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Abstract

We investigate a possible definition of expectation and conditional expectation for random
variables with values in a local field such as the p-adic numbers. We define the expectation
by analogy with the observation that for real-valued random variables in L2 the expected
value is the orthogonal projection onto the constants. Previous work has shown that the
local field version of L∞ is the appropriate counterpart of L2, and so the expected value of a
local field-valued random variable is defined to be its “projection” in L∞ onto the constants.
Unlike the real case, the resulting projection is not typically a single constant, but rather a
ball in the metric on the local field. However, many properties of this expectation operation
and the corresponding conditional expectation mirror those familiar from the real-valued
case; for example, conditional expectation is, in a suitable sense, a contraction on L∞ and
the tower property holds. We also define the corresponding notion of martingale, show that
several standard examples of martingales (for example, sums or products of suitable inde-
pendent random variables or “harmonic” functions composed with Markov chains) have local
field analogues, and obtain versions of the optional sampling and martingale convergence
theorems.
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1 Introduction

Expectation and conditional expectation of real-valued random variables (or, more generally,
Banach space-valued random variables) and the corresponding notion of martingale are funda-
mental objects of probability theory. In this paper we investigate whether there are analogous
notions for random variables with values in a local field (that is, a locally compact, non-discrete,
totally disconnected, topological field) – a setting that shares the linear structure which under-
pins many of the properties of the classical entities.

The best known example of a local field is the field of p-adic numbers for some positive prime p.
This field is defined as follows. We can write any non-zero rational number r ∈ Q\{0} uniquely
as r = ps(a/b), with a, b, and s integers, where a and b are not divisible by p. Set |r| = p−s. If
we set |0| = 0, then the map | · | has the properties:

|x| = 0 ⇔ x = 0

|xy| = |x||y|

|x + y| ≤ |x| ∨ |y|.

(1)

The map (x, y) 7→ |x−y| defines a metric on Q and we denote the completion of Q in this metric
by Qp. The field operations on Q extend continuously to make Qp a topological field called the
p-adic numbers. The map | · | also extends continuously and the extension has properties (1).

The closed unit ball around 0, Zp = {x ∈ Qp : |x| ≤ 1}, is the closure in Qp of the integers Z, and
is thus a ring (this is also apparent from (1)), called the p-adic integers. As Zp = {x ∈ Qp : |x| <
p}, the set Zp is also open. Any other ball around 0 is of the form {x ∈ Qp : |x| ≤ p−k} = pkZp

for some integer k.

Every local field is either a finite algebraic extension of the p-adic number field for some prime
p or a finite algebraic extension of the p-series field; that is, the field of formal Laurent series
with coefficients drawn from the finite field with p elements.) A locally compact, non-discrete,
topological field that is not totally disconnected is necessarily either the real or the complex
numbers.

From now on, we let K be a fixed local field. Good general reference for the properties of local
fields and analysis on them are (Sch84; vR78; Tai75; vR78). The following are the properties
we need.

There is a real-valued mapping x 7→ |x| on K called the non-archimedean valuation with the
properties (1). The third of these properties is the ultrametric inequality or the strong triangle
inequality. The map (x, y) 7→ |x − y| on K × K is a metric on K which gives the topology of K.
A consequence of of the strong triangle inequality is that if |x| 6= |y|, then |x + y| = |x| ∨ |y|.
This latter result implies that for every “triangle” {x, y, z} ⊂ K we have that at least two of the
lengths |x − y|, |x − z|, |y − z| must be equal and is therefore often called the isosceles triangle
property.

The valuation takes the values {qk : k ∈ Z} ∪ {0}, where q = pc for some prime p and positive
integer c (so that for K = Qp we have c = 1). Write D for {x ∈ K : |x| ≤ 1} (so that D = Zp

when K = Qp). Fix ρ ∈ K so that |ρ| = q−1. Then

ρkD = {x : |x| ≤ q−k} = {x : |x| < q−(k−1)}
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for each k ∈ Z (so that for K = Qp we could take ρ = p). The set D is the unique maximal
compact subring of K (the ring of integers of K). Every ball in K is of the form x + ρkD for
some x ∈ D and k ∈ Z. If B = x + ρkD and C = y + ρℓD are two such balls, then

• B ∩ C = ∅, if |x − y| > q−k ∨ q−ℓ,

• B ⊆ C, if |x − y| ∨ q−k ≤ q−ℓ,

• C ⊆ B, if |x − y| ∨ q−ℓ ≤ q−k.

In particular, if q−k = q−ℓ, then either B ∩ C = ∅ or B = C, depending on whether or not
|x − y| > q−k = q−ℓ or |x − y| ≤ q−k = q−ℓ.

We have shown in a sequence papers (Eva89; Eva91; Eva93; Eva95; Eva01b; Eva01a; Eva02;
Eva06) that the natural analogues on K of the centered Gaussian measures on R are the nor-
malized restrictions of Haar measure on the additive group of K to the compact the balls ρkD

and the point mass at 0. There is a significant literature on probability on the p-adics and other
local fields. The above papers contain numerous references to this work, much of which concerns
Markov processes taking values in local fields. There are also extensive surveys of the literature
in the books (Khr97; Koc01; KN04).

It is not immediately clear how one should approach defining the expectation of a local field
valued random variable X. Even if X only takes a finite number of values {x1, x2, . . . , xn}, then
the object

∑

k xkP{X = xk} doesn’t make any sense because xk ∈ K whereas P{X = xk} ∈ R.
However, it is an elementary fact that if T is a real-valued random variable with E[T 2] < ∞, then
c 7→ E[(T −c)2] is uniquely minimized by c = E[T ]. Of course, since this observation already uses
the notion of expectation it does not lead to an alternative way of defining the expected value
of a real-valued random variable. Fortunately, we can do something similar, but non-circular,
in the local field case. We should mention at this point that there is a theory of integration of
local field valued functions against local field valued measures – this often goes under the title of
ultrametric integration or non-Archimedean integration: see, for example, (Khr94; vR78; Sch84).

Fix a probability space (Ω,F , P). By a K-valued random variable, we mean a measurable map
from Ω equipped with F into K equipped with its Borel σ-field. Let L∞ be the space of K-valued
random variables X that satisfy ‖X‖∞ := ess sup |X| < ∞. It is clear that L∞ is a vector space
over K. If we identify two random variables as being equal when they are equal almost surely,
then

‖X‖∞ = 0 ⇔ X = 0

‖cX‖∞ = |c|‖X‖∞, c ∈ K,

‖X + Y ‖∞ ≤ ‖X‖∞ ∨ ‖Y ‖∞.

The map (X,Y ) 7→ ‖X−Y ‖∞ defines a metric on L∞ (or, more correctly, on equivalence classes
under the relation of equality almost everywhere), and L∞ is complete in this metric. Hence
L∞ is an instance of a Banach algebra over K.

It is apparent from the papers on analogues of Gaussian measures cited above that L∞ is the
natural local field counterpart of the real Hilbert space L2. In particular, there is a natural notion
of orthogonality on L∞ (albeit one which does not come from an inner product structure).
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Definition 1.1. Given X ∈ L∞, set ε(X) = inf{‖X − c‖∞ : c ∈ K}. The expectation of the
K-valued random variable X is the subset of K given by

E[X] := {c ∈ K : ‖X − c‖∞ = ε(X)} = {c ∈ K : ‖X − c‖∞ ≤ ε(X)}.

We show in Section 2 that E[X] is non-empty. Note that if c′ ∈ E[X] and c′′ ∈ K is such that
|c′′ − c′| ≤ ε(X), then, by the strong triangle inequality, c′′ ∈ E[X]. Thus E[X] is a (closed) ball
in K (where we take a single point as being a ball).

Observe that we use the same notation for expectation of K-valued and R-valued random vari-
ables. This should cause no confusion: we either indicate explicitly whether a random variable
has values in K or R, or this will be clear from context.

The outline of the rest of the paper is the following. We show in Section 2 that the expected value
of a random variable in L∞ is non-empty, remark on some of the properties of the expectation
operator, and motivate the definition of conditional expectation by considering the situation
where the conditioning σ-field is finitely generated or, more generally, has an associated regular
conditional probability. The appropriate definition of the conditional expectation of X ∈ L∞

given a sub-σ-field G ⊆ F is not, as one might first imagine, the L∞ projection of X onto L∞(G)
(:= the subspace of L∞ consisting of G-measurable random variables). For this reason, we need
to do some preparatory work in Sections 3 and 4 before finally presenting the construction of
conditional expectation in Section 5 and describing its elementary properties in Section 6. We
establish an analogue of the“tower property” in Section 7 and obtain a counterpart of the fact for
classical conditional expectation that conditioning is a contraction on L2 (both of these results
need to be suitably interpreted due to the conditional expectation being typically a set of random
variables rather than a single one). We introduce the associated notion of martingale in Section
9 and observe that several of the classical examples of martingales have local field analogues.
We develop counterparts of the optional sampling theorem and martingale convergence theorem
in Sections 10 and 11, respectively.

We remark that in (Kan03) there is a brief attempt along the lines we have followed to define
a conditional expectation and the consequent notion of martingale in the local field context,
although there it is an L2 rather than an L∞ distance that is minimized and only a few properties
of the resulting objects are explored.

Note: We adopt the convention that all equalities and inequalities between random variables
should be interpreted as holding P-almost surely.

2 Expectation

Theorem 2.1. The expectation of a random variable X ∈ L∞ is non-empty. It is the smallest
closed ball in K that contains suppX (the closed support of X).

Proof. By the strong triangle inequality ‖X − c‖∞ ≤ ‖X‖∞ ∨ |c|, and ‖X − c‖∞ = |c| for
|c| > ‖X‖∞. Therefore, the infimum of c 7→ ‖X − c‖∞ over all c ∈ K is the same as the
infimum over {c ∈ K : |c| ≤ ‖X‖∞} and any point c ∈ K at which the infimum of is achieved
must necessarily satisfy |c| ≤ ‖X‖∞. That is, ε(X) = inf{‖X − c‖∞ : |c| ≤ ‖X‖∞} and
E[X] = {c : |c| ≤ ‖X‖∞, ‖X − c‖∞ = ε(X)}.
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Again by the strong triangle inequality, the function c 7→ ‖X−c‖∞ is continuous. Consequently,
E[X] is non-empty as the set of points at which a continuous function on a compact set attains
its infimum.

As we observed in the Introduction, E[X] is a ball of radius (= diameter) ε(X). If x ∈ suppX
is not in E[X] and c is any point in E[X], then, by the strong triangle inequality, |x− c| > ε(X)
and ‖X − c‖∞ > ε(X), contradicting the definition of E[X]. Thus suppX ⊆ E[X]. Hence, if the
smallest ball containing suppX is not E[X], it must be a ball contained in E[X] with diameter
r < ε(X). However, if c is any point contained in the smaller ball, then |x − c| ≤ r for all
x ∈ suppX, contradicting the definition of ε(X).

Our notion of expectation shares some of the features of both the mean and the variance of a
real-valued variable. Any point in the ball E[X] is as good a single summary of the “location” of
X as any other, whereas the diameter of E[X] (that is, ε(X)) is a measure of the “spread” of X.

Some properties of E[X] are immediate. It is easily seen that for constants k, b ∈ K, E[kX +b] =
kE[X] + b. We do not have complete linearity, however, since E[X + Y ] is only a subset of
E[X] + E[Y ], with equality when X and Y are independent. This follows from the fact that
supp(X + Y ) ⊆ suppX + suppY , with equality when X and Y are independent. Also, if X and
Y are independent, then E[XY ] = E[X]E[Y ]. These remarks further support our assertion that
E[X] combines the properties of the mean and the variance for real-valued random variables.

Define the Hausdorff distance between two subsets A and B of K to be

dH(A,B) := sup
a∈A

inf
b∈B

|a − b| ∨ sup
b∈B

inf
a∈A

|b − a|.

We know from Theorem 2.1 that E[X] and E[Y ] are balls with diameters ε(X) and ε(Y ), re-
spectively. We have one of the alternatives E[X] = E[Y ], E[X] ( E[Y ], E[Y ] ( E[X], or
E[X]∩E[Y ] = ∅. Suppose that E[X] ( E[Y ], so that suppX ⊆ E[X] and there exists y ∈ suppY
such that y is not in the unique ball of diameter q−1ε(Y ) containing E[X]. Then, by the strong
triangle inequality, |x − y| = ε(Y ) for all x ∈ suppX, and so dH(suppX, suppY ) ≥ ε(Y ) =
dH(E[X], E[Y ]) in this case. Similar arguments in the other cases show that

dH(E[X], E[Y ]) ≤ dH(suppX, suppY ) ≤ ‖X − Y ‖∞.

This is analogous to the continuity of real-valued expectation with respect to the real Lp norms.

Rather than develop more properties of expectation, we move on to the corresponding definition
of conditional expectation because, just as in the real case, expectation is the special case of
conditional expectation that occurs when the conditioning σ-field is the trivial σ-field {∅,Ω},
and so results for expectation are just special cases of ones for conditional expectation.

In order to motivate the definition of conditional expectation, first consider the special case when
the conditioning σ-field G ⊆ F is generated by a finite partition {A1, A2, . . . , An} of Ω. In line
with our definition of E[X], a reasonable definition of E[X | G] would be the set of G-measurable
random variables Y such that for each k the common value of ck := Y (ω) for ω ∈ Ak satisfies

ess sup{|X(ω) − ck| : ω ∈ Ak} = inf
c∈K

ess sup{|X(ω) − c| : ω ∈ Ak}.
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Equivalently, suppose we define ε(X,G) to be the G-measurable, R-valued random variable
that takes the value infc∈K ess sup{|X(ω) − c| : ω ∈ Ak} on Ak, then E[X | G] is the set of G-
measurable random variables Y such that |X − Y | ≤ ε(X,G). Note that ε(X, {∅,Ω}) = ε(X)
and E[X | {∅,Ω}] = E[X].

More generally, suppose that G ⊆ F is an arbitrary sub-σ-field and there is an associated regular
conditional probability PG(ω′, dω′′) (such a regular conditional probability certainly exists if G
is finitely generated). In this case, we expect that E[X | G](ω′) should be the expectation of
X with respect to the probability measure PG(ω′, ·). It is easy to see that if we let ε(X,G)
be the G-measurable random variable such that ε(X,G)(ω′) is the infimum over c ∈ K of the
essential supremum of |X − c| with respect to PG(ω′, ·), then this definition of ε(X,G) subsumes
our previous one for the finitely generated case and our putative definition of E[X | G] coincides
with the set of G-measurable random variables Y such that |X − Y | ≤ ε(X,G), thereby also
extending the definition for the finitely generated case.

We therefore see that the key to giving a satisfactory general definition of E[X | G] for an arbitrary
sub-σ-field G ⊆ F is to find a suitable general definition of ε(X,G). We tackle this problem in
the next three sections.

3 Conditional essential supremum

Definition 3.1. Given a non-negative real-valued random variable S and a sub-σ-field G ⊆ F ,
put

ess sup{S | G} = sup
p≥1

E[Sp | G]
1

p = lim
p→∞

E[Sp | G]
1

p .

Lemma 3.2. (i) Suppose that S is a non-negative real-valued random variable and G is a
sub-σ-field of F . Then S ≤ ess sup{S | G}.

(ii) Suppose that S and G are as in (i) and T is G-measurable real-valued random variable with
S ≤ T . Then ess sup{S | G} ≤ T .

(iii) Suppose that S′ and S′′ are non-negative real-valued random variables and G is a sub-σ-
fields of F . Then

ess sup{S′ ∨ S′′ | G} = ess sup{S′ | G} ∨ ess sup{S′′ | G}.

Proof. For part (i), we show by separate arguments that the result holds on the events
{ess sup{S | G} = 0} and {ess sup{S | G} > 0}.

First consider what happens on the event {ess sup{S | G} = 0}. By definition E[S | G] ≤
ess sup{S | G}. Hence

E[S 1{ess sup{S | G} = 0}] ≤ E[S 1{E[S | G] = 0}]

= E[E[S 1{E[S | G] = 0} | G]]

= E[1{E[S | G] = 0}E[S | G]] = 0.

Thus {ess sup{S | G} = 0} ⊆ {S = 0}, and S ≤ ess sup{S | G} on the event {ess sup{S | G} = 0}.
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Now consider what happens on the event {ess sup{S | G} > 0}. Take α > 1. Observe for p ≥ 1
that

E[Sp | G] ≥ E[Sp 1{Sp ≥ αpE[Sp | G]} | G]

≥ E[αpE[Sp | G]1{Sp ≥ αpE[Sp | G]} | G]

= αpE[Sp | G] P{Sp ≥ αpE[Sp | G] | G}.

Hence, for each p ≥ 1,

P{S ≥ α ess sup{S | G} | G} ≤ P{S ≥ α E[Sp | G]
1

p | G} ≤
1

αp

on the event {E[Sp | G] > 0}.

Since {ess sup{S | G} > 0} ⊆
⋃

p

⋂

q≥p{E[Sq | G] > 0}, we see that P{S ≥ αess sup{S | G} | G} = 0
on the event on {ess sup{S | G} > 0}. As this holds for all α > 1, we conclude that S ≤
ess sup{S | G} on the event {ess sup{S | G} > 0}, and this completes the proof of part (i).

Part (ii) is immediate from the definition.

Now consider part (iii). We have from part (i) that S′ ≤ ess sup{S′ | G} and S′′ ≤ ess sup{S′′ | G}.
Thus S′ ∨ S′′ ≤ ess sup{S′ | G} ∨ ess sup{S′′ | G} and hence

ess sup{S′ ∨ S′′ | G} ≤ ess sup{S′ | G} ∨ ess sup{S′′ | G}

by part (ii). On the other hand, because S′ ≤ S′ ∨ S′′ and S′′ ≤ S′ ∨ S′′, it follows that
ess sup{S′ | G} ≤ ess sup{S′ ∨ S′′ | G} and ess sup{S′′ | G} ≤ ess sup{S′ ∨ S′′ | G}. Therefore

ess sup{S′ | G} ∨ ess sup{S′′ | G} ≤ ess sup{S′ ∨ S′′ | G}.

Corollary 3.3. Suppose that S is a non-negative real-valued random variable and G ⊆ H are
sub-σ-fields of F . Then ess sup{S |H} ≤ ess sup{S | G}.

Proof. From Lemma 3.2(i), S ≤ ess sup{S | G}. Applying Lemma 3.2(ii) with G replaced by H
and T = ess sup{S | G} gives the result.

Let {Fn}
∞
n=0 be a filtration (that is, a non-decreasing sequence of sub-σ-fields of F). Recall

that a random variable T with values in {0, 1, 2, . . .} is a stopping time for the filtration if
{T = n} ∈ Fn for all n. Recall also that if T is a stopping time, then the associated σ-field FT

is the collection of events A such that A ∩ {T = n} ∈ Fn for all n.

Lemma 3.4. Suppose that S is a non-negative real-valued random variable, {Fn}
∞
n=0 is a filtra-

tion of sub-σ-fields of F , and T is a stopping time. Then

ess sup{S 1{T = n} |FT } = 1{T = n} ess sup{S | FT }

= 1{T = n} ess sup{S | Fn} = ess sup{S 1{T = n} |Fn}

for all n.

Proof. This follows immediately from the definition of the conditional essential supremum
and the fact that if U is a non-negative real-valued random variable, then ess sup{U |FT } =
ess sup{U |Fn} on the event {T = n} (see, for example, Proposition II-1-3 of (Nev75)).
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4 Conditional L
∞ norm

Definition 4.1. Given X ∈ L∞ and a sub-σ-field G ⊆ F , put

‖X‖G := ess sup{|X| | G}.

Notation 4.2. Given A ∈ F , the K-valued random variable 1A is given by

1A(ω) =

{

1K, if ω ∈ A,

0K, otherwise,

where 1K and 0K are, respectively, the multiplicative and additive identity elements of K. We
continue to use this same notation to also denote the analogously defined real-valued indicator
random variable, but this should cause no confusion as the meaning will be clear from the
context.

Lemma 4.3. Fix a sub-σ-field G ⊆ F .

(i) If W ∈ L∞(G) and X ∈ L∞, then ‖WX‖G = |W | ‖X‖G .

(ii) If X,Y ∈ L∞ are such that P({X 6= Y } ∩ A) = 0 for some A ∈ G, then P({‖X‖G 6=
‖Y ‖G} ∩ A) = 0.

(iii) If X1,X2, . . . ∈ L∞ and A1, A2, . . . ∈ G are pairwise disjoint, then
∥

∥

∥

∥

∥

∑

i

Xi 1Ai

∥

∥

∥

∥

∥

G

=
∑

i

1Ai
‖Xi‖G .

(iv) If X,Y ∈ L∞, then
‖X + Y ‖G ≤ ‖X‖G ∨ ‖Y ‖G .

Proof. Part (i) follows immediately from the definition. Part (ii) follows from part (i): since
X 1A = Y 1A by assumption,

1A‖X‖G = ‖X 1A‖G = ‖Y 1A‖G = 1A‖Y ‖G .

Part (iii) follows from parts (i) and (ii): for any of the events Aj ,

1Aj

∑

i

1Ai
‖Xi‖G = 1Aj

‖Xj‖G = ‖1Aj
Xj‖G

=

∥

∥

∥

∥

∥

1Aj

∑

i

1Ai
Xi

∥

∥

∥

∥

∥

G

= 1Aj

∥

∥

∥

∥

∥

∑

i

1Ai
Xi

∥

∥

∥

∥

∥

G

,

and, similarly,
∑

i 1Ai
‖Xi‖G = ‖

∑

i 1Ai
Xi‖G on Ω \ (

⋃

i Ai).

Part (iv) is an immediate consequence of Lemma 3.2(iii). However, there is also the following
alternative, more elementary proof. Note first that ‖Xr‖G = ‖X‖r

G for any r > 0 because

lim
p→∞

E[|X|rp | G]
1

p = lim
q→∞

E[|X|q | G]
r
q = ( lim

q→∞
E[|X|q | G]

1

q )r.
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Thus, from Jensen’s inequality and the observation that (x + y)s ≤ (xs + ys) for 0 ≤ s ≤ 1,

‖X + Y ‖G = lim
p→∞

E[|X + Y |p | G]
1

p

≤ lim
p→∞

E[|X|p ∨ |Y |p | G]
1

p

= lim
p→∞

E[ lim
r→∞

(|X|pr + |Y |pr)
1

r | G)
1

p

≤ lim
p,r→∞

(E[|X|pr | G] + E[|Y |pr | G])
1

pr

≤ lim
p,r→∞

(E[|X|rp | G]
1

p + E[|Y |rp | G]
1

p )
1

r .

= lim
r→∞

(‖X‖r
G + ‖Y ‖r

G)
1

r

= ‖X‖G ∨ ‖Y ‖G .

The following result is immediate from Corollary 3.3.

Lemma 4.4. Suppose that X ∈ L∞ and G ⊆ H are sub-σ-fields of F . Then ‖X‖H ≤ ‖X‖G .

The following result is immediate from Lemma 3.4.

Lemma 4.5. Suppose that X ∈ L∞, {Fn}
∞
n=0 is a filtration of sub-σ-fields of F , and T is a

stopping time. Then

‖X 1{T = n}‖FT
= 1{T = n} ‖X‖FT

= 1{T = n} ‖X‖Fn
= ‖X 1{T = n}‖Fn

for all n.

5 Construction of Conditional Expectation

Definition 5.1. Given X ∈ L∞ and a sub-σ-field G ⊆ F , set

E[X | G] := {Y ∈ L∞(G) : ‖X − Y ‖G ≤ ‖X − Z‖G for all Z ∈ L∞(G)}.

Remark 5.2. Before showing that E[X | G] is non-empty, we comment on a slight subtlety in the
definition. One way of thinking of our definition of E[X] as the set of c ∈ K for which ‖X − c‖∞
is minimal, is that E[X] is the set of projections of X onto K ≡ L∞({∅,Ω}). A possible definition
of E[X | G] might therefore be the analogous set of projections of X onto L∞(G), that is, the set
of Y ∈ L∞(G) that minimize ‖X −Y ‖∞. This definition is not equivalent to ours. For example,
suppose that Ω consists of the three points {α, β, γ}, F consists of all subsets of Ω, P assigns
positive mass to each point of Ω, G = σ{{α, β}, {γ}}, and X is given by X(α) = 1K, X(β) = 0K,
and X(γ) = 0K. Consider Y ∈ L∞(G), so that Y (α) = Y (β) = c and Y (γ) = d for some c, d ∈ K.
In order that Y ∈ E[X | G] according to our definition, c and d must be chosen to minimize both
|1K − c| ∨ |0K − c| and |0K − d|. By the strong triangle inequality, |1K − c| ∨ |0K − c| is minimized
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by any c with |c| ≤ 1, with the corresponding minimal value being 1. Of course, |0K − d| is
minimized by the unique value d = 0K . On the other hand, in order that Y is a projection of
X onto L∞(G), the points c and d must be chosen to minimize |1K − c| ∨ |0K − c| ∨ |0K − d|, and
this is accomplished as long as |c| ≤ 1 and |d| ≤ 1. We don’t belabor the point in what follows,
but several of the natural counterparts of standard results for classical conditional expectation
that we show hold for our definition fail to hold for the “projection” definition.

The following lemma is used below to show that E[X | G] is non-empty.

Lemma 5.3. Suppose that X ∈ L∞ is not 0K almost surely, and G is a sub-σ-field of F . Set
q−N = ‖X‖∞. Then there exist disjoint events A0, A1, . . . ∈ G and random variables Y0, Y1, . . . ∈
L∞(G) with the following properties:

(1) On the event An, ‖X − Z‖G ≥ q−(N+n) for every Z ∈ L∞(G).

(2) On the event An, ‖X − Yn‖G = q−(N+n). and

(3) On the event Ω \
⋃n

k=1 Ak, ‖X − Yn‖G ≤ q−(N+n+1)

(4) On the event
⋃n

k=1 Ak, Yp = Yn for any p > n.

(5) The event
⋃∞

k=1 Ak has probability one.

Proof. Suppose without loss of generality that ‖X‖∞ = 1, so that N = 0. Set Z0 := {Z ∈
L∞(G) : ‖X − Z‖∞ ≤ 1}. Note that the constant 0 belongs to Z0 and so this set is non-empty.
Put δ0 := infZ∈Z0

P{‖X − Z‖G = 1}.

Choose Z0,1, Z0,2, . . . ∈ Z0 with

lim
m→∞

P{‖X − Z0,m‖G = 1} = δ0.

Define Z ′
0,1, Z

′
0,2, . . . inductively by setting Z ′

0,1 := Z0,1 and

Z ′
0,m+1(ω) :=

{

Z ′
0,m(ω), if ‖X − Z ′

0,m‖G(ω) ≤ ‖X − Z0,m+1‖G(ω),

Z0,m+1(ω), if ‖X − Z ′
0,m‖G(ω) > ‖X − Z0,m+1‖G(ω).

Note that the events B0,m := {‖X − Z ′
0,m‖G = 1} are decreasing and the B0,m are contained

in the event {‖X − Z0,m‖G = 1}. Hence the event A0 := limm→∞ B0,m =
⋂∞

m=1 B0,m has
probability δ0.

Define Y0 by

Y0(ω) :=

{

Z ′
m,1(ω), if ω ∈ (Ω \ B0,1) ∪ A0,

Z ′
0,m(ω), if ω ∈ (Ω \ B0,m) \ (Ω \ B0,m−1), m ≥ 2.

It is clear that ‖X − Y0‖G = 1 on the event A0 and ‖X − Y0‖G ≤ q−1 on the event Ω \ A0.
Moreover, if there existed V ∈ L∞(G) with

P({‖X − V ‖G ≤ q−1} ∩ A0) > 0,
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then we would have the contradiction that W ∈ Z0 defined by

W (ω) =

{

Y0(ω), if ‖X − Y0‖G(ω) ≤ ‖X − V ‖G(ω),

V (ω), if ‖X − Y0‖G(ω) > ‖X − V ‖G(ω)

would satisfy P{‖X − W‖G = 1} < δ0.

Now suppose that A0, . . . An−1 and Y0, . . . , Yn−1 have been constructed with the requisite prop-
erties. If P(Ω \

⋃n−1
k=1) = 0, then take An = ∅ and Yn = Yn−1 (recall that we are interpreting all

equalities and inequalities as holding P-a.s.) Otherwise, set

Zn :=

{

Z ∈ L∞(G) :Z = Yn−1 on

n−1
⋃

k=1

Ak

and |X − Z| ≤ q−n on Ω \
n−1
⋃

k=1

Ak

}

.

Note that Yn−1 belongs to Zn. Put δn := infZ∈Zn
P{‖X − Z‖G = q−n}. An argument very

similar to the above with Zn and δn replacing Z0 and δ0 establishes the existence of An and Yn

with the desired properties.

Theorem 5.4. Given X ∈ L∞ and a sub-σ-algebra G ⊆ F , the conditional expectation E[X | G]
is nonempty.

Proof. If X is 0K almost surely, then E[X | G] = {0K}. Otherwise, let A0, A1, . . . ∈ G and
Y0, Y1, . . . ∈ L∞(G) be as in Lemma 5.3. Then Y defined by Y (ω) = Yn(ω) for ω ∈ An belongs
to E[X | G].

6 Elementary Properties of Conditional Expectation

Proposition 6.1. Fix a sub-σ-field G ⊆ F .

(i) Suppose that X ∈ L∞(G) and Y ∈ L∞. Then

E[XY | G] = X E[Y | G].

and
E[X + Y | G] = X + E[Y | G].

(ii) If X,Y ∈ L∞ are such that P({X 6= Y } ∩ A) = 0 for some A ∈ G, then 1AE[X | G] =
1AE[Y | G].

(iii) If X1,X2, . . . ∈ L∞ and A1, A2, . . . ∈ G are pairwise disjoint, then

E

[

∑

i

Xi 1Ai
| G

]

=
∑

i

1Ai
E[Xi | G].
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Proof. Consider part (i). We first show the inclusion E[XY | G] ⊆ XE[Y | G].

Consider Z ∈ E[XY | G]. Choose some V ∈ E[Y | G] and set W = (Z/X)1{X 6= 0} + V 1{X =
0} ∈ L∞(G). Note that P{Z 6= 0, X = 0} = 0 and hence XW = Z, because otherwise we would
have the contradiction ‖XY − Z 1{X 6= 0}‖G ≤ ‖XY − Z‖G and P{‖XY − Z 1{X 6= 0}‖G <
‖XY − Z‖G} > 0 by Lemma 4.3(ii).

We need to show that W ∈ E[Y | G]. Consider U ∈ L∞(G). By Lemma 4.3(ii) and the assumption
that V ∈ E[Y | G],

‖Y − W‖G = ‖Y − V ‖G ≤ ‖Y − U‖G

on the event {X = 0}. Also, ‖XY −Z‖G ≤ ‖XY −XU‖G by the assumption that Z ∈ E[XY | G],
and so, by Lemma 4.3(i)+(ii)

‖Y − W‖G = ‖Y − Z/X‖G = |X|−1‖XY − Z‖G

≤ |X|−1‖XY − XU‖G = ‖Y − U‖G

on the event {X 6= 0}. Thus ‖Y −W‖G ≤ ‖Y −U‖G for any U ∈ L∞(G) and hence W ∈ E[Y | G].

We now show the converse inclusion XE[Y | G] ⊆ E[XY | G].

Choose W ∈ E[Y | G]. We need to show that XW ∈ E[XY | G]. Consider U ∈ L∞(G). Put
V = (U/X)1{X 6= 0}. We have ‖Y − W‖G ≤ ‖Y − V ‖G by the assumption that W ∈ E[Y | G].
From Lemma 4.3(i)+(ii),

‖XY − XW‖G = |X|‖Y − W‖G ≤ |X|‖Y − V ‖G = ‖XY − XV ‖G

= ‖XY − U‖G 1{X 6= 0} ≤ ‖XY − U‖G ,

as required.

The proof of the claim E[X + Y | G] = X + E[Y | G] is similar but easier, so we omit it.

Parts (ii) and (iii) follow straightforwardly from parts (ii) and (iii) of Lemma 4.3.

Proposition 6.2. Let G be a sub-σ-algebra of F . Suppose that X ∈ L∞ is independent of G.
Then E[X | G] is the set of random variables Y ∈ L∞(G) that take values in E[X].

Proof. Observe for any Z ∈ L∞(G), that, by the assumption of independence of X from G,

‖X − Z‖G(ω) = sup
p

(E[|X − Z|p | G](ω))
1

p

= sup
p

(
∫

|x − Z(ω)|p P{X ∈ dx}

)
1

p

= sup{|x − Z(ω)| : x ∈ suppX}
{

= ε(X), if Z(ω) ∈ E[X],

> ε(X), otherwise,

and the result follows.
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7 Conditional spread and the tower property

Definition 7.1. Given X ∈ L∞ and a sub-σ-field G of F , let ε(X,G) denote the common value
of ‖X − Y ‖G for Y ∈ E[X | G].

Lemma 7.2. If X ∈ L∞ and a G ⊆ H are sub-σ-fields of F , then ε(X,H) ≤ ε(X,G).

Proof. Suppose that V ∈ E[X | G] and W ∈ E[X |H]. From Lemma 4.4,

ε(X,H) = ‖X − W‖H ≤ ‖X − V ‖H ≤ ‖X − V ‖G = ε(X,G).

Lemma 7.3. A random variable Y belongs to E[X | G] if and only if Y ∈ L∞(G) and |X −Y | ≤
ε(X,G).

Proof. Suppose Y is in E[X | G]. By definition, Y ∈ L∞(G). By Lemma Lemma 4.4, |X − Y | =
‖X − Y ‖F ≤ ‖X − Y ‖G = ε(X,G).

The converse is immediate from Lemma 3.2(ii).

Lemma 7.4. Suppose that X ∈ L∞, G ⊆ H are sub-σ-fields of F , and Y ∈ E[X |H]. Then
ε(Y,G) ≤ ε(X,G).

Proof. Consider Z ∈ E[X | G]. By Lemma 7.3 and Lemma 7.2

|Y − Z| ≤ |X − Y | ∨ |X − Z| ≤ ε(X,H) ∨ ε(X,G) = ε(X,G).

By Lemma 3.2(ii), ε(Y,G) ≤ ‖Y − Z‖G ≤ ε(X,G).

Theorem 7.5. Suppose that X ∈ L∞ and G ⊆ H are sub-σ-fields of F . If Y ∈ E[X |H] and
Z ∈ E[Y | G], then Z ∈ E[X | G].

Proof. By Lemma 7.3, Lemma 7.4, and Lemma 7.2,

|X − Z| ≤ |X − Y | ∨ |Y − Z| ≤ ε(X,H) ∨ ε(Y,G) ≤ ε(X,G).

Thus Z is in E[X | G] by another application of Lemma 7.3.

8 Continuity of conditional expectation

Definition 8.1. Define the Hausdorff distance between two subsets A and B of L∞ to be

DH(A,B) := sup
X∈A

inf
Y ∈B

‖X − Y ‖∞ ∨ sup
Y ∈B

inf
X∈A

‖Y − X‖∞.

Lemma 8.2. Suppose that A,B,C are subsets of L∞. Then

DH(A + C,B + C) ≤ DH(A,B).

511



Proof. Suppose that DH(A,B) < δ for some δ ≥ 0. By definition, for every X ∈ A there is a
Y ∈ B with ‖X−Y ‖∞ < δ, and similarly with the roles of A and B reversed. If U ∈ A+C, then
U = X + W for some X ∈ A and W ∈ C. We know there is Y ∈ B such that ‖X − Y ‖∞ < δ.
Note that V := Y + W ∈ B + C and ‖U −V ‖∞ = ‖X − Y ‖∞ < δ. A similar argument with the
roles of A and B reversed shows that DH(A + C,B + C) < δ.

Theorem 8.3. Suppose that X,Y ∈ L∞ and G is a sub-σ-field of F . Then
DH(E[X | G], E[Y | G]) ≤ ‖X − Y ‖∞ .

Proof. Choose U ∈ E[X | G] and V ∈ E[Y | G]. From Lemma 4.3(iv),

ε(Y,G) ≤ ‖Y − U‖G ≤ ‖X − U‖G ∨ ‖X − Y ‖G = ε(X,G) ∨ ‖X − Y ‖G

and
ε(X,G) ≤ ‖X − V ‖G ≤ ‖Y − V ‖G ∨ ‖X − Y ‖G = ε(Y,G) ∨ ‖X − Y ‖G .

It follows that ε(X,G) = ε(Y,G) on the event M := {‖X − Y ‖G < ε(X,G) ∨ ε(Y,G)} and

ε(X,G) = ‖Y − U‖G = ‖X − U‖G = ε(X,G)

and
ε(Y,G) = ‖X − V ‖G = ‖Y − V ‖G = ε(Y,G)

on M .

By Proposition 6.1, U 1M ∈ E[Y 1M | G] = 1ME[Y | G] and V 1M ∈ E[X 1M | G] = 1ME[X | G].
Thus 1ME[X | G] = 1ME[Y | G].

Furthermore, on the event N := {‖X − Y ‖G ≥ ε(X,G) ∨ ε(Y,G)}

‖U − V ‖∞ ≤ ‖U − X‖∞ ∨ ‖X − Y ‖∞ ∨ ‖Y − V ‖∞

≤ ε(X,G) ∨ ‖X − Y ‖∞ ∨ ε(Y,G)

≤ ‖X − Y ‖∞,

and so ‖U 1N − V 1N‖∞ ≤ ‖X 1N − Y 1N‖∞ ≤ ‖X − Y ‖∞. Therefore,

DH(1NE[X | G], 1NE[Y | G]) ≤ ‖X − Y ‖∞.

By Proposition 6.1(iii), E[X | G] = 1ME[X | G] + 1NE[X | G], and similarly for Y . The result
now follows from Lemma 8.2.

9 Martingales

Definition 9.1. Let {Fn}
∞
n=0 be a filtration of sub-σ-fields of F . A sequence of random variables

{Xn}
∞
n=0 is a martingale if there exists X ∈ L∞ such that Xn ∈ E[X | Fn] for all n (in particular,

Xn ∈ L∞(Fn)).

Remark 9.2. Note that our definition does not imply that Xn ∈ E[Xn+1 | Fn] for all n. For
example, suppose that Fn := {∅,Ω} for all n but X is not almost surely constant, then we
obtain a martingale by taking Xn to be any constant in the ball E[X], but we only have Xn ∈
E[Xn+1 | Fn] for all n if X0 = X1 = X2 = . . ..
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Many of the usual real-valued examples of martingales have K-valued counterparts.

Example 9.3. Let {Yn}
∞
n=0 be a sequence of independent random variables in L∞ with 0K ∈

E[Yn] for all n. Suppose that
∑∞

k=0 Yk converges in L∞ (by the strong triangle inequality and
the completeness of L∞, this is equivalent to limn→∞ ‖Yn‖∞ = 0). Set Fn := σ{Y0, Y1, . . . , Yn}.
Put Xn :=

∑n
k=0 Yk and Xn :=

∑∞
k=0 Yk It follows from the second claim of Proposition 6.1(i)

that Xn ∈ E[X | Fn] for all n and hence {Xn}
∞
n=0 is a martingale.

Example 9.4. Let {Yn}
∞
n=0 be a sequence of independent random variables in L∞ with 1K ∈

E[Yn] for all n. Suppose that
∏∞

k=0 Yk converges in L∞ (by the strong triangle inequality and the
completeness of L∞, this is equivalent to limn→∞ ‖Yn−1K‖∞ = 0). Set Fn := σ{Y0, Y1, . . . , Yn}.
Put Xn :=

∏n
k=0 Yk and X :=

∏∞
k=0 Yk. It follows from the first claim of Proposition 6.1(i) that

Xn ∈ E[X | Fn] for all n and hence {Xn}
∞
n=0 is a martingale.

Example 9.5. Let {Zn}
∞
n=0 be a discrete time Markov chain with countable state space E and

transition matrix P . Set Fn := σ{Z0, Z1, . . . , Zn}. Say that f : E → K is harmonic if f is
bounded and for all i ∈ E the expectation of f with respect to the probability measure P (i, ·)
contains f(i) (that is, if f(i) is belongs to the smallest ball containing the set {f(j) : P (i, j) > 0}).
Fix N ∈ {0, 1, 2, . . .}. Then {Xn}

∞
n=0 := {f(Zn∧N )}∞n=0 is a martingale.

10 Optional sampling theorem

Theorem 10.1. Let {Fn}
∞
n=0 be a filtration. Suppose that X ∈ L∞ and {Xn}

∞
n=0 is a martingale

with Xn ∈ E[X | Fn] for all n. If T is a stopping time, then XT ∈ E[X | FT ].

Proof. It follows from Lemma 4.5 that 1{T = n}E[X | FT ] = 1{T = n}E[X | Fn] and hence, by
Proposition 6.1(iii),

E[X | FT ] = E

[

∑

n

X 1{T = n} |FT

]

=
∑

n

1{T = n}E[X | FT ]

=
∑

n

1{T = n}E[X | Fn]

∋
∑

n

1{T = n}Xn

= XT .

11 Martingale convergence

Theorem 11.1. Let {Fn}
∞
n=0 be a filtration. Suppose that X ∈ L∞ and {Xn}

∞
n=0 is a martingale

with Xn ∈ E[X | Fn] for all n. If X is in the closure of
⋃∞

n=1 L∞(Fn), then limn→∞ ‖Xn−X‖∞ =
0 (in particular, {Xn}

∞
n=0 converges to X almost surely).
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Proof. Since X is in the closure of
⋃∞

n=1 L∞(Fn), for each ε > 0 there exists Y ∈ L∞(FN ) for
some N such that ‖X − Y ‖∞ < ε. Because FN ⊆ Fn for n > N , Y ∈ L∞(Fn) for n ≥ N .

By Theorem 8.3, DH(E[X | Fn], E[Y | Fn]) < ε for n ≥ N . However, E[Y | Fn] consists of the
single point Y , and so the Hausdorff distance is simply sup{‖W −Y ‖∞ : W ∈ E[X | Fn]}. Thus

‖Xn − X‖∞ ≤ ‖Xn − Y ‖∞ ∨ ‖Y − X‖∞ < ε

for n ≥ N .
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