. Let the πn be not almost surely constant and such that E[πn] = 0. Let further N be

a Poisson point process in Rd with intensity measure λ∞+̺ where λ∞ and ̺ are positive locally finite

measures on Rd satisfying

λ∞ ∗π= λ∞,

∃c ∈ Rd : λ∞(c+ (R−)
d) =∞, λ∞(R

d − (c+ (R−)d))<∞,

̺(Rd − (R−)d)<∞, ∀a < b, y ∈ (R+)d : ̺((a− γy, b− γy))→γ→∞ 0

and

(a− γy, b− γy) = (a1− γy1, b1− γy1)× · · · × (ad − γyd , bd − γyd).

Then the joint distribution of the gaps of N after n evolutions converges for n tending to infinity to the

corresponding quantity for a Poisson point process with intensity measure λ∞.

Remark. The quasi-stationary Poisson point processes with exponential intensities dλ = re−rτdr,

τ > 0 found in [14] are quasi-stationary also in the case that π is a lattice type distribution. They

can be recovered from Theorem 1.3 (c) as the special case

n= 1, dα(s, y) = dδτ(s)τe−τy d y.

This is due to the computation

λ([r,∞)) =
∫ p

0

∑

z∈Z∩
h

r−y

p
,∞
�

e−zτpτe−τy d y = e−rτ

where one has to observe that the sum is a geometric series and the integrand takes only two

different values.

A crucial step in the proof of Theorem 1.3 consists of writing quasi-stationary measures as

weak limits of superpositions of Poisson point processes which is called Poissonization in [14].

More precisely, we use the following generalization of the Poissonization Theorem of [14]:

Theorem 1.5 (Generalized Poissonization Theorem). Let d = 1 and µ be a quasi-stationary measure

of an evolution satisfying assumption 1.1 or 1.2, {FN}N≥1 be the family of functions defined by

FN (x) =
∑

m≥1

Pπ(xm+π1+ · · ·+πN ≥ x)

where (xn)n≥1 is a fixed starting configuration of the particles. Then for any non-negative continuous

function with compact support f ∈ C+c (R) it holds

eGµ( f ) = lim
N→∞

∫
dµ bGFN

( f ). (I.5)
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Here, eGµ denotes the modified probability generating functional of µ given by

eGµ = E
h

exp
�
−
∑

n

f (x1− xn)
�i

(I.6)

and bGFN
denotes the modified probability generating functional of the Poisson point process on R with

intensity measure λN uniquely determined by

λN ([a, b)) = FN (a)− FN (b).

To prove Theorem 1.5 it suffices to observe that the proof of the Poissonization Theorem in [14]

can be adapted to our context by applying the spreading property in the form of Lemma 11.4.I of

[5] which we state now for the sake of completeness:

Lemma 1.6 (Spreading property). Let (Yn)n≥1 be a sequence of non-constant i.i.d. Rd -valued random

variables. Then for any bounded Borel set A⊂ Rd it holds

sup
x∈Rd

P(Y1+ · · ·+ YN ∈ x + A)→N→∞ 0. (I.7)

The paper is organized as follows. We prove part (a) of Theorem 1.3 under assumption 1.1 in

section 2 and under assumption 1.2 in the one-dimensional case in section 3. Having at this point

the fact that each quasi-stationary measure of the one-dimensional evolution is a superposition of

Poisson point processes we determine in section 4 the intensity measures of the latter, thus proving

parts (b) and (c) of Theorem 1.3. Section 5 gives the proof of Theorem 1.3 for multidimensional

evolutions satisfying assumption 1.2 by extending the arguments of the preceding sections to the

multidimensional case. Finally, in section 6 we analyze the evolution in the space of Poisson point

processes with almost surely infinite, locally finite and upper bounded configurations in order to

prove Proposition 1.4.

2 Quasi-stationary measures of the evolution with heavy-tailed incre-

ments

In this section as well as sections 3 and 4 we restrict to the case d = 1 for the sake of a simpler

notation and prove Theorem 1.3 in the one-dimensional setting. Subsequently, we show in section

5 how our arguments extend to the case d > 1. In this section we present the proof of Theorem

1.3 (a) for an evolution satisfying assumption 1.1. We explain the main part of the proof first and

defer the technical issue of approximating the distribution of the increments by an α-stable law

to the end of the proof. The proof uses the Generalized Poissonization Theorem (Theorem 1.5) in

deducing that every quasi-stationary µ satisfying assumption 1.1 is a superposition of Poisson point

processes.

Proof of Theorem 1.3 (a) under assumption 1.1. 1) Let L(N) be a slowly varying function

such that
SN

L(N)N
1
α

converges to an α-stable law. Since we are only interested in the joint distribution

of the gaps between the particles, we may assume that the particle configuration

x1 ≥ x2 ≥ x3 ≥ . . .
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starts at x1 = 0. We will shift it subsequently to the left by numbers cN depending on the initial

configuration (xn)n≥1 and tending monotonously to infinity for N →∞. The resulting configuration

of particles will be denoted by

x1(N)≥ x2(N)≥ x3(N)≥ . . . .

We note that

FN (x) =
∑

n≥1

Pπ(xn+ SN ≥ x) =
∑

n≥1

Pπ

 
SN

L(N)N
1

α

≥
x − xn

L(N)N
1

α

!
.

Since a shift of the particle configuration by cN does not affect the value of eGµ and (cN )N≥1 can be

chosen to converge to infinity fast enough, the functions FN can be replaced by

∑

n≥1

Pπ

 
SN

L(N)N
1

α

≥
x − xn(N)

L(N)N
1

α

!
· 1{x≥−eN } ≈ C L(N)αN

∑

n≥1

1

(x − xn(N))
α
· 1{x≥−eN }

in the statement of the Generalized Poissonization Theorem where C = C(α) is a constant and

(eN )N≥1 is an increasing sequence in R+ depending on the initial configuration (xn)n≥1, converging

to infinity and satisfying eN ≤
cN

2
. The approximation by an α-stable law used here is justified in

steps 2 to 4. We remark at this point that the right-hand side is finite due to the assumption 1.1,

since it corresponds to the evolution with α-stable increments. Next, note that

bGFN
( f ) =

∫

R

FN (d x)exp(−FN (x))exp

�
−
∫ x

−∞
e− f (x−y)FN (d y)

�

which follows by conditioning the Poisson point process on its leader and was shown in [14]. Here,

the integrals are taken with respect to the infinite positive measures induced by the corresponding

non-increasing functions. Hence, again referring to steps 2 to 4 for the justification of the approxi-

mation by an α-stable law we may conclude

bGFN
( f )≈ C L(N)αN

∫ ∞

−eN

d
∑

n≥1

1

(x − xn(N))
α

exp

 
−C L(N)αN

∑

n≥1

1

(x − xn(N))
α

!

×exp

 
−C L(N)αN

∫ x

−eN

e− f (x−y)d
∑

n≥1

1

(y − xn(N))
α

!
.

Setting K(N)≡ C L(N)αN , the Generalized Poissonization Theorem yields:

eGµ( f ) = lim
N→∞

∫
dµ K(N)

∫ ∞

−eN

d
∑

n≥1

1

(x − xn(N))
α

exp

 
−K(N)

∑

n≥1

1

(x − xn(N))
α

!

×exp

 
−K(N)

∫ x

−eN

e− f (x−y)d
∑

n≥1

1

(y − xn(N))
α

!
.

Recalling that xn(N) was defined as xn− cN we may rewrite the inner integral as
∫ ∞

−eN

K(N)d
∑

n≥1

1

(x + cN − xn)
α

exp

 
−K(N)

∑

n≥1

1

(x + cN − xn)
α

!

×exp

 
−K(N)

∫ x

−eN

e− f (x−y)d
∑

n≥1

1

(y + cN − xn)
α

!
.
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Next, we enlarge the shift parameters cN , if necessary, to have

H(x)≡ lim
N→∞

K(N)
∑

n≥1

1

(x + cN − xn)
α

1{x≥−eN } <∞

such that for every M ≥ 1 the convergence is monotone on [−eM ,∞) for N ≥ M . Note that this is

possible, because the sum on the right-hand side is finite for the original choice of (cN )N≥1 due to

assumption 1.1 and, moreover, the sequence (cN )N≥1 can be adjusted separately for each starting

configuration (xn)n≥1. For the sake of shorter notation we introduce positive measures αN , α on R

defined by

α(d x) = H(d x), αN (d x) = K(N) 1{x≥−eN } d
∑

n≥1

1

(x + cN − xn)
α

.

Now, we would like to interchange the limit N → ∞ with the µ-integral on the right-hand side of

the equation for eGµ( f ). To this end, we remark that the Dominated Convergence Theorem may be

applied, since the integrands are dominated by
∫

R

αN (d x) = K(N)
∑

n≥1

1
�
−eN + cN − xn

�α

and the right-hand side can be made uniformly bounded in N by enlarging the cN , if necessary. By

interchanging the limit with the µ-integral we deduce

eGµ( f ) =
∫

dµ lim
N→∞

∫

R

αN (d x)exp
�
−αN ([x ,∞))

�
exp

�
−
∫ x

−∞
αN (d y) e− f (x−y)

�
.

But αN and α were defined in such a way that α is the weak limit of the αN . Thus, the Poisson

point processes with the intensity measures αN converge weakly to the Poisson point process with

the intensity measure α (see Theorem 11.1.VII in [5] for more details). In particular, their modified

probability generating functionals converge. Thus, we may pass to the limit and deduce

eGµ( f ) =
∫

dµ

∫

R

α(d x)exp (−α([x ,∞)))exp

�
−
∫ x

−∞
α(d y) e− f (x−y)

�
.

In other words, µ is a superposition of Poisson point processes with intensities α(d x) mixed accord-

ing to µ itself. This proves that each quasi-stationary measure of the evolution is a superposition

of Poisson point processes given that the distribution of the increments can be approximated by an

α-stable law in a suitable sense.

2) With the notation θn,N (x) ≡
x−xn(N)

L(N)N
1
α

we need to justify that we are allowed to replace the

expression

∑

n≥1

Pπ

 
SN

L(N)N
1

α

≥ θn,N (x)

!

appearing on the right-hand side of the statement of the Generalized Poissonization Theorem by

C L(N)αN
∑

n≥1

1

(x − xn(N))
α
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which plays the same role on the right-hand side of the corresponding Generalized Poissonization

Theorem for increments following an α-stable law. To this end, by the second remark on page 260

of [9] which characterizes domains of attraction of α-stable laws we can find constants dN ∈ [0,1],

functions ǫN : R→ R+ and slowly varying functions sN : R→ R+ such that

Pπ

 
SN

L(N)N
1

α

≥ θn,N (x)

!
= (dN + ǫN (θn,N (x)))L(N)

αNsN (θn,N (x))
1

(x − xn(N))
α

and ǫN (y)→y→∞ 0.

3) Suppose first that infN dN > 0. Choosing the shift parameters cN introduced in step 1 to

be large enough, we can achieve

ǫN ≡ sup
n
ǫN (θn,N (x))→N→∞ 0,

because the functions ǫN vanish at infinity. It follows

¯̄
¯̄
¯
∑

n≥1

Pπ

 
SN

L(N)N
1

α

≥ θn,N (x)

!
−
∑

n≥1

dN L(N)αNsN (θn,N (x))
1

(x − xn(N))
α

¯̄
¯̄
¯

≤
∑

n≥1

�
ǫN (θn,N (x))

�
L(N)αNsN (θn,N (x))

1

(x − xn(N))
α

=
∑

n≥1

ǫN (θn,N (x))

dN + ǫN (θn,N (x))
Pπ

 
SN

L(N)N
1

α

≥ θn,N (x)

!
≤

ǫN

dN + ǫN

∑

n≥1

Pπ

 
SN

L(N)N
1

α

≥ θn,N (x)

!

by taking the absolute value inside the sum and using the monotonicity of x 7→ x

dN+x
. Under the

assumption infN dN > 0 we have

ǫN

dN + ǫN

≤
ǫN

infN dN + ǫN

→N→∞ 0.

We conclude

lim
N→∞

∫
dµ bGFN

( f ) = lim
N→∞

∫
dµ bGeFN

( f )

for any test function f ∈ C+c (R) and functions eFN defined by

eFN (x) =
∑

n≥1

dN L(N)αNsN (θn,N (x))
1

(x − xn(N))
α

using the approximation of bGF by functionals continuous in F presented in the proof of Theorem

6.1 in [14]. This and the fact that the eFN ’s differ from the corresponding expressions in step 1

only by the constants dN and the slowly varying functions sN , which both can be dominated by an

appropriate choice of the sequence (cN )N≥1, justify the approximation by an α-stable law in the

case infN dN > 0. We observe that this reasoning goes through also under the weaker assumption of

lim infN→∞ dN > 0.
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4) Now, let lim infN→∞ dN = 0. We may even assume limN→∞ dN = 0, since we may pass to

the limit in the Generalized Poissonization Theorem through any subsequence. Since 1

dN

eFN is a

multiple of the expected number of particles on [x ,∞) after N steps in the evolution with α-stable

increments, the measure induced by 1

dN

eFN is not only locally finite, but also finite on intervals of the

type [x ,∞). Hence, by enlarging the shift parameters cN to make 1

dN

eFN (x) bounded uniformly in N

for each x , we can achieve that the measures induced by eFN converge weakly to the zero measure

on R for N tending to infinity. In addition, we have the estimate

FN (x) = eFN (x) +
∑

n≥1

�
ǫN (θn,N (x))

�
L(N)αNsN (θn,N (x))

1

(x − xn(N))
α
≤ eFN (x) +

ǫN

dN

eFN (x).

The rightmost expression converges to 0 for N → ∞ which shows that the approximation by an

α-stable law may be applied with C = 0. This follows again by the same approximation of bGF as

in the proof of Theorem 6.1 in [14]. We observe that this case corresponds to the quasi-stationary

measure in which the configuration with no particles occurs with probability 1. �

3 Quasi-stationary measures of the evolution with increments in the

domain of attraction of a normal law

In this section we show that a quasi-stationary measure µ of an evolution satisfying assumption 1.2

is a superposition of Poisson point processes. The main difference to the proof of Theorem 6.1 in

[14] is that we apply a multidimensional version of the Bahadur-Rao Theorem which applies to any

distribution π as in assumption 1.2. This leads to the replacement of Laplace transforms by modified

Laplace transforms and of normalizing shifts of the whole configuration by particle dependent shifts

due to the fact that the Bahadur-Rao Theorem gives only information on probabilities of large devi-

ations for lattice points in case that π is a lattice type distribution. The version of the Bahadur-Rao

Theorem we use is an analog of the results in [10] where we replace smooth domains by infinite

rectangles.

Lemma 3.1 (Multidimensional Bahadur-Rao Theorem). Let (πn)n≥1 be as in assumption 1.2 and set

SN ≡
∑N

n=1πn. Then in case that d = 1 and the πn are non-lattice or d > 1 and the πn have a density

we have for all x ∈ Rd and Rd ∋ q ≥ 0:

P(SN ≥ x + qN)

P(SN ≥ qN)
∼ exp(−η(ν(q)) · x) (III.8)

uniformly in q where ∼ means that the quotient of the two expressions tends to 1, η = η(q) is the

unique solution of

γ(q) = η · q−Λ(η), (III.9)

Λ is the logarithmic moment generating function, γ is the Fenchel-Legendre transform and ν(q) is the

minimizer of γ over the set {y ∈ Rd |y ≥ q}. In case that the πn are lattice with values in AZd + b,

equation (I.7) holds for all x ∈ AZd and all lattice points q ≥ 0 again uniformly in q where A is a real

d × d matrix and b ∈ Rd .
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Proof. 1) In the case d = 1 both asymptotics and their uniformity follow directly from Lemma 2.2.5

and the proof of the one-dimensional Bahadur-Rao Theorem in [6].

2) From now on let d > 1 and set

Γ≡ {y ∈ Rd |y ≥ q}, ΓN ≡
§

y ∈ Rd |y ≥ q+
x

N

ª
,

Γ∧ ΓN ≡
§

y ∈ Rd |y ≥min

�
q+

x

N
,q

�ª

where ≥ and min are meant componentwise. With an abuse of notation let P be the distribution of

the πn on Rd and following [10] define the q-centered conjugate by

dP(y;η) = exp(−Λ(η) +η · (y + q)) dP(y + q).

Next, choose ν to be the minimizer of γ over Γ and let νN be the corresponding minimizer over

Γ∧ ΓN . The representation formula for large deviations of [10] implies

P(SN ≥ x + qN)

P(SN ≥ qN)
=

∫
p

N(ΓN−νN )
e−
p

Nη(νN )·y dP∗N (
p

N y;η(νN ))
∫
p

N(Γ−νN )
e−
p

Nη(νN )·y dP∗N (
p

N y;η(νN ))
.

Note further that since η(νN ) solves ∇γ(νN ) = η(νN ) and νN is the boundary point of Γ∧ΓN where

the level set of γ touches Γ ∧ ΓN , it follows that η(νN ) is the inward normal to Γ ∧ ΓN in νN in

case that νN 6=min
�

q+ x

N
,q
�

and a vector pointing inward Γ∧ΓN otherwise. Hence, in both cases

the integrands in the numerator and denominator are bounded by 1, because Γ,ΓN ⊂ Γ ∧ ΓN by

definition. Next, let V be the covariance matrix of P(. ;η(ν)) and ϕ0,V be the Gaussian density with

mean 0 and covariance V . Applying the expansion in Lemma 1.1 of [10] and its analog for the

lattice case in section 2.6 of the same paper and using the boundedness of the integrands we deduce

P(SN ≥ x + qN)

P(SN ≥ qN)
∼

∫
p

N(ΓN−νN )
e−
p

Nη(νN )·yϕ0,V (y) d y
∫
p

N(Γ−νN )
e−
p

Nη(νN )·yϕ0,V (y) d y

∼

∫
N(ΓN−νN )

e−η(νN )·u du
∫

N(Γ−νN )
e−η(νN )·u du

=
e−Nη(νN )·

�
q+ x

N
−νN

�

e−Nη(νN )·(q−νN )
= e−η(νN )·x →N→∞ e−η(ν)·x

which proves the theorem. �

Next, we define modified Laplace transforms.

Definition 3.2. Let M be the space of finite measures on (0,∞) and M be the Borel σ-algebra on M

for the weak topology. Moreover, denote by

R̺(x)≡
∫ ∞

0

e−ux̺(du) (III.10)

the Laplace transform of a measure ̺ ∈M and by eR̺ its modified Laplace transform given by

eR̺(x)≡ R̺([x]) (III.11)
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and where [x] = x in the non-lattice case and [x] is the closest number to x in pZ not less than x in

the lattice case with supp π⊂ pZ+ r.

Now we are ready to prove that for d = 1 each quasi-stationary measure µ of an evolution satisfying

assumption 1.2 is a superposition of Poisson point processes. This corresponds to the first part of

Theorem 1.3 for evolutions satisfying the assumption 1.2.

Proposition 3.3. Let d = 1 and µ be a quasi-stationary measure for an evolution satisfying assumption

1.2. Then there exists a measure ν on (M,M ) such that for any f ∈ C+c (R):

eGµ( f ) =
∫

M

ν(d̺)bGeR̺( f ). (III.12)

Proof. 1) We introduce again the functions FN defined by

FN (x) =
∑

n

Pπ(xn+ SN ≥ x)

with SN =
∑N

n=1πn and a starting configuration (xn)n≥1. In order to deduce Proposition 3.3 from

Theorem 1.5 we want to find measures ̺N ∈M such that their modified Laplace transforms eR̺N
are

close to the functions FN in a suitable sense. Since eR̺N
(0) = 1, we will normalize the functions FN

such that FN (0) will be close to 1. For this purpose define numbers zN by

zN = inf{x ∈ R| FN (x)≤ 1}.

Moreover, let zn,N = zN for all n if the distribution of the πn is non-lattice and let zn,N ≥ zN be closest

number to zN satisfying

zn,N − xn

N
∈ pZ+ r

if the distribution of the πn is supported in pZ+ r. Lastly, define functions HN which may be viewed

as the normalized versions of the functions FN by

HN (x) =
∑

n

Pπ(xn+ SN ≥ x + zn,N ).

Note that in the lattice case each function HN is piecewise constant with jumps on a subset of pZ.

Applying Lemma 3.1 we deduce that for an appropriate K > 0 and all n for which xn ≥ −KN it

holds

Pπ(xn+ SN ≥ x + zn,N ) = Pπ(SN ≥ zn,N − xn)exp

�
−x ·η

�
zn,N − xn

N

��
(1+ ǫn,N )

for all x ∈ R in the non-lattice case and for all x ∈ pZ in the lattice case. Moreover,

sup
n
|ǫn,N | →N→∞ 0.

Hence, with high probability HN (x) can be written as

∫ ∞

0

̺N (du)e−ux(1+ ǫN (u)) +
∑

n: xn<−KN

Pπ(xn+ SN ≥ x + zn,N )
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where

̺N (du) =
∑

n: xn≥−KN

Pπ(SN ≥ zn,N − xn)δη
�

zn,N−xn

N

�(du),

because by the affine bound on zn,N in step 3 below we have

µ(̺N ∈M)→N→∞ 1.

Choosing ǫN (u) = ǫn,N for u= η
�

zN−xn

N

�
and ǫN (u) = 0 otherwise, we have

sup
u∈R
|ǫN (u)| →N→∞ 0.

2) In this step we will prove that

∑

n: xn<−KN

Pπ(xn+ SN ≥ x + zn,N )

tends to 0 for N →∞ and an appropriately chosen K .

In case that limη→∞Λ
′(η) < ∞, we conclude that the support of the distribution of the πn

is bounded from above. Hence, the expression above vanishes for a fixed large enough K and N

tending to infinity (provided that zn,N is bounded from below by an affine function of N uniformly

in n which will be proven in the next step).

It remains to consider the case limη→∞Λ
′(η) = ∞. As in the proof of the Bahadur-Rao The-

orem in [6] we define ψN (η)≡ η
p

NΛ′′(η) and let bFq

N be the distribution function of
∑N

i=1

πi−qp
Λ′′(q)

.

In the same way as in [6] we deduce for all n with xn <−KN that

Pπ(xn+ SN ≥ x + zn,N ) =

exp

�
−Nγ

�
x + zn,N − xn

N

��∫ ∞

0

exp

�
−yψN

�
η

�
x + zn,N − xn

N

���
d bF

x+zn,N−xn

N

N (y).

Provided we have a lower bound on zn,N which is affine in N and uniform in n and choosing K large

enough we have for large N that η
�

x+zn,N−xn

N

�
> 0 and hence ψN

�
η
�

x+zn,N−xn

N

��
> 0, so the

integral is bounded by 1. Thus, it suffices to show that for a large K

∑

n: xn<−KN

exp

�
−Nγ

�
x + zn,N − xn

N

��

converges to 0 for N → ∞. Recall the definition of ζ1 in assumption 1.2 and assume the lower

bound

zn,N ≥ AN + B

with A, B independent of n which will be proven in the next step. Next, choose K such that

∀q ≥ K + A : γ(q)≥ 2ζ1q,

K ≥−2A,
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which is possible because γ is convex with γ′(q) = η(q)→q→∞∞. Thus, for N large enough

∑

n: xn<−KN

exp

�
−Nγ

�
x + zn,N − xn

N

��
≤

∑

n: xn<−KN

exp
�
−2ζ1(x + zn,N − xn)

�

≤
∑

n: xn<−KN

exp
�
−2ζ1(x + AN + B− xn)

�

≤ exp
�
−2ζ1(x + B)

� ∑

n: xn<−KN

exp
�
ζ1 xn

�
→N→∞ 0

for µ-a.e. (xn)n≥1 and where the convergence follows from assumption 1.2.

3) We will bound zn,N from below by an affine function in N uniformly in n, i.e. find uni-

form constants A, B such that

zn,N ≥ AN + B

for all n, N . To this end note that by the Central Limit Theorem we have

FN (x3)≥ Pπ(x1+ SN ≥ x3) + Pπ(x2+ SN ≥ x3) + Pπ(x3+ SN ≥ x3)→N→∞
3

2
,

hence FN (x3) > 1 for N large enough. By the definition of zN it follows that zN ≥ x3 for N large

enough. Thus, we can find constants A, B such that for all N we have zN ≥ AN + B. The definition

of zn,N implies immediately

zn,N ≥ zN ≥ AN + B

as claimed.

4) Putting the first three steps together, we conclude

HN (x) =

∫ ∞

0

e−ux̺N (u)(1+ ǫN (u))du+ eǫN (x)

with δN ≡ supu |ǫN (u)| →N→∞ 0, eǫN (x) →N→∞ 0 for all x ∈ R in the non-lattice case and for all

x ∈ pZ in the lattice case. It follows directly that for all such x we can find positive numbers δN

tending to 0 for N tending to infinity such that

|HN (x)− R̺N
(x)| ≤ δN R̺N

(x) + eǫN (x).

Recalling that in the lattice case the functions HN are piecewise constant having jumps only on a

subset of pZ we may write the same inequality in terms of the functions eR̺N
and get

|HN (x)− eR̺N
(x)| ≤ δN

eR̺N
(x) + eǫN (x)

with δN →N→∞ 0 and eǫN (x)→N→∞ 0 for all x ∈ R in both cases. We will use this estimate in order

to rewrite the equation

eGµ( f ) = lim
N→∞

∫
dµ bGFN

( f )
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of Theorem 1.5 in terms of the functions eR̺N
. To this end for each N define a measurable transfor-

mation TN of the space of configurations by

TN : Ω→ Ω, (xn)n≥1 7→ (xn+ KN + zN − zn,N )n≥1

and let µN be the measure on Ω induced by µ via TN . Then by the definition of µN and by the

invariance of bG under the shift of particles by KN + zN we may conclude

eGµ( f ) = lim
N→∞

∫
dµN

bGHN
( f ).

The explicit representation of the modified probability generating functional of a Poisson point pro-

cess implies

eGµ( f ) = lim
N→∞

∫
dµN

∫

R

de−HN (x) exp

�
−
∫ x

−∞

�
1− e− f (x−y)

�
dHN (y)

�
.

Taking into account the bounds

|e−x − e−y | ≤ |x − y |

for non-negative x , y and

|HN (x)− eR̺N
(x)| ≤ δN

eR̺N
(x) + eǫN (x)

it follows that

eGµ( f ) = lim
N→∞

∫
dµN

∫

R

de−HN (x) exp

�
−
∫ x

−∞

�
1− e− f (x−y)

�
dHN (y)

�

= lim
N→∞

∫
dµN

∫

R

de−
eR̺N
(x) exp

�
−
∫ x

−∞

�
1− e− f (x−y)

�
deR̺N

(y)

�

= lim
N→∞

∫
dµN

bGeR̺N
( f ).

To be precise, one can estimate |e−HN (x)− e−
eR̺N
(x)| from above to prove

|de−HN (x)− de−
eR̺N
(x)| w→ 0

and then estimate the difference between the two integrands in a similar way.

5) Define by νN the probability measure on M induced by µN through the measurable map-

ping eTN given by

eTN : Ω→M, (xn)n≥1 7→ ̺N

if ̺N ∈M and eTN ((xn)n≥1)≡ 0 otherwise. Step 4 and the definition of νN imply

eGµ( f ) = lim
N→∞

∫

M

νN (d̺)bGeR̺( f ).
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Our next claim is that the sequence (νN )N≥1 is tight. To this end we will show that for each δ > 0

there exists a function M such that for all N it holds

νN (̺ ∈M| R̺(x)≤ M(x))≥ 1−δ.

The compactness of {̺ ∈ M| R̺(x) ≤ M(x)} will then imply the claim. Note that because of

the monotonicity of R̺ we may replace R̺ by eR̺ in the last inequality without loss of generality.

Recalling the definition of νN we observe that the inequality corresponds to

µN ((xn)n≥1 ∈ Ω| eR̺N
(x)≤ M(x))≥ 1−δ.

The upper bound on |HN (x)− eR̺N
(x)| and the definition of µN allows us to replace eR̺N

by HN and

subsequently to rewrite the inequality as

µ((xn)n≥1 ∈ Ω|
∑

n

Pπ(xn+ SN ≥ x + KN + zN )≤ M(x))≥ 1−δ.

We can get an upper bound on
∑

n Pπ(xn+SN ≥ x+KN+zN ) which is uniform in N by adapting the

estimates of step 2 to the present situation and enlarging the constant K if necessary. More precisely,

in

Pπ(xn+ SN ≥ x + KN + zN )≤ exp

�
−Nγ

�
x + KN + zN − xn

N

��

we can bound Nγ
�

x+KN+zN−xn

N

�
from below by ζ1(x + KN + zN − xn) and subsequently estimate

zN by AN + B leading to

∑

n

Pπ(xn+ SN ≥ x + KN + zN )≤
∑

n

exp
�
−ζ1(x + KN + AN + B− xn)

�
.

Finally, the right-hand side is bounded by e−ζ1(x+B)
∑

n eζ1 xn which is finite µ-a.s. The claim follows

now by choosing M(x) satisfying

µ((xn)n≥1|e−ζ1(x+B)
∑

n

eζ1 xn ≤ M(x))≥ 1−δ.

Strictly speaking we may have to choose a larger M(x), because the estimate above is only valid

for N ≥ N0(x) with probability tending to 1 for N0(x) tending to infinity. Hence, we can choose

N0(x) such that the probability is larger than 1− δ
2

and fix an M(x) large enough for our purposes

afterwards. The claim readily follows.

6) Define ν to be the limit point of a converging subsequence of (νN )N≥1. Then the same

approximation of bGF by functionals continuous in F as in [14] implies

eGµ( f ) = lim
N→∞

∫

M

νN (d̺)bGeR̺( f ) =
∫

M

ν(d̺)bGeR̺( f )

which proves the proposition. �
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4 Poisson intensities

Up to this point we have shown that a quasi-stationary measure of a one-dimensional evolution

satisfying the assumption 1.1 or the assumption 1.2 is given by a superposition of Poisson point

processes. In this section we provide the exact shape of the Poisson intensity measures both in case

that assumption 1.1 and in case that assumption 1.2 is satisfied. This is done by exploiting the

properties of the steepness relation defined next.

Definition 4.1. Let F be the space of positive, non-increasing, left-continuous functions F on R with

F(x)→x→∞ 0. For any two functions F, G ∈ F define G to be steeper than F if

∀u> 0 : G(x) = F(y) ⇒ G(x + u)≤ F(y + u). (IV.13)

Remark. Note that since the measures ̺ ∈M are supported on (0,∞), their Laplace transforms R̺

and also their modified Laplace transforms eR̺ are elements of F .

The main tool in the characterization of the Poisson intensities is the following result.

Lemma 4.2. Let ̺ be a measure inM, F = eR̺ ∈ F and λ be the unique positive measure on R with

∀a < b : λ([a, b)) = F(a)− F(b). (IV.14)

If the πn satisfy assumption 1.2, π is the probability distribution of each of the πn and G ∈ F is the

unique function with

∀a < b : G(a)− G(b) = (λ ∗π)([a, b)), (IV.15)

then G is steeper than F.

Proof. Let G(a) = F(b) for some a, b ∈ R. Without loss of generality we may assume b = 0,

because otherwise we can replace ̺ by e̺(du) ≡ esu̺(du) yielding shifted versions eF , eG of F , G

with eF(0) = F(b) for a suitable s. By performing the same argument as below for eF , eG instead of

F , G we can conclude that eG is steeper than eF . Thus, G is steeper than F by the invariance of the

steepness relation under shifts. Furthermore we may assume that a ≥ 0, because otherwise we can

replace π by a shifted version of itself and note that the following argument does not depend on the

fact that the expectation of π is zero. We need to show G(a+ v) ≤ F(v) for any v > 0. By Fubini’s

Theorem and integration by parts we can estimate G(x) for x ≥ 0 in the following way:

G(x) =

∫ ∞

−∞
λ([x − y,∞))π(d y) =

∫ ∞

−∞
R̺([x − y])π(d y) =

∫ ∞

−∞

∫ ∞

0

e−u[x−y]̺(du)π(d y)

=

∫ ∞

0

∫ ∞

−∞
e−u[x−y]π(d y)̺(du)≤

∫ ∞

0

e−u[x]

�∫ ∞

−∞
eu[y]π(d y)

�
̺(du)

=

∫ ∞

0

e−u[x]

�∫ ∞

−∞
euyπ(d y)

�
̺(du) =

∫ ∞

0

[x]e−ta[x]

∫ t

0

�∫ ∞

−∞
euyπ(d y)

�
̺(du) d t

where we have used −[x− y]≤−[x]+[y] and the fact that [y] = y on the support of π. A similar

but simpler calculation for F implies for x ≥ 0 that

F(x) = R̺([x]) =

∫ ∞

0

e−u[x]̺(du) =

∫ ∞

0

[x]e−t[x]

∫ t

0

̺(du) d t.
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A calculation for G(a+ v) similar to that for G(x) together with the calculation for F(x) imply

G(a+ v)≤
∫ ∞

0

[v]e−t[v]

∫ t

0

�∫ ∞

−∞
eu(y−a)π(d y)

�
̺(du) d t

≤
∫ ∞

0

[v]e−t[v]

∫ t

0

̺(du) d t = F(v)

where we have used the inequality

∫ t

0

�∫ ∞

−∞
eu(y−a)π(d y)

�
̺(du)≤

∫ t

0

̺(du)

of Lemma 7.2 in [14] which relies only on the fact that π is a probability measure and not on its

shape. �

The last tool we need is the following classical version of the Choquet-Deny Theorem (Theo-

rem 3 in [7]).

Lemma 4.3 (Choquet-Deny Theorem). Let π be a probability measure on a locally compact abelian

group X . Then the positive measures λ on X satisfying λ ∗π= λ are given by

λ=

∫

E×Γ
( fω) ∗δx dν( f , x)

where Γ is a set containing exactly one representative of each coset of the subgroup Y generated by the

support of π in X , the set E is given by E = { f |∀g1, g2 ∈ Y : f (g1 + g2) = f (g1) f (g2)}, the measure

ω is a Haar measure on Y and ν is a positive Radon measure on E ×Γ.

The Choquet-Deny Theorem in this general form allows us to finish the proof of Theorem

1.3 in the one-dimensional setting which is one of the main results of the paper.

Proof of Theorem 1.3 in the one-dimensional setting. 1) We have shown above that under as-

sumption 1.1 or 1.2 each quasi-stationary measure is a superposition of Poisson point processes.

To prove that the intensity measures of the latter have the desired form, we will restrict to the

case that assumption 1.2 is satisfied. The other case is completely analogous and requires only

a replacement of the space over which the superposition is taken. From now on we consider an

evolution satisfying assumption 1.2 and let F , G be functions constructed as in Lemma 4.2 where ̺

will vary over M, so that F varies over the space of the modified Laplace transforms of measures in

M. Making N + 1 steps of the evolution instead of N in the proof of Proposition 3.3 shows that

eGµ( f ) =
∫

M

ν(d̺)bGF ( f ) =

∫

M

ν(d̺)bGG( f ).

From here it follows that λ ∗π is a translate of λ with the notation used in Lemma 4.2. This can be

shown as in the proof of Theorem 8.1 in [14], applying our Lemma 4.2 instead of their Theorem 7.3.
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2) Applying the Choquet-Deny Theorem in the case that supp π contains a non-trivial inter-

val (and thus the same holds for supp πa) we get Y = X = R; moreover, Γ can be chosen as {0} and

ω may be chosen as the Lebesgue measure L
1 on R. Hence,

λ=

∫

E
( f L

1) α(d f )

for a Radon measure α on E . Noting that λ corresponds to a function in F , we conclude that α is

supported on f ∈ E with the continuity and decay properties of functions in F , i.e. f ∈ {e−sx |s > 0}
as claimed.

3) In the case supp π ⊂ pZ + r for some p > 0, r ≥ 0, so supp πa ⊂ pZ + (r − a), we dis-

tinguish the cases Zp+Z(r − a) = Z
p

n
for an n ∈ N and Zp ∩Z(r − a) = {0} which will correspond

to the two different types of the Poisson intensity measures.

In the first case we may apply the Choquet-Deny Theorem with Y = Zp + Z(r − a) = Z
p

n
,

Γ = [0,
p

n
) and ω being the counting measure ωc on Y and conclude

λ(A) =

∫

E×
�

0,
p

n

�
�
( fωc) ∗δy

�
(A) deν( f , y)

for a positive Radon measure eν on E ×
�

0,
p

n

�
. Noting that the only elements of E with the decay

properties of functions in F are {e−sx |s > 0} restricted to Z
p

n
, we deduce

λ(A) =

∫

R+×
�

0,
p

n

�
�
(e−sxωc) ∗δy

�
(A) deα(s, y)

for a suitable Radon measure eα on R+ ×
�

0,
p

n

�
. The last equation can be rewritten as

λ(A) =

∫

R+×
�

0,
p

n

�

∑

x∈
�
Z

p

n
+y
�
∩A

e−sx deα(s, y) =

∫

R+×
�

0,
p

n

�

∑

x∈(Zp+ny)∩An

e−s x

n deα(s, y)

=

∫

R+×[0,p)

∑

x∈(Zp+y)∩An

e−s x

n dα(s, y)

with a positive Radon measure α on R+ ×
�

0, p
�
. Finally, a Poisson point process with intensity

measure λ on R is supported on simple configurations iff α(R+, d y) has no point masses.

In the second case we apply the Choquet-Deny Theorem with Y = Zp ⊕ Z(r − a), noting

that ω may be chosen as the counting measure ωc on Y and identifying Γ with [0, p)× [0, r − a)

via the Chinese Remainder Theorem. The result is

λ(A) =

∫

E×[0,p)×[0,r−a)

�
( fωc) ∗δy

�
deν( f , d y)
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for a positive Radon measure eν on E × [0, p)× [0, r − a). The set E of exponentials on Y with the

decay properties of functions in F is given here by f (kp + l(r − a)) = e−s1k−s2 l with parameters

s1, s2 > 0. Hence, the last equation can be rewritten as

λ(A) =

∫

R+×R+×[0,p)×[0,r−a)

∑

k,l∈Z: kp+l(r−a)+y∈A

e−s1 l−s2k dβ(s1, s2, y)

with a suitable positive Radon measure β on R+ × R+ × [0, p) × [0, r − a). The equation in the

theorem follows by setting w ≡ r − a. Finally, note that a Poisson point process with intensity

measure µ is supported on simple configurations iff β(R+,R+, d y) has no point masses.

4) In this last step we will prove that a Poisson point process with the intensity measure λ is

a simple quasi-stationary measure for our evolution (hence, superpositions of such processes are

also simple and quasi-stationary). The simplicity follows from the corresponding remarks in step

3. For quasi-stationarity note that λ was constructed as the solution of a Choquet-Deny equation

which by Lemma 7.4 in [14] implies

PF (x1− x2 ≥ u) =

∫ ∞

−∞
e−F(x−u)dF(x) =

∫ ∞

−∞
e−G(x−u)dG(x) = PG(x1− x2 ≥ u).

Here PF , PG denote probabilities associated with Poisson point processes corresponding to F , G,

respectively. Thus, the distribution of the first gap is invariant under the evolution. A similar

calculation proves that this holds for any finite number of gaps which proves quasi-stationarity.

�

5 Quasi-stationary measures of the multidimensional evolution

This section contains a sketch of the proof of Theorem 1.3 under the assumption 1.2 for any

dimension d in which we explain how the arguments of sections 3 and 4 generalize to the

multidimensional case.

Proof of Theorem 1.3 under assumption 1.2. 1) For the extension of the Generalized Pois-

sonization Theorem define functions FN in the same way as for d = 1 with º instead of ≥ and

let measures λN be defined analogously to the case d = 1 by setting λN ([a, b)) for any finite box

[a, b) to be the alternating sum of values of FN at the vertices of the box. Note that λN is a positive

measure, because every summand Pπ(xn + SN º x) in the definition of FN defines a probability

measure on Rd . Moreover, for test functions f ∈ C+c (R
d) let the modified probability generating

functional eGµ( f ) be defined by

eGµ( f ) = E
h

exp
�
−
∑

n

f (x1− xn)
�i

where the configurations are arranged in the non-ascending order º. Define bGFN
as the corre-

sponding quantity for the d-dimensional Poisson point process with intensity measure λN . Then

performing the proof of the Poissonization Theorem of [14] with ≥ replaced by º and < re-

placed by 6º and applying the spreading property (Lemma 1.6) to each of the components to bound
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Pπ(SN º x , SN 6º x + D) uniformly in x one deduces

eGµ( f ) = lim
N→∞

∫
dµ bGFN

( f )

for any f ∈ C+c (R
d).

2) To prove that µ is a superposition of Poisson point processes we generalize the proof of

Proposition 3.3. Using again the Central Limit Theorem we can find points zN on the line l ⊂ Rd

appearing in the definition of º with FN (zN ) ≤ 1 and having coordinates which are bounded from

below by an affine function of N . Define the points zn,N such that zn,N ≥ zN and p
�

zn,N−xn

N

�
is a

lattice point which is possible by the definition of p (see the definition of º). Then each component

of zn,N is also bounded from below by an affine function of N . Applying the d-dimensional version

of the Bahadur-Rao Theorem (Lemma 3.1) with points p
�

zn,N−xn

N

�
and introducing again measures

µN , νN we can conclude

eGµ( f ) = lim
N→∞

∫

M

νN (d̺)bGeR̺( f )

where nowM denotes the space of finite measures on (R+)
d and eR̺ denotes the Laplace transform

of a ̺ ∈M with the argument modified to the closest lattice point from above if necessary. Observe

that eR̺ is a tail distribution function of a locally finite positive measure for ̺ ∈M, because for any

x ≥ 0 the function e−u·x is the tail distribution function of a product of exponential distributions on

R. By exactly the same argument as in section 3 it follows that the sequence νN is tight and we let ν

be a subsequential limit of it. By the approximation of the functional eGF by functionals continuous

in F as done in [14] for d = 1 one may conclude

eGµ( f ) =
∫

M

ν(d̺)bGeR̺( f ),

so µ is a superposition of Poisson point processes.

3) To extend section 4 to the case d > 1 we extend first the steepness relation to the space

of tail distribution functions F of positive measures on Rd which satisfy F(λx) →λ→∞ 0 for

each x ∈ Rd − (R−)d . We call G steeper than F if F(x) = G(y) for some x , y ∈ Rd implies

F(x + a)≥ G(y + a) for all a ∈ (R+)d . The same calculation as before for each of the d coordinates

yields that functions become steeper if convolved with probability measures in the sense of Lemma

4.2. Finally, the same monotonicity argument as in section 4 shows that for intensity measures λ

of quasi-stationary Poisson point processes λ ∗ π has to be a translate of λ. Finally, the Poisson

point process with intensity measure λ has to be supported on upper bounded configurations and

be simple, hence λ has no point masses. �

6 Attractivity

In this concluding section we prove attractivity of certain quasi-stationary Poisson point processes in

the space of all Poisson point processes with almost surely infinite, locally finite and upper bounded
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configurations by analyzing the corresponding evolution of intensity measures. The latter will be

assumed locally finite satisfying

λ(c + (R−)
d) =∞, λ(Rd − (c + (R−)d))<∞

for a c ∈ Rd depending on λ which means precisely that the corresponding Poisson point processes

are supported on infinite, locally finite and upper bounded configurations. As before we will denote

the points of such configurations by x1, x2, . . . in descending order º and call the Poisson point

processes and intensity measures of this type regular. In particular, it turns out that the space

of regular Poisson point processes is invariant under evolutions with i.i.d. increments. For the

increments (πn)n≥1 we assume for this section that E[πn] = 0 and the πn are not almost surely equal

to 0. Obviously, the two assumptions can be made without loss of generality since a recentering of

the increments does not affect the joint distribution of the gaps of the evolved process which will

be the only quantity of interest. Lemma 6.1 and Lemma 6.2 are the key to the attractivity result.

The first is taken from section 11.4 of [5], so we omit the proof and the proof of the second is given

below.

Lemma 6.1. Let N be a regular Poisson point process on Rd with corresponding intensity measure λ

and configurations (xn)n≥1. Define eN to be the point processes with configurations

(yn)n≥1 ≡ (xn+πn)n≥1

where πn are i.i.d. random variables with distribution π which are independent of N. Then eN is a

Poisson point process with intensity measure λ ∗π.

Lemma 6.2. Let N be a regular Poisson point process with intensity measure λ and suppose that there

exists a measure λ∞ corresponding to a regular Poisson point process and satifying

λ ∗π∗n w→n→∞ λ∞ (VI.16)

where π is the distribution of the increments of the evolution as in Lemma 6.1. Then the joint

distribution of the gaps of N after n evolutions converges to the corresponding quantity for the Poisson

point process with intensity measure λ∞ for n→∞.

Proof. From the multidimensional version of the Levy Continuity Theorem it can be deduced

that the convergence of the joint distribution of the gaps follows from the convergence of the

corresponding modified probability generating functionals

E

h
exp
�
−
∑

n

f (x1− xn)
�i

for test functions f ∈ C+c (R
d), so it suffices to show the convergence of the latter. To this end

let Nk be the point process resulting from N after k steps of the evolution. By Lemma 6.1 it is a

Poisson point process with intensity measure λ∗π∗k. By the general formula for modified probability

generating functionals of Poisson point processes the modified probability generating functional of

Nk is given by

bGλ∗π∗k( f )≡
∫

Rd

�
λ ∗π∗k

�
(d x)exp

�
− (λ ∗π∗k)([x ,∞))

�
exp

�
−
∫ x

−∞
e− f (x−y)(λ ∗π∗k)(d y)

�
.
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Even though bGλ is not a continuous functional of λ, it can be approximated arbitrarily well by

continuous functionals of λ in the appropriate L1 sense as was done in the proof of Theorem 6.1 in

[14]. Hence, the weak convergence of λ ∗π∗k towards λ∞ implies

bGλ∗π∗k( f )→k→∞ bGλ∞( f )

for all test functions f ∈ C+c (R
d). The claimed convergence of joint gap distributions readily

follows. �

We prove now Proposition 1.4. It shows that any regular solution λ∞ of the Choquet-Deny

equation λ ∗π= λ is attractive in the direction of a measure ̺ where ̺ can be infinite, but “small”

enough in the sense that ̺ is regular and its tail at infinity is dominated by the tail of any multiple

of the Lebesgue measure. Since any of these multiples are fixed points under the evolution in case

that the πn have a density, adding something of the order of such a multiple αL d to λ∞ will

result in attractiveness towards λ∞ + αL
d instead of λ∞. Hence, Proposition 1.4 is the strongest

attractivity result possible in this context.

Proof of Proposition 1.4. By Lemma 6.2 and the bilinearity of the convolution it suffices to

show

(̺ ∗π∗n)((a, b))→n→∞ 0

for any a ≤ b. To this end fix a and b and define f (y) = ̺((a− y, b− y)). The spreading property

(Lemma 1.6) implies that for any 0< ǫ < 1 there exists a sequence 0< an(ǫ)→n→∞∞ with

π∗n((−an(ǫ), an(ǫ))
d)≤ ǫ.

We conclude that for any fixed ǫ it holds

(̺ ∗π∗n)((a, b)) =

∫

Rd

f (y) π∗n(d y)≤ sup
|y|∞≥an(ǫ)

f (y) + ǫ sup
|y|∞≤an(ǫ)

f (y)

≤ sup
|y|∞≥an(ǫ)

f (y) + ǫ sup
y∈Rd

f (y).

Hence, by the assumptions on ̺ we have

lim sup
n→∞
(̺ ∗π∗n)((a, b))≤ ǫ sup

y∈Rd

f (y).

By letting ǫ tend to 0 we deduce that the limit limn→∞(̺ ∗π∗n)((a, b)) exists and equals to 0. �
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