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Abstract

Recently, Bauke and Mertens conjectured that the local statistics of energies in random
spin systems with discrete spin space should, in most circumstances, be the same as in the
random energy model. We show that this conjecture holds true as well for directed polymers
in random environment. We also show that, under certain conditions, this conjecture holds
for directed polymers even if energy levels that grow moderately with the volume of the
system are considered .
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1 Motivation and historical overview

Recently, Bauke and Mertens have proposed in [2] a new and original look at disordered spin
systems. This point of view consists of studying the micro-canonical scenario, contrary to the
canonical formalism, that has become the favorite tool to treat models of statistical mechanics.
More precisely, they analyze the statistics of spin configurations whose energy is very close to
a given value. In discrete spin systems, for a given system size, the Hamiltonian will take on a
finite number of random values, and generally (at least, if the disorder is continuous) a given
value E is attained with probability 0. One may, however, ask : How close to E the best
approximant is when the system size grows and, more generally, what the distribution of the
energies that come closest to E is ? Finally, how the values of the corresponding configurations
are distributed in configuration space ?

The original motivation for this viewpoint came from a reformulation of a problem in combi-
natorial optimization, the number partitioning problem (this is the problem of partitioning N
(random) numbers into two subsets such that their sums in these subsets are as close as possible)
in terms of a spin system Hamiltonian [1; 20; 21]. Mertens conjecture stated in these papers
has been proven to be correct in [5] (see also [8]), and generalized in [9] for the partitioning into
k > 2 subsets.

Some time later, Bauke and Mertens generalized this conjecture in the following sense : let
(HN (σ))σ∈ΣN

be the Hamiltonian of any disordered spin system with discrete spins (ΣN being
the configuration space) and continuously distributed couplings, let E be any given number,
then the distribution of the close to optimal approximants of the level

√
NE is asymptotically

(when the volume of the system N grows to infinity) the same as if the energies HN (σ) are
replaced by independent Gaussian random variables with the same mean and variance as HN (σ)
(that is the same as for Derrida’s Random Energy spin glass Model [13], that is why it is called
the REM conjecture).

What this distribution for independent Gaussian random variables is ? Let X be a standard
Gaussian random variable, let δN → 0 as N → ∞, E ∈ R, b > 0. Then it is easy to compute
that

P(X ∈ [E − δNb, E + δNb]) = (2δNb)
√

1/(2π)e−E2/2(1 + o(1)) N → ∞.

Let now (Xσ)s∈ΣN
be |ΣN | independent standard Gaussian random variables. Since they are

independent, the number of them that are in the interval [E − δNb, E + δNb] has a Binomial
distribution with parameters (2δNb)

√

1/(2π)e−E2/2(1 + o(1)) and |ΣN |. If we put

δN = |ΣN |−1
√

2π(1/2)eE2/2,

by a well known theorem of the course of elementary Probability, this random number converges
in law to the Poisson distribution with parameter b as N → ∞. More generally, the point process

∑

σ∈ΣN

δ{δ−1

N N−1/2|
√

NXσ−
√

NE|}

converges, as N → ∞, to the Poisson point process in R+ whose intensity measure is the
Lebesgue measure.
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So, Bauke and Mertens conjecture states that for the Hamiltonian (HN (σ))σ∈ΣN
of any disor-

dered spin system and for a suitable normalization C(N, E) the sequence of point processes

∑

σ∈ΣN

δ{C(N,E)|HN (σ)−
√

NE|}

converges, as N → ∞, to the Poisson point process in R+ whose intensity measure is the
Lebesgue measure. In other words, the best approximant to

√
NE is at distance C−1(N, E)W ,

where W is an exponential random variable of mean 1. More generally, the kth best approximant
to

√
NE is at distance C−1(N, E)(W1+· · ·+Wk), where W1, . . . , Wk are independent exponential

random variables of mean 1, k = 1, 2 . . .. It appears rather surprising that such a result holds
in great generality. Indeed, it is well known that the correlations of the random variables are
strong enough to modify e.g. the maxima of the Hamiltonian. This conjecture has been proven
in [10] for a rather large class of disordered spin systems including short range lattice spin
systems as well as mean-field spin glasses, like p-spin Sherringthon-Kirkpatrick (SK) models with
Hamiltonian HN (σ) = N1/2−p/2

∑

1≤i1,...,ip≤N σi1 · · ·σipJi1,...,ip where Ji1,...,ip are independent
standard Gaussian random variables, p ≥ 1. See also [6] for the detailed study of the case p = 1.

Two questions naturally pose themselves. (i) Consider instead of E, N -dependent energy levels,
say, EN = constNα. How fast can we allow EN to grow with N → ∞ for the same behavior
(i.e. convergence to the standard Poisson point process under a suitable normalization) to hold
? (ii) What type of behavior can we expect once EN grows faster than this value ?

The first question (i) has been investigated for Gaussian disordered spin systems in [10]. It
turned out that for short range lattice spin systems on Zd this convergence is still true up
to α < 1/4. For mean-field spin glasses, like p-spin SK models with Hamiltonian HN (σ) =
N1/2−p/2

∑

i1,...,ip
σi1 · · ·σipJi1,...,ip mentioned above, this conjecture holds true up to α < 1/4

for p = 1 and up to α < 1/2 for p ≥ 2. It has been proven in [7] that the conjecture fails
at α = 1/4 for p = 1 and α = 1/2 for p = 2. The paper [7] extends also these results for
non-Gaussian mean-field 1-spin SK models with α > 0.

The second question (ii), that is the local behavior beyond the critical value of α, where Bauke
and Mertens conjecture fails, has been investigated for Derrida’s Generalized Random Energy
Models ([14]) in [11].

Finally, the paper [3] introduces a new REM conjecture, where the range of energies involved is
not reduced to a small window. The authors prove that for large class of random Hamiltonians
the point process of properly normalized energies restricted to a sparse enough random subset of
spin configuration space converges to the same point process as for the Random Energy Model,

i.e. Poisson point process with intensity measure π−1/2e−t
√

2 ln 2dt.

In this paper we prove Bauke and Merten’s conjecture on the local behavior of energies not for
disordered spin systems but for directed polymers in random environment. To our knowledge,
this is the first study of this conjecture out of its original domain of disordered spin systems. Let
({wn}n≥0, P ) be a simple random walk on the d-dimensional lattice Zd. More precisely, we let
Ω be the path space Ω = {ω = (ωn)n≥0; ωn ∈ Zd, n ≥ 0}, F be the cylindrical σ-field on Ω and
for all n ≥ 0, ωn : ω → ωn be the projection map. We consider the unique probability measure
P on (Ω,F) such that ω1 − ω0, . . . , ωn − ωn−1 are independent and

P (ω0 = 0) = 1, P (ωn − ωn−1 = ±δj) = (2d)−1, j = 1, . . . , d,

7



where δj = (δkj)
d
k=1 is the jth vector of the canonical basis of Zd. We will denote by SN =

{ωN = (i, ωi)
N
i=0} ((i, ωi) ∈ N × Zd) the space of paths of length N . The polymer chain is

represented as a graph {(i, ωi)}N
i=1 in N×Zd where each point stands for the position of the ith

monomer. Let {η(n, x) : n ∈ N, x ∈ Zd} be a sequence of independent identically distributed
random variables of zero mean and variance 1 on a probability space (H,G, P). They describe the
random environment, i.e. impurities at sites (n, x). The polymer is attracted by large positive
values of the environment and repelled by large negative ones. We define the energy of the chain
ωN = (i, ωi)

N
i=0 as

η(ωN ) = N−1/2
N

∑

i=1

η(i, ωi) (1)

The typical shape of the polymer is then given by the one that maximizes the value (1). This
model first appeared in physics literature [17] to modelize the phase boundary of Ising model
subject to random impurities and its first mathematical study was undertaken by Imbrie and
Spencer [18] and Bolthausen [4]. It relates – and sometimes can be mapped – to a number of
interesting models of growing random surfaces (directed percolation, ballistic deposition, polynu-
clear growth, low temperature Ising models) and non equilibrium dynamics (totally asymmetric
simple exclusion, population dynamics in random environment), see [19]. An increasing interest
for these models is showing up in the mathematical community, see [12] for a survey of the main
results and references therein. All these very interesting results are found in the frame of the
traditional approach of statistical mechanics to the study of the energy spectrum (1) : on takes
a parameter β > 0 prescribing how strongly the polymer path ω interacts with the medium and
then analyzes the distribution of the random polymer measure on the path space

µN (dω) =
1

ZN
exp

(

β
N

∑

i=1

η(i, ωi)
)

P (dω)

where ZN is the normalizing constant. For example, one investigates the asymptotic behavior of
the quantities µN [|ωN |2] or supx∈Zd µN−1{ωN = x} as N → ∞ depending on β and dimension d.
In this paper we propose a different point of view on the distribution of the energy spectrum (1),
namely to study its local behavior compare to a given level EN , which is constant or growing
with N → ∞.

2 Results

Our first theorem extends Bauke and Merens conjecture for directed polymers.

Theorem 1. Let η(n, x), {η(n, x) : n ∈ N, x ∈ Zd}, be the i.i.d. random variables of the third
moment finite and with the Fourier transform φ(t) such that |φ(t)| = O(|t|−1), |t| → ∞. Let
EN = c ∈ R and let

δN =
√

π/2ec2/2((2d)N )−1. (2)

Then the point process
∑

ωN∈SN

δ{δ−1

N |η(ωN )−EN |} (3)
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converges weakly as N ↑ ∞ to the Poisson point process P on R+ whose intensity measure is
the Lebesgue measure. Moreover, for any ǫ > 0 and any b ∈ R+

P(∀N0 ∃N ≥ N0, ∃ωN,1, ωN,2 : cov (η(ωN,1), η(ωN,2)) > ǫ :

|η(ωN,1) − EN | ≤ |η(ωN,2) − EN | ≤ δNb) = 0. (4)

The claim (1) of this theorem concerns the spatial distribution of paths that give the best
approximants of EN . It says that for any b > 0, any l ≥ 2 and any l-tuple of paths ω1, . . . , ωl

where the approximations of EN with δNb-precision are realized, ω1, . . . , ωl are asymptotically at
the maximal distance between each other in the sense of dist(ωN,1, ωN,2) = 1−N−1#{i : ωN,1

i =

ωN,2
i }. This implies that for any k > 0, k paths ω1, . . . , ωk where the best approximations of

EN are realized, are asymptotically at the maximal distance between each other.

The decay assumption on the Fourier transform is not optimal in this theorem, we believe that
it can be weaken but we did not try to optimize it. Nevertheless, some condition of this type is
needed, the result can not be extended for discrete distributions where the number of possible
values the Hamiltonian takes on would be finite.

The next two theorems prove Bauke and Mertens conjecture for directed polymers in Gaussian
environment for growing levels EN = cNα. We are able to prove that this conjecture holds true
for α < 1/4 for polymers in dimension d = 1 et and α < 1/2 in dimension d ≥ 2. We leave this
investigation open for non-Gaussian environments.

The values α = 1/4 for d = 1 and α = 1/2 for d ≥ 2 are likely to be the true critical values. Note
that these are the same as for Gaussian SK-spin glass models for p = 1 and p = 2 respectively
according to [7], and likely for p ≥ 3 as well.

Theorem 2. Let η(n, x), {η(n, x) : n ∈ N, x ∈ Zd}, be independent standard Gaussian random
variables. Let d = 1. Let EN = cNα with c ∈ R, α ∈ [0, 1/4[ and

δN =
√

π/2eE2
N/2(2N )−1. (5)

Then the point process
∑

ωN∈SN

δ{δ−1

N |η(ωN )−EN |} (6)

converges weakly as N ↑ ∞ to the Poisson point process P on R+ whose intensity measure is
the Lebesgue measure. Moreover, for any ǫ > 0 and any b ∈ R+

P(∀N0 ∃N ≥ N0, ∃ωN,1, ωN,2 : cov (η(ωN,1), η(ωN,2)) > ǫ :

|η(ωN,1) − EN | ≤ |η(ωN,2) − EN | ≤ δNb) = 0. (7)

Theorem 3. Let η(n, x), {η(n, x) : n ∈ N, x ∈ Zd} be independent standard Gaussian random
variables. Let d ≥ 2. Let EN = cNα with c ∈ R, α ∈ [0, 1/2[ and

δN =
√

π/2eE2
N/2((2d)N )−1. (8)

Then the point process
∑

ωN∈SN

δ{δ−1

N |η(ωN )−EN |} (9)
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converges weakly as N ↑ ∞ to the Poisson point process P on R+ whose intensity measure is
the Lebesgue measure. Moreover, for any ǫ > 0 and any b ∈ R+

P(∀N0 ∃N ≥ N0, ∃ωN,1, ωN,2 : cov (η(ωN,1), η(ωN,2)) > ǫ :

|η(ωN,1) − EN | ≤ |η(ωN,2) − EN | ≤ δNb) = 0. (10)

Acknowledgements. The author thanks Francis Comets for introducing him to the area of
directed polymers. He also thanks Stephan Mertens and Anton Bovier for attracting his attention
to the local behavior of disordered spin systems and interesting discussions.

3 Proofs of the theorems.

Our approach is based on the following sufficient condition of convergence to the Poisson point
process. It has been proven in a somewhat more general form in [9].

Theorem 4. Let Vi,M ≥ 0, i ∈ N, be a family of non-negative random variables satisfying the
following assumptions : for any l ∈ N and all sets of constants bj > 0, j = 1, . . . , l

lim
M→∞

∑

(i1,...,il)∈{1,...,M}
P(∀l

j=1Vij ,M < bj) =

l
∏

j=1

bj

where the sum is taken over all possible sequences of different indices (i1, . . . , il). Then the point
process

M
∑

i=1

δ{Vi,M}

on R+ converges weakly in distribution as M → ∞ to the Poisson point process P on R+ whose
intensity measure is the Lebesgue measure.

Hence, to prove the convergence of point processes (3), (6) and (9), we just have to verify the
hypothesis of Theorem 4 for Vi,M given by δ−1

N |η(ωN,i) − EN |, i.e. we must show that

∑

(ωN,1,...,ωN,l)∈Sl
N

P(∀l
i=1 : |η(ωN,i) − EN | < biδN ) → b1 · · · bl (11)

where the sum is taken over all sets of different paths (ωN,1, . . . , ωN,l).

Informal proof of Theorem 1. Before proceeding with rigorous proofs let us give some
informal arguments supporting Theorem 1.

The random variables η(ωN,i), i = 1, . . . , l, are the sums of independent identically distributed
random variables with zero mean. The l × l covariance matrix BN (ωN,1, . . . , ωN,l) of l random
variables η(ωN,i), i = 1, . . . , l, has 1 on the diagonal and the covariances cov (η(ωN,i), η(ωN,j)) =
N−1#{m : ωN,i

m = ωN,j
m } ≡ bi,j(N) for i 6= j, i, j ∈ {1, . . . , l}.

The number of sets (ωN,1, . . . , ωN,l) with bi,j(N) = o(1) (o(1) should be chosen of an appropriate
order) for all pairs i 6= j, i, j = 1, . . . , l, as N → ∞, is (2d)Nl(1−γ(N)) as N → ∞ where γ(N) is
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exponentially small in N . For all such sets (ωN,1, . . . , ωN,i), by the local Central Limit Theorem,
the random variables η(ωN,i), i = 1, . . . , l, should behave asymptotically as Gaussian random
variables with covariances bi,j(N) = o(1) and the determinant of the covariance matrix 1+ o(1).
Therefore, the probability that these random variables belong to [−δNbi+c, δNbi+c] respectively
for i = 1, . . . , l, equals

(2δNb1) · · · (2δNbl)(
√

2π)−le−c2l/2 = b1 · · · bl2
−Nl(1 + o(1)).

Since the number of such sets (ωN,1, . . . , ωN,l) is (2d)Nl(1 + o(1)), the sum (11) over them
converges to b1 · · · bl.

Let us turn to the remaining tiny part of Sl
N where (ωN,1, . . . , ωN,l) are such that the covariances

bi,j(N) 6= o(1) with o(1) of an appropriate order for some i 6= j, i, j = 1, . . . , l, N → ∞. The
number of such sets is exponentially smaller than (2d)Nl. Here two possibilities should be
considered differently.

The first one is when the covariance matrix is non-degenerate. Then, invoking again the Central
Limit Theorem, the probabilities P(·) in (11) in this case are not greater than

(detBN (ωN,1, . . . , ωN,l))−1/2(2δNb1) · · · (2δNbl)(
√

2π)−l.

From the definition of the covariances of η(ωN,i), det BN (ωN,1, . . . , ωN,l) is a finite polynomial
in the variables 1/N . Therefore the probabilities P(·) in (11) are bounded by (2d)−Nl up to
a polynomial term, while the number of sets (ωN,1, . . . , ωN,l) such that bi,j(N) 6= o(1) some
i 6= j, i, j = 1, . . . , l, is exponentially smaller than (2d)Nl. Therefore the sum (11) over such sets
(ωN,1, . . . , ωN,l) converges to zero exponentially fast.

Let now (ωN,1, . . . , ωN,l) be such that BN (ωN,1, . . . , ωN,l) is degenerate of the rank r < l. Then,
without loss of generality, we may assume that η(ωN,1), . . . , η(ωN,r) are linearly independent,
while η(ωN,r+1), . . . , η(ωN,l) are their linear combinations. Then the probabilities P(·) in (11)
are bounded by the probabilities that only η(ωN,1), . . . , η(ωN,r) belong to the corresponding
intervals, which are at most 2−Nr up to a polynomial term as previously. Moreover, we will
show that for no one m = 0, 1, . . . , N , ωN,1

m , . . . , ωN,r
m can not be all different. Otherwise, each of

ωN,r+1, . . . , ωN,l would coincide with one of ωN,1, . . . , ωN,r, which is impossible since the sum (11)
is taken over sets of different(!) paths. This implies that the number of such sets (ωN,1, . . . , ωN,r)
is exponentially smaller than 2Nr. Furthermore, the number of possibilities to complete each
of these sets by ωN,r+1, . . . , ωN,l such that η(ωN,r+1), . . . , η(ωN,l) are linear combinations of
η(ωN,1), . . . , η(ωN,r) is N -independent. Thus the number of sets (ωN,1, . . . , ωN,l) in this case
being exponentially smaller than 2Nr, and the probabilities being 2−Nr up to a polynomial
term, the corresponding sum (11) converges to zero. This completes the informal proof of (3) in
Theorem 1.

We now give rigorous proofs. We start with proofs of Theorems 2 and 3 in Gaussian environment
and give the proof of Theorem 1 after that.

Proof of Theorem 2. For θ ∈]0, 1/2[ let us denote by

Rθ
N,l = {(ωN,1, . . . , ωN,l) : cov(η(ωN,i), η(ωN,j)) ≤ N θ−1/2, ∀i, j = 1, . . . , l, i 6= j}. (12)

Step 1. As a first preparatory step, we need to estimate the cardinality of Sl
N \ Rθ

N,l, i.e. to

show (14). Let us first note that for any two paths ωN,1, ωN,2 ∈ SN

cov(η(ωN,1), η(ωN,2)) = s/N
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if and only if
#{m : (ω1

m, m) = (ω2
m, m)} = s,

i.e. the number of moments of time within the period [0, N ] when the trajectories ωN,1 and ωN,2

are at the same point of the space Z equals s. But due to the symmetry of the simple random
walk

#
{

ωN,1, ωN,2 : #{m ∈ [0, . . . , N ] : ω1
m − ω2

m = 0} = s
}

= #
{

ωN,1, ωN,2 : #{m ∈ [0, . . . , N ] : ω1
m + ω2

m = 0} = s
}

. (13)

Taking into account the fact that the random walk starting from 0 can not visit 0 at odd moments
of time, we obtain that (3) equals

#
{

ω2N : #{m ∈ [0, . . . , 2N ] : ωm = 0} = s
}

.

This last number is well-known for the simple random walk on Z : it equals 22N × 2s−2N
(

2N−s
N

)

(see e.g. [16], Volume 1, Chapter 3, Section 10, exercise 10) which is, by Stirling’s formula,

when s = [N1/2+θ], θ ∈]0, 1/2[, equivalent to 22N (πN)−1/2e−s2/(4N) = 22N (πN)−1/2e−N2θ/4 as

N → ∞. Finally, we obtain that for all N ≥ 0 the number (3) it is not greater than 22Ne−hN2θ

with some constant h > 0. It follows that for all N > 0

|Sl
N \ Rθ

N,l|

≤ (l(l − 1)/2)2N(l−2)#
{

ωN,1, ωN,2 : #{m ∈ [0, . . . , N ] : ω1
m − ω2

m = 0} ≥ N1/2+θ
}

≤ 2NlCN exp(−hN2θ) (14)

where C > 0, h > 0 are some constants.

Step 2. The second preparatory step is the estimation (3) and (18) of the probabilities in the
sum (11). Let BN (ωN,1, . . . , ωN,l) be the covariance matrix of the random variables η(ωN,i) for
i = 1, . . . , l. Then, if BN (ωN,1, . . . , ωN,l) is non-degenerate,

P(∀l
i=1 : |η(ωN,i) − EN | < biδN ) =

∫

C( ~EN )

e−(~zB−1

N (ωN,1,...,ωN,l)~z)/2

(2π)l/2
√

detBN (ωN,1, . . . , ωN,l)
d~z (15)

where
C( ~EN ) = {~z = (z1, . . . , zl) : |zi − EN | ≤ δNbi,∀i = 1, . . . , l}.

Let θ ∈]0, 1/2[. Since δN is exponentially small in N , we see that uniformly for (ωN,1, . . . , ωN,l) ∈
Rθ

N,l, the probability (15) equals

(2δN/
√

2π)l(b1 · · · bl)e
−( ~ENB−1

N (ωN,1,...,ωN,l) ~EN )/2(1 + o(1))

= (2δN/
√

2π)l(b1 · · · bl)e
−‖ ~EN‖2(1+O(Nθ−1/2))/2(1 + o(1)) (16)

where we denoted by ~EN the vector (EN , . . . , EN ).

We will also need a more rough estimate of the probability (15) out of the set Rθ
N,l. Let now

the matrix BN (ωN,1, . . . , ωN,l) be of the rank r ≤ l. Then, if r < l, there are r paths among

12



ωN,1, . . . , ωN,l such that corresponding r random variables η(ωN,i) form the basis. Without loss
of generality we may assume that these are ωN,1, . . . , ωN,r. Then the matrix BN (ωN,1, . . . , ωN,r)
is non-degenerate and η(ωN,r+1), . . . , η(ωN,l) are linear combinations of η(ωN,1), . . . , η(ωN,r). We
may now estimate from above the probabilities (11) by the probabilities P(∀r

i=1 : |η(ωN,i)−EN | <
biδN ) that can be expressed in terms of the r-dimensional integrals like (15). Consequently, in
this case

P(∀l
i=1 : |η(ωN,i) − EN | < biδN ) ≤ (2δN/

√
2π)rb1 · · · br

√

detBN (ωN,1, . . . , ωN,r)
. (17)

From the definition of the matrix elements, one sees that detBN (ωN,1, . . . , ωN,l) is a finite poly-
nomial in the variables 1/N . Hence, if the rank of B(ωN,1, . . . , ωN,r) equals r, we have for all
N > 0

P(∀l
i=1 : |η(ωN,i) − EN | < biδN ) ≤ 2−Nrec2rN2α/2Nk(r) (18)

for some k(r) > 0.

Step 3. Armed with (14), (3) and (18), we now proceed with the proof of the theorem.

For given α ∈]0, 1/4[, let us choose first θ0 ∈]0, 1/4[ such that

2α − 1/2 + θ0 < 0. (19)

Next, let us choose θ1 > θ0 such that

2α − 1/2 + θ1 < 2θ0, (20)

then θ2 > θ1 such that
2α − 1/2 + θ2 < 2θ1, (21)

etc. After i − 1 steps we choose θi > θi−1 such that

2α − 1/2 + θi < 2θi−1. (22)

Let us take e.g. θi = (i + 1)θ0. We stop the procedure at n = [α/θ0]th step, that is

n = min{i ≥ 0 : α < θi}. (23)

Note that θn−1 ≤ α < 1/4, and then θn = θn−1 + θ0 < 1/2.

We will prove that the sum (11) over Rθ0

N,l converges to b1 · · · bl, while those over Rθi
N,l \ R

θi−1

N,l

for i = 1, 2, . . . , n and the one over Sl
N \ Rθn

N,l converge to zero.

By (3), each term of the sum (11) over Rθ0

N,l equals

(2δN/
√

2π)l(b1 · · · bl)e
−‖ ~EN‖2(1+O(Nθ0−1/2))/2(1 + o(1)).

Here e‖ ~EN‖2×O(Nθ0−1/2) = 1 + o(1) by the choice (19) of θ0. Then, by the definition of δN (5),
each term of the sum (11) over Rθ0

N,l is

(b1 · · · bl)2
−Nl(1 + o(1))

13



uniformly for (ωN,1, . . . , ωN,l) ∈ Rθ0

N,l. The number of terms in this sum is |Rθ0

N,l|, that is

2Nl(1 + o(1)) by (14). Hence, the sum (11) over Rθ0

N,l converges to b1 · · · bl.

Let us consider the sum over Rθi
N,l \ R

θi−1

N,l for i = 1, 2, . . . , n. Each term in this sum equals

(2δN/
√

2π)l(b1 · · · bl)e
−‖ ~EN‖2(1+O(Nθi−1/2)/2(1 + o(1))

uniformly for (ωN,1, . . . , ωN,l) ∈ Rθi
N,l. Then, by the definition of δN (5), it is bounded by

2−NlCie
hiN

2α−1/2+θi with some constants Ci, hi > 0. The number of terms in this sum is not
greater than |Sl

N \Rθi−1

N,l | which is bounded due to (14) by CN2Nl exp(−hN2θi−1). Then by the
choice of θi (22) this sum converges to zero exponentially fast.

Let us now treat the sum over Sl
N \ Rθn

N,l. Let us first study the sum over (ωN,1, . . . , ωN,l)

such that the matrix BN (ωN,1, . . . , ωN,l) is non-degenerate. By (18) each term in this sum is
bounded by 2−Nlec2lN2α/2Nk(l) for some k(l) > 0. The number of terms in this sum is bounded
by CN2Nl exp(−hN2θn) by (14). Since α < θn by (23), this sum converges to zero exponentially
fast.

Let us finally turn to the sum over (ωN,1, . . . , ωN,l) such that the matrix B(ωN,1, . . . , ωN,l) is
degenerate of the rank r < l. By (18) each term in this sum is bounded by

2−Nrec2rN2α/2Nk(r) (24)

for some k(r) > 0.

There are r paths among ωN,1, . . . , ωN,l such that corresponding η(ωN,i) form the basis. Without
loss of generality we may assume that these are ωN,1, . . . , ωN,r. Note that ωN,1, . . . , ωN,r are such
that it can not be for no one m ∈ [0, . . . , N ] that ω1

m, . . . , ωr
m are all different. In fact, assume

that ω1
m, . . . , ωr

m are all different. Then η(m, ω1
m), . . . , η(m, ωr

m) are independent identically
distributed random variables and η(m, ωr+1

m ) = µ1η(m, ω1
m)+· · ·+µrη(m, ωr

m). If ωr+1
m is different

from all ω1
m, . . . , ωr

m, then η(m, ωr+1
m ) is independent from all of η(m, ω1

m), . . . , η(m, ωr
m), then

the linear coefficients, being the covariances of η(m, ωr+1
m ) with η(m, ω1

m), . . . , η(m, ωr
m), are µ1 =

· · · = µr = 0. So, η(ωN,r+1) can not be a non-trivial linear combination of η(ωN,1), . . . , η(ωN,r).
If ωr+1

m equals one of ω1
m, . . . , ωr

m, say ωi
m, then again by computing the covariances of η(m, ωr+1

m )
with η(m, ω1

m), . . . , η(m, ωr
m), we get µi = 1, µj = 0 for j = 1, . . . , i−1, i+1, . . . , r. Consequently,

η(ωi
k) = η(ωr+1

k ) for all k = 1, . . . , N , so that ωN,i = ωN,r+1. But this is impossible since the
sum (11) is taken over different paths ωN,1, . . . , ωN,l. Thus the sum is taken only over paths
ωN,1, . . . , ωN,r where at each moment of time at least two of them are at the same place.

The number of such sets of r different paths is exponentially smaller than 2Nr : there exists
p > 0 such that is does not exceed 2Nre−pN . (In fact, consider r independent simple random
walks on Z that at a given moment of time occupy any k < r different points of Z. Then with
probability not less than (1/2)r, at the next moment of time, they occupy at least k+1 different
points. Then with probability not less than ((1/2)r)r at least once during r next moments of
time they will occupy r different points. So, the number of sets of different r paths that at
each moment of time during [0, N ] occupy at most r − 1 different points is not greater than
2Nr(1 − (1/2r)r)[N/r].)

Given any set of r paths with η(ωN,1), . . . , η(ωN,r) linearly independent, there is an N -
independent number of possibilities to choose ωN,r+1, . . . , ωN,l so that η(ωN,r+1), . . . η(ωN,l)
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are linear combinations of η(ωN,1), . . . , η(ωN,r). To see this, first consider the equation
λ1η(ωN,1) + · · · + λrη(ωN,r) = 0 with unknown λ1, . . . , λr. For any moment of time m ∈ [0, N ]
this means λ1η(m, ω1

m) + · · · + λrη(m, ωr
m) = 0. If ωi1

m = ωi2
m = · · ·ωik

m but ωj
m 6= ωi1

m for all
j ∈ {1, . . . , r} \ {i1, . . . , ik}, then λi1 + · · · + λik = 0. Then for any m ∈ [0, N ] the equation
λ1η(m, ω1

m) + · · · + λrη(m, ωr
m) = 0 splits into a certain number n(m) (1 ≤ n(m) ≤ r) equa-

tions of type λi1 + · · · + λik = 0. Let us construct a matrix A with r columns and at least N
and at most rN rows in the following way. For any m > 0, according to given ω1

m, . . . , ωr
m,

let us add to A n(m) rows : each equation λi1 + · · · + λik = 0 gives a row with 1 at places
i1, . . . , ik and 0 at all other places. Then the equation λ1η(ωN,1) + · · ·+ λrη(ωN,i) = 0 is equiv-
alent A~λ = ~0 with ~λ = (λ1, . . . , λr). Since this equation has only a trivial solution ~λ = 0,
then the rank of A equals r. The matrix A contains at most 2r different rows. There is less
than (2r)r possibilities to choose r linearly independent of them. Let Ar×r be an r × r matrix
consisting of r linearly independent rows of A. The fact that η(ωN,r+1) is a linear combination
µ1η(ωN,1)+ · · ·+µrη(ωN,r) = η(ωN,r+1) can be written as Ar×r~µ = ~b where the vector ~b contains
only 1 and 0 : if a given row t of the matrix Ar×r corresponds to the mth step of the random
walks and has 1 at places i1, . . . , ik and 0 elsewhere, then we put bt = 1 if ωi1

m = ωr+1
m and bt = 0

if ωi1
m 6= ωr+1

m . Thus, given ωN,1, . . . , ωN,r, there is an N independent number of possibilities to
write the system Ar×r~µ = ~b with non degenerate matrix Ar×r which determines uniquely lin-
ear coefficients µ1, . . . , µr and consequently η(ωN,r+1) and the path ωN,r+1 itself through these
linear coefficients. Hence, there is not more possibilities to choose ωN,r+1 than the number of
non-degenerate matrices Ar×r multiplied by the number of vectors ~b, that is roughly not more
than 2r2+r.

These observations lead to the fact that the sum (11) with the covariance matrix
BN (ωN,1, . . . , ωN,l) of the rank r contains at most (2r2+r)l−r2Nre−pN different terms with some
constant p > 0. Then, taking into account the estimate (24) of each term with 2α < 1, we
deduce that it converges to zero exponentially fast. This finishes the proof of (6).

To show (2), we have already noticed that the sum of terms P(∀2
i=1 : |η(ωN,i)−EN | < biδN ) over

all pairs of different paths ωN,1, ωN,2 in Sl
N \ Rθ0

N,l converges to zero exponentially fast. Then
(2) follows from the Borel-Cantelli lemma.

Proof of Theorem 3. We have again to verify the hypothesis of Theorem 4 for Vi,M given by
δ−1
N |η(ωN,i) − EN |, i.e. we must show (11).

For β ∈]0, 1[ let us denote by

Kβ
N,l = {(ωN,1, . . . , ωN,l) : cov(η(ωN,i), η(ωN,j)) ≤ Nβ−1, ∀i, j = 1, . . . , l, i 6= j}.

Step 1. In this step we estimate the cardinality of the complementary set to Kβ
N,l in (26) and

(27).

We have :

|Sl
N \ Kβ

N,l| (25)

≤ (l(l − 1)/2)(2d)N(l−2)#
{

ωN,1, ωN,2 : #{m ∈ [0, . . . , N ] : ω1
m − ω2

m = 0} > Nβ
}

.

It has been shown in the proof of Theorem 2 that the number

#
{

ωN,1, ωN,2 : #{m ∈ [0, . . . , N ] : ω1
m − ω2

m = 0} > Nβ
}
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equals the number of paths of a simple random walk within the period [0, 2N ] that visit the
origin at least [Nβ] + 1 times.

Let Wr be the time of the rth return to the origin of a simple random walk (W1 = 0), RN be
the number of returns to the origin in the first N steps. Then for any integer q

P (RN ≤ q) = P (W1 + (W2 − W1) + · · · + (Wq − Wq−1) ≥ N) ≥
q−1
∑

k=1

P (Ek)

where Ek is the event that exactly k of the variables Ws −Ws−1 are greater than or equal to N ,
and q − 1 − k are less than N . Then

q−1
∑

k=1

P (Ek) =

q−1
∑

k=1

(

q − 1

k

)

P (W2 − W1 ≥ N)k(1 − P (W2 − W1 ≥ N))q−1−k

= 1 − (1 − P (W2 − W1 ≥ N))q−1.

It is shown in [15] that in the case d = 2

P (W2 − W1 ≥ N) = π(log N)−1(1 + O((log N)−1)), N → ∞.

Then

P (RN > q) ≤
(

1 − π(log N)−1(1 + o(1))
)q−1

.

Consequently,

#
{

ωN,1, ωN,2 : #{m ∈ [0, . . . , N ] : ω1
m − ω2

m = 0} > Nβ
}

= (2d)2NP (R2N > [Nβ ])

≤ (2d)2N
(

1 − π(log 2N)−1(1 + o(1))
)[Nβ ]−1

≤ (2d)2N exp(−h(log 2N)−1Nβ)

with some constant h > 0. Finally for d = 2 and all N > 0 by (25)

|Sl
N \ Kβ

N,l| ≤ (2d)lN exp(−h2(log 2N)−1Nβ) (26)

with some constant h2 > 0.

In the case d ≥ 3 the random walk is transient and

P (W2 − W1 ≥ N) ≥ P (W2 − W1 = ∞) = γd > 0.

It follows that P(RN > q) ≤ (1 − γd)
q−1 and consequently

|Sl
N \ Kβ

N,l| ≤ (2d)lN exp(−hdN
β) (27)

with some constant hd > 0.

Step 2. Proceeding exactly as in the proof of Theorem 2, we obtain that uniformly for
(ωN,1, . . . , ωN,l) ∈ Kβ

N,l,

P(∀l
i=1 : |η(ωN,i) − EN | < biδN )
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= (2δN/
√

2π)l(b1 · · · bl)e
−‖vecEN‖2(1+O(Nβ−1))/2(1 + o(1)) (28)

where we denoted by ~EN the vector (EN , . . . , EN ). Moreover, if the covariance the matrix
BN (ωN,1, . . . , ωN,l) is of the rank r ≤ l (using the fact that its determinant is a finite polynomial
in the variables 1/N) we get as in the proof of Theorem 2 that

P(∀l
i=1 : |η(ωN,i) − EN | < biδN ) ≤ (2d)−Nrec2rN2α/2Nk(r) (29)

for some k(r) > 0.

Step 3. Having (26), (27), (3) and (29), we are able to carry out the proof of the theorem. For
given α ∈]0, 1/2[, let us choose first β0 > 0 such that

2α − 1 + β0 < 0. (30)

Next, let us choose β1 > β0 such that

2α − 1 + β1 < β0, (31)

then β2 > β1 such that
2α − 1 + β2 < β1, (32)

etc. After i − 1 steps we choose βi > βi−1 such that

2α − 1 + βi < βi−1. (33)

Let us take e.g. βi = (i + 1)β0. We stop the procedure at n = [2α/β0]th step, that is

n = min{i ≥ 0 : 2α < βi}. (34)

Note that βn−1 ≤ 2α, and then βn = βn−1 + β0 < 2α + 1 − 2α = 1.

We will prove that the sum (11) over Kβ0

N,l converges to b1 · · · bl, while those over Kβi

N,l \ Kβi−1

N,l

for i = 1, 2, . . . , n and the one over Sl
N \ Kβn

N,l converge to zero.

By (3), each term of the sum (11) over Kβ0

N,l equals

(2δN/
√

2π)l(b1 · · · bl)e
−‖ ~EN‖2(1+O(Nβ0−1))/2(1 + o(1)).

Here e‖ ~EN‖2×O(Nβ0−1) = 1 + o(1) by the choice (30) of β0. Then, by the definition of δN (8),

each term of the sum (11) over Kβ0

N,l is

(b1 · · · bl)(2d)−Nl(1 + o(1))

uniformly for (ωN,1, . . . , ωN,l) ∈ Kη0

N,l. The number of terms in this sum is |Kβ0

N,l|, that is

(2d)Nl(1 + o(1)) by (26) and (27). Hence, the sum (11) over Kβ0

N,l converges to b1 · · · bl.

Let us consider the sum over Kβi

N,l \K
βi−1

N,l for i = 1, 2, . . . , n. By (3) each term in this sum equals

(2δN/
√

2π)l(b1 · · · bl)e
−‖ ~EN‖2(1+O(Nβi−1)/2(1 + o(1))
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uniformly for (ωN,1, . . . , ωN,l) ∈ Kβi

N,l. Then, by the definition of δN (8), it is bounded by the

quantity (2d)−NlCie
hiN

2α−1+βi with some constants Ci, hi > 0. The number of terms in this sum

is not greater than |Sl
N \ Kβi−1

N,l | which is bounded by (2d)Nl exp(−h2N
βi−1(log 2N)−1) in the

case d = 2 due to (26) and by the quantity (2d)Nl exp(−hdN
βi−1) in the case d ≥ 3 due to (27).

Then by the choice of βi (33) this sum converges to zero exponentially fast.

Let us now treat the sum over Sl
N \Kβn

N,l. Let us first analyze the sum over (ωN,1, . . . , ωN,l) such

that the matrix BN (ωN,1, . . . , ωN,l) is non-degenerate. By (29) each term in this sum is bounded
by (2d)−Nlec2lN2α/2Nk(l) for some k(l) > 0. The number of terms in this sum is bounded by the
quantity (2d)Nl exp(−h2N

βn(log 2N)−1) in the case d = 2 and by (2d)Nl exp(−hdN
βn) in the

case d ≥ 3 respectively by (26) and (27) . Since 2α < βn by (34), this sum converges to zero
exponentially fast.

Let us finally turn to the sum over (ωN,1, . . . , ωN,l) such that the matrix BN (ωN,1, . . . , ωN,l) is
degenerate of the rank r < l. By (29) each term in this sum is bounded by (2d)−Nrec2rN2α/2Nk(r)

for some k(r) > 0, while exactly by the same arguments as in the proof of Theorem 2, (they
are, indeed, valid in all dimensions) the number of terms in this sum is less than O((2d)Nr)e−pN

with some constant p > 0. Hence, this last sum converges to zero exponentially fast as 2α < 1.
This finishes the proof of (9). The proof of (3) is completely analogous to the one of (2).

Proof of Theorem 1. We again concentrate on the proof in the sum (11) with EN = c.

Step 1. First of all, we need a rather rough estimate of the probabilities of (11). Let
(ωN,1, . . . , ωN,r) be such that the matrix BN (ωN,1, . . . , ωN,r) is non-degenerate. We prove in
this step that there exists a constant k(r) > 0 such that for any N > 0 and any (ωN,1, . . . , ωN,r)
with non-degenerate BN (ωN,1, . . . , ωN,r), we have:

P(∀r
i=1 : |η(ωN,i) − c| < biδN ) ≤ (2d)−NrNk(r). (35)

Let

fωN,1,...,ωN,r

N (t1, . . . , tr) = E exp
(

i
r

∑

k=1

tkη(ωN,k)
)

be the Fourier transform of (η(ωN,1), . . . , η(ωN,r)). Then

P(∀r
i=1 : |η(ωN,i) − c| < biδN )

=
1

(2π)r

∫

Rr

fωN,1,...,ωN,r

N (~t)
r

∏

k=1

e−itk(−bkδN+c) − e−itk(bkδN+c)

itk
dt1 · · · dtr (36)

provided that the integrand is in L1(Rd). We will show that this is the case due to the assumption
made on φ and deduce the bound (35).

We know that the function fωN,1,...,ωN,r

N (~t) is the product of N Fourier transforms :

fωN,1,...,ωN,r

N (~t) =

N
∏

n=1

E exp
(

iN−1/2
r

∑

k=1

tkη(n, ωN,k
n )

)

. (37)

Moreover, each of these functions is itself a product of (at minimum 1 and at maximum r) Fourier
transforms of type φ((ti1 + · · ·+ tik)N−1/2). More precisely, let us construct the matrix A with r
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columns and at least N and at most rN rows as in the proof of Theorem 2. Namely, for each step
n = 0, 1, 2, . . . , N , we add to the matrix A at least 1 and at most r rows according to the following
rule: if ωN,i1

n = ωN,i2
n = · · · = ωN,ik

n and ωN,j
n 6= ωN,i1

n for any j ∈ {1, . . . , r} \ {i1, . . . , ik}, we add
to A a row with 1 at places i1, . . . , ik and 0 at other r − k places. Then

fωN,1,...,ωN,r

N (~t) =
∏

j

φ(N−1/2(A~t)j). (38)

Since BN (ωN,1, . . . , ωN,r) is non-degenerate, the rank of the matrix A equals r. Let us choose
in A any r linearly independent rows, and let us denote by Ar the r × r matrix constructed by
them. Then by the assumption made on φ

|fωN,1,...,ωN,r

N (~t)| ≤
r

∏

j=1

|φ(N−1/2(Ar~t)j)| ≤
r

∏

j=1

min
(

1,
CN1/2

|(Ar~t)j |

)

≤ CrN r/2
r

∏

j=1

min
(

1,
1

|(Ar~t)j |

)

(39)
with some constant C > 0. Furthermore

∣

∣

∣

r
∏

k=1

e−itk(−bkδN+c) − e−itk(bkδN+c)

itk

∣

∣

∣
≤

r
∏

k=1

min
(

(2δN )bk,
2

|tk|
)

≤ C ′
r

∏

k=1

min
(

(2d)−N ,
1

|tk|
)

(40)
with some C ′ > 0. Hence,

1

(2π)r

∫

Rr

∣

∣

∣
fωN,1,...,ωN,r

N (~t)
r

∏

k=1

e−itk(−bkδN+c) − e−itk(bkδN+c)

itk

∣

∣

∣
dt1 · · · dtr

≤ C0N
r/2

∫ r
∏

k=1

min
(

(2d)−N ,
1

|tk|
)

min
(

1,
1

|(Ar~t)k|

)

d~t (41)

with some constant C0 > 0 depending on the function φ and on b1, . . . , br only. Since the
matrix Ar is non-degenerate, using easy arguments of linear algebra, one can show that for some
constant C1 > 0 depending on the matrix Ar only, we have

∫ r
∏

k=1

min
(

(2d)−N ,
1

|tk|
)

min
(

1,
1

|(Ar~t)k|

)

d~t ≤ C1

∫ r
∏

k=1

min
(

(2d)−N ,
1

|tk|
)

min
(

1,
1

|tk|
)

d~t.

(42)
The proof of (42) is given in Appendix. But the right-hand of (42) is finite. This shows that the
integrand in (36) is in L1(Rd) and the inversion formula (36) is valid. Moreover, the right-hand
side of (42) equals C1(2((2d)−N + (2d)−NN ln 2d + (2d)−N ))r. Hence, the probabilities above
are bounded by the quantity C0N

r/2C12
r(2 + N ln(2d))r(2d)−Nr with C0 depending on φ and

b1, . . . , br and C1 depending on the choice of Ar. To conclude the proof of (35), it remains to
remark that there is an N -independent number of possibilities to construct a matrix Ar (at most
2r2

), since it contains only 0 or 1.

Step 2. We keep the notation Rθ
N,l from (3) for θ ∈]0, 1/2[. The cardinality of the complementary

set for d = 1 is estimated in (14). Moreover by (26) for d = 2

|Sl
N \ Rθ

N,l| = |Sl
N \ Kθ+1/2

N,l | ≤ (2d)Nl exp(−h2(log 2N)−1N1/2+θ)
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and by (27) for d ≥ 3

|Sl
N \ Rθ

N,l| = |Sl
N \ Kθ+1/2

N,l | ≤ (2d)Nl exp(−hdN
1/2+θ),

so that, for all d ≥ 1 there are hd, Cd > 0 such that for all N > 0

|Sl
N \ Rθ

N,l| ≤ (2d)NlCdN exp(−hdN
2θ). (43)

Sep 3. In this step we show that uniformly for (ωN,1, . . . , ωN,l) ∈ Rθ
N,l

P(∀l
i=1 : |η(ωN,i) − c| < biδN ) = (2d)−Nlb1 · · · bl(1 + o(1)). (44)

For any (ωN,1, . . . ωN,l) ∈ Rθ
N,l, we can represent the probabilities in the sum (11) as sums of

four terms :

P(∀l
i=1 : |η(ωN,i) − c| < biδN )

=
1

(2π)l

∫

Rl

fωN,1,...,ωN,l

N (~t)
l

∏

k=1

e−itk(−bkδN+c) − e−itk(bkδN+c)

itk
dt1 · · · dtl

=

4
∑

m=1

Im
N (ωN,1, . . . , ωN,l) (45)

where

I1
N =

1

(2π)l

∫

Rl

l
∏

k=1

e−itk(−bkδN+c) − e−itk(bkδN+c)

itk
e−~tBN (ωN,1,...,ωN,l)~t/2d~t (46)

− 1

(2π)l

∫

‖t‖>ǫN1/6

l
∏

k=1

e−itk(−bkδN+c) − e−itk(bkδN+c)

itk
e−~tBN (ωN,1,...,ωN,l)~t/2d~t.

I2
N =

1

(2π)l

∫

‖t‖<ǫN1/6

l
∏

k=1

e−itk(−bkδN+c) − e−itk(bkδN+c)

itk

×
(

fωN,1,...,ωN,l

N (~t) − e−~tBN (ωN,1,...,ωN,l)~t/2
)

d~t (47)

I3
N =

1

(2π)l

∫

ǫN1/6<‖t‖<δN1/2

l
∏

k=1

e−itk(−bkδN+c) − e−itk(bkδN+c)

itk
fωN,1,...,ωN,l

N (~t)d~t

I4
N =

1

(2π)l

∫

‖t‖>δN1/2

l
∏

k=1

e−itk(−bkδN+c) − e−itk(bkδN+c)

itk
fωN,1,...,ωN,l

N (~t)d~t

with ǫ, δ > 0 chosen according to the following Proposition 1.

Proposition 1. There exist constants N0, C, ǫ, δ, ζ > 0 such that for all (ωN,1, . . . ωN,l) ∈ Rθ
N,l

and all N ≥ N0 the following estimates hold:

∣

∣

∣
fωN,1,...,ωN,l

N (~t)−e−~tBN (ωN,1,...,ωN,l)~t/2
∣

∣

∣
≤ C‖t‖3

√
N

e−~tBN (ωN,1,...,ωN,l)~t/2, for all ‖t‖ ≤ ǫN1/6. (48)
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∣

∣

∣
fωN,1,...,ωN,l

N (~t)
∣

∣

∣
≤ e−ζ‖t‖2

for all ‖t‖ < δ
√

N. (49)

The proof of this proposition mimics the one of the Berry-Essen inequality and is given in
Appendix.

The first part of I1
N is just the probability that l Gaussian random variables with zero mean and

covariance matrix BN (ωN,1, . . . , ωN,l) belong to the intervals [−δNbk+c, δNbk+c] for k = 1, . . . , l
respectively. This is

∫

|zj−c|≤δN bj ,∀l
j=1

e−(~zB−1(ωN,1,...,ωN,l)~z)/2

(2π)l/2
√

detB(ωN,1, . . . , ωN,l)
d~z

= (2δN/
√

2π)l(b1 · · · bl)e
−(~cB−1(ωN,1,...,ωN,l)~c)/2(1 + o(1))

= (2δN/
√

2π)l(b1 · · · bl)e
−lc2(1+O(Nθ−1/2))/2(1 + o(1)) = (2d)−Nlb1 · · · bl(1 + o(1)) (50)

uniformly for (ωN,1, . . . , ωN,l) ∈ Rθ
N,l, where we denoted by ~c the vector (c, . . . , c). Since

l
∏

k=1

∣

∣

∣

e−itk(−bkδN+c) − e−itk(bkδN+c)

itk

∣

∣

∣
≤ (2δNb1) · · · (2δNbl) = O((2d)−Nl) (51)

and the elements of the matrix BN (ωN,1, . . . , ωN,l) out of the diagonal are O(N θ−1/2) = o(1) as
N → ∞, the second part of I1

N is smaller than (2d)−Nl exponentially (with exponential term
exp(−hN1/3) for some h > 0).

There is a constant C > 0 such that the term I2
N is bounded by C(2d)−NlN−1/2 for any

(ωN,1, . . . ωN,l) ∈ Rθ
N,l and all N large enough. This follows from (51), the estimate (48)

and again the fact that the elements of the matrix BN (ωN,1, . . . , ωN,l) out of the diagonal are
O(N θ−1/2) = o(1) as N → ∞.

The third term I3
N is exponentially smaller than (2d)−Nl by (51) and the estimate (49).

Finally, by (51)

|I4
N | ≤ (2δNb1) · · · (2δNbl)

∫

‖t‖>δ
√

N

|fωN,1,...,ωN,l

N (~t)|d~t = O((2d)−Nl)

∫

‖t‖>δ
√

N

|fωN,1,...,ωN,l

N (~t)|d~t.

The function fωN,1,...,ωN,l

N (~t) is the product of N Fourier transforms (37). Note that for any pair

ωN,i, ωN,j of (ωN,1, . . . , ωN,l) ∈ Rθ
N,l, there are at most N θ+1/2 steps n where ωN,i

n = ωN,j
n . Then

there are at least N − [l(l − 1)/2]N θ+1/2 = a(N) steps where all l coordinates ωN,i, i = 1, . . . , l,
of the vector (ωN,1, . . . , ωN,l) ∈ Rθ

N,l are different. In this case

E exp
(

iN−1/2
l

∑

k=1

tkθ(n, ωN,k
n )

)

= φ(t1N
−1/2) · · ·φ(tkN

−1/2).
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By the assumption made on φ, this function is aperiodic and thus |φ(t)| < 1 for t 6= 0. Moreover,
for any δ > 0 there exists h(δ) > 0 such that |φ(t)| ≤ 1 − h(δ) for |t| > δ/l. Then

∫

‖t‖>δ
√

N

|fωN,1,...,ωN,l

N (~t)|d~t ≤
∫

‖t‖>δ
√

N

|φ(t1N
−1/2) · · ·φ(tkN

−1/2)|a(N)d~t

= N l/2

∫

‖s‖>δ

|φ(s1) · · ·φ(sk)|a(N)d~s ≤ N l/2(1 − h(δ))a(N)−2

∫

‖s‖>δ

|φ(s1) · · ·φ(sk)|2d~s

where a(N) = N(1 + o(1)) and the last integral converges due to the assumption made on φ(s).
Hence I4

N is exponentially smaller than (2d)−Nl. This finishes the proof of (44).

Step 4. We are now able to prove the theorem using the estimates (35),(43) and (44). By (44),
the sum (11) over Rθ

N,l (with fixed θ ∈]0, 1/2[) that contains by (43)(2d)Nl(1 + o(1)) terms,

converges to b1 · · · bl. The sum (11) over (ωN,1, . . . , ωN,l) 6∈ Rθ
N,l but with BN (ωN,1, . . . , ωN,l)

non-degenerate, by (43) has only at most (2d)NlCN exp(−hN2θ) terms, while each of its terms
by (35) with r = l is of the order (2d)−Nl up to a polynomial term. Hence, this sum converges
to zero. Finally, due to the fact that in any set (ωN,1, . . . , ωN,l) taken into account in (11) the
paths are all different, the sum over (ωN,1, . . . , ωN,l) 6∈ Rθ

N,l with BN (ωN,1, . . . , ωN,l) of the rank

r < l has an exponentially smaller number of terms than (2d)Nr. This has been shown in detail
in the proof of Theorem 2 where the arguments did not depend on the dimension of the random
walk. Since by (35) each of these terms is of the order (2d)−Nr up to a polynomial term, this
sum converges to zero. This concludes the proof of (3). The proof of (1) is completely analogous
to the one of (2).

4 Appendix

Proof of (42). It is carried out via trivial arguments of linear algebra.

Let m = 1, 2, . . . , r +1, Dm−1 be a non-degenerate r× r matrix with the first m− 1 rows having
1 on the diagonal and 0 outside of the diagonal. (Clearly, D0 is just a non-degenerate matrix
and Dr is the diagonal matrix with 1 everywhere on the diagonal.) Let us introduce the integral

Jm−1(Dm−1)

=

∫ r
∏

k=1

min
(

(2d)−N ,
1

|tk|
)

min
(

1,
1

|(Dm−1~t)k|

)

d~t

=

∫ m−1
∏

k=1

min
(

(2d)−N ,
1

|tk|
)

min
(

1,
1

|tk|
)

r
∏

k=m

min
(

(2d)−N ,
1

|tk|
)

min
(

1,
1

|(Dm−1~t)k|

)

d~t.

Sice Dm−1 is non-degenerate, there exists i ∈ {m, . . . , r} such that dm,i 6= 0 and the matrix Dm

which is obtained from the matrix Dm−1 by replacing its mth row by the one with 1 at the
place (m, i) and 0 at all places (m, j) for j 6= i is non-degenerate. Without loss of generality
we may assume that i = m (otherwise juste permute the mth with the ith column in Dm−1

and ti with tm in the integral Jm−1(Dm−1) above). Since either |tm−1| < |(Dm−1~t)m−1| or

22



|tm−1| ≥ |(Dm−1~t)m−1|, we can estimate Jm−1(Dm−1) roughly by the sum of the following two
terms :

Jm−1(Dm−1)

≤
∫ m

∏

k=1

min
(

(2d)−N ,
1

|tk|
)

min
(

1,
1

|tk|
)

r
∏

k=m+1

min
(

(2d)−N ,
1

|tk|
)

min
(

1,
1

|(Dm−1~t)k|

)

d~t

+

∫ m−1
∏

k=1

min
(

(2d)−N ,
1

|tk|
)

min
(

1,
1

|tk|
)

min
(

(2d)−N ,
1

|(Dm−1~t)m|

)

min
(

1,
1

|(Dm−1~t)m|

)

×
r

∏

k=m+1

min
(

(2d)−N ,
1

|tk|
)

min
(

1,
1

|(Dm−1~t)k|

)

d~t. (52)

The first term here is just Jm(Dm). Let us make a change of variables in the second one :
let ~z = BDm−1

~t, where the matrix BDm−1
is chosen such that z1 = t1, . . . , zm−1 = tm−1, zm =

(Dm−1~t)m, zm+1 = tm+1, . . . , zr = tr. (Clearly, its mth row is the same as in the matrix Dm−1,
and it has 1 on the diagonal in all other r − 1 rows and 0 outside of it.) Since dm,m 6= 0, the
matrix B is non-degenerate. Then Dm−1~t = Dm−1B

−1
Dm−1

~z, where the matrix Dm−1B
−1
Dm−1

is
non-degenerate, and, moreover, it has the first m rows with 1 on the diagonal and 0 outside of
it, as we have (Dm−1~t)1 = t1 = z1, . . . , (Dm−1~t)m−1 = tm−1 = zm−1, (Dm−1~t)m = zm. Then
(52) can be written as

Jm−1(Dm−1) ≤ Jm(Dm) + d−1
m,mJm(Dm−1B

−1
Dm−1

). (53)

Now, observe that the left-hand side of (42) is J0(Ar). By (53) it is bounded by J1(Ar
1) +

a−1
1,1J

1(ArB−1
Ar ). Again by (53) each of these two terms can be estimated by a sum of two terms

of type J2(·) etc. After 2r applications of (53) J0(Ar) is bounded by a sum of 2r terms of type
Jr(Dr) multiplied by some constants depending only on the initial matrix Ar. But all these 2r

terms Jr(Dr) are the same as in the right-hand side of (42).

Proof of Proposition 1. We use the representation (38) of fωN,1,...,ωN,l

N (~t) as the product of a
certain number K(N, ωN,1, . . . , ωN,l) (denote it shortly by K(N, ω), clearly N ≤ K(N, ω) ≤ lN)
of Fourier transforms φ(N−1/2(A~t)j) where at most 2l are different. Each of them is of the form
E exp(iN−1/2(ti1 + · · ·+ ti,k)X) with X a standard Gaussian random variable. Applying the fact
that |eiz − 1 − iz − (iz)2/2!| ≤ |z|3/3! for any z ∈ R, we can write

φ(N−1/2(A~t)j) = 1 − ((A~t)j)
2

2!N
− νj

((A~t)j)
3
E |X|3

3!N3/2
≡ 1 − αj (54)

with some complex νj with |νj | < 1. It follows that there are some constants C1, C2 > 0 such
that for any (ωN,1, . . . , ωN,l) ∈ Rθ

N,l and any j we have: |αj | ≤ C1‖~t‖2N−1 + C2‖~t‖3N−3/2.

Then |αj | < 1/2 and |αj |2 ≤ C3‖~t‖3N−3/2 with some C3 > 0 for all ~t of the absolute value
‖~t‖ ≤ δ

√
N with δ > 0 small enough. Thus lnφ(N−1/2(A~t)j) = −αj + ν̃jα

2
j/2 (using the

expansion ln(1 + z) = z + ν̃z2/2 with some ν̃ of the absolute value |ν̃| < 1 which is true for all z
with |z| < 1/2) for all (ωN,1, . . . , ωN,l) ∈ Rθ

N,l and for all ~t with ‖~t‖ ≤ δ
√

N with some ν̃j such
that |ν̃j | < 1. It follows that

fωN,1,...,ωN,l

N (~t) = exp
(

−
K(N,ω)
∑

j=1

αj +

K(N,ω)
∑

j=1

ν̃jα
2
j/2

)

. (55)
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Since A∗A = BN (ωN,1, . . . , ωN,l), here −∑K(N,ω)
j=1 αj = −~tBN (ωN,1, . . . , ωN,l)~t/2 +

∑K(N,ω)
j=1 pj

where |pj | ≤ C2‖~t‖3N−3/2. Then

fωN,1,...,ωN,l

N (~t) = exp
(

− ~tBN (ωN,1, . . . , ωN,l)~t/2
)

exp
(

K(N,ω)
∑

j=1

pj + ν̃jα
2
j/2

)

(56)

where |pj | + |ν̃jα
2
j/2| ≤ (C2 + C3/2)‖~t‖3N−3/2 for all j. Since K(N, ω) ≤ lN , we have

∣

∣

∣

K(N,ω)
∑

j=1

pj + ν̃jα
2
j/2

∣

∣

∣
≤ (C2 + C3/2)l‖t‖3N−1/2. (57)

It follows that for ǫ > 0 small enough | exp(
∑K(N,ω)

j=1 pj + ν̃jα
2
j/2) − 1| ≤ C4‖~t‖3N−1/2 for all ~t

with ‖~t‖ ≤ ǫN1/6. This proves (48). Finally

|fωN,1,...,ωN,l

N (~t)| ≤ exp
(

− ~tBN (ωN,1, . . . , ωN,l)~t/2
)

exp
(

(C2 + C3/2)l‖t‖3N−1/2
)

. (58)

Taking into account the fact that the elements of BN (ωN,1, . . . , ωN,l) out of the diagonal are at
most N−1/2+θ = o(1) as N → ∞, one deduces from (58) that for δ > 0 small enough (49) holds
true with some ζ > 0 for all N large enough and all ~t with ‖~t‖ ≤ δ

√
N .
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