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Université Paris 6 – Pierre et Marie Curie
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Abstract

We consider the problem of conditioning the Brownian excursion to have a fixed time average
over the interval [0, 1] and we study an associated stochastic partial differential equation with
reflection at 0 and with the constraint of conservation of the space average. The equation is
driven by the derivative in space of a space-time white noise and contains a double Laplacian
in the drift. Due to the lack of the maximum principle for the double Laplacian, the standard
techniques based on the penalization method do not yield existence of a solution .
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1 Introduction

The aim of this paper is to construct a stochastic evolution, whose invariant measure is the law
of the Brownian excursion (eθ, θ ∈ [0, 1]) conditioned to have a fixed average

∫ 1
0 eθ dθ = c > 0

over the interval [0, 1].

Since the distribution of the random variable
∫ 1
0 eθ dθ is non-atomic, and the Brownian excursion

is not a Gaussian process, it is already not obvious that such conditioning is well defined. The
first part of the paper will be dedicated to this problem: we shall write down the density of
the random variable

∫ 1
0 eθ dθ and a regular conditional distribution of the law of (eθ, θ ∈ [0, 1]),

given
∫ 1
0 eθ dθ. The same will be done for the Brownian meander (mθ, θ ∈ [0, 1]).

After this is done, we shall turn to the problem of finding a natural stochastic dynamics as-
sociated with the conditioned laws thus obtained. We recall that a stochastic dynamics whose
invariant measure is the law of the Brownian excursion has been studied in [8] and [10], where
a stochastic partial differential equation with reflection and driven by space-time white noise is
proven to be well posed and associated with a Dirichlet form with reference measure given by
the law of the Brownian excursion.

In the present case, we shall see that a natural dynamics with the desired properties solves a
fourth order stochastic partial differential equation with reflection and driven by the derivative
in space of a space-time white noise:







































∂u

∂t
= − ∂2

∂θ2

(

∂2u

∂θ2
+ η

)

+
√

2
∂

∂θ
Ẇ ,

u(t, 0) = u(t, 1) =
∂3u

∂θ3
(t, 0) =

∂3u

∂θ3
(t, 1) = 0

u(0, θ) = x(θ)

(1.1)

where Ẇ is a space-time white noise on [0, +∞) × [0, 1], x : [0, 1] 7→ R+ is continuous and
c :=

∫ 1
0 x(θ) dθ > 0, u is a continuous function of (t, θ) ∈ [0, +∞) × [0, 1], η is a locally finite

positive measure on (0, +∞) × [0, 1], subject to the constraint:

u ≥ 0,

∫

(0,+∞)×[0,1]
u dη = 0. (1.2)

This kind of equations arises as scaling limit of fluctuations of conservative interface models on
a wall, as shown in [12], where however different boundary conditions are considered.

Indeed, notice that the boundary conditions in (1.1) are mixed, i.e. Dirichlet for u and Neumann

for ∂2u
∂θ2 . In [6] and [12] a similar equation, with Neumann boundary conditions for u and ∂2u

∂θ2 , has
been studied, together with the scaling limit of interface models mentioned above. In that case
it was possible to prove pathwise uniqueness and existence of strong solutions for the SPDE. In
the case of (1.1) we can only prove existence of weak solutions, since we have failed to obtain a
uniqueness result: see subsection 2.6 below.

The dynamics is anyway uniquely determined by a natural infinite-dimensional Dirichlet form
on the path space of the Brownian excursion, to which it is associated. See Theorem 2.3 below.
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We also notice that the Brownian meander (mθ, θ ∈ [0, 1]) conditioned to have a fixed average
and the density of

∫ 1
0 mθ dθ appear in an infinite-dimensional integration by parts formula in [6,

Corollary 6.2].

2 The main results

In this section we want to present the setting and the main results of this paper. We denote by
〈·, ·〉 the canonical scalar product in L2(0, 1):

〈h, k〉 :=

∫ 1

0
hθ kθ dθ

and by ‖ · ‖ the associated norm. In particular we often use the notation 〈h, 1〉 =
∫ 1
0 hθ dθ.

2.1 Conditioning the Brownian excursion to have a fixed time average

Let (et, t ∈ [0, 1]) be the normalized Brownian excursion, see [9], and (βt, t ∈ [0, 1]) a Brownian
bridge between 0 and 0. Let {m, m̂, b} be a triple of processes such that:

1. m and m̂ are independent copies of a Brownian meander on [0, 1]

2. conditionally on {m, m̂}, b is a Brownian bridge on [1/3, 2/3] from 1√
3
m1 to 1√

3
m̂1

We introduce the continuous processes:

vt :=



































1√
3

m3t, t ∈ [0, 1/3]

bt, t ∈ [1/3, 2/3],

1√
3

m̂1−3t, t ∈ [2/3, 1],

(2.1)

V c
t :=















vt, t ∈ [0, 1/3] ∪ [2/3, 1]

vt + 18 (9 t (1 − t) − 2)

(

c −
∫ 1

0
v

)

, t ∈ [1/3, 2/3].

(2.2)

Notice that
∫ 1
0 V c

t dt = c. We set for all ω ∈ C([0, 1]):

ρc(ω) := exp







−162

(

∫ 1

3

0
(ωr + ω1−r) dr +

ω 1

3

+ ω 2

3

6
− c

)2

− 3

2
(ω 2

3

− ω 1

3

)2







.

We recall that 〈h, 1〉 =
∫ 1
0 hθ dθ is the average of h ∈ L2(0, 1). Then the first result of this paper

is the following
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Theorem 2.1. Setting for all c ≥ 0

p〈e,1〉(c) =: 27

√

6

π3
E

[

ρc(V c) 1{V c
t ≥0, ∀t∈[0,1]}

]

,

and for all bounded Borel Φ : C([0, 1]) 7→ R and c > 0

E [Φ(e) | 〈e, 1〉 = c] :=
1

Zc
E

[

Φ (V c) ρc(V c) 1{V c
t ≥0, ∀t∈[0,1]}

]

,

where Zc > 0 is a normalization factor, we have

1. p〈e,1〉 is the density of 〈e, 1〉 on [0,∞), i.e.

P(〈e, 1〉 ∈ dc) = p〈e,1〉(c) 1{c≥0} dc.

Moreover p〈e,1〉 is continuous on [0,∞), p〈e,1〉(c) > 0 for all c ∈ (0,∞) and p〈e,1〉(0) = 0.

2. (P [e ∈ · | 〈e, 1〉 = c] , c > 0) is a regular conditional distribution of e given 〈e, 1〉, i.e.

P(e ∈ · , 〈e, 1〉 ∈ dc) = P [e ∈ · | 〈e, 1〉 = c] p〈e,1〉(c) 1{c>0} dc.

In section 9 below we state and prove analogous results for the Brownian meander.

2.2 Two Hilbert spaces

For the study of the stochastic partial differential equation (1.1) we need to introduce some
notation. We denote by A the realization in L2(0, 1) of ∂2

θ with Neumann boundary condition
at 0 and 1, i.e.:

D(A) := {h ∈ H2(0, 1) : h′(0) = h′(1) = 0}, A :=
∂2

∂θ2
. (2.3)

Notice that A is self-adjoint in L2(0, 1). We also introduce another notation for the average of
h ∈ L2(0, 1):

h :=

∫ 1

0
h = 〈h, 1〉.

Then we also set for all c ∈ R:

L2
c :=

{

h ∈ L2(0, 1) : h = c
}

. (2.4)

Now we define the operator Q : L2(0, 1) 7→ L2(0, 1):

Qh(θ) :=

∫ 1

0
q(θ, σ)hσ dσ, where :

q(θ, σ) := θ ∧ σ +
θ2 + σ2

2
− θ − σ +

4

3
, θ, σ ∈ [0, 1].
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Then a direct computation shows that for all h ∈ L2(0, 1):

〈Qh, 1〉 = 〈h, 1〉, −AQh = h − h,

i.e. Q is the inverse of −A on L2
0 and conserves the average. Then we define H as the completion

of L2(0, 1) with respect to the scalar product:

(h, k)H := 〈Qh, k〉, ‖h‖2
H := (h, h)H .

For all c ∈ R we also set:
Hc := {h ∈ H : (h, 1)H = c} .

We remark that H is naturally interpreted as a space of distributions, in particular as the dual
space of H1(0, 1).

We also need a notation for the realization AD in L2(0, 1) of ∂2
θ with Dirichlet boundary condition

at 0 and 1, i.e.:

D(AD) := {h ∈ H2(0, 1) : h(0) = h(1) = 0}, AD :=
∂2

∂θ2
. (2.5)

Notice that AD is self-adjoint and invertible in L2(0, 1), with inverse:

QDh(θ) = (−AD)−1h(θ) :=

∫ 1

0
(θ ∧ σ − θσ) hσ dσ, θ ∈ [0, 1]. (2.6)

2.3 Weak solutions of (1.1)

We state now the precise meaning of a solution to (1.1).

Definition 2.2. Let u0 ∈ C([0, 1]), u0 ≥ 0,
∫ 1
0 u0 > 0, u0(0) = u0(1) = 0. We say that (u, η, W ),

defined on a filtered complete probability space (Ω, P,F ,Ft), is a weak solution to (1.1) on [0, T ]
if

1. a.s. u ∈ C((0, T ] × [0, 1]), u ≥ 0 and u ∈ C([0, T ];H)

2. a.s. ut(0) = ut(1) = 0 for all t ≥ 0

3. a.s. η is a positive measure on (0, T ] × (0, 1), such that η([δ, T ] × [δ, 1 − δ]) < ∞ for all
δ > 0

4. (W (t, θ)) is a Brownian sheet, i.e. a centered Gaussian process such that

E [W (t, θ)W (t′, θ′)] = t ∧ t′ · θ ∧ θ′, t, t′ ≥ 0, θ, θ′ ∈ [0, 1]

5. u0 and W are independent and the process t 7→ (ut(θ), W (t, θ)) is (Ft)-adapted for all
θ ∈ [0, 1] and I interval in [0, 1]
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6. for all h ∈ C4([0, 1]) such that h′(0) = h′(1) = h′′(0) = h′′(1) = 0 and for all 0 < δ ≤ t ≤ T :

〈ut, h〉 = 〈uδ, h〉 −
∫ t

δ
〈us, ADAh〉 ds

−
∫ t

δ

∫ 1

0
Ahθ η(ds, dθ) −

√
2

∫ t

δ

∫ 1

0
h′

θ W (ds, dθ) (2.7)

7. a.s. the contact property holds: supp(η) ⊂ {(t, θ) : ut(θ) = 0}, i.e.
∫

(0,T ]×[0,1]
u dη = 0.

2.4 Function spaces

Notice that for all c ∈ R, Hc = c1+H0 is a closed affine subspace of H isomorphic to the Hilbert
space H0. If J is a closed affine subspace of H, we denote by Cb(J), respectively C1

b (J), the
space of all bounded continuous functions on J , resp. bounded and continuous together with
the first Fréchet derivative (with respect to the Hilbert structure inherited from H). We also
denote by Lip(J) the set of all ϕ ∈ Cb(J) such that:

[ϕ]Lip(J) := sup
h6=k

|ϕ(h) − ϕ(k)|
‖h − k‖H

< ∞.

Finally, we define Exp(H) ⊂ Cb(H) as the linear span of {cos((h, ·)H), sin((h, ·)H) : h ∈
D(AD A)}.
To ϕ ∈ C1

b (Hc) we associate a gradient ∇H0
ϕ : Hc 7→ H0, defined by:

d

dε
ϕ(k + ε h)

∣

∣

∣

∣

ε=0

= (∇H0
ϕ(k), h)H , ∀ k ∈ A, h ∈ H0. (2.8)

The important point here is that we only allow derivatives along vectors in H0 and the gradient
is correspondingly in H0. In particular, by the definition of the scalar product in H, each
ϕ ∈ Exp(H) is also Fréchet differentiable in the norm of L2(0, 1); then, denoting by ∇ϕ the
gradient in the Hilbert structure of L2(0, 1), we have

∇H0
ϕ = (−A)∇ϕ, ∀ ϕ ∈ Exp(H). (2.9)

2.5 The stochastic dynamics

We are going to state the result concerning equation (1.1). We denote by Xt : H [0,∞[ 7→ H the
coordinate process and we define

νc := P [e ∈ · | 〈e, 1〉 = c] = law of e conditioned to have average c,

which is well defined by Theorem 2.1. We notice that the support of νc in H is

Kc := closure in H of
{

h ∈ L2(0, 1) : h ≥ 0, 〈h, 1〉 = 1
}

,

and the closed affine hull in H of Kc is Hc.

Then the second result of this paper is
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Theorem 2.3. Let c > 0.

(a) The bilinear form E = Eνc,‖·‖H0
given by

E(u, v) :=

∫

Kc

(∇H0
u,∇H0

v)H dνc, u, v ∈ C1
b (Hc),

is closable in L2(νc) and its closure (E , D(E)) is a symmetric Dirichlet Form. Furthermore,
the associated semigroup (Pt)t≥0 in L2(νc) maps L∞(νc) in Cb(Kc).

(b) For any u0 = x ∈ Kc ∩ C([0, 1]) there exists a weak solution (u, η, W ) of (1.1) such that
the law of u is Px.

(c) νc is invariant for (Pt), i.e. νc(Ptf) = νc(f) for all f ∈ Cb(Kc) and t ≥ 0.

By Theorem 2.3, we have a Markov process which solves (1.1) weakly and whose invariant
measure is the law of e conditioned to have average equal to c.

2.6 Remarks on uniqueness of solutions to (1.1)

We expect equation (1.1) to have pathwise-unique solutions, since this is typically the case for
monotone gradient systems: this is always true in finite dimensions, see [3], and has been proven
in several interesting infinite-dimensional situations, see [8] and [6]. In the present situation,
the difficulty we encountered in the proof of uniqueness of (1.1) is the following: because of
the boundary condition u(t, 0) = u(t, 1) = 0 and of the reflection at 0, it is expected that the
reflecting measure η has infinite mass on ]0, T ]× [0, 1]; this is indeed true for second order SPDEs
with reflection: see [11]. If this is the case, then it becomes necessary to localize in ]0, 1[ in order
to prove a priori estimates; however, in doing so one loses the crucial property that the average
is constant. In short, we were not able to overcome these two problems.

3 Conditioning e on its average

3.1 An absolute continuity formula

Let (Xt)t∈[0,1] be a continuous centered Gaussian process with covariance function qt,s :=
E[Xt Xs]. We have in mind the case of X being a Brownian motion or a Brownian bridge.
In this section we consider two processes Y and Z, both defined by linear transformations of X,
and we write an absolute continuity formula between the laws of Y and Z.

For all h in the space M([0, 1]) of all signed measures with finite total variation on [0, 1] we set:

Q : M([0, 1]) 7→ C([0, 1]), Qλ(t) :=

∫ 1

0
qt,s λ(ds), t ∈ [0, 1].

We denote by 〈·, ·〉 : C([0, 1]) × M([0, 1]) 7→ R the canonical pairing,

〈h, µ〉 :=

∫ 1

0
ht µ(dt).
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where a continuous function k ∈ C([0, 1]) is identified with kt dt ∈ M([0, 1]). We consider
λ, µ ∈ M([0, 1]) such that:

〈Qλ, µ〉 = 0, 〈Qλ, λ〉 + 〈Qµ, µ〉 = 1. (3.1)

We set for all ω ∈ C([0, 1]):

γ(ω) :=

∫ 1

0
ωs λ(ds), Λt := Qλ(t), t ∈ [0, 1], I := 〈Qλ, λ〉,

a(ω) :=

∫ 1

0
ωs µ(ds), Mt := Qµ(t), t ∈ [0, 1], 1 − I = 〈Qµ, µ〉,

and we notice that γ(X) ∼ N(0, I), a(X) ∼ N(0, 1 − I) and {γ(X), a(X)} are independent by
(3.1). We fix a constant κ ∈ R and if I < 1 we define the continuous processes

Yt := Xt + (Λt + Mt) (κ − a(X) − γ(X)) , t ∈ [0, 1],

Zt := Xt +
1

1 − I
Mt (κ − a(X) − γ(X)) , t ∈ [0, 1].

Lemma 3.1. Suppose that I < 1. Then for all bounded Borel Φ : C([0, 1]) 7→ R:

E [Φ(Y )] = E [Φ(Z) ρ(Z)] , (3.2)

where for all ω ∈ C([0, 1]):

ρ(ω) :=
1√

1 − I
exp

(

−1

2

1

1 − I
(γ(ω) − κ)2 +

1

2
κ2

)

.

We postpone the proof of Lemma 3.1 to section 10.

3.2 Proof of Theorem 2.1

If (X, Y ) is a centered Gaussian vector and Y 7→ R is not a.s. constant, then it is well known
that a regular conditional distribution of X given Y = y ∈ R is given by the law of

X − σXY

σY Y
(Y − y), where σXY = E(XY ), σY Y = E(Y 2).

We apply this property to X = (βt, t ∈ [0, 1]) and to Y =
∫ 1
0 β. Notice that for all t ∈ [0, 1]:

E

[

βt

∫ 1

0
βr dr

]

=
t(1 − t)

2
, E

[

(∫ 1

0
βr dr

)2
]

=
1

12
.

Therefore, for all c ∈ R, a regular conditional distribution of the law of β conditioned on
{

∫ 1
0 β = c

}

is given by the law of the process:

βc
t := βt + 6 t (1 − t)

(

c −
∫ 1

0
β

)

, t ∈ [0, 1]. (3.3)
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Lemma 3.2. Let c ∈ R. For all bounded Borel Φ : C([0, 1]) 7→ R:

E

[

Φ(β)

∣

∣

∣

∣

∫ 1

0
β = c

]

= E [Φ(βc)] = E

[

Φ
(

Γβ
)

ρ1

(

Γβ
)]

where for all ω ∈ C([0, 1])

Γω
t =















ωt, t ∈ [0, 1/3] ∪ [2/3, 1]

ωt + 18 (9 t (1 − t) − 2)

(

c −
∫ 1

0
ω

)

, t ∈ [1/3, 2/3]

(3.4)

ρ1(ω) :=
√

27 exp



−162

(

∫ 1

3

0
(ωr + ω1−r) dr +

ω 1

3

+ ω 2

3

6
− c

)2

+ 6 c2



 .

Proof. We shall show that we are in the situation of Lemma 3.1 with X = β, Y = βc and
Z = Γβ. In the notation of Lemma 3.1, we consider

λ(dt) :=
√

12

(

1[0, 1
3
]∪[ 2

3
,1](t) dt +

δ 1

3

(dt) + δ 2

3

(dt)

6

)

,

µ(dt) :=
√

12

(

1[ 1
3
, 2
3
](t) dt −

δ 1

3

(dt) + δ 2

3

(dt)

6

)

,

and κ :=
√

12 c. Then:

γ(β) =
√

12

∫ 1

3

0

(

βr +
1

2
β 1

3

)

dr +
√

12

∫ 1

2

3

(

βr +
1

2
β 2

3

)

dr, I =
26

27

a(β) =
√

12

∫ 2

3

1

3

(

βr −
1

2
β 1

3

− 1

2
β 2

3

)

dr,

Λt = 1[0, 1
3
]∪[ 2

3
,1](t)

√
3 t(1 − t) + 1( 1

3
, 2
3
)(t)

2
√

3

9
, Mt = 1[ 1

3
, 2
3
](t)

√
3 t(1 − t).

The desired result follows by tedious direct computations and from Lemma 3.1.

Lemma 3.3. For all bounded Borel Φ : C([0, 1]) 7→ R and f : R 7→ R

E [Φ(e) f(〈e, 1〉)] =

∫ ∞

0
27

√

6

π3
E [Φ (V c) ρc(V c) 1K0

(V c)] f(c) dc (3.5)

Proof. Define {B, b, B̂}, processes such that:

1. B and B̂ are independent copies of a standard Brownian motion over [0, 1/3]

2. conditionally on {B, B̂}, b is a Brownian bridge over [1/3, 2/3] from B1/3 to B̂1/3.
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We set:

rt :=























Bt t ∈ [0, 1/3]

bt t ∈ [1/3, 2/3]

B̂1−t t ∈ [2/3, 1].

Moreover we set, denoting the density of N(0, t)(dy) by pt(y):

ρ2(ω) :=
p 1

3

(ω 2

3

− ω 1

3

)

p1(0)
=

√
3 exp

(

−3

2
(ω 2

3

− ω 1

3

)2
)

, ω ∈ C([0, 1]).

By the Markov property of β:
E [Φ(r) ρ2(r)] = E[Φ(β)].

Then, recalling the definition of ρc above, by Lemma 3.1 and Lemma 3.2:

E [Φ(βc)] = E

[

Φ
(

Γβ
)

ρ1

(

Γβ
)]

= E[Φ (Γr) ρ1 (Γr) ρ2(Γ
r)] = 9 E[Φ(Γr) ρc(Γr)] e6c2 .

We recall now that P(β ∈ Kε) = 1 − exp(−2 ε2) ∼ 2 ε2 as ε → 0, where Kε = {ω ∈ C([0, 1]) :
ω ≥ −ε}. We want to compute the limit of 1

2 ε2 E [Φ(βc) 1Kε(β
c)] as ε → 0. On the other hand

P(Bt ≥ −ε, ∀t ∈ [0, 1/3]) ∼
√

6
π ε by (9.2). Then by (9.1) and (9.2)

1

2 ε2
E [Φ(βc) 1Kε(β

c)] → 27

π
E [Φ (V c) ρc(V c) 1K0

(V c)] e6c2 . (3.6)

On the other hand, β conditioned on Kε tends in law to the normalized Brownian excursion
(et, t ∈ [0, 1]), as proven in [7]. Then we have for all bounded f ∈ C(R):

1

2 ε2
E [Φ(β) 1Kε(β) f(〈β, 1〉)] → E [Φ(e) f(〈e, 1〉)]

Comparing the two formulae for all f ∈ C(R) with compact support:

1

2 ε2
E [Φ(β) 1Kε(β) f(〈β, 1〉)] =

∫

R

1

2 ε2
E [Φ(βc) 1Kε(β

c)] f(c)N(0, 1/12)(dc)

→
∫ ∞

0
27

√

6

π3
E [Φ (V c) ρc(V c) 1K0

(V c)] f(c) dc = E [Φ(e) f(〈e, 1〉)]

and (3.5) is proven.

Proof of Theorem 2.1. It only remains to prove the positivity assertion about the density. Notice
that a.s. V c

t ≥ 0 for all t ∈ [0, 1/3] ∪ [2/3, 1], since a.s. m ≥ 0: therefore a.s.

{V c
t ≥ 0, ∀t ∈ [0, 1]} = {V c

t ≥ 0, ∀t ∈ [1/3, 2/3]}.

The probability of this event is positive for all c > 0 while it is 0 for c = 0, since
∫ 1
0 V 0

t dt = 0.
In particular p〈e,1〉(0) = 0. Finally, p〈e,1〉(c) > 0 yields also Zc > 0 if c > 0. The other results
follow from Lemma 3.3.
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4 The linear equation

We start with the linear fourth-order equation, written in abstract form:







dZt = −A AD Z dt + B dWt,

Z0(x) = x ∈ L2(0, 1),
(4.1)

where W is a cylindrical white noise in L2(0, 1) and

D(B) := H1
0 (0, 1), B :=

√
2

d

dθ
, D(B∗) := H1(0, 1), B∗ := −

√
2

d

dθ
,

and we notice that BB∗ = −2A. We define the strongly continuous contraction semigroups in
L2(0, 1):

St := e−tAAD , S∗
t := e−tADA, t ≥ 0. (4.2)

We stress that S and S∗ are dual to each other with respect to 〈·, ·〉 but not necessarily with
respect to (·, ·)H . It is well known that Z is equal to:

Zt(x) = Stx +

∫ t

0
St−s B dWs

and that this process belongs to C([0,∞); L2(0, 1)). Notice that

〈Zt(x), 1〉 = 〈x, S∗
t 1〉 +

∫ t

0
〈B∗S∗

t−s1, dWs〉 = 〈x, 1〉, (4.3)

since S∗
t 1 = 1 and B∗S∗

t 1 = B∗1 = 0. In particular, the average of Z is constant. Now, the
L2(0, 1)-valued r.v. Zt(x) has law:

Zt(x) ∼ N (Stx, Qt) , Qt :=

∫ t

0
SsBB∗S∗

s ds.

Notice that:
d

ds
Ss(−AD)−1S∗

s = Ss(2A)S∗
S = −SsBB∗S∗

s = − d

ds
Qs,

so that, recalling that QD := (−AD)−1:

Qt = QD − St QD S∗
t , t ≥ 0.

In particular, the symmetric operator Q∞ : L2(0, 1) 7→ L2(0, 1),

Q∞ :=

∫ ∞

0
SsBB∗S∗

s ds,

is well defined and we have 0 ≤ Q∞ ≤ QD. By Proposition 10.1.4 of [5], Q∞ is the unique
solution among all bounded operators P : L0 7→ L0 (recall (2.4)) of the equation

A AD P + P AD A = BB∗ = −2A,
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and it is easy to check that a solution (and therefore the only one) is given by

Q∞ = QD − 1

〈QD1, 1〉 QD1 ⊗ QD1. (4.4)

Therefore the law of Zt(x) converges to the Gaussian measure on L2(0, 1):

µc := N (c · a, Q∞),

with covariance operator Q∞ and mean c · a ∈ L2(0, 1), where

c = x = 〈x, 1〉, aθ := 6 θ(1 − θ), θ ∈ [0, 1].

Notice that the kernel of Q∞ is {t1 : t ∈ R} and 〈a, 1〉 = 1. Therefore µc is concentrated on the
affine space L2

c , defined in (2.4). Finally, we introduce the Gaussian measure on L2(0, 1):

µ := N (0, QD), (4.5)

recall (2.6). In this case, the kernel of QD in L2(0, 1) is the null space, so the support of µ is the
full space L2(0, 1). The next result gives a description of µ and µc as laws of stochastic processes
related to the Brownian bridge (βθ, θ ∈ [0, 1]).

Lemma 4.1. Let (βθ)θ∈[0,1] a Brownian bridge from 0 to 0. Then µ is the law of β and µc is

the law of the process βc defined in (3.3), i.e. of β conditioned on {
∫ 1
0 β = c}, c ∈ R.

Proof. By (2.6), QD is given by a symmetric kernel (θ ∧ σ − θσ, σ, θ ∈ [0, 1]). Since E(βtβs) =
t ∧ s − ts, for all t, s ∈ [0, 1], then it is well known that µ = N (0, QD) coincides with the law of
β. Analogously, the covariance of β0 is by (3.3)

E(β0
t β0

s ) = t ∧ s − ts − 3 t(1 − t) s(1 − s), t, s ∈ [0, 1].

By the expression for Q∞ found in (4.4), this is easily seen to be the kernel of Q∞, so that
µ0 = N (0, Q∞) is the law of β0. By the definitions of µc = N (ca, Q∞), βc and a, we find that
µc is the law of βc = β0 + ca.

In particular, µc is a regular conditional distribution of µ(dx) given {x = c}, i.e.:

µc(dx) = µ(dx |x = c) = µ(dx |L2
c).

Recall (2.9). Then we have the following result:

Proposition 4.2. Let c ∈ R. The bilinear form:

Λc(ϕ, ψ) :=

∫

H
(∇H0

ϕ,∇H0
ψ)H dµc =

∫

H
〈−A∇ϕ,∇ψ〉 dµc, ∀ ϕ, ψ ∈ Exp(H),

is closable in L2(µc) and the process (Zt(x) : t ≥ 0, x ∈ Hc) is associated with the resulting
symmetric Dirichlet form (Λc, D(Λc)). Moreover, Lip(Hc) ⊂ D(Λc) and Λc(ϕ, ϕ) ≤ [ϕ]2Lip(Hc)

.
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Proof. The proof is standard, since the process Z is Gaussian: see [5, §10.2]. However we
include some details since the interplay between the Hilbert structures of H and L2(0, 1) and
the different role of the operators A and AD can produce some confusion. The starting point is
the following integration by parts formula for µ:

∫

∂hϕ dµ =

∫

〈−ADh, x〉ϕ(x)µ(dx) (4.6)

for all ϕ ∈ C1
b (H) and h ∈ D(AD). By conditioning on {x = c}, (4.6) implies:

∫

∂(h−h)ϕ dµc =

∫

〈−ADh, x〉ϕ(x)µc(dx). (4.7)

Let now ϕ(x) := exp(i〈x, h〉) and ψ(x) := exp(i〈x, k〉), x ∈ H, h, k ∈ D(ADA). Then:

E [ϕ(Zt(x))] = exp

(

i〈S∗
t h, x〉 − 1

2
〈Qth, h〉

)

and computing the time derivative at t = 0 we obtain the generator of Z:

Lϕ(x) = ϕ(x) [−i〈ADAh, x〉 + 〈Ah, h〉] . (4.8)

Now we compute the scalar product in L2(µc; C) between Lϕ and ψ:
∫

Lϕ ψ dµc =

∫

[−i〈ADAh, x〉 + 〈Ah, h〉] exp(i〈h − k, x〉)µc(dx)

=

∫

[−〈Ah, h − k〉 + 〈Ah, h〉] exp(i〈h − k, x〉)µc(dx)

=

∫

〈Ah, k〉 exp(i〈h − k, x〉)µc(dx) =

∫

〈A∇ϕ,∇ψ〉 dµc

where ψ is the complex conjugate of ψ and in the second equality we have used (4.7). It follows
that (L,Exp(H)) is symmetric in L2(µc) and the rest of the proof is standard. ¤

5 The approximating equation

We consider now the following approximating equation:






































∂uε,α

∂t
= − ∂2

∂θ2

(

∂2uε,α

∂θ2
+

(uε,α + α)−

ε

)

+
√

2
∂

∂θ
Ẇ ,

uε,α(t, 0) = uε,α(t, 1) =
∂3uε,α

∂θ3
(t, 0) =

∂3uε,α

∂θ3
(t, 1) = 0

uε,α(0, θ) = x(θ)

(5.1)

where ε > 0. Notice that this is a monotone gradient system in H: see [5, Chapter 12], i.e. (5.1)
can be written as follows,

dXε,α
t = −A (AD Xε,α −∇Uε,α(Xε,α)) dt + B dWt, Xε,α

0 (x) = x,
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where Uε,α : H 7→ R
+ is defined by

Uε,α(x) :=















‖(x + α)−‖2

ε
, if x ∈ L2(0, 1)

+∞, otherwise.

We define the probability measure on L2(0, 1):

νε,α
c (dx) :=

1

Zε,α
c

exp (−Uε,α(x)) µc(dx),

where Zε,α
c is a normalization constant. Now, recalling (2.9), we introduce the symmetric bilinear

form:

Eε,α,c(ϕ, ψ) :=

∫

H
(∇H0

ϕ,∇H0
ψ)H dνε,α

c =

∫

H
〈−A∇ϕ,∇ψ〉 dνε,α

c , ∀ ϕ, ψ ∈ Exp(H).

Notice that this symmetric form is naturally associated with the operator:

Lε,αϕ(x) := Lϕ(x) + 〈∇Uε,α(x), A∇ϕ〉, ∀ ϕ ∈ Exp(H), x ∈ L2(0, 1), (5.2)

where Lϕ is defined in (4.8) above. The following proposition states that equation (5.1) has
a unique martingale solution, associated with the Dirichlet form arising from the closure of
(Eε,c, Exp(H)). Moreover, it states that the associated semigroup is Strong Feller.

Proposition 5.1. Let c ∈ R and ε > 0.

1. (Lε,α, Exp(H)) is essentially self-adjoint in L2(νε,α
c )

2. (Eε,α,c, Exp(H)) is closable in L2(νε,α
c ): we denote by (Eε,α,c, D(Eε,α,c)) the closure. More-

over Lip(Hc) ⊂ D(Eε,α,c) and Eε,α,c(ϕ, ϕ) ≤ [ϕ]2Lip(Hc)
.

For the proof, see [5] and §9 of [4].

6 Convergence of the stationary measures

The first technical result is the convergence of νε,α
c as ε → 0+ and then α → 0+, and in particular

the tightness in a suitable Hölder space. By Lemma 4.1, µc is the law of βc defined in (3.3). We
set Kα = {ω ∈ C([0, 1]) : ω ≥ −α} and for α > 0

ν0,α
c := µc( · |Kα) = law of βc conditioned to be greater or equal to − α.

This is well defined, since µc(Kα) > 0, and it is easy to see that t

νε,α
c → ν0,α

c as ε → 0, weakly in C([0, 1]). (6.1)

Moreover, since βc has the same path regularity as β, it is easy to see that for all α > 0,
γ ∈ (0, 1/2) and r ≥ 1:

sup
ε>0

(∫

H
‖x‖p

W γ,r(0,1) dνε,α
c (x)

) 1

p

≤ cα

(∫

H
‖x‖p

W γ,r(0,1) dµc(x)

) 1

p

< +∞. (6.2)
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We also need a similar tightness and convergence result for (ν0,α
c )α>0. We recall the definition

νc := P[e ∈ · |〈e, 1〉 = c], as defined in Theorem 2.1.

Lemma 6.1. As α → 0+, ν0,α
c converges weakly in C([0, 1]) to νc and

sup
α>0

(∫

H
‖x‖p

W γ,r(0,1) dν0,α
c (x)

) 1

p

< +∞. (6.3)

Proof. We use Lemma 3.2. We recall that E [Φ(βc)] = E
[

Φ
(

Γβ
)

ρ1

(

Γβ
)]

for all bounded Borel
Φ : C([0, 1]) 7→ R. Moreover, as proven in the Proof of Lemma 3.3, the law of Γβ conditioned
on Kα converges to the law of V c, defined in (2.2), i.e.

lim
α→0+

E

[

Φ(Γβ) |Γβ ∈ Kα

]

= E[Φ(V c)].

Notice that ρ1 is positive, continuous on C([0, 1]) and bounded by a constant. Then we have

E

[

‖βc‖p
W γ,r(0,1) | βc ∈ Kα

]

=
E

[

‖Γβ‖p
W γ,r(0,1) ρ1(Γ

β) 1(Γβ∈Kα)

]

E

[

ρ1(Γβ) 1(Γβ∈Kα)

]

≤ κ1 E

[

‖Γβ‖p
W γ,r(0,1) |Γ

β ∈ Kα

]

· 1

E [ρ1(Γβ) |Γβ ∈ Kα]
≤ κ2E

[

‖Γβ‖p
W γ,r(0,1) |Γ

β ∈ Kα

]

,

where the last inequality follows from the convergence E
[

ρ1(Γ
β) |Γβ ∈ Kα

]

→ E [ρ1(V
c)] > 0,

α → 0+. Then it only remains to prove that

sup
α>0

E

[

‖Γβ‖p
W γ,r(0,1) 1(Γβ∈Kα)

]

P [Γβ ∈ Kα]
< +∞. (6.4)

We start with the numerator. We fix three functions φi : [0, 1] 7→ R+ of class C∞, such that
φ1 +φ2 +φ3 ≡ 1, the support of φ1 is in [0, 1/3), the support of φ3 is in (2/3, 1] and the support
of φ2 is in (1/6, 5/6). Then it is enough to estimate

E

[

‖ϕi · Γβ‖p
W γ,r(0,1) 1(Γβ∈Kα)

]

, i = 1, 2, 3.

Notice that ϕ1Γ
β = ϕ1β. We set I = [0, 1/3] and we denote by (β0,a

θ , θ ∈ I), resp. (mb,a
θ , θ ∈ I),

the Brownian bridge from 0 to a over the interval I, respectively the 3-dimensional Bessel bridge
from b to a over the interval I. Then, denoting by pt the density of N (0, t),

E(Φ(βθ, θ ∈ I) |β ≥ −α on I) =

∫ ∞

−α
E(Φ(β0,a

θ , θ ∈ I) |β0,a ≥ −α on I) p2/9(a) da

=

∫ ∞

−α
E(Φ(mα,a+α

θ − α, θ ∈ I)) p2/9(a) da

where in the former equality we use the Markov property of β and in latter the equality in law
between Brownian bridges conditioned to be positive and 3-dimensional Bessel bridges. Then

E

[

‖ϕ1 · Γβ‖p
W γ,r(0,1) 1(Γβ∈Kα)

]

≤ E

[

‖ϕ1 · β‖p
W γ,r(0,1) 1(β≥−α on [0,1/3]∪[2/3,1])

]

=

∫ ∞

−α
E

[

‖ϕ1 ·
(

mα,a+α − α
)

‖p
W γ,r(0,1)

]

p2/9(a) · γα(a) da,
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where γα(a) = P(β ≥ −α on [0, 1/3] ∪ [2/3, 1] | β1/3 = a). Then it is easy to conclude that

sup
α>0

1

α2
E

[

‖ϕ1 · Γβ‖p
W γ,r(0,1) 1(Γβ∈Kα)

]

< +∞.

By symmetry, the same estimate holds for ϕ3 · Γβ . As for ϕ2 · Γβ, conditioning on the values of
β1/3 and β2/3 and using an analogous argument, we find similarly that

sup
α>0

1

α2
E

[

‖ϕ2 · Γβ‖p
W γ,r(0,1) 1(Γβ∈Kα)

]

< +∞.

We estimate now the denominator of the r.h.s. of (6.4). Recall the definition (3.4) of Γω for
ω ∈ C([0, 1]). Notice that

∫ 1

0
ω ≥ c =⇒ Γω

t ≤ ωt, ∀ t ∈ [0, 1],

since 9t(1 − t) − 2 ≥ 0 for all t ∈ [1/3, 2/3]. This means that

P(Γβ ∈ Kα) ≥ P

(

Γβ ∈ Kα,

∫ 1

0
β ≥ c

)

≥ P

(

β ∈ Kα,

∫ 1

0
β ≥ c

)

= P

(∫ 1

0
β ≥ c

∣

∣

∣
β ∈ Kα

)

· P (β ∈ Kα) ∼ P

(∫ 1

0
e ≥ c

)

2α2, α → 0+,

since P

(

∫ 1
0 β ≥ c | β ∈ Kα

)

→ P

(

∫ 1
0 e ≥ c

)

> 0. Then (6.4) is proven.

In order to show that ν0,α
c indeed converges to νc, it is enough to recall formula (3.6) above and

the second result of Theorem 2.1.

7 A general convergence result

In this section we recall two results of [2], which we shall apply in section 8 to the convergence
in law of the solutions of (5.1) to the solution of (1.1). These processes are reversible and
associated with a gradient-type Dirichlet form. Moreover their invariant measures (respectively,
νε,α

c and νc), are log-concave; a probability measure γ on H is log-concave if for all pairs of open
sets B, C ⊂ H

log γ ((1 − t)B) ≥ (1 − t) log γ(B) + t log γ(C) ∀t ∈ (0, 1). (7.1)

If H = R
k, then the class of log-concave probability measures contains all measures of the form

(here Lk stands for Lebesgue measure)

γ :=
1

Z
e−V Lk, (7.2)

where V : H = R
k → R is convex and Z :=

∫

Rk e−V dx < +∞, see Theorem 9.4.11 in [1], in
particular all Gaussian measures. Notice that the class of log-concave measures is closed under

1111



weak convergence. Therefore, it is easy to see by a projection argument that νε,α
c and νc are

log-concave.

We denote by Xt : H [0,+∞[ → H the coordinate process Xt(ω) := ωt, t ≥ 0. Then we recall
one of the main results of [2]. We notice that the support of νc in H is Kc, the closure in H of
{h ∈ L2(0, 1) : h ≥ 0, 〈h, 1〉 = c}, and the closed affine hull in H of Kc is Hc.

Proposition 7.1 (Markov process and Dirichlet form associated with νc and ‖ · ‖H0
).

(a) The bilinear form E = Eνc,‖·‖H0
given by

E(u, v) :=

∫

Kc

(∇H0
u,∇H0

v)H dνc, u, v ∈ C1
b (Hc), (7.3)

is closable in L2(νc) and its closure (E , D(E)) is a symmetric Dirichlet Form. Furthermore,
the associated semigroup (Pt)t≥0 in L2(νc) maps L∞(νc) in Cb(Kc).

(b) There exists a unique Markov family (Px : x ∈ Kc) of probability measures on K
[0,+∞[
c

associated with E. More precisely, Ex[f(Xt)] = Ptf(x) for all bounded Borel functions and
all x ∈ Kc.

(c) For all x ∈ Kc, P
∗
x (C(]0, +∞[;H)) = 1 and Ex[‖Xt − x‖2] → 0 as t ↓ 0. Moreover,

P
∗
x (C([0, +∞[;H)) = 1 for νc-a.e. x ∈ Kc.

(d) (Px : x ∈ Kc) is reversible with respect to νc, i.e. the transition semigroup (Pt)t≥0 is
symmetric in L2(νc); moreover νc is invariant for (Pt), i.e. νc(Ptf) = νc(f) for all f ∈
Cb(Kc) and t ≥ 0.

Let (Pε,α,c
x : x ∈ Hc) (respectively (Px : x ∈ Kc)) be the Markov process in [0, +∞[Hc as-

sociated to (resp. in [0, +∞[Kc associated to νc) given by Proposition 7.1. We denote by
P

N
νN

c
:=

∫

P
N
x dνN

c (x) (resp. Pνc :=
∫

Px dνc(x)) the associated stationary measures.

With an abuse of notation, we say that a sequence of measures (Pn) on C([a, b];H) converges
weakly in C([a, b];Hw) if, for all m ∈ N and h1, . . . , hm ∈ H, the process (〈X·, hi〉H , i = 1, . . . , m)
under (Pn) converges weakly in C([a, b]; Rm) as n → ∞.

In this setting we have the following stability and tightness result.

Theorem 7.2 (Stability and tightness). Then, for any x ∈ Kc and 0 < ε ≤ T < +∞,

lim
α→0+

lim
ε→0+

P
ε,α,c
x = Px, weakly in C([ε, T ];Hw).

Proof. This result follows from Theorem 1.5 in [2], where it is stated that the weak convergence
of the invariant measures of a sequence of processes as in Proposition 7.1 implies the weak
convergence of the associated processes. Since limα→0+ limε→0+ νε,α

c = νc, we obtain the result.
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8 Existence of weak solutions of equation (1.1)

In this section we prove the following result on weak existence of solutions to equation (1.1). We
define the Polish space ET := C(OT )×M(OT )×C(OT ), where OT :=]0, T ]× [0, 1] and M(OT )
is the space of all locally finite positive measures on ]0, T ]×]0, 1[, endowed with the topology of
convergence on compacts in ]0, T ]×]0, 1[.

Proposition 8.1. Let c > 0, u0 = x ∈ Kc and uε,α the solution of (5.1). Set ηε,α ∈ M(OT ),

ηε,α(dt, dθ) :=
(uε,α(t, θ) + α)−

ε
dt dθ.

Then (uε,α, ηε,α, W ) converges in law to (u, η, W ), stationary weak solution of (1.1), in ET , for
any T ≥ 0. The law of u is Px and therefore (u, u0 = x ∈ Kc) is the Markov process associated
with the Dirichlet form (7.3).

We shall use the following easy result:

Lemma 8.2. Let ζ(dt, dθ) be a finite signed measure on [δ, T ] × [0, 1] and v ∈ C([δ, T ] × [0, 1]).
Suppose that for all s ∈ [δ, T ]:

∫

[s,T ]×[0,1]
hθ ζ(dt, dθ) = 0, ∀ h ∈ C([0, 1]), h = 0, (8.1)

and

vs = c > 0,

∫

[s,T ]×[0,1]
v dζ = 0. (8.2)

Then ζ ≡ 0.

Proof. Setting h := k − k, k ∈ C([0, 1]), we obtain by (8.1) for all δ ≤ s ≤ t ≤ T :

∫ 1

0
kθ ζ([s, t] × dθ) = ζ([s, t] × [0, 1])

∫ 1

0
kθ dθ, ∀ k ∈ C([0, 1]).

This implies ζ(dt, dθ) = γ(dt) dθ, where γ(t) := ζ([δ, t] × [0, 1]), t ∈ [δ, T ], is a process with
bounded variation. Then by (8.2):

0 =

∫

[s,t]×[0,1]
v dζ =

∫ t

s

(∫ 1

0
vs(θ) dθ

)

γ(ds) = c (γ(t) − γ(s)),

i.e. γ(t) − γ(s) = 0, since c > 0.

Proof of Proposition 8.1. Recall that P
ε,α,c
x is the law of uε,α if uε,α

0 = x. By Theorem 7.2
and Skorohod’s Theorem we can find a probability space and a sequence of processes (vε, wε)
such that (vε, wε) → (v, w) in C(OT ) almost surely and (vε, wε) has the same distribution as
(uε, W ) for all ε > 0, where OT :=]0, T ] × [0, 1]. Notice that v ≥ 0 almost surely, since for all t
the law of vt(·) is γ which is concentrated on K and moreover v is continuous on OT . We set
now:

ηε(dt, dθ) :=
1

ε
f (vε

t (θ)) dt dθ.
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From (5.1) we obtain that a.s. for all T ≥ 0 and h ∈ D(A2) and h = 0:

∃ lim
ε→0+

∫

OT

hθ ηε(dt, dθ). (8.3)

The limit is a random distribution on OT . We want to prove that in fact ηε converges as a
measure in the dual of C(OT ) for all T ≥ 0. For this, it is enough to prove that the mass ηε(OT )
converges as n → ∞.

Suppose that {ηε(OT )}n is unbounded. We define ζε := ηε/ηε(OT ). Then ζε is a probability
measure on the compact set OT . By tightness we can extract from any sequence εn → 0 a
subsequence along which ζε converges to a probability measure ζ. By the uniform convergence
of vε we can see that the contact condition

∫

OT
v dζ = 0 holds. Moreover, dividing (5.1) by

ηε(OT ) for t ∈ [0, T ], we obtain that
∫

Ot
hθ ζ(ds, dθ) = 0 for all h ∈ D(A2) with h = 0 and by

density for all h ∈ C([0, 1]) with h = 0.

Then ζ and v satisfy (8.1) and (8.2) above, and therefore by Lemma 8.2, ζ ≡ 0, a contradiction
since ζ is a probability measure. Therefore lim supn→∞ ηε(OT ) < ∞.

By tightness, for any subsequence in N we have convergence of ηε to a finite measure η on
[0, T ]×[0, 1] along some sub-subsequence. Let ηi, i = 1, 2, be two such limits and set ζ := η1−η2.
By (8.3) and by density:

∫

OT

hθ η1(dt, dθ) =

∫

OT

hθ η2(dt, dθ), ∀h ∈ C([0, 1]), h = 0,

i.e. ζ and v satisfy (8.1) and (8.2) above. By Lemma 8.2, ζ ≡ 0, i.e. η1 = η2. Therefore, ηε

converges as n → ∞ to a finite measure η on ]0, T ]× [0, 1]. It is now clear that the limit (u, η, W )
satisfies (2.7).

Finally, we need to prove that the contact condition holds, i.e. that
∫

(0,∞)×[0,1] v dη = 0. Since

f ≥ 0 and f(u) > 0 for u > 0, then u f(u) ≤ 0 for all u ∈ R. Then for any continuous positive
ϕ : (0, 1) 7→ R with compact support

0 ≥
∫

[0,T ]×[0,1]
ϕ vε dηε →

∫

[0,T ]×[0,1]
ϕ v dη

by the uniform convergence of vε to v and the convergence of ηε to η on compacts. Since v ≥ 0
and η is a positive measure, then

∫

[0,T ]×[0,1] v dη ≤ 0 is possible only if
∫

[0,T ]×[0,1] v dη = 0

9 Conditioning the Brownian meander to have a fixed time av-
erage

In this section we prove an analog of Theorem 2.1 for the standard Brownian meander (mt, t ∈
[0, 1]). We set 〈m, 1〉 :=

∫ 1
0 mr dr, average of m. Let B a standard Brownian motion such that
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{m, B} are independent and let c ≥ 0 be a constant. We introduce the continuous processes:

ut :=



















1√
2

m2t, t ∈ [0, 1/2]

1√
2

m1 + Bt− 1

2

, t ∈ [1/2, 1],

U c
t :=















ut, t ∈ [0, 1/2]

ut + (12 t (2 − t) − 9)

(

c −
∫ 1

0
u

)

, t ∈ [1/2, 1].

Notice that
∫ 1
0 U c

t dt = c.

Theorem 9.1. Setting for all c ≥ 0

p〈m,1〉(c) :=

√

24

π
E

[

e
−12

“

R

1/2

0
(Uc

r +Uc
1/2

) dr−c
”2

1{Uc
t ≥0, ∀t∈[0,1]}

]

,

and for all bounded Borel Φ : C([0, 1]) 7→ R and c > 0

E [Φ(m) | 〈m, 1〉 = c] :=
1

Zc
E

[

Φ(U c) e
−12

“

R

1/2

0
(Uc

r +Uc
1/2

) dr−c
”2

1{Uc
t ≥0, ∀t∈[0,1]}

]

,

where Zc > 0 is a normalization factor, we have

1. p〈m,1〉 is the density of 〈m, 1〉, i.e.

P(〈m, 1〉 ∈ dc) = p〈m,1〉(c) 1{c≥0} dc.

Moreover p〈m,1〉 is continuous on [0,∞), p〈m,1〉(c) > 0 for all c ∈ (0,∞) and p〈m,1〉(0) = 0.

2. (P [m ∈ · | 〈m, 1〉 = c] , c > 0) is a regular conditional distribution of m given 〈m, 1〉, i.e.

P(m ∈ · , 〈m, 1〉 ∈ dc) = P [m ∈ · | 〈m, 1〉 = c] p〈m,1〉(c) 1{c>0} dc.

In the notation of section 3.1, we consider X = (Bt, t ∈ [0, 1]), standard Brownian motion. It is
easy to see that for all t ∈ [0, 1]:

E

[

Bt

∫ 1

0
Br dr

]

=
t (2 − t)

2
, E

[

(∫ 1

0
Br dr

)2
]

=
1

3
.

Therefore, it is standard that for all c ∈ R, B conditioned to
∫ 1
0 B = c is equal in law to the

process:

Bc
t := Bt +

3

2
t (2 − t)

(

c −
∫ 1

0
B

)

, t ∈ [0, 1].
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Lemma 9.2. Let c ∈ R. For all bounded Borel Φ : C([0, 1]) 7→ R:

E

[

Φ(B)

∣

∣

∣

∣

∫ 1

0
B = c

]

= E [Φ(Bc)] = E [Φ (S) ρ(S)] ,

where

St :=















Bt, t ∈ [0, 1/2]

Bt + (12 t (2 − t) − 9)

(

c −
∫ 1

0
B

)

, t ∈ [1/2, 1]

ρ(ω) :=
√

8 exp



−12

(

∫ 1

2

0

(

ωr + ω 1

2

)

dr − c

)2

+
3

2
c2



 , ω ∈ C([0, 1]).

Proof. We are going to show that we are in the setting of Lemma 3.1 with X = B, Y = Bc

and Z = S. We denote the Dirac mass at θ by δθ. In the notation of section 3.1, we consider:

λ(dt) :=
√

3

(

1[0, 1
2
](t) dt +

1

2
δ 1

2

(dt)

)

, µ(dt) :=
√

3

(

1[ 1
2
,1](t) dt − 1

2
δ 1

2

(dt)

)

,

and κ :=
√

3 c. Then:

γ(ω) =
√

3

∫ 1

2

0

(

ωr + ω 1

2

)

dr, a(ω) =
√

3

∫ 1

1

2

(

ωr − ω 1

2

)

dr,

γ(ω) + a(ω) =
√

3

∫ 1

0
ωr dr, I = 3

∫ 1

2

0
(1 − r)2 dr =

7

8
.

Λt =























√
3 t

(

1 − t

2

)

, t ∈ [0, 1/2]

3
√

3

8
, t ∈ [1/2, 1].

Mt =















0, t ∈ [0, 1/2]

√
3 t

(

1 − t

2

)

− 3
√

3

8
, t ∈ [1/2, 1].

Tedious but straightforward computations show that with these definitions we have X = B,
Y = Bc and Z = S in the notation of Lemma 3.1 and (3.1) holds true. Then Lemma 9.2 follows
from Lemma 3.1.

Lemma 9.3. For all bounded Borel Φ : C([0, 1]) 7→ R and f : R 7→ R:

E [Φ(m) f(〈m, 1〉)] =

∫ ∞

0

√

24

π
E

[

Φ(U c) e
−12

“

R

1/2

0
(Uc

r +Uc
1/2

) dr−c
”2

1{Uc
t ≥0, ∀t∈[0,1]}

]

f(c) dc.

Proof. Recall that m is equal in law to B conditioned to be non-negative (see [7] and (9.1)
below). We want to condition B first to be non-negative and then to have a fixed time average.
It turns out that Lemma 9.2 allows to compute the resulting law by inverting the two operations:
first we condition B to have a fixed average, then we use the absolute continuity between the
law of Bc and the law of S and finally we condition S to be non-negative.
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We set Kε := {ω ∈ C([0, 1]) : ω ≥ −ε}, ε ≥ 0. We recall that B conditioned on Kε tends in law
to m as ε → 0, more generally for all s > 0 and bounded continuous Φ : C([0, s]) 7→ R, by the
Brownian scaling:

lim
ε→0

E

[

Φ(Bt, t ∈ [0, s])
∣

∣

∣
Bt ≥ −ε, ∀ t ∈ [0, s]

]

= E
[

Φ
(√

s mt/s, t ∈ [0, s]
)]

, (9.1)

and this is a result of [7]. By the reflection principle, for all s > 0:

P(Bt ≥ −ε, ∀ t ∈ [0, s]) = P(|Bs| ≤ ε) ∼
√

2

πs
ε, ε → 0. (9.2)

In particular for all bounded f ∈ C(R)

E [Φ(m) f(〈m, 1〉)] = lim
ε→0

√

π

2

1

ε
E [Φ(B) 1Kε(B) f(〈B, 1〉)] .

We want to compute the limit of 1
ε E [Φ(Bc) 1Kε(B

c)] as ε → 0. Notice that S, defined in Lemma
9.2, is equal to B on [0, 1/2]. Therefore, by (9.1) and (9.2) with s = 1/2:

√

π

2

1

ε
E [Φ(Bc) 1Kε(B

c)] →
√

2 E [Φ(U c) ρ(U c) 1K0
(U c)] .

Comparing the last two formulae for all f ∈ C(R) with compact support:

√

π

2

1

ε
E [Φ(B) 1Kε(B) f(〈B, 1〉)] =

∫

R

√

π

2

1

ε
E [Φ(Bc) 1Kε(B

c)] f(c)N(0, 1/3)(dc)

→
∫ ∞

0

√

24

π
E

[

Φ(U c) e
−12

“

R

1/2

0
(Uc

r +Uc
1/2

) dr−c
”2

1K0
(U c)

]

f(c) dc = E [Φ(m) f(〈m, 1〉)]

and the Lemma is proven.

Proof of Theorem 9.1 The results follow from Lemma 9.3, along the lines of the proof of
Theorem 2.1.

It would be now possible to repeat the results of sections 4, 5, 6 and 8, and prove existence of
weak solutions of the SPDE







































∂u

∂t
= − ∂2

∂θ2

(

∂2u

∂θ2
+ η

)

+
√

2
∂

∂θ
Ẇ ,

u(t, 0) =
∂u

∂θ
(t, 1) =

∂3u

∂θ3
(t, 0) =

∂3u

∂θ3
(t, 1) = 0

u(0, θ) = x(θ)

(9.3)

and that such weak solutions admit P [m ∈ · | 〈m, 1〉 = c] as invariant measures, where c :=
∫ 1
0 x(θ) dθ > 0.
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10 Proof of Proposition 3.1.

The result follows if we show that the Laplace transforms of the two probability measures in (3.2)
are equal. Notice that Y is a Gaussian process with mean κ (Λ + M) and covariance function:

qY
t,s = E [(Yt − κ (Λt + Mt)) (Ys − κ (Λs + Ms))] = qt,s − (Λt + Mt) (Λs + Ms),

for t, s ∈ [0, 1]. Therefore, setting for all h ∈ C([0, 1]): QY h(t) :=
∫ 1
0 qY

t,s hs ds, t ∈ [0, 1], the
Laplace transform of the law of Y is:

E

[

e〈Y,h〉
]

= eκ〈h,Λ+M〉+ 1

2
〈QY h,h〉.

Recall now the following version of the Cameron-Martin Theorem: for all h ∈ M([0, 1])

E

[

Φ(X) e〈X,h〉
]

= e
1

2
〈Qh,h〉

E[Φ(X + Qh)].

Notice that γ(Z) = γ(X), by (3.1). Therefore ρ(Z) = ρ(X). We obtain, setting h := h −
1

1−I 〈M, h〉(λ + µ):

E

[

e〈Z,h〉 ρ(Z)
]

= e
κ

1−I
〈M,h〉

E

[

e〈X,h〉 ρ(X)
]

= e
κ

1−I
〈M,h〉+ 1

2
〈Qh,h〉

E
[

ρ
(

X + Qh
)]

=

= e
κ

1−I
〈M,h〉+ 1

2
〈Qh,h〉 1√

1 − I
E

[

e−
1

2

1

1−I (γ(X)+〈h,Λ〉−κ)
2
+ 1

2
κ2

]

.

By the following standard Gaussian formula for α ∼ N(0, σ2), σ ≥ 0 and c ∈ R:

E

[

e−
1

2
(α+c)2

]

=
1√

1 + σ2
e
− 1

2

c2

1+σ2 ,

we have now for γ(X) ∼ N(0, I):

E

[

e−
1

2

1

1−I (γ(X)+〈h,Λ〉−κ)
2
]

=
1

√

1 + I
1−I

e
− 1

2

1

1−I
1

1+ I
1−I

(〈h,Λ〉−κ)
2

=
√

1 − I e−
1

2 (〈h,Λ〉−κ)
2

.

Therefore, recalling the definition of h := h − 1
1−I 〈M, h〉(λ + µ), we obtain after some trivial

computation:

log E

[

e〈Z,h〉 ρ(Z)
]

=
κ

1 − I
〈M, h〉 +

1

2
〈Qh, h〉 − 1

2

(

〈h, Λ〉 − κ
)2

+
1

2
κ2

= κ〈Λ + M, h〉 +
1

2
〈Qh, h〉 − 〈Λ + M, h〉2 = κ〈h, Λ + M〉 +

1

2
〈QY h, h〉.
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