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Abstract

We examine the total number of collisions Cn in the Λ-coalescent process which starts with
n particles. A linear growth and a stable limit law for Cn are shown under the assumption
of a power-like behaviour of the measure Λ near 0 with exponent 0 < α < 1.
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1 Introduction

A system of particles undergoes a random Markovian evolution according to the rules of the
Λ−coalescent (introduced by Pitman [16] and Sagitov [17]) if the only possible type of interaction
is a collision affecting two or more particles that merge together to form a single particle. When
the total number of particles is b ≥ 2, a collision affecting some 2 ≤ j ≤ b particles occurs at
rate

λb,j =

(

b

j

) ∫ 1

0
xj−2(1 − x)b−jΛ(dx), (1)

where Λ is a given finite measure on [0, 1]. Linear time change allows to rescale Λ by its total
mass, making it a probability measure, which is always supposed below. Two important special
cases are Kingman’s coalescent [13] with Λ a unit mass at 0 (when only binary collisions are
possible), and the Bolthausen–Sznitman coalescent [6] with Λ the Lebesgue measure on [0, 1].
See [1; 2; 10; 15] for recent work on the Λ-coalescents and further references.

A quantity of considerable interest is the number of collisions Cn which occur as the system
progresses from the initial state with n particles to the terminal state with a single particle.
Representing the coalescent process by a genealogical tree, Cn can be also understood as the
number of non-leave nodes. Asymptotic properties of Cn are sensitive functions of the behaviour
of Λ near 0. In this paper we explore the class of measures which satisfy

Λ ([0, x]) = Axα + O(xα+ς) as x ↓ 0, with 0 < α < 1 and ς > 0. (2)

Under this assumption we show that Cn ∼ (1 − α)n in probability as n → ∞ (Lemma 4)
and that the law of Cn approaches a completely asymmetric stable distribution of index 2 − α
(Theorem 7).

The same question for the Bolthausen–Sznitman coalescent has been addressed recently in [8; 9].
This can be viewed as a limiting case of (2) with α = 1. However, the technique of [8; 9] is
based on the particular form of Λ in that case and hence cannot be applied to the general Λ
satisfying (2) with α = 1.

If Λ is the beta(α, 2 − α) distribution with parameter 0 < α < 2, a time-reversal of the coales-
cent describes the genealogy of a continuous-state branching process [5]. This connection was
exploited recently to study a small-time behaviour of Λ-coalescents [1; 2] in the beta case.

The same stable law (as in our Theorem 7) has been derived also in [7] under different as-
sumptions1. The technique used in [7] was based on the martingale theory and certain advanced
estimates.

We develop here a more robust and straightforward approach based on the analysis of the
decreasing Markov chain Mn counting the number of particles. The number of collisions Cn is
the number of steps needed for Mn to reach the absorbing state 1 from state n. In Kingman’s
case Mn has unit decrements, but in general the decrements of Mn are not stationary, which is
a major source of difficulties preventing direct application of the classical renewal theorems for
step distributions with infinite variance [11]. To override this obstacle we show that when (2)
holds, in a certain range Mn can be bounded from above and below by processes with stationary
decrements. This allows us to approximate Cn, and it happens that these bounds can be made

1 Parameter α in the present paper corresponds to 2 − α in [1; 2; 7].
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tight enough to derive the limit theorem. Our method may be of interest in the wider context
of pure death processes.

By Schweinsberg’s result [19] a coalescent satisfying (2) comes down from the infinity, hence
the number of particles coexisting at a fixed time is uniformly bounded in the initial number of
particles n. Therefore the asymptotics of the number of collisions that occur prior to some fixed
time is the same as the asymptotics of Cn.

2 Markov chain Mn

Let Mn be the embedded discrete-time Markov chain whose state coincides with the number of
remaining particles. Since no two collisions occur simultaneously, the number of collisions Cn

in the Λ-coalescent starting with n particles is the number of steps the Markov chain Mn needs
to proceed from the initial state n to the terminal state 1. Note that the number of particles
decreases by j − 1 when a collision affects j particles, hence the probability of transition from b
particles to b − j + 1 is

qb(j) :=
λb,j

λb
, 2 ≤ j ≤ b , (3)

where λb is the total collision rate of b particles

λb =
b

∑

j=2

λb,j =

∫ 1

0

1 − (1 − x)b − bx(1 − x)b−1

x2
Λ(dx). (4)

It is convenient to introduce the sequence of moments

νb :=

∫ 1

0
(1 − x)bΛ(dx) , b = 0, 1, . . . (5)

In view of λb,2 =
(

b
2

)

νb−2 the rates λb,2 (b = 2, 3, . . . ) uniquely determine the whole array λb,j ,
as one can also conclude from the consistency relation

(b + 1)λb,j = (b + 1 − j)λb+1,j + (j + 1)λb+1,j+1,

which is equivalent to the integral representation of rates (1), see [16].

Simple computation shows that the rates can be derived from νb’s as

λb,j =

(

b

j

) j−2
∑

s=0

(−1)j−s

(

j − 2

s

)

νb−2−s, (6)

and, from λb+1 − λb = bνb−1, we have

λb =
b−1
∑

i=1

iνi−1. (7)

The second order difference (in the sense of the finite difference calculus) of
∫ 1
0

bx+(1−x)b−1
x2 Λ(dx)

is νb, consequently

b
∑

j=2

(j − 1)λb,j =

∫ 1

0

bx + (1 − x)b − 1

x2
Λ(dx) =

b−1
∑

i=1

(b − i)νi−1. (8)
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We shall denote Jb a random variable with distribution

P(Jb = j) = qb(j),

so the first decrement of Mn is distributed as Jn − 1. From (7) and (8) its mean value is

E
[

Jn − 1
]

=
n

∑

j=2

(j − 1)qn(j) =

∑n−1
i=1 (n − i)νi−1
∑n−1

i=1 iνi−1

= n

∑n−1
i=1 νi−1

∑n−1
i=1 iνi−1

− 1. (9)

3 Asymptotics of the moments

From now on we only consider measures Λ satisfying (2). Standard Tauberian arguments (see
[12, Ch. XIII.5] or [4, Section 1.7.2]) show that in this case

νn = AΓ(α + 1)n−α + O(n−α−ς′), n → ∞ . (10)

Here and henceforth
ς ′ = min{1, ς} .

This behaviour will imply that the transition probabilities qn(j) stabilise as n → ∞ for each
fixed j. The relevant asymptotics of λn and λn,j appeared in [3, Lemma 4] under a less restrictive
assumption of regular variation, but we need to explicitly control the error term.

Lemma 1. Suppose Λ satisfies (2). Then for n sufficiently large

∣

∣

∣

∣

∣

∣

n
∑

j=m

λn,j −
Aα

2 − α

Γ(m + α − 2)

Γ(m)
n2−α

∣

∣

∣

∣

∣

∣

< c
Γ(m + α + ς ′ − 2)

Γ(m)
n2−α−ς′ ,

uniformly in m = 2, . . . , n.

Proof. Introduce the truncated moment

G−2(x) =

∫ 1

x

Λ(dy)

y2
.

Integrating by parts we derive from (2) that for x → 0

G−2(x) =
Aα

2 − α
xα−2 + O(max{xα+ς−2, 1})

Rewriting (1) in terms of G−2 and integrating by parts we obtain

n
∑

j=m

λn,j = −

∫ 1

0

n
∑

j=m

(

n

j

)

xj(1 − x)n−jdG−2(x) = m

(

n

m

) ∫ 1

0
xm−1(1 − x)n−mG−2(x) dx ,

because the sum telescopes and the integrated terms vanish. Plugging the expansion of G−2

gives
∣

∣

∣

∣

∣

∣

n
∑

j=m

λn,j −
Aα

2 − α

Γ(m + α − 2)Γ(n + 1)

Γ(m)Γ(n + α − 1)

∣

∣

∣

∣

∣

∣

< c
Γ(m + α + ς − 2)Γ(n + 1)

Γ(m)Γ(n + α + ς − 1)
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for ς < 2 − α, in which case the result follows from the familiar asymptotics of the gamma
function Γ(n + β)/Γ(n) = nβ + O(nβ−1) (n → ∞). If ς > 1 the error term in this expansion
constitutes the main part of the error, yielding the appearance of ς ′ instead of ς. The case
ς ≥ 2 − α is treated in the same way.

Corollary 2. If measure Λ satisfies (2) then as n → ∞

λn =
AΓ(α + 1)

2 − α
n2−α + O

(

n2−α−ς′
)

,

λn,j =
AαΓ(j + α − 2)

j!
n2−α + O

(

n2−α−ς′
)

, (11)

qn(j) = (2 − α)
(α)j−2

j!
+ O

(

n−ς′
)

for every fixed j.

Proof. The formula for λn follows by the direct application of Lemma 1 with m = 2. Expression
for λn,j is a difference between two subsequent tail sums. The ratio of these quantities gives
qn(j).

Thus Jn converge in distribution. The convergence in mean is also true. Note that the mean of
the limiting distribution of jumps Jb − 1 is

∞
∑

j=2

(j − 1)(2 − α)
(α)j−2

j!
=

1

1 − α
. (12)

Lemma 3. If (2) holds then the mean decrease of the number of particles after collision satisfies

E
[

Jn − 1
]

=
1

1 − α
+ O

(

n−min{1−α, ς}
)

.

Proof. By assumption (2) relation (10) implies the existence of constants n0, c such that

∣

∣νn−1 − AΓ(α + 1)n−α
∣

∣ < cn−α−ς′ , n ≥ n0 .

Approximating sums by integrals yields, as n → ∞,

n−1
∑

i=1

νi−1 =
n−1
∑

i=n0

AΓ(α + 1)i−α + O

(

n−1
∑

i=n0

i−α−ς′

)

+

n0−1
∑

i=1

νi−1

= AΓ(α + 1)n1−α(1 + O(1/n))

∫ 1

n0/n
x−αdx + O(n1−α−ς′) + O(1)

=
AΓ(α + 1)

1 − α
n1−α + O(max{1, n1−α−ς′}) =

AΓ(α + 1)

1 − α
n1−α + O(max{1, n1−α−ς})

by definition of ς ′. Substitution of this expression into (9) and applying Corollary 2 finishes the
proof.
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Example. It is possible to choose a measure Λ so that the decrement probabilities for j < n
are exactly the same as for the limiting distribution truncated at n, in which case the envisaged
limit theorem for Cn follows readily from [11]. To achieve

qn(j) = (2 − α)
(α)j−2

j!
(j = 2, . . . , n − 1), qn(n) =

∞
∑

j=n

(2 − α)
(α)j−2

j!
=

Γ(n + α − 1)

n! Γ(α)

one should take the measure

Λ(dx) = α
(

1 −
α

2

)

xα−1dx +
α

2
δ1(dx),

which is a mixture of beta(α, 1) and a Dirac mass at 1. Adding δ1 does not affect λn,j for j < n,
so the integration in (1) yields

λn,j =

(

n

j

)

(

1 −
α

2

) Γ(j + α − 2)(n − j)!

Γ(n + α − 1)
(j = 2, . . . , n−1), λn,n =

(

1 −
α

2

) α

n + α − 2
+

α

2
.

Summation (or direct integration of (4)) implies the desired expression for qn(j).

That a positive mass at 1 does not affect the asymptotics of Cn is seen e.g. by observing that
the probability of total collision implied by this mass is of the order smaller than n−1, namely
qn(n) = O(nα−2). On the continuous time scale of the coalescent, the mass at 1 is responsible
for the total coalescence time (independent of n), hence the insensibility of the asymptotics
to Λ({1}) may be explained by the effect of coming down from the infinity, as mentioned in
Introduction.

The example also demonstrates that taking minimum in the error term of Lemma 3 is necessary.
Indeed, ς ′ = 1, however direct calculation using (12) shows that

E
[

Jn − 1
]

=
1

1 − α
−

∞
∑

j=n

(j − 1)(2 − α)
(α)j−2

j!
+ n qn(n) =

1

1 − α
−

nα−1

(1 − α)Γ(α)
(1 + O(1/n)) .

So the error term is O(nα−1), and not O(n−1).

The fact that the jumps Jb − 1 become almost identically distributed for large b, with the mean
close to 1/(1 − α), suggests that Cn satisfies the same law of large numbers as it were the case
for the Jb’s identically distributed. We state this now in the following lemma but postpone a
rigorous proof to Section 5.

Lemma 4. If (2) holds then

Cn ∼ (1 − α)n (n → ∞)

in probability.

4 Stochastic bounds on the jumps

In this section we construct stochastic bounds on the decrements Jb − 1 of Markov chain Mn in
a range b = k, . . . , n, to control the asymptotic behaviour of Cn. Specifically, we find random
variables J+

n↓k and J−
n↓k to secure the distributional bounds

J+
n↓k ≤d Jb ≤d J−

n↓k . (13)
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which hold for all b in some range b = k, . . . , n. Here ≤d denotes the stochastic order, meaning
that two random variables X and Y satisfy X ≤d Y if and only if P[X ≤ t] ≥ P[Y ≤ t] for all t.

Our approach to establishing the limit theorem for the number of collisions is based on con-
structing random variables J+

n↓k and J−
n↓k which on the one hand comply with (13) and on the

other hand yield the same limit distribution of the sum of their independent copies. These two
requirements point in opposite directions, forcing an adequate choice of these random variables
to be a compromise. We define the distributions which depend on parameters γ, β ∈ ]0, 1[ and
θ ∈ ]β, 1[. The calibration of these constants will be done later. For n ≥ k > 0 define

q−n↓k(j) :=















































λn,2−n−γλn(3:⌊nβ⌋)+λn(⌊nβ⌋+1:n)
λn

− 2 max
ℓ∈{k,...,n}

λℓ(⌊nβ⌋+1:ℓ)
λℓ

, j = 2,

λn,j(1+n−γ)
λn

, j = 3, . . . ,
⌊

nβ
⌋

,

2 max
ℓ∈{k,...,n}

λℓ(⌊nβ⌋+1:ℓ)
λℓ

− 2 max
ℓ∈{k,...,n}

λℓ(⌊nθ⌋+1:ℓ)
λℓ

, j =
⌊

nθ
⌋

,

2 max
ℓ∈{k,...,n}

λℓ(⌊nθ⌋+1:ℓ)
λℓ

, j = n,

0, otherwise,

q+
n↓k(j) :=















λk,2+n−γλk(3:⌊nβ⌋)+λk(⌊nβ⌋+1:k)
λk

, j = 2,
λk,j(1−n−γ)

λk
, j = 3, . . . ,

⌊

nβ
⌋

,

0, otherwise,

(14)

where

λn(m : k) =

k
∑

j=m

λn,j .

Note that
∑

j q+
n↓k(j) =

∑

j q−n↓k(j) = 1. Moreover, q±n↓k(j) are nonnegative for large enough n

and k. Indeed, the inequality q+
n↓k(j) ≥ 0 is obvious. Lemma 1 implies that if n and k are large

enough and k > nβ then

c1

nβ(2−α)
≤

λℓ

(

⌊nβ⌋ + 1 : ℓ
)

λℓ
≤

c2

nβ(2−α)
(15)

for some c2 > c1 > 0 uniformly in ℓ ∈ {k, . . . , n}. Hence (15) holds for the maximum over these
ℓ, and it follows that q−n↓k(j) ≥ 0.

Hence, quantities q±n↓k(j) define some probability distributions on N, at least for large enough n

and k. Let J+
n↓k and J−

n↓k be random variables with these distributions, so

P[J+
n↓k = j] = q+

n↓k(j) and P[J−
n↓k = j] = q−n↓k(j). (16)

Remark. Formulas for q−n↓k look more cumbersome than that for q+
n↓k. The reason for it is

our desire to control the mean of J−
n↓k. A simpler choice is just to move all extra mass to its

maximal value J−
n↓k = n but it would lead to a relatively big mass at that point and affect the

mean too strong for our purposes. Introduction of an intermediate mass at
⌊

nθ
⌋

helps to avoid
this obstacle.
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Lemma 5. Suppose that β, γ, θ and υ satisfy the inequalities

1 > υ > θ > β > γ/(2 − α) > 0 and γ <
(υ − β)(2 − α)ς ′

2 − α − ς ′
. (17)

Then the stochastic bounds (13) hold for n large enough and b, k in the range ⌊nυ⌋ ≤ k ≤ b ≤ n.

Proof. By definition of the stochastic order, we need to show that for all m

P

[

J+
n↓k ≥ m

]

≤ P [Jb ≥ m] ≤ P

[

J−
n↓k ≥ m

]

. (18)

The first inequality (18) is clearly true for m ≥
⌊

nβ
⌋

+ 1 because the left-hand side is zero and
for m ≤ 2 because both sides are 1. Suppose 3 ≤ m ≤ nβ, then the first inequality reads as

λbλk

(

m : ⌊nβ⌋
)

(

1 − n−γ
)

≤ λkλb(m : b) . (19)

Since b ≥ k ≥ ⌊nυ⌋, taking n sufficiently large enables us to apply Lemma 1 and Corollary 2
to get asymptotic estimates valid for all b in the range k ≤ b ≤ n. From the definition of
λk(m :

⌊

nβ
⌋

), Lemma 1 and the inequality

Γ(m + α + ς ′ − 2)

Γ(m)
≥

Γ(⌊nβ⌋ + α + ς ′ − 2)

Γ(⌊nβ⌋)
for m ≤

⌊

nβ
⌋

(which follows from the log-convexity of the Gamma function) we obtain

λk

(

m :
⌊

nβ
⌋)

= λk (m : k) − λk

(⌊

nβ
⌋

+ 1 : k
)

=
Aα

2 − α

(

Γ(m + α − 2)

Γ(m)
−

Γ(⌊nβ⌋ + α − 1)

Γ(⌊nβ⌋ + 1)

)

k2−α + O

(

Γ(m + α + ς ′ − 2)

Γ(m)
k2−α−ς′

)

.

Hence we rewrite the inequality as

(

Aα

2 − α

(

Γ(m + α − 2)

Γ(m)
−

Γ(⌊nβ⌋ + α − 1)

Γ(⌊nβ⌋ + 1)

)

k2−α + O

(

Γ(m + α + ς ′ − 2)

Γ(m)
k2−α−ς′

))

×

(

AΓ(α + 1)

2 − α
b2−α + O

(

b2−α−ς′
)

)

(

1 − n−γ
)

≤

(

AΓ(α + 1)

2 − α
k2−α + O

(

k2−α−ς′
)

)

×

(

Aα

2 − α

Γ(m + α − 2)

Γ(m)
b2−α + O

(

Γ(m + α + ς ′ − 2)

Γ(m)
b2−α−ς′

))

.

The leading terms on both sides cancel, and simplifying this inequality we are reduced to checking

O

(

Γ(m + α + ς ′ − 2)

Γ(m)
k2−α−ς′b2−α

)

+ O

(

Γ(m + α − 2)

Γ(m)
b2−α−ς′k2−α

)

≤
A2αΓ(α + 1)

(2 − α)2

(

Γ(⌊nβ⌋ + α − 1)

Γ(⌊nβ⌋ + 1)
b2−αk2−α +

Γ(m + α − 2)

Γ(m)
b2−αk2−αn−γ

)

.
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(In the above lines we neglected certain lower order terms using inequalities like b2−αk2−α−ς′ ≥
b2−α−ς′k2−α.) The desired inequality follows from the following two inequalities

c1 ≤
c3Γ(m)

nβ(2−α)Γ(m + α + ς ′ − 2)
kς′ +

Γ(m + α − 2)

Γ(m + α + ς ′ − 2)
kς′n−γ , (20)

c2 ≤
c3Γ(m)

nβ(2−α)Γ(m + α − 2)
kς′ + kς′n−γ , (21)

with sufficiently large constants c1, c2 > 0 (twice the ratio of a constant implied by the corre-
sponding O(·) and the constant in the right-hand side is enough) and c3 ∈ ]0, 1[.

The right-hand side of (20) considered as a function of m ∈ [3, ⌊nβ⌋] has a unique minimum

which is attained at m′ ∼

(

ς ′

c3(2 − α − ς ′)

)1/(2−α)

nβ−γ/(2−α) and has the value asymptotic to

(

c3Γ(m′)

nβ(2−α)Γ(m′ + α + ς ′ − 2)
+

Γ(m′ + α − 2)

Γ(m′ + α + ς ′ − 2)
n−γ

)

kς′ ∼ c4n
−βς′−γ(2−α−ς′)/(2−α)kς′ .

Since k ≥ ⌊nυ⌋ the right-hand side grows to infinity once (17) holds.

In inequality (21) we neglect the first summand in the right-hand side and still have the function
b1−αn−γ ≥ nυς′−γ which grows to infinity with n once (17) holds. Thus the first inequality in (18)
holds for all sufficiently large n.

The second inequality in (18) is obvious for m ≥
⌊

nβ
⌋

+ 1 and for m ≤ 2. Suppose 3 ≤ m ≤ nβ.
The inequality can be rewritten as

λb(m : b)

λb
≤

λn(m : n)

λn

(

1 + n−γ
)

+
(

1 − n−γ
)

max
ℓ∈{k,...,n}

λℓ(⌊n
β⌋ + 1 : ℓ)

λℓ

+
(

1 + n−γ
)

(

max
ℓ∈{k,...,n}

λℓ(⌊n
β⌋ + 1 : ℓ)

λℓ
−

λn(⌊nβ⌋ + 1 : n)

λn

)

.

The latter follows from a simpler inequality

λnλb(m : b) ≤ λbλn(m : n)
(

1 + n−γ
)

+ λbλn

(

1 − n−γ
)

max
ℓ∈{k,...,n}

λℓ(⌊n
β⌋ + 1 : ℓ)

λℓ
. (22)

Since k >
⌊

nβ
⌋

, application of (15) implies

max
ℓ∈{k,...,n}

λℓ(⌊n
β⌋ + 1 : ℓ)

λℓ
≥

c4

nβ(2−α)

for some c4 > 0. We suppose that n is large enough to satisfy 1−n−γ ≥ 1/2. These observations,
Lemma 1 and Corollary 2 allow us to rewrite inequality (22) as
(

AΓ(α + 1)

2 − α
n2−α + O

(

n2−σ−ς′
)

) (

Aα

2 − α

Γ(m + α − 2)

Γ(m)
b2−α + O

(

Γ(m + α + ς ′ − 2)

Γ(m)
b2−α−ς′

))

≤

(

Aα

2 − α

Γ(m + α − 2)

Γ(m)
n2−α + O

(

Γ(m + α + ς ′ − 2)

Γ(m)
n2−α−ς′

))

×

(

AΓ(α + 1)

2 − α
b2−α + O

(

b2−α−ς′
)

)

(

1 + n−γ
)

+ c5b
2−αn(1−β)(2−α)
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for some c5 > 0. Simplification shows that this inequality holds provided

c6
Γ(m + α + ς ′ − 2)

Γ(m)
b2−α−ς′n2−α ≤

Γ(m + α − 2)

Γ(m)
b2−αn2−α−γ + c7b

2−αn(1−β)(2−α)

for suitable constants c6, c7 > 0. Further simplification gives

c6 ≤ bς′
(

Γ(m + α − 2)

Γ(m + α + ς ′ − 2)
n−γ + c7

Γ(m)

Γ(m + α + ς ′ − 2)
n−β(2−α)

)

. (23)

Proceeding as above, the expression in brackets attains its minimum in m ∈ [3, nβ] at m′′ ∼
c8n

β−γ/(2−α), c8 > 0, with the minimum value asymptotic to

Γ(m′′ + α − 2)

Γ(m′′ + α + ς ′ − 2)
n−γ + c7

Γ(m′′)

Γ(m′′ + α + ς ′ − 2)
n−β(2−α) ∼ c9n

−βς′−γ(2−α−ς′)/(2−α)

where c9 > 0. Since b ≥ ⌊nυ⌋ the right-hand side of (23) grows to infinity as n → ∞ as long as
(17) holds. This observation finishes the proof.

We want to keep control over the difference between distributions of J+
n↓k, J−

n↓k and Jb, n ≥ b ≥ k.
In particular, the following statement provides bounds for divergence of means.

Lemma 6. Suppose β < υ < 1. Then there exists c > 0 such that for n large enough and for k
in range n ≥ k ≥ ⌊nυ⌋ the following inequalities hold:

∣

∣

∣
E

[

J−
n↓k − 1

]

− E
[

Jn − 1
]

∣

∣

∣
≤ c max

{

n−γ , n−β(1−α), nθ−β(2−α), n1−θ(2−α)
}

,
∣

∣

∣E
[

J+
n↓k − 1

]

− E
[

Jk − 1
]

∣

∣

∣ ≤ c max
{

n−β(1−α), n−γ
}

.

Proof. We start with the following observation. For 2 ≤ m < b, as b → ∞ but m/b → 0,

b
∑

j=m

jλb,j =

∫ 1

0

b
∑

j=m

j

(

b

j

)

xj−2(1 − x)b−jΛ(dx) = −

∫ 1

0

b
∑

j=m

j

(

b

j

)

xj−1(1 − x)b−jdG−1(x)

= m(m − 1)

(

b

m

) ∫ 1

0
xm−2(1 − x)b−mG−1(x) dx ∼

AαΓ(b + 1)Γ(m + α − 2)

(1 − α)Γ(b + α − 1)Γ(m − 1)
,

where

G−1(x) =

∫ 1

x

Λ(dy)

y
∼

Aα

1 − α
xα−1, as x → 0 .

Taking m =
⌊

nβ
⌋

+ 1, for some β ∈ ]0, υ[ we see using Corollary 2 that

k
∑

j=⌊nβ⌋+1

jλk,j

λk
∼

2 − α

(1 − α)Γ(α)
n−β(1−α) (24)

as n, k → ∞ with n ≥ k ≥ ⌊nυ⌋.
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Now the proof follows by a simple calculation. The mean of J−
n↓k can be estimated using Lemma 3

and (24):

E
[

J−
n↓k − 1

]

=
λn,2 − n−γλn(3 : ⌊nβ⌋) + λn(⌊nβ⌋ : n)

λn
+

⌊nβ⌋
∑

j=3

(j − 1)λn,j(1 + n−γ)

λn

+2
(⌊

nθ
⌋

− 2
)

max
ℓ∈{k,...,n}

λℓ(⌊n
β⌋ + 1 : ℓ)

λℓ
+ 2

(

n −
⌊

nθ
⌋)

max
ℓ∈{k,...,n}

λℓ(⌊n
θ⌋ + 1 : ℓ)

λℓ

= E
[

Jn − 1
] (

1 + n−γ
)

−
n−γλn(2 : ⌊nβ⌋)

λn
+

λn(⌊nβ⌋ + 1 : n)

λn

−

n
∑

j=⌊nβ⌋+1

(j − 1)λn,j

λn
+ O

(

max
{

nθ−β(2−α), n1−θ(2−α)
})

= E
[

Jn − 1
]

+ O
(

max
{

n−γ , n−β(1−α), nθ−β(2−α), n1−θ(2−α)
})

.

Similarly, since υ > β formula (24) is applicable and implies together with Lemma 1 that

E
[

J+
n↓k − 1

]

=
λk,2 + n−γλk(3 : ⌊nβ⌋) + λk(⌊n

β⌋ + 1 : k)

λk
+

⌊nβ⌋
∑

j=3

(j − 1)λk,j

λk

(

1 − n−γ
)

= E
[

Jk − 1
] (

1 − n−γ
)

−
k

∑

j=⌊nβ⌋+1

(j − 1)λk,j

λk

(

1 − n−γ
)

+ n−γ λk(2 : ⌊nβ⌋)

λk
+

λk(⌊n
β⌋ + 1 : k)

λk

= E
[

Jk − 1
]

+ O
(

max
{

n−β(1−α), n−γ
})

,

so the claim follows.

Using a standard coupling technique, Lemma 5 enables us to couple random variables J+
n↓k, Jb

and J−
n↓k in such a way that

J+
n↓k ≤ Jb ≤ J−

n↓k (25)

holds almost surely.

5 The total number of collisions

We are in position now to present our main result on the convergence of the number of collisions
Cn in the Λ-coalescent on n particles.

Theorem 7. Suppose that the measure Λ satisfies (2) with ς > max
{

(2−α)2

5−5α+α2 , 1 − α
}

. Then,

as n → ∞, we have the convergence in distribution

Cn − (1 − α)n

(1 − α)n1/(2−α)
→d S2−α

to a stable random variable S2−α with the characteristic function

E
[

eiuS2−α
]

= exp
(

−e−iπα sign(u)/2|u|2−α
)

. (26)
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We emphasize that ς = 1 satisfies assumptions of the above Theorem for all α ∈ ]0, 1[. This is
important because ς = 1 appears, say, if Λ is a beta-measure.

Remark. The characteristic function (26) is not a canonic form for the characteristic function of
the stable distribution. There are several commonly used parametrisations for stable variables,
see [18; 21]; the difference between them being a frequent source of confusion. Apparently the
most common parametrisation involves the index of stability α ∈ ]0, 2], the skewness β ∈ [−1, 1],
the scale σ > 0 and the location µ ∈ R, so that a random variable S has the stable distribution
with parameters (α, β, σ, µ) if and only if

E
[

eiuS
]

=

{

exp
(

−σα|u|α
(

1 − iβ tan πα
2 signu

)

+ iµu
)

, α 6= 1,

exp
(

−σ|u|
(

1 + 2iβ
π (signu) log |u|

)

+ iµu
)

, α = 1.

In this parametrisation our random variable S2−α has
(

2 − α,−1, (cos πα
2 )1/(2−α), 0

)

-stable dis-
tribution since its charactersitic function can be rewritten as

exp
(

−e−iπα sign(u)/2|u|2−α
)

= exp
(

− cos πα
2 |u|2−α(1 − i tan πα

2 signu)
)

= exp
(

− cos πα
2 |u|2−α(1 + i tan π(2−α)

2 signu)
)

.

Thus S2−α has (2 − α)-stable distribution totally skewed to the left.

The main idea of the proof is that the decrements Jb are almost identically distributed for large
b, as Corollary 2 suggests. However, the nonstationarity prevents us from any direct analysis.
To override this, we use the technique of stochastic bounds described in the previous section.
First we introduce some auxiliary notations.

For 1 ≤ k ≤ n the coalescent started with n particles after some series of collisions will reach a
state with less than k + 1 particles; let Cn↓k denote the number of collisions until this time and
let Bn,k ≤ k denote the number of particles as the coalescent enters such a state. In particular,
Cn = Cn↓1. For J±

n↓k,m independent copies of J±
n↓k, introduce

C+
n↓k,ℓ := min

{

c :
c

∑

m=1

(

J+
n↓k,m − 1

)

≥ ℓ

}

, C−
n↓k,ℓ := min

{

c :
c

∑

m=1

(

J−
n↓k,m − 1

)

≥ ℓ

}

,

(27)
the minimal number of decrements distributed as J+

n↓k − 1 (respectively, J−
n↓k − 1) needed to

drop by at least ℓ. We skip the index ℓ when it is equal to n − k, so that C±
n↓k ≡ C±

n↓k,n−k .

Under assumptions of Lemma 5 we can couple the corresponding Markov chains so that (25)
holds almost surely for all large enough n once n ≥ b ≥ k ≥ ⌊nυ⌋. Consequently, for such n the
coupled Markov chains satisfy

C+
n↓⌊nυ⌋ ≥ Cn↓⌊nυ⌋ ≥ C−

n↓⌊nυ⌋ .

In other words,
C+

n↓⌊nυ⌋ ≥d Cn↓⌊nυ⌋ ≥d C−
n↓⌊nυ⌋ . (28)

Before we proceed with establishing limit theorems for C±
n↓⌊nυ⌋ let us finish the proof of the law

of large numbers for Cn.
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Proof of Lemma 4. Take parameters γ, β, θ and υ so that inequalities (28) hold. The random
variable C+

n↓⌊nυ⌋ (respectively, C−
n↓⌊nυ⌋) is just the number of renewals in a renewal process with

the step distributed as J+
n↓⌊nυ⌋ − 1 (respectively, J−

n↓⌊nυ⌋ − 1), and with the total time n− ⌊nυ⌋.

Lemmas 3 and 6 imply that the mean value of the step converges to 1/(1−α) in both cases. Using
a classical result of the renewal theory [11], we conclude that C±

n↓⌊nυ⌋ ∼ (n−nυ)(1−α) ∼ n(1−α).

The lemma now follows from (28) by noting that, for υ < 1, the number of collisions among nυ

particles is o(n).

In order to find the limit distributions for C±
n↓⌊nυ⌋ we need the following statement about the

characteristic function
φn(u) := E

[

eiu(Jn−1)
]

of the first decrement of Mn.

Lemma 8. Let Λ satisfy (2) with ς > 1 − α. Then there exists δ > 0 such that

φn (s/m) = 1 +
is

(1 − α)m
−

ω(s)|s|2−α

(1 − α)m2−α
+ O

(

mα−2−δ
)

,

as n, m → ∞ with m ≤ nυ for some υ < 1, where ω(s) = eiπα sign(s)/2.

Proof. We write for shorthand u = s/m. For u = 0 the claim is obvious, so we suppose that
u 6= 0. The characteristic function of Jn − 1 can be written in terms of Λ as follows:

φn(u) = e−iu
n

∑

j=2

λn,j

λn
eiju =

e−iu

λn

∫ 1

0

(

1 − (1 − eiu)x
)n

− (1 − x)n − nxeiu(1 − x)n−1

x2
Λ(dx)

using the integral representation of λn,j . Denote the numerator of the fraction under the integral
above by hn(u, x); then

hn+1(u, x) − hn(u, x) = x(1 − eiu)
(

(1 − x)n − (1 − (1 − eiu)x)n
)

+ x2n(1 − x)n−1eiu

so using (7) we obtain

φn(u) = 1 −
1 − e−iu

λn

n−1
∑

j=1

∫ 1

0

(1 − x)j − (1 − (1 − eiu)x)j

x
Λ(dx) (29)

because h1(u, x) = 0. Taking again differences of (1 − x)j − (1 − (1 − eiu)x)j with respect to j
and calculating it directly for j = 0 we represent the integral in (29) as

(1 − eiu)

j−1
∑

k=0

∫ 1

0
(1 − (1 − eiu)x)kΛ(dx) −

j−1
∑

k=0

∫ 1

0
(1 − x)kΛ(dx).

Exchanging the sums and utilising notation (5) for moments νk of Λ we get

φn(u) = 1+
(1 − e−iu)

λn

n−2
∑

k=0

(n−k−1)νk+
(1 − eiu)2e−iu

λn

n−2
∑

k=0

(n−k−1)

∫ 1

0

(

1 − (1 − eiu)x
)k

Λ(dx).

(30)
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By (8) and Lemma 3 the second term above is

(1 − e−iu)

λn

n−2
∑

k=0

(n − k − 1)νk = (1 − e−iu)E
[

Jn − 1
]

=
1 − e−iu

1 − α

(

1 + O
(

nα−1
))

since ς > 1− α by hypothesis. Recalling notation u = s/m and inequality n ≥ m1/υ with υ < 1
we see that

(1 − e−is/m)

λn

n−2
∑

k=0

(n − k − 1)νk =
is

(1 − α)m
+ O

(

mα−2−δ1
)

for some δ1 > 0. Thus it remains to estimate the last summand in (30).

Integration by parts gives
∫ 1

0

(

1 − (1 − eiu)x
)k

Λ(dx) = eiku + k(1 − eiu)

∫ 1

0
(1 − (1 − eiu)x)k−1Λ[0, x]dx.

Substitution of this relation into (30) leads to

φn (s/m) = 1 +
is

(1 − α)m
+

(1 − eis/m)2e−is/m

λn

n−2
∑

k=0

(n − k − 1)eiks/m

+
(1 − eis/m)3e−is/m

λn

∫ 1

0

n−2
∑

k=0

k(n − k − 1)(1 − (1 − eis/m)x)k−1Λ[0, x]dx + O(m−1−ς/υ) . (31)

Summation yields

(1 − eis/m)2e−is/m

λn

n−2
∑

k=0

(n − k − 1)eiks/m =
e−is/m(n(1 − eis/m) + eisn/m − 1)

λn
.

For m big enough and n ≥ m1/υ with υ < 1
∣

∣

∣

∣

∣

n(1 − eis/m) + eins/m − 1

λn

∣

∣

∣

∣

∣

≤
n|1 − eis/m| + |eins/m − 1|

λn
≤

const

n1−αm
= O

(

mα−2−δ2
)

for some δ2 > 0.

Let θ ∈ [−π/2, π/2] be such that eiθ = 1−eis/m

|1−eis/m|
. Note that θ = −π sign(s)/2 + O(1/m) as

m → ∞. For any β > 0 we have

∫ 1

0
k(1 − eis/m)(1 − (1 − eis/m)x)k−1xβdx

= eiθ
∫ k|1−eis/m|

0

(

1 − eiθt/k
)k−1 tβ

(k|1 − eis/m|)β
dt =

e−iβθ

(

k|s|
/

m
)β

Γ(β + 1) (1 + O(1/m))

as m, k → ∞ with k ≥ m1+δ3 for any δ3 > 0. By assumption (2) we can write Λ[0, x] =
Axα + f(x) where |f(x)| ≤ cxα+ς for some c > 0 and all x ∈ [0, 1]. Thus, as m, k → ∞ with
k ≥ m1+δ3 ,
∫ 1

0
k(1−eis/m)(1−(1−eis/m)x)k−1Λ[0, x] dx =

Aeiπα sign(s)/2

(

k|s|
/

m
)α Γ(α+1)+O

(

mα+ς

kα+ς
+

1

m1−αkα

)

.
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Take δ3 = (1/υ−1)/2 and denote n0 =
⌊

m1+δ3
⌋

. Divide the last sum in (31) into two sums over
k ≥ n0 and k < n0. The first sum is estimated taking (11) into account as

(1 − eis/m)2

λn

n−2
∑

k=n0

(n − k − 1)

∫ 1

0
k(1 − eis/m)(1 − (1 − eis/m)x)k−1Λ[0, x] dx

= −
|s|2−αeiπα sign(s)/2(2 − α)

m2−αn2−α

n−2
∑

k=n0

(n − k)k−α

+ O





1

n2−αm2−α−ς

n−2
∑

k=n0

n − k

kα+ς
+

1

n2−αm3−α

n−2
∑

k=n0

n − k

kα





= −
|s|2−αeiπα sign(s)/2(2 − α)

m2−α

∫ 1

m1+δ3n−1

x−α(1 − x)dx + O

(

1

n1−αm1+ςδ3
+

1

m3−α

)

= −
|s|2−αeiπα sign(s)/2

(1 − α)m2−α
+ O(mα−2−δ4)

for some δ4 > 0. The same argument applied to the sum over k = 0, . . . , n0 − 1 shows that it
constitutes a lower order term to the whole sum. Thus it remains to combine the results above
to get the statement of Lemma.

Next we show that under certain assumptions the same asymptotic expansion is also valid for
the characteristic functions of J±

n↓k

φ+
n↓k(u) := E

[

eiuJ+
n↓k

]

and φ−
n↓k(u) := E

[

eiuJ−
n↓k

]

.

Lemma 9. Suppose (2) holds with ς > 1−α and that the parameters in (14) satisfy inequalities

γ >
1 − α

2 − α
, and υ > θ > β >

1

2 − α
. (32)

Then there exists δ > 0 such that

φ+
n↓k (s/m) = 1 +

is

(1 − α)m
−

ω(s)|s|2−α

(1 − α)m2−α
+ O

(

mα−2−δ
)

,

φ−
n↓k (s/m) = 1 +

is

(1 − α)m
−

ω(s)|s|2−α

(1 − α)m2−α
+ O

(

mα−2−δ
)

,

as n, k, m → ∞ in such a way that n ≥ k ≥ ⌊nυ⌋ and m ≤ cn1/(2−α) for some c > 0.

Proof. The characteristic function of J−
n↓k − 1 is by definition

φ−
n↓k(u) = eiu

(

λn,2 − n−γλn(3 : ⌊nβ⌋) + λn(⌊nβ⌋ + 1 : n)

λn
− 2 max

ℓ∈{k,...,n}

λℓ(⌊n
β⌋ + 1 : ℓ)

λℓ

)

+

⌊nβ⌋
∑

j=3

λn,j(1 + n−γ)

λn
ei(j−1)u + 2ei(⌊n

θ⌋−1)u max
ℓ∈{k,...,n}

λℓ(⌊n
β⌋ + 1 : ℓ)

λℓ

+ 2
(

ei(n−1)u − ei(⌊n
θ⌋−1)u

)

max
ℓ∈{k,...,n}

λℓ(⌊n
θ⌋ + 1 : ℓ)

λℓ
.
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We rewrite it as follows:

φ−
n↓k(u) = φn(u)

(

1 + n−γ
)

− n−γeiu +
λn(⌊nβ⌋ + 1 : n)(1 + n−γ)

λn
eiu

−
n

∑

j=⌊nβ⌋+1

(1 + n−γ)λn,j

λn
ei(j−1)u + 2

(

ei(⌊n
θ⌋−1)u − eiu

)

max
ℓ∈{k,...,n}

λℓ(⌊n
β⌋ + 1 : ℓ)

λℓ

+ 2
(

ei(n−1)u − ei(⌊n
θ⌋−1)u

)

max
ℓ∈{k,...,n}

λℓ(⌊n
θ⌋ + 1 : ℓ)

λℓ
.

Four last summands are of the order of n−β(2−α) by Lemma 1. From (32), β > 1/(2−α) and so
the bound m ≤ cn1/(2−α) guarantees that these four summands constitute O(mα−2−δ1) terms to
the whole sum, for δ1, δ2, . . . some positive constants. The same bound on m allows application
of Lemma 8 for φn(s/m) which leads to

φ−
n↓k(s/m) =

(

1 +
is

(1 − α)m
−

ω(s)|s|2−α

(1 − α)m2−α
+ O(mα−2−δ2)

)

(

1 + n−γ
)

− n−γ

(

1 +
is

m
+ O(m−2)

)

+ O(mα−2−δ1)

= 1 +
is

(1 − α)m
−

ω(s)|s|2−α

(1 − α)m2−α
+

(

1

1 − α
− 1

)

is n−γ

m
+ O(mα−2−δ3)

and the claim about φ−
n↓k follows from inequality γ > (1 − α)/(2 − α).

Analogously,

φ+
n↓k(u) =

λk,2 + n−γλk(3 : ⌊nβ⌋) + λk(⌊n
β⌋ + 1 : k)

λk
eiu +

⌊nβ⌋
∑

j=3

λk,j(1 − n−γ)ei(j−1)u

λk

=
λk,2

λk

(

1 − n−γ
)

eiu + n−γeiu +
λk(⌊n

β⌋ + 1 : b)

λk

(

1 − n−γ
)

eiu

+
n

∑

j=3

λk,j(1 − n−γ)

λk
ei(j−1)u −

n
∑

j=⌊nβ⌋+1

λk,j(1 − n−γ)

λk
ei(j−1)u

= φk(u)
(

1 − n−γ
)

+ n−γeiu +
(

1 − n−γ
)

n
∑

j=⌊nβ⌋+1

λk,j(1 − eiju)eiu

λk
.

Since k ≥ ⌊nυ⌋ with υ > β > 1/(2 − α) and m ≤ cn1/(2−α), Lemma 1 ensures that the last sum
above is O(n−β(2−α)) = O(mα−2−δ4). Since m grows slower than k by hypothesis, Lemma 8 can
be applied for φk(s/m) and the claim again follows from inequality γ > (1 − α)/(2 − α).

Lemma 10. Suppose (2) holds with ς > 1−α and that the parameters in (14) satisfy inequalities

γ >
1 − α

2 − α
, 1 > υ > θ > β >

5 − 5α + α2

(2 − α)3
, β(2 − α) −

1 − α

2 − α
> θ >

3 − 2α

(2 − α)2
. (33)
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Let S+
n↓k,h, respectively S−

n↓k,h, be the sum of h independent copies of J+
n↓k − 1, respectively

J−
n↓k − 1. Then

S+
n↓k,h − h/(1 − α)

(h/(1 − α))1/(2−α)
→d S̄2−α and

S−
n↓k,h − h/(1 − α)

(h/(1 − α))1/(2−α)
→d S̄2−α

as n, h → ∞ with h = O(n) and n ≥ k ≥ ⌊nυ⌋, 1 > υ > β, where S̄2−α is a stable random

variable with the characteristic function

E

[

eiuS̄2−α

]

= exp
[

−ω(u)|u|2−α
]

, ω(u) = exp

(

iπα sign u

2

)

. (34)

Proof. First note that a solution of inequality (33) always exists. Since (32) follows from (33),

the bound h = O(n) guarantees that Lemma 9 is applicable with m = (h/(1 − α))1/(2−α).
Lemmas 3 and 6 provide tough bounds for E

[

J±
n↓k − 1

]

. Namely, inequality (33) implies that

∣

∣

∣

∣

E
[

J−
n↓k − 1

]

−
1

1 − α

∣

∣

∣

∣

= O(n−(1−α)/(2−α)−δ1) (35)

for some δ1 > 0. Hence

φ−
n↓k

(

s

(h/(1 − α))1/(2−α)

)

exp

(

−
E

[

J−
n↓k − 1

]

(h/(1 − α))1/(2−α)
is

)

= 1 −
ω(s)|s|2−α

h
+ O(h−1−δ2)

for some δ2 > 0. Moreover, equation (35) and h = O(n) imply

E
[

S−
n↓k,h

]

− h
1−α

(h/(1 − α))1/(2−α)
= O

(

h1−1/(2−α)n−(1−α)/(2−α)−δ1
)

= O
(

h−δ1
)

,

as n, h → ∞. Hence, for some δ3 > 0

E

[

exp

(

S−
n↓k,h − h

1−α

(h/(1 − α))1/(2−α)
is

)]

= exp

(

E
[

S−
n↓k,h

]

− h
1−α

(h/(1 − α))1/(2−α)
is

)

E

[

exp

(

S−
n↓k,h − E

[

S−
n↓k,h

]

(h/(1 − α))1/(2−α)
is

)]

=
(

1 + O(h−δ3)
)

(

1 −
ω(s)|s|2−α

h
+ O(h−1−δ2)

)

h

→ exp
[

−e
iπα sign s

2 |s|2−α
]

and the claim about S−
n↓k,h follows.

Treatment of the limit theorem for S+
n↓k,h literally repeats the above steps and is omitted.

Let F2−α(·) be the distribution function of the stable random variable S2−α defined by (26) and
F̄2−α(·) be that of S̄2−α defined by (34). Note that the random variables S2−α and −S̄2−α have
the same distributions, i.e. F2−α(t) = 1 − F̄2−α(−t).
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Lemma 11. Let the measure Λ satisfy (2) with ς > max
{

(2−α)2

5−5α+α2 , 1 − α
}

. Then there exists

υ < 1 such that
Cn↓⌊nυ⌋ − (n − ⌊nυ⌋)(1 − α)

n1/(2−α)(1 − α)
→d S2−α as n → ∞.

Proof. Suppose that β, γ and θ satisfy both inequalities (17) and (33). This is always possible
if ς satisfy the condition stated in this Lemma. Indeed, the only constraints which can become
inconsistent by joining inequalities (17) and (33) are the constraints on γ

(υ − β)(2 − α)ς ′

2 − α − ς ′
> γ >

1 − α

2 − α
. (36)

By (33) we can choose β and υ such that υ − β < 1 − 5−5α+α2

(2−α)3
. Hence (36) is solvable for

(

1 −
5 − 5α + α2

(2 − α)3

)

(2 − α)ς ′

2 − α − ς ′
>

1 − α

2 − α
.

Resolving ς ′ from this inequality and recalling its definition leads to the lower bound on ς in the
claim.

By definition C+
n↓⌊nυ⌋, d is the random number of decrements J+

n↓⌊nυ⌋ − 1 needed to make a total
move larger than d. Hence for all h > 0

P

[

C+
n↓⌊nυ⌋, d ≤ h

]

= P

[

S+
n↓⌊nυ⌋,h ≥ d

]

. (37)

Take now d = n − ⌊nυ⌋ and h =
⌊(

n − ⌊nυ⌋ + tnn1/(2−α)
)

(1 − α)
⌋

where tn → t as n → ∞.
Then h → ∞ but h = O(n) as n → ∞. Moreover,

d = n − ⌊nυ⌋ =
h

1 − α
− t

(

h

1 − α

)1/(2−α)

(1 + o(1)), n → ∞,

and application of Lemma 10 ensures that the right-hand side of (37) converges to F̄2−α(−t) as
n → ∞, since F̄2−α is continuous [21]. Thus

P

[

C+
n↓⌊nυ⌋ − (n − ⌊nυ⌋)(1 − α)

n1/(2−α)(1 − α)
≤ t

]

∼ P

[

C+
n↓⌊nυ⌋ ≤ h

]

= P

[

S+
n↓⌊nυ⌋,h ≥

h

1 − α
− t

(

h

1 − α

)1/(2−α)

(1 + o(1))

]

→ 1 − F̄2−α(−t) = F2−α(t) .

Replacing S+
n↓⌊nυ⌋,h with S−

n↓⌊nυ⌋,h and C+
n↓⌊nυ⌋ with C−

n↓⌊nυ⌋ in the above argument we obtain

P

[

C−
n↓⌊nυ⌋ − (n − ⌊nυ⌋)(1 − α)

n1/(2−α)(1 − α)
≤ t

]

→ F2−α(t).

Hence the claim follows from inequalities (28) since F2−α is continuous.
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Proof of Theorem 7. Recall that Bn,k is the number of particles in the Λ-coalescent started with
n particles right after the number of particles drops below to k + 1. Then for any k ≤ n the
total number of collisions is decomposable as

Cn =d Cn↓k + C
(1)
Bn,k

where in the right-hand side (C
(1)
b ) is an independent copy of (Cb). This can be iterated as

Cn = Cn↓k1
+ C

(1)
Bn,k1

↓k2
+ C

(2)
Bn,k2

↓k3
+ · · · + C

(ℓ)
Bn,kℓ−1

↓kℓ
+ C

(ℓ+1)
Bn,kℓ

(38)

for any finite sequence kℓ ≤ kℓ−1 ≤ · · · ≤ k1 ≤ n, with the convention that Cb↓k = 0 for b ≤ k.

Suppose that Lemma 11 holds for some υ < 1. Let ℓ =
⌊

− log(2−α)
log υ

⌋

+ 1, then υℓ < 1/(2 − α).

For each m = 1, . . . , ℓ, by Lemma 11 applied with
⌊

nυm⌋

instead of n,

P





C
⌊nυm

⌋↓⌊nυm+1
⌋
−

(

⌊nυm
⌋ − ⌊nυm+1

⌋
)

(1 − α)

nυm/(2−α)(1 − α)
≤ t



 → F2−α(t).

Consequently, since υ < 1, for all m > 0

C
⌊nυm

⌋↓⌊nυm+1
⌋
−

(

⌊nυm
⌋ − ⌊nυm+1

⌋
)

(1 − α)

n1/(2−α)(1 − α)
→d δ0, n → ∞,

where δ0 is the δ-measure at zero. Moreover, for some fixed τ ∈ ]0, 1/(2 − α)[ starting the
coalescent with ⌊nυm

− nτ⌋ particles instead of ⌊nυm
⌋ particles results in the same asymptotic

behaviour:

C
⌊nυm

−nτ ⌋↓⌊nυm+1
⌋
−

(

⌊nυm
⌋ − ⌊nυm+1

⌋
)

(1 − α)

n1/(2−α)(1 − α)
→d δ0, n → ∞.

Denote by Em the event Bn,⌊nυm
⌋ ≥ nυm

− nτ , i.e. that the Markov process Mn undershoots

nυm
not more than by nτ . Thus, given Em,

C
B

n,nυm ↓⌊nυm+1
⌋
−

(

⌊nυm
⌋ − ⌊nυm+1

⌋
)

(1 − α)

n1/(2−α)(1 − α)
→d δ0, n → ∞,

by the monotonicity of the number of collisions in n. Using (38) with km = ⌊nυm
⌋, Lemma 11

and Slutsky’s theorem yields the desired convergence for Cn, given Em holds for all m = 1, . . . , ℓ,
because the last summand in (38) satisfies

0 ≤ C
(ℓ+1)
Bn,kℓ

≤ kℓ ≤ nυℓ
= o(n1/(2−α)) .

Lemma 1 ensures that for any τ > 0 the probability of Em grows to 1, as n → ∞, for all
m = 1, . . . , ℓ. Hence P

[

∩ℓ
m=1Em

]

→ 1 and the convergence in distribution conditioned on
∩ℓ

m=1Em is equivalent to the unconditional convergence in distribution.
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