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Abstract

We resolve the longstanding question of how to define the compensator of a point process
on a general partially ordered set in such a way that the compensator exists, is unique, and
characterizes the law of the process. We define a family of one-parameter compensators
and prove that this family is unique in some sense and characterizes the finite dimensional
distributions of a totally ordered point process. This result can then be applied to a general
point process since we prove that such a process can be embedded into a totally ordered
point process on a larger space. We present some examples, including the partial sum
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multiparameter process, single line point processes, multiparameter renewal processes, and
obtain a new characterization of the two-parameter Poisson process.
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1 Introduction

When working on the dynamical properties of a point process defined on a partially ordered
space, one of the main tools is the compensator : the unique predictable increasing process which
compensates the point process, i.e. the difference between the point process and the compensator
is a martingale. In the classical case, a remarkable result of J. Jacod in (9) established that
the law (i.e. the finite dimensional distributions) of a simple point process on the real line is
characterized by the knowledge of its compensator. The power of martingale methods in the
statistical analysis of point processes on R+ is well-established, and some of these techniques
have recently been extended to point processes on more general spaces in (7).

In this paper, we provide a positive answer to the question of whether such a characterization
exists for general point processes on partially ordered sets. It is clear that for such processes,
this problem becomes much more complicated and has remained open except in special cases
(cf. (5), (6)). First, compensators can be defined in several ways for any simple point process,
depending on how one defines the “history” or “past” at a point. As well, only under stringent
conditions can one prove existence and uniqueness of the compensator. Moreover, even if we
have a compensator that is unique in some sense, it will not generally characterize the law of
the point process. To illustrate this, we recall an example studied in detail in (6).

Suppose our parameter set T is the positive quadrant of the plane R2
+, let τ = (τ1, τ2) be

a random point in this space and for any point t = (t1, t2) in T denote the following sets:
At = {(s1, s2) ∈ T : s1 ≤ t1 and s2 ≤ t2}, Ai

t = {(s1, s2) ∈ T : si ≤ ti} for i = 1, 2 and
Dt = A1

t ∪ A2
t . Let G denote both the distribution function of τ and the associated measure;

i.e. for any Borel set B in T , G(B) = P (τ ∈ B), G(t) := G(At). The simplest point process on
R2

+ is the single jump process; that is a process of the form Nt = I(t ≥ τ) = I(τ ∈ At). This
process possesses several compensators depending on the information available at t about the
random point τ (i.e. the “history” at t). Three of them are the following:

Λw
t =

∫

At

I{τ /∈Au}
G(du)

G(Ac
u)

Λi
t =

∫

At

I{τ /∈Ai
u}

G(du)

G((Ai
u)c)

Λ∗
t =

∫

At

I{τ /∈Du}
G(du)

G(Dc
u)

.

In other words, each of the processes N − Λw, N − Λi, N − Λ∗ possesses a type of martingale
property with respect to the relevant history, and in each case, Λ· is predictable in some sense.
The history at t consists of the values of Ns for all s in At for Λw, to the left of t for Λ1, below
t for Λ2, and in Dt for Λ∗. Since T is in this example a product space, we observe that Nt can
be viewed as a marked point process on R+ (τ1 is interpreted as the time of the jump and τ2

as the mark), so according to Jacod’s (9) characterization result, the law of N is determined by
Λ1 (or Λ2, by symmetry). In other words, we can reconstruct the distribution G. However, as
is well known from multivariate survival analysis, neither the ratio G(dt)/G(Ac

t ) nor the ratio
G(dt)/G(Dc

t ) (the hazard function) determines G, so neither Λw nor Λ∗ can characterize the law
of the point process N (cf. (2), pg. 690).
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In this example, the compensator Λ1 does the job. However, it works only because T has
a product structure (as required for Jacod’s marked point process approach). Moreover, at
t = (t1, t2) this compensator requires complete information about N to the left of t1 (i.e. in
A1

t ) or by symmetry, below t2 (A2
t ). In survival analysis, this means that one needs the entire

sample in one direction to estimate the value of the distribution function G at t. However, in
practice it may happen that the only information available at time t = (t1, t2) ∈ T consists of
the locations of jumps in At = {s ∈ T : s ≤ t}.

Another example is the Poisson process M = {Mt, t ∈ R2
+}. As is explained in (5), since the

increments are independent each of the compensators of M is a deterministic function and in
fact at each point t, it is the measure of the rectangle At (up to a constant). In this special case,
the compensator Λ∗ has been shown to characterize the Poisson process (cf. (6), Theorem 5.3.1)
whereas Λw does not. The compensator Λ∗ works well if it is deterministic (for example, it also
characterizes the set-indexed Brownian motion among the class of square integrable continuous
multiparameter strong martingales ((6), Theorem 5.2.1)), but as observed above, it fails for
other processes such as the single jump process.

Here, we resolve the open question by defining the compensator of a general point process N on
an arbitrary topological lattice T in such a way that it always exists, is unique, and completely
characterizes the law of N . T need not have the product structure required for Jacod’s marked
point process approach, and in the case of the single jump process or more generally, point
processes whose jumps are strictly increasing, the only information required at time t ∈ T is the
location of jumps in At = {s ∈ T : s ≤ t}. For more general point processes, the information
required at t is the location of any jump point τ for which N(Aτ ) ≤ N(At). In fact, the
compensator will be defined to be a class of (one-dimensional) compensators of point processes
on R+ generated by projections of N along flows (increasing maps from R+ to a class of subsets
of T ). We show that the projection of a point process along a flow is a one-parameter point
process, and therefore the compensator of the projection is well defined. As will be explained
later in full detail, this compensator will be called “U − flow compensator” . This approach
was first introduced by Plante in (11) in the special case T = R2

+. Notice that our new flow
compensator is not identifiable with any of the compensators Λw, Λ1 or Λ∗.

In addition to the theoretical interest of this result, there are important areas of application
such as multiparameter renewal theory and survival analysis (see (7) and (8)). In addition, we
give a new characterization of the Poisson process on the plane.

The paper is organized as follows. In Section 2, we develop all the prerequisites needed for point
processes on a partially ordered parameter set. We define strictly simple point processes in a
very general framework using the concept of flow and we discuss how this allows us to exploit
results from classical one-parameter theory. In Section 3, we study point processes whose jump
points are totally ordered. The flow compensator is defined for flows on the original space T
and we prove that the flow compensator characterizes the law of the (totally ordered) point
process. As examples, we re-analyse the single jump process and then consider a partial sum
process. Section 4 is devoted to general point processes. We introduce the notion of embedding
a point process into a larger space in such a way that the embedded point process is totally
ordered. We show that the law of the original process determines and is determined by the law
of the embedded process. This idea, introduced in (10) in the special case T = R2

+, allows us to
apply the results of Section 3 to the totally ordered embedded process: we define the U − flow
compensator of the general point process via an identification with the flow compensator of the
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embedded process. Therefore, we get a complete compensator characterization for any strictly
simple point process. In Section 5, we present more examples. In particular, we investigate
the single line process and apply it to two special cases: the renewal point process and the
Poisson point process on the plane. We obtain a new characterization of the Poisson process
and compare it to a similar result given by Aletti and Capasso in (1).

2 Prerequisites

The point processes are defined on a complete separable metric space (T, d). We will require
that T be partially ordered.

Assumption 2.1. T is endowed with a partial order “≤” for which T is a complete distributive
lattice (i.e. every subset of T has a sup and an inf, and for u, s, t ∈ T ,

u ∨ (s ∧ t) = (u ∨ s) ∧ (u ∨ t)) and u ∧ (s ∨ t) = (u ∧ s) ∨ (u ∧ t).)

In particular, T contains a minimum element denoted by 0 and a maximum element denoted by
1. This setup includes compact rectangles in R

p
+ with the usual partial order and we shall use

[0, 1]2 as the fundamental example to illustrate our approach.

For t ∈ T , the partial order generates the following sets:

At := ↓ t = {s ∈ T : s ≤ t}

Et := ↑ t = {s ∈ T : s ≥ t}

We observe that As∧t = As ∧ At and Es∨t = Es ∧ Et, ∀s, t,∈ T .

Assumption 2.2. For every t ∈ T , both At and Et are d-closed.

Now we introduce the “dyadics” in T . The notation “s < t” should be interpreted as “s ≤ t and
s 6= t”.

Assumption 2.3. The partial order on T is sufficiently rich that there exists an increasing
sequence of finite sublattices (Tn) of T each containing 0 and 1, such that for any t ∈ T, t 6= 0,1,
each open neighbourhood of t contains points t′, t′′ ∈ Tn distinct from t such that t′ < t < t′′. Each
open neighbourhood of 0 (respectively, 1) contains a point t′ ∈ Tn distinct from 0 (respectively,
1). The elements of Tn can be thought of as the dyadics of order n.

In particular, defining
t+n := ∧t′∈Tn;t≤t′t

′ and t−n := ∨t′∈Tn;t′≤tt
′,

it follows that t = ∧nt+n = limn t+n = limn t−n = ∨nt−n , and any point t can therefore be approx-
imated from above (respectively, below) by elements in Tn either as an infimum (respectively,
supremum) or as a limit in the metric d.

Assumptions 2.1-2.3 suffice for the results in Section 3; for Section 4, a further mild assumption
will be required.

Assumption 2.4.
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1. For u, s, t ∈ T, d(s ∧ u, t ∧ u) ≤ d(s, t) and d(s ∨ u, t ∨ u) ≤ d(s, t).

2. The sublattices Tn of Assumption 2.3 can be chosen so that

lim
n

sup
t∈T

d(t, t+n ) = 0 and lim
n

sup
t∈T

d(t, t−n ) = 0.

Comment 2.5. If T is bounded, then it is reasonable to suppose that T has a maximum element
and that Tn is finite. This is not a restriction if there exists an increasing sequence of bounded
subsets B1 ⊆ B2 ⊆ ... ⊆ T , such that T = ∪∞

n=1Bn and each subset Bn satisfies the preceding
assumptions. The law of any point process on T is expressed in terms of its finite dimensional
distributions on bounded Borel subsets of T (cf. (3), pg.166), and so it suffices to characterize
the law of the point process on each Bn. This allows us to extend our results to point processes
on Rd

+, for example.

We now define the left neighbourhoods Cn associated with Tn:

C ∈ Cn if and only if C = Cn
t := At \ ∪t′∈Tn,t′ 6≥tAt′ for some t ∈ Tn.

The sequence (Cn) is a nested sequence of finite partitions of T that ultimately separates the
points of T , and so forms a dissecting system. Consequently, any closed set K can be expressed
as

K = ∩n (∪t∈KCn
t ) .

Each of the unions in the expression above is finite since Cn is finite. As a result, the Borel sets
of T are generated by the sets {At : t ∈ ∪nTn}.

We say that two sets A,B ⊂ T are incomparable if a and b are incomparable for every a ∈ A
and b ∈ B.

Proposition 2.6. If t, t′ ∈ Tn are incomparable, then Cn
t and Cn

t′ are incomparable sets.

Proof. This is an easy consequence of the observation that by definition, Cn
t ∩At′ = Cn

t′ ∩At = ∅
when t, t′ are incomparable. 2

We now turn to point processes on T . Let N denote the set of finite integer-valued measures µ
on T with µ({x}) = 0 or 1 for all x ∈ T and µ({0}) = 0. Let F(N ) be the smallest σ-algebra on
N with respect to which the mappings µ → µ(At) are measurable, for every t ∈ T . For C ∈ Cn,
µ(C) can be calculated as a finite linear combination of random variables µ(At), t ∈ Tn. Since
∪nCn is a semiring which generates the Borel sets in T , by Proposition A.2.5.IV of (3), F(N )
coincides with the σ-algebra generated by the topology of weak convergence on N .

Definition 2.7. A point process N is a measurable mapping from a probability space (Ω,F , P )
into (N ,F(N )).

Assumption 2.3 ensures that the law of a point process is uniquely determined by its finite
dimensional distributions of the form P (N(At1) = k1, ...,N(Atj ) = kj) for t1, ..., tj ∈ Tn, some
n. Hence, equivalently the law is determined by the finite dimensional distributions of N on the
left-neighbourhoods Cn, for every n.

Notice that our definition automatically ensures that there is at most one jump point at any
t ∈ T ; this is frequently called a simple point process in the literature. We will require a stronger
type of simplicity; for this we need to introduce flows.
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Definition 2.8. A flow f on T is a continuous strictly increasing map from [0, 1] to T (i.e., if
s < t, then f(s) < f(t)).

Given any finite totally ordered subset t0 < t1 < t2 < ... < tn of T , Assumptions 2.3 and 2.4
ensure that there exists a flow f connecting t0, ..., tn: that is, there exist points 0 = u0 < u1 <
... < un = 1 such that f(ui) = ti, i = 0, ..., n. This can be proven in a manner similar to that of
Theorem 5.1.6 in (6).

Given a flow f , we can define the projection Nf of a point process N along the flow: Nf is an
integer-valued process on [0, 1] defined by

Nf (u) := N(Af(u)), u ∈ [0, 1].

Although Nf can be regarded as an (integer-valued) point measure on [0, 1], it is not necessarily
the case that Nf is a simple point process.

Definition 2.9. A point process N on T is strictly simple if for any finite totally ordered subset
0 = t0 < t1 < t2 < ... < tm of ∪nTn, there exists a flow f connecting t0, ..., tm such that Nf is
a simple point process on [0, 1]. Denote by FN any countable class of flows containing at least
one flow f connecting each finite totally ordered subset of ∪nTn and such that Nf is simple.

As an example, consider T = [0, 1]2 endowed with the usual partial order. A point process N
on T is strictly simple if and only if there is at most one jump point of N on any horizontal or
vertical line. FN includes all continuous increasing maps f : [0, 1] → [0, 1] that are increasing in
only one component at a time: i.e. the trajectory of f is continuous, consisting of horizontal and
vertical line segments. Formally, if u < 1 and f(u) = (f1(u), f2(u)) then ∃ǫ > 0 such that either
f1(u) = f1(u + δ) ∀δ ∈ (0, ǫ) or f2(u) = f2(u + δ) ∀δ ∈ (0, ǫ). We note that not all flows yield
simple projections if N has more than one jump point. For example, consider the point process
N with jumps at (1

4 , 1
2) and (1

2 , 1
4). N is strictly simple since Nf is simple for every f ∈ FN .

However, consider the flow f defined by f(u) = (u, u), 0 ≤ u ≤ 1. In this case Nf is not simple,
since Nf ({1

2}) = 2.

We now consider a simple point process N defined on the unit interval. Let FN = (FN (u) : u ∈
[0, 1]) = (σ{N(v) : 0 ≤ v ≤ u};u ∈ [0, 1]) be the minimal filtration generated by N and denote
by ΛN the compensator of N with respect to FN (i.e. the unique predictable increasing process
in the Doob-Meyer decomposition of N). According to the now classic result of Jacod (9), the
law of N is uniquely characterized by ΛN .

As discussed in Section 1, there is no obvious definition for the compensator of a point process
on a general poset since there is no unique way of defining the Doob-Meyer decomposition, and
none of the known compensators characterize the law (for a more detailed discussion see (6)).
We will instead see that flows enable us to exploit Jacod’s one dimensional characterization.
The first step is to consider point processes whose jumps are totally ordered; we do this in the
next section (§3). We shall see in §4 that in fact this is enough to permit us to handle general
point processes.

3 Totally ordered point processes

In this section, we analyze totally ordered point processes N on T : by this we mean that with
probability 1, N takes its values in N to, which consists of all µ ∈ N whose set of jump points
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Figure 1: A totally ordered point process

{x : µ({x}) = 1} is totally ordered (see Figure 1, for example). Such processes have a special
structure that allow us to identify the law of N given the laws of Nf , f ∈ FN ; the following
theorem is the key result. Here we give only a sketch of the proof; the complete proof may be
found in Appendix A.

Theorem 3.1. Let (T, d) be a complete separable metric space satisfying Assumptions 2.1, 2.2
and 2.3. Let N be a totally ordered point process on T and let F be any class of flows containing
at least one flow connecting each finite totally ordered subset of ∪nTn. The law of N determines
and is determined by the laws of the family of the projected point processes Nf , f ∈ F .

Proof. (Sketch) It is trivial that the law of Nf is determined by the law of N . For the converse,
we assume that the laws of Nf are known for every f ∈ F and it is enough to show that we
can reconstruct the finite dimensional distributions of N on the sets in Cn; i.e. if Tn = (t0 =
0, t1, ..., tjn = 1) and Ci = Cn

ti , we must be able to find

P (N(C1) = k1, ...,N(Cjn) = kjn)

from the laws of Nf , f ∈ F . The crucial point behind the proof is that if ti and tj are incom-
parable, then so are Ci and Cj. Consequently, when N is totally ordered, at most one of any
collection of incomparable sets can contain any jump points. Below we give an illustration of
how this simple fact is used.

Consider the unit square T = [0, 1]2 and the sublattice consisting of the points t0 = (0, 0), t1 =
(1
2 , 1

2), t2 = (1, 1
2), t3 = (1

2 , 1), t4 = (1, 1). The corresponding left neighbourhoods Ci = Cti are
illustrated in Figure 1, along with a realization of an increasing sequence (τi; i = 1, ..., 4) of
jump points of N . We see that C2 and C3 are incomparable, so if N(C2) > 0, then necessarily
N(C3) = 0 (likewise, if N(C3) > 0, then necessarily N(C2) = 0). We now need to construct

P (N(C1) = k1, N(C2) = k2,N(C3) = k3,N(C4) = k4)
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for ki ≥ 0, i = 1, 2, 3, 4. The law of Nf for any flow f in F connecting t0, t1, t4 with f(0) =
0, f(u1) = t1, f(1) = t4 will give

P (N(C1) = k1, N(C2 ∪ C3 ∪ C4) = k2 + k3 + k4) (1)

= P (Nf (u1) = k1,N
f (1) − Nf (u1) = k2 + k3 + k4).

The law of Nf for any flow f in F connecting t0, t1, t2, t4 with f(0) = 0, f(u1) = t1, f(u2) =
t2, f(1) = t4 will give

P (N(C1) = k1, N(C2) = k2, N(C3 ∪ C4) = k3 + k4) (2)

= P (Nf (u1) = k1, N
f (u2) − Nf (u1) = k2,N

f (1) − Nf (u2) = k3 + k4).

If k2 > 0, then necessarily k3 = 0 and (2) becomes

P (N(C1) = k1, N(C2) = k2,N(C3) = 0,N(C4) = k4). (3)

Similarly, by using a flow connecting t0, t1, t3, t4 we can obtain probabilities of the form

P (N(C1) = k1, N(C3) = k3,N(C2 ∪ C4) = k3 + k4) (4)

which becomes

P (N(C1) = k1, N(C2) = 0,N(C3) = k3,N(C4) = k4) (5)

if k3 > 0. Therefore, we need only find a formula for

P (N(C1) = k1, N(C2) = 0,N(C3) = 0,N(C4) = k4)

using (1), (3) and (5). But this is straightforward, since

P (N(C1) = k1, N(C2) = 0,N(C3) = 0,N(C4) = k4)

= P (N(C1) = k1, N(C2 ∪ C3 ∪ C4) = k4)

−P (N(C1) = k1, N(C2) > 0,N(C3) = 0,N(C4) = k4 − N(C2)) (6)

−P (N(C1) = k1, N(C2) = 0,N(C3) > 0,N(C4) = k4 − N(C3)) (7)

and the probabilities in (6) and (7) are easily reconstructed from (3) and (5), respectively.

For the complete proof, see Appendix A. 2

We observe that in Theorem 3.1, there is no requirement that N be strictly simple. However,
in order to have a compensator characterization of the law of the projection Nf along a flow f ,
it is necessary that Nf be simple. Thus, we now restrict our attention to strictly simple point
processes and a class of flows FN as defined in Definition 2.9. We recall the following notation:
for f ∈ FN , ΛNf is the (predictable) compensator of Nf with respect to the minimal filtration

FNf

= (FNf

(u) : 0 ≤ u ≤ 1), where FNf

(u) := σ(Nf (v) : 0 ≤ v ≤ u). This leads us to the
following definition of the flow compensator of N and the characterization theorem for totally
ordered point processes.
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Definition 3.2. Let N be a strictly simple point process on T and FN a class of flows as defined
in Definition 2.9. The flow compensator Λ of N is the family of processes

Λ := (ΛNf , f ∈ FN ).

In particular, the value of the compensator at t ∈ T may be regarded as the family of random
variables Λ(t) := (ΛNf (u) : f ∈ FN , f(u) = t).

Theorem 3.3. Let (T, d) be a complete separable metric space satisfying Assumptions 2.1, 2.2
and 2.3. Let N be a strictly simple totally ordered point process on T amd FN a class of flows
as defined in Definition 2.9. The flow compensator of N exists and is unique (i.e. if Λ and Λ′

are flow compensators of N , then for P -almost all ω ∈ Ω, the paths of ΛNf and Λ
′

Nf coincide
for every f ∈ FN). The law of N determines and is determined by its flow compensator Λ.

Proof. Existence and uniqueness of the flow compensator follow from existence and uniqueness
of the predictable increasing process ΛNf in the Doob-Meyer decomposition of Nf , f ∈ FN ,
and the fact that FN is countable. Since Nf is simple, Jacod’s result (cf. (9)) ensures that the
law of Nf determines and is determined by ΛNf . The general result follows immediately from
Theorem 3.1. 2

Comment 3.4. We may define the minimal T -indexed filtration generated by N as follows:

FN = {FN (t) : t ∈ T} = (σ{N(As) : s ∈ At} : t ∈ T ).

FN (t) may be regarded as the strict past of N at t ∈ T . For any f ∈ FN and u ∈ [0, 1], it is trivial

that FNf

(u) ⊆ FN (f(u)), and so the random variables defining Λ(t) are FN (t)-measurable. In
this sense, Λ is FN -adapted.

The preceding comment may appear to contradict the observation in Section 1 that even in the
single jump case, the compensator based on the strict past FN will not determine the law of N
(i.e. the distribution function G of the jump point τ). For T = [0, 1]2, the compensator Λw(dt)
is defined in terms of the conditional hazard of the jump point τ , given that τ 6≤ t. Even more
surprising is the fact that Λ∗(dt) does not determine the survival function G(Dc

t ), where now
the hazard is conditioned on the event {t < τ} which lies in the strong past of N :

FN∗

:= {FN∗

(t) : t ∈ T} = (σ{N(As) : s ∈ Dt} : t ∈ T ).

Since neither hazard determines G(At) or G(Dc
t ), finding good hazard-based estimators of G has

remained a problem in multivariate survival analysis. The apparent contradiction mentioned
above is resolved by the fact that the flow compensator is not based on a two-dimensional
hazard, as seen in the following example. This observation may have useful applications in
survival analysis.

Example 3.5. The single jump process:

If τ is a T -valued random variable with continuous distribution G (where G(t) := G(At) =
P (τ ≤ t)), and N(At) = I(t ≥ τ), then FN can include all flows f : [0, 1] → T . For f ∈ FN and
u ∈ [0, 1], let Gf (u) := G(f(u)). Then Nf is a single jump point process on [0, 1] whose jump
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time τ f = inf{v : Nf (v) = N(Af(v)) = 1} has distribution Gf . The compensator of Nf is the
integrated hazard function

ΛNf (u) =

∫ u∧τf

0

dGf (v)

1 − Gf (v)
.

As is well known from one-dimensional theory,

ΛNf (u) = − ln(1 − Gf (u ∧ τ f )) = − ln(1 − G(f(u ∧ τ f ))),

and so ΛNf (u) depends only on the value f(u) if f(u) ≤ τ (and not on the path of f between
0 and f(u)), and clearly the family Λ = (ΛNf , f ∈ FN ) determines G. However, dΛNf (u) does
depend on the parametrization f , and so cannot be interpreted as a hazard on T .

A more general example is the partial sum process on R2
+:

Example 3.6. The partial sum process:

Let T = [0, n]2 and let Y1, Y2, ..., Yn be i.i.d. (0, 1]2-valued random variables with continuous
distribution G and density g. Let N be the strictly simple totally ordered point process with
jump points τ1 < τ2 < ... < τn, where τi =

∑i
j=1 Yj. As before, FN can include all flows

f : [0, 1] → [0, 1]2, where f(u) = (f1(u), f2(u)). Fix a flow f and denote the jump times of Nf

by τ f
1 < ... < τ f

n . For 1 ≤ i < n, given τ f
1 , ..., τ f

i , the conditional distribution of τ f
i+1 depends only

on τ f
i , and must take into account where τi is on the boundary of A

f(τf
i )

= [0, f1(τ
f
i )]×[0, f2(τ

f
i )].

Letting G∗i denote the i-fold convolution of G and g∗i the corresponding density, the conditional
distribution of τ f

i+1 given τ f
i is:

Gf
i+1(u | τ f

i ) =

∫ f2(τ
f
i )

0
G(f1(u) − f1(τ

f
i ), f2(u) − y)

g∗i(f1(τ
f
i ), y)

g∗i(∂A
f(τf

i
)
)

dy

+

∫ f1(τ
f
i )

0
G(f1(u) − x, f2(u) − f2(τ

f
i ))

g∗i(x, f2(τ
f
i ))

g∗i(∂A
f(τf

i )
)

dx

where g∗i(∂(A(t1 ,t2)) :=
∫ t2
0 g∗i(t1, y)dy+

∫ t1
0 g∗i(x, t2)dx. The usual (one-dimensional) integrated

hazard Hf
i can be calculated from Gf

i (see, for example, (3)) to yield

ΛNf (u) =
n

∑

i=1

Λ
(i)

Nf (u)

where Λ
(1)

Nf (u) is as defined in Example 3.5 and for i > 1

Λ
(i)

Nf (u) =











0 u < τ f
i−1

Hf
i (u − τ f

i−1) τ f
i−1 ≤ u < τ f

i

Hf
i (τ f

i − τ f
i−1) τ f

i ≤ u

.

Comment 3.7. A type of flow compensator can be defined for any point process N (cf. Def-
inition 3.2) since if f is any flow, Nf will be an increasing process on [0, 1] with a unique
Doob-Meyer decomposition with respect to its minimal filtration. However, the proof of the
characterization in Theorem 3.3 makes use of both strict simplicity and totally ordered jump

57



points. We conjecture that at least in some special cases the assumption of strict simplicity
may be weakened through a more detailed analysis of the projections Nf , but this will likely
require stronger assumptions on the structure of T . It will be seen that the assumption of totally
ordered jump points in Theorem 3.3 is not always necessary. On the contrary, if the jump points
of N are all incomparable, under certain conditions the flow compensator characterizes the law
of N in this situation as well (cf. Corollary 5.4). However, for arbitrary strictly simple point
processes, a more general compensator will be needed to characterize the law of the process; this
is the topic of the next section.

4 General point processes

We now turn to the structure of general point processes, and in particular to an embedding of
a point process on T into a totally ordered point process on a larger space, U . A closely related
approach is described in (10) and developed in detail in (8) for Euclidean space.

To motivate what follows, we observe that a point process N on [0, 1] is characterized by its
successive jump times τi = inf{s : Ns ≥ i}, i = 1, 2, .... In particular, we may identify τi

with the random set ξi := [τi, 1] = Eτi
, and we note that {t ∈ ξi} ∈ FN (t),∀t ∈ R+. Also,

N(At) = N([0, t]) ≥ i ⇔ t ≥ τi ⇔ Et ⊆ ξi.

As defined, τi is a stopping time with respect to FN . However, the jump points of point processes
on partially ordered sets (Rp

+ for example) are not in general stopping times, and it has long
been recognized (cf. (6)) that the natural analogue of the stopping time is an adapted random
set, a concept that will be made precise shortly.

We generalize the approach above to an arbitrary point process on a lattice T . If ∆N = {x ∈
T : N({x}) = 1} denotes the (unordered) set of jump points of N , we have that N(At) ≥ k ⇔
t ∈ Eτ1∨...∨τk

for some distinct τ1, ..., τk ∈ ∆N and we define

ξk := {t ∈ T : N(At) ≥ k} = ∪τ1,...τk∈∆NEτ1∨...∨τk
. (8)

for 1 ≤ k ≤ |∆N | (the cardinality of ∆N), and consider ξk undefined for k > |∆N |. The union
in (8) is taken over all collections of k distinct points in ∆N . Clearly, the random sets are
decreasing : ξ1 ⊇ ξ2 ⊇ ... and the following lemma is obvious:

Lemma 4.1. For any t ∈ T , N(At) ≥ k ⇔ ξk ⊇ Et. Hence, the sets ξk determine and are
determined by N .

Comment 4.2. The random sets ξk are FN -adapted random sets: i.e. {t ∈ ξk} ∈ FN (At) for
each t. Since they are totally ordered and determine N , this property supports the conclusion
that adapted random sets are the natural analogue of stopping times.

In order to exploit the sets ξi, we need Assumption 2.4 which implies some useful topological
properties of T , including Assumption 2.2. First, it is easily seen that Assumption 2.4.1 implies
that T is bounded. Recall that the Hausdorff metric dH is defined on the class of closed subsets
of T as follows: if F,G ⊆ T are closed, then

dH(F,G) := inf{ǫ > 0 : F ⊆ Gǫ and G ⊆ F ǫ},

where F ǫ = {t ∈ T : d(t, F ) ≤ ǫ}.
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Figure 2: An upper layer L = ∪4
1Eti

Lemma 4.3. If T satisfies Assumption 2.4 and s, t ∈ T , then dH(As, At), dH(Es, Et) ≤ d(s, t).

Proof. Let ǫ = d(s, t). Since both As, At ⊆ As∨t, it is enough to show that As∨t ⊆ Aǫ
s (and so

by symmetry, As∨t ⊆ Aǫ
t) . If u ∈ As∨t, then by Assumption 2.4

d(u, u ∧ s) = d(u ∧ (s ∨ t), (u ∧ s) ∧ (s ∨ t))

= d(((u ∧ s) ∨ (u ∧ t)), (u ∧ s))

≤ d(u ∧ s, u ∧ t)

≤ d(s, t) = ǫ,

and if follows that u ∈ Aǫ
s, as required.

The proof for dH(Es, Et) is similar. 2

We now introduce the space U of upper layers:

Definition 4.4. A nonempty closed set B ⊆ T is called an upper layer if t ∈ B ⇔ Et ⊆ B.
The collection of upper layers is denoted by U .

The shaded region in Figure 2 illustrates an upper layer L. Note that L = ∪t∈LEt = ∪4
i=1Eti .

Lemma 4.5. If (T, d) is a complete separable metric space satisfying Assumptions 2.1-2.4, then
(U , dH) is a complete separable metric space satisfying Assumptions 2.1, 2.2 and 2.3 under the
partial order of reverse set inclusion: i.e. L1 ≤ L2 ⇔ L1 ⊇ L2, ∀L1, L2,∈ U.

Proof. The space U is closed under arbitrary intersections (sups) and finite unions (infs). There-
fore, since E1 = {1} and E0 = T , U has both a maximum and minimum, and is therefore a
complete distributive lattice (cf. (4), Proposition 0.2.2). Thus, Assumption 2.1 is satisfied.
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Figure 3: N and the upper layers ξi

It is an easy exercise to show that (U , dH) is complete since T is, and that (U , dH) satisfies
Assumption 2.2.

To show that (U , dH) satisfies Assumption 2.3 (and is therefore separable), we define Un to be
the (finite) lattice of upper layers generated by the sets Et, t ∈ Tn: i.e. L ∈ Un if and only if L
is a (finite) union of sets Et, t ∈ Tn. Since t′ < t < t′′ ⇒ Et′ ⊃ Et ⊃ Et′′ , Assumption 2.3 is an
immediate consequence of Assumption 2.4.3 and Lemma 4.3. For L ∈ U , we have

L+
n = ∪L

′
∈Un,L⊇L

′L
′

= ∪t∈LEt+n
, and

L−
n = ∩L′∈Un,L⊆L′L

′

= ∪t∈LEt−n
,

(where the unions above are finite since Tn is finite) and L = ∪nL+
n = ∧nL+

n = ∩nL−
n = ∨L−

n ,
where “(·)” denotes the closure of a set. 2

We now may use the fact that ξk is an upper layer to define the embedding N → Ñ , where Ñ is
a random point measure on U induced by N . For L ∈ U , recall the notation AL :=↓ L = {L

′
∈

U : L
′
⊇ L}.

Definition 4.6. Given a point process N on T , the induced random point measure Ñ on U
has (ordered) jumps at (ξk, k ≥ 1) for all k such that ξk is defined. In particular, for L ∈ U ,
Ñ(AL) ≥ k if and only if ξk ⊇ L.

Figure 3 illustrates the embedding N → Ñ for a realization of a point process N with jump
points τ1, ..., τ4. The lower boundaries of the adapted random sets ξi, i = 1, ..., are illustrated,
as is the lower boundary of the upper layer Et. We see that Ñ(AEt) = 2, since Et ⊂ ξ2 (i.e.
ξ2 ∈ AEt), but Et 6⊆ ξ3 (i.e. ξ3 6∈ AEt). This corresponds to the fact that N(At) = 2.

The following theorem gives us the essential properties of Ñ . The proof is given in Appendix A.

60



Theorem 4.7. Let N be a strictly simple point process on a complete separable metric space T
that satisfies Assumptions 2.1-2.4. If Ñ is defined as in Definition 4.6,

1. Ñ is a totally ordered strictly simple point process on (U ,FU ).

2. The law of N determines and is determined by the law of Ñ .

According to the above theorem, we are able to construct a flow f̃ connecting any finite increasing

(in the partial order of reverse set inclusion) sequence (Lj) ⊆ ∪nUn so that Ñ
f̃

is a simple point

process on [0, 1]. Denote any countable class of such flows by FÑ . For f ∈ FÑ , the law of Ñ
f̃

is uniquely determined by Λ
Ñ f̃ , the compensator of Ñ

f̃
with respect to its minimal filtration

F Ñ f̃

. This leads us to the following definition:

Definition 4.8. Let N be a strictly simple point process on T and Ñ its embedding in U. The
U-flow compensator Λ of N is the family of processes

Λ̃ := {Λ
Ñ f̃ ; f̃ ∈ FÑ}

where FÑ is a family of flows as defined above.

Our main result is now straightforward:

Theorem 4.9. Let N be a strictly simple point process on a complete separable metric space
T that satisfies Assumptions 2.1-2.4. The U-flow compensator of N exists and is unique. The
law of N determines and is determined by its U-flow compensator Λ̃. In fact, the flows f̃ used
to determine the U-flow compensator may be restricted to the family of basic flows: f̃ is a
basic flow if for each u ∈ [0, 1], f(u) can be expressed as a finite union of the form f(u) =
∪k

i=1Eti , t1, ..., tk ∈ T .

Proof. Lemma 4.5 and statement 1 of Theorem 4.7 permit us to apply Theorem 3.3 to Ñ : i.e.
the law of Ñ determines and is determined by Λ̃. In the proof of statement 1 of Theorem 4.7,
it is seen that the basic flows in FÑ suffice (cf. Lemma A.2). The result follows by statement 2
of Theorem 4.7. 2

Comment 4.10. It is important to distinguish between flow and U -flow compensators. The
flow compensator is defined by flows whose range is on the same space as the point process,
while the U -flow compensator is defined by flows whose range is on a larger space. Therefore,
the U-flow compensator of N can be interpreted as the flow compensator of Ñ .

Comment 4.11. To conclude this section, we compare Theorems 3.3 and 4.9 in the case when
N is totally ordered. If f ∈ FN , then we may identify f with the basic flow f̃ on U such that
f̃(u) = Ef(u) for all u ∈ [0, 1]. Denote this class of flows by F−

Ñ
. From Lemma A.3 we have

that Nf (u) = Ñ
f̃
(u) ∀u ∈ [0, 1], and so ΛNf = Λ

Ñ f̃ . Therefore, when N is totally ordered,
the family of flows in Theorem 4.9 may be restricted to F−

Ñ
, and either the flow or the U -flow

compensator may be used to characterize the law of N . In one dimension, the flow and U -flow
compensator are equivalent to the usual compensator.
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Figure 4: A single line process on [0, 1]2

5 More examples

5.1 The single line process:

A single line process is a process whose jump points are all incomparable (see (8) for a detailed
discussion). Such processes are strictly simple and the U -flow compensator can be reduced to the
case of a single jump process. If N is a single line point process, it is completely characterized
by the adapted random set ξ ≡ ξ1 = ∪τ∈∆NEτ , since the set of jump points, ∆N , is in fact the
set of the minimal points of ξ1 (see Figure 4):

∆N = {t ∈ ξ1 :6 ∃s ∈ ξ1 \ {t} such that s ≤ t}.

The process M(t) = I{t ∈ ξ} is not a point process on T , but the embedding M̃ in U defined
by M̃(L) = I{L ⊆ ξ} is a single jump point process on U with jump point ξ. M̃ will be referred
to as the single jump process on U associated with the single line process N on T . Although
M̃ 6= Ñ , we do have the following:

Proposition 5.1. : The law of M̃ determines and is determined by the law of N .

Proof. Since M̃ is the first jump point of Ñ , its law is determined by N .

To prove the converse, we first show that the law of M (i.e. the finite dimensional distributions
of M) is determined by that of M̃ , and then that the law of M determines that of N .

Since
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{Mt1 = 0, ...,Mtk = 0} = ∩k
i=1{ti ∈ ξ}c = (∪k

i=1{Eti ⊆ ξ})c, then

P (Mt1 = 0, ...,Mtk = 0) (9)

= 1 − P (∪k
i=1{Eti ⊆ ξ})

= 1 −
k

∑

i=1

P (Eti ⊆ ξ) +
∑

i<j

P (Eti ∪ Etj ⊆ ξ) + ... + (−1)kP (∪k
i=1Eti ⊆ ξ),

which is equal to:

1 −
k

∑

i=1

P (M̃(Eti) = 1) +
∑

i<j

P (M̃(Eti ∪ Etj ) = 1) + ...

+(−1)kP (M̃(∪k
i=1Eti) = 1).

Observing that for any k

P (Mt1 = ... = Mtk−1
= 0,Mtk = 1)

= P (Mt1 = ... = Mtk−1
= 0) − P (Mt1 = ... = Mtk = 0)

and for any j < k

P (Mt1 = ... = Mtj = 0,Mtj+1 = ... = Mtk = 1)

= P (Mt1 = ... = Mtj = 0,Mtj+2 = ... = Mtk = 1)

− P (Mt1 = ... = Mtj = Mtj+1 = 0,Mtj+2 = ... = Mtk = 1),

it follows by induction that the finite dimensional distributions of M can be reconstructed from
probabilities of the form (9), and so are determined by the law of M̃ .

Now, it remains to show that the law of N is determined by the law of M . Clearly, in order to find
terms of the form P (N(At1) = k1, ..., N(Atj ) = kj), we can suppose that the ti’s are dyadic. For
any such event, we observe that all realizations of the point process N , for n(= n(ω)) sufficiently
large, the sets Ct, t ∈ Tn will separate all the jump points and that the left-neighbourhoods
containing jump points will be incomparable (since the jump points are incomparable). Then

{N(At) = k} = ∪m ∩n≥m {∃ exactly k incomparable left-neighbourhoods

Ct′ ∈ Cn with N(Ct′) = 1 and t′ ≤ t}

= ∪m ∩n≥m {∃ exactly k dyadics t′ ≤ t with M(t′) = 1

and M(s) = 0,∀s < t′, s ∈ Tn}

Notice that the fact that the left-neighbourhoods of the jump points are incomparable is very
important. Otherwise, there could exist s < t′ with N(Cs) = 1 and N(Ct′) = 1, in which
case Ms = 1 and Mt′ = 1. This cannot happen and so the left-neighbourhoods Ct′ with
Mt′ = 1,Ms = 0,∀s < t′ are the only left-neighbourhoods with jump points. Then, we can
obtain {N(At1) = k1, ..., N(Atj ) = kj} as countable unions and intersections of events involving
the values of M on finite sets of points, and so the law of M determines that of N . 2
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We have therefore reduced the problem of characterizing the law of a single line process N on
T to characterizing the law of a single jump process M̃ on U . This can be done by applying
Example 3.5. We need to calculate G(L) = P (ξ ⊇ L) for any L in the range of a basic flow on
U (cf. Definition 4.8). Such a set will be of the form L = ∪k

i=1Eti ; then apply Lemma 4.1 and
an inclusion-exclusion argument to obtain

G(L) = P (ξ ⊇ ∪k
i=1Eti) = P (∩k

i=1(ξ ⊇ Eti))

= P (∩k
i=1(N(Ati) ≥ 1))

= 1 − P (∪k
i=1(N(Ati) = 0))

= 1 − (

k
∑

i=1

P (N(Ati) = 0) −
∑

i<j

P (N(Ati) = N(Atj ) = 0)

+... + (−1)k+1P (N(At1) = ... = N(Atk ) = 0))

= 1 − (
k

∑

i=1

P (N(Ati) = 0) −
∑

i<j

P (N(Ati ∪ Atj ) = 0)

+... + (−1)k+1P (N(At1 ∪ ... ∪ Atk) = 0)) (10)

Let f̃ be a basic flow on U , and consider the projection M̃ f̃ (v) = M̃(Af̃(v)). Let τ f̃ = inf{v :

M̃ f̃ (v) = 1} = inf{v : f̃(v) ⊆ ξ}. The following Proposition is an immediate consequence of
Example 3.5 and Proposition 5.1:

Proposition 5.2. Let N be a single line process on T and M̃ its associated single jump process
on U . The flow compensator of the single jump process M̃ on U is defined as follows: for a basic
flow f̃ on U,

Λ
M̃ f̃ (u) = − ln(1 − G(f̃(u ∧ τ f̃ ))

where G is defined in (10). Conversely, the law of the point process N can be recovered from the
flow compensator of M̃ .

We remark here that the flow compensator of M̃ is defined on U , but is not the U -flow compen-
sator of N since M̃ 6= Ñ .

It should be noted that we have a generalization of Theorem 7.3.II in (3) which states that a
simple point process N on a complete separable metric space is characterized by the values of
its avoidance function P0(D) ≡ P (N(D) = 0) for all D in a dissecting ring for the Borel sets.
Proposition 5.2 and (10) imply that if N is a single line process, then its law is determined by
the values of P0 on sets of the form

D = (At1 ∪ ... ∪ Atk), t1, ..., tk dyadic and incomparable. (11)

There is a further simplification that can be made in the case T = [0, 1]2 when N is a single line
process satisfying a condition known in the literature as (F4):
(F4): Given t = (t1, t2) ∈ [0, 1]2, the σ-fields F1(t) and F2(t) are conditionally independent
given FN (t), where

F1(t) = σ{N(u) : 0 ≤ u1 ≤ t1, 0 ≤ u2 ≤ 1} and

F2(t) = σ{N(u) : 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ t2}.
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Lemma 5.3. Let N be a single line point process on [0, 1]2 satisfying (F4). Then the values of the
avoidance function P0 on sets of the form (11) are determined by the values P0(At) = P (N(At) =
0), t ∈ T . (These values will be referred to as one-dimensional avoidance probabilities.)

Proof. The proof is by induction on k. The case k = 1 is trivial and we assume that probabilities
of the form

P (N(At1 ∪ ... ∪ Atk) = 0), t1, ..., tk dyadic and incomparable

are determined by one-dimensional avoidance probabilities if k ≤ n − 1. If points ti =
(ti,1, ti,2), i = 1, ..., n are incomparable, we may assume that t1,1 < ... < tn,1 and t1,2 > ... > tn,2.

Let Bj := ∪j
i=1Ati , j = 1, ..., n and A := A(tn−1,1,tn,2). From (F4), the random variables

N(Bn−1 \A) and N(Atn \A) are conditionally independent given the σ-algebra FN (A), and so

P (N(Bn) = 0)

= P (N(Bn−1 \ A) = 0, N(Atn \ A) = 0,N(A) = 0)

= P (N(Bn−1 \ A) = 0, N(Atn \ A) = 0 | N(A) = 0) × P (N(A) = 0)

= P (N(Bn−1 \ A) = 0 | N(A) = 0) × P (N(Atn \ A) = 0 | N(A) = 0)

× P (N(A) = 0)

= P (N(Bn−1 \ A) = 0, N(A) = 0) × P (N(Atn \ A) = 0,N(A) = 0)

÷ P (N(A) = 0)

=
P (N(Bn−1) = 0)P (N(Atn) = 0)

P (N(A) = 0)
.

By the induction hypothesis, this is a function of one-dimensional avoidance probabilities of the
form P0(At) = P (N(At) = 0), t ∈ T . 2

The preceding Lemma leads to an interesting corollary, which is an analogue of Theorems 3.1
and 3.3.

Corollary 5.4. Let N be a single line point process on [0, 1]2 satisfying (F4). The law of
N determines and is determined by the laws of the family of the projected (single jump) point
processes Nf , f ∈ FN . Consequently, the law of N determines and is determined by its flow
compensator Λ = (ΛNf : f ∈ FN ).

Proof. The law of Nf for any flow f passing through t will yield P (N(At) = 0). By Lemma
5.3, these probabilities determine the law of N . 2

We now see that the flow compensator Λ of N (on [0, 1]2) characterizes the law of the point
process in two extreme cases: the totally ordered point process (all jump points are comparable)
and if (F4) is satisfied, the single line point process (all jump points are incomparable).

5.2 Renewal Processes:

Renewal processes on Rd
+ are defined and studied in (8). As the definition is very technical and

requires the introduction of new notation, it will be given in Appendix B. The only facts required
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here are that a renewal process is a strictly simple point process and its law is characterized
by the law of N1, the single line process associated with ξ1. Consequently, we can apply the
characterization given in the preceding example to renewal processes.

Corollary 5.5. Let N be a renewal process on [0, 1]2 satisfying (F4). The law of N determines
and is determined by the laws of the family of the projected point processes Nf , f ∈ FN . Conse-
quently, the law of N determines and is determined by its flow compensator Λ = (ΛNf : f ∈ FN ).

Proof. ΛNf characterizes the law of the first jump of Nf , which in turn is the only jump of
Nf

1 . The result now follows from Corollary 5.4 and the fact that if N is renewal, the law of N1

determines the law of N . 2

Comment 5.6. Since N(At) = 0 ⇔ N1(At) = 0, Lemma 5.3 implies that the law of a renewal
process N satisfying (F4) is determined by its one-dimensional avoidance probabilities P0(At) =
P (N(At) = 0), t ∈ T .

5.3 The Homogeneous Poisson Process:

Corollary 5.5 leads to a new characterization of the two-parameter homogeneous Poisson process.
Indeed, the minimal filtration of any Poisson process satisfies (F4) and it is proven in (8) that
the two-parameter homogeneous Poisson process is renewal. Therefore, we have the following:

Theorem 5.7. A strictly simple point process on [0, 1]2 is a homogeneous Poisson process with
intensity c (c is a positive constant) if and only if it is renewal, (F4) is satisfied, and its flow
compensator Λ is deterministic with ΛNf (u) = cλ(Af(u)) ∀u ∈ T (λ denotes Lebesgue measure).

Proof. If N is a homogeneous Poisson process with intensity c, then Nf is Poisson with mean
measure ΛNf . This and the discussion preceding the theorem prove the “only if” statement.

Conversely, since N is renewal and (F4) is satisfied, as in Corollary 5.5 the law of N1 is
determined by Λf , and this in turn determines the law of N . For any homogeneous Poisson
process Np with intensity c, the law of Np

1 must equal that of N1 (this follows from “only if”).
Since both Np and N are renewal, their distributions are equal. This completes the proof of“if”.2

Since ΛNf is deterministic, this means that the projection Nf is a Poisson process along each
flow.

It is interesting to compare this characterization to the characterization given by G. Aletti and
V. Capasso in (1): A strictly simple point process on [0, 1]2 is a homogeneous Poisson process
if and only if (F4) is satisfied and for each flow f , the projection Nf has the deterministic
compensator ΛNf (as defined above) with respect to the filtration Gf = (Gf (u), 0 ≤ u ≤ 1)
where Gf (u) = FN (f(u)). As observed in Section 3, the filtration Gf is strictly larger than

FNf

and the fact that Nf is Poisson does not immediately imply that its compensator will
be deterministic with respect to a filtration larger than its minimal filtration FNf

. Therefore,
these characterizations are different and the following question remains an open problem: Can
the two-parameter homogeneous Poisson process can be characterized by the (F4) property and
the fact its projection along any flow f is Poisson with mean measure ΛNf ?
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5.4 A comparison of histories:

As a final general example, if N is a strictly simple point process on T = [0, 1]2 we would like to
compare the “history” associated with the family Λ̃ of the U-flow compensator with the histories
associated with Λw and Λ∗ (see (11) for more details). First we recall that Λw is the compensator
associated with the strict past

FN = {FN (t) : t ∈ T} = (σ{N(As) : s ∈ At} : t ∈ T ),

while Λ∗ is associated with the strong past

FN∗

= {FN∗

(t) : t ∈ T} = (σ{N(As) : s ∈ Dt = Ec
t } : t ∈ T ).

For any flow f̃ ∈ FÑ , we have

FÑ
f̃

= {FÑ
f̃

(u) : 0 ≤ u ≤ 1} = (σ{Ñ
f̃
(v) : 0 ≤ v ≤ u} : 0 ≤ u ≤ 1),

and for t ∈ T , let

FF
Ñ (t) = σ(F Ñ f̃

(u) : f̃ ∈ FÑ , u = f̃
−1

(Et)).

FF
Ñ (t) may be regarded as the information associated with all the projections Ñ

f̃
up to time

f̃
−1

(Et) for flows f̃ ∈ FÑ passing through Et. It may be seen that FN (t) ⊂ FF
Ñ (t) ⊂ FN∗

(t).
As an illustration, refer to Figure 3: t is an arbitrary point of the plane, τ1, τ2, τ3 and τ4 are
the jump points of a given realization of the point process N and ξ1, ..., ξ4 are the associated
adapted random sets. Note that ξ1, ξ2 ⊇ Et, and so the family of flows through Et will allow
us to trace back the locations of τ1, τ2 and τ3. However, since ξ3 6⊆ Et, F

F
Ñ (t) will contain no

information about ξ3 or ξ4, and so τ4 will not be captured. Consequently, the jump points τ1

and τ2 are captured by all three σ-algebras. Point τ4 is only captured by FN∗

(t); the “strict
past” FN (t) of t does not capture τ4 because τ4 is not smaller than t and, as just noted, the
location of τ4 cannot be reconstructed from FF

Ñ (t) either. Finally, point τ3 is captured by both
FN∗

(t) and FF
Ñ (t), but obviously not by FN (t).

More generally, FF
Ñ (t) allows us to reconstruct all the sets ξk such that ξk ⊇ Et but contains

no information about ξk if ξk 6⊇ Et. Therefore, FF
Ñ (t) identifies all jump points τ such that

N(Aτ ) ≤ N(At) (but no others). All of these jump points are contained in Dt and so are
captured by FN∗

(t) (which may contain information about other jump points), but are not
necessarily contained in At and so may not be captured by FN (t). Therefore,

FN (t) ⊂ FF
Ñ (t) ⊂ FN∗

(t).

Acknowledgement: The authors would like to express their thanks to an anonymous referee
for a thorough reading of the text, and for constructive suggestions that have greatly improved
the presentation.
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A Appendix: Proofs of Theorems 3.1 and 4.7

Proof of Theorem 3.1

In what follows, we prove that the finite dimensional distributions of N on the sets in Cn can be
reconstructed from the laws of Nf , f ∈ FN .

To avoid multiple subscripts and superscripts, we fix n and let Tn = (t0 = 0, t1, ..., tm = 1) and
denote Aj = Atj and Cj = Cn

tj . Recall that Ci and Cj are incomparable if and only if ti and tj

are incomparable and that N(C0) = N({0}) = 0. Using the laws of Nf , f ∈ F we must be able
to construct

P (N(C1) = k1, ...,N(Cm) = km). (12)

If ki > 0 and kh > 0 for Ci, Ch incomparable, the probability in (12) is 0. Thus, we can assume
without loss of generality that ki 6= 0 if and only if i ∈ {i1, ...ih} =: H where ti1 < ti2 < ... < tih .
We can make a few simplifications. First, we observe that

{N(Ci) = 0 ∀Ci ⊆ T \ Aih} = {N(T \ Aih) = 0}. (13)

Next, note that any flow f connecting (ti1 , ti2 , ..., tih) can be reparameterized and extended to
connect (ti1 , ti2 , ..., tih ,1). If f(u) = tih , f(1) = 1 then Nf (1) − Nf (u) = N(T \ Aih). It follows
that if the finite dimensional distributions of (N(Ci) : Ci ⊆ Aih) can be determined by Nf for
flows f connecting (ti1 , ti2 , ...tih), then by (13), the probabilities in (12) can be determined by
extending these flows to 1. Therefore, we need only consider the finite dimensional distributions
of (N(Ci) : Ci ⊆ Aih) and so to avoid changing notation, we will now assume without loss of
generality that in (12) the sets C1, ..., Cm are the left neighbourhoods of Cn contained in Aih .

Let H ′ denote the set of all i 6∈ H such that ti ∈ Aih and ti is comparable with tℓ for every
ℓ ∈ H:

H ′ = {i : ti < tih and ∀ℓ ∈ H, either ti < tℓ or ti > tℓ}

= {i : ti < ti1 or ∃ℓ, 2 ≤ ℓ ≤ h such that tiℓ−1
< ti < tiℓ}.

Next, let

H ′′ = {i : ti < tih , i 6∈ H ′ ∪ H}.

We note here that if ℓ ∈ H ′′, then there exists i ∈ H such that Cℓ and Ci are incomparable.
Therefore, if N(Ci) > 0 ∀i ∈ H, it automatically follows that N(Cℓ) = 0 ∀ℓ ∈ H ′′. Now we see
that if ki > 0 if and only if i ∈ H,

P (N(C1) = k1, ...N(Cm) = km)

= P (∩i∈H{N(Ci) = ki} ∩j∈H
′ {N(Cj) = 0} ∩ℓ∈H

′′ {N(Cℓ) = 0}) (14)

= P (∩i∈H{N(Ci) = ki} ∩j∈H′ {N(Cj) = 0}). (15)

The equality of (14) and (15) follows from the fact that if ℓ ∈ H ′′, then necessarily N(Cℓ) = 0.

We proceed by induction on |H ′|:=the cardinality of H ′. In what follows, keep in mind that |H ′|
is the number of left neighbourhoods C ∈ Cn such that C ⊆ Aih , N(C) = 0 and C is comparable
with all of the left neighbourhoods C ′ ⊆ Aih , C ′ ∈ Cn with N(C ′) > 0.
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If |H ′| = 0, then for ij ∈ H (and defining Ai0 = ∅), Aij \Aij−1 = Cij ∪ ∪ℓ∈H′′,tℓ∈Aij
\Aij−1

Cℓ and

since N(Cℓ) = 0 necessarily for ℓ ∈ H ′′,

(12) = (15) = P (∩i∈H{N(Ci) = ki}) = P (∩h
j=1{N(Aij \ Aij−1) = kij}). (16)

The probability in (16) is determined by the finite dimensional distributions of Nf for any flow
f ∈ F connecting (ti1 , ...tih): if f(uj) = tij , j = 1, ..., h,

P (∩h
j=1{N(Aij \ Aij−1) = kij}) = P (∩h

j=1{N
f (uj) − Nf (uj−1) = kij}).

Proceeding inductively, we assume that any probabilities of the form in (15) can be determined by
the laws of Nf for f ∈ Fn whenever |H ′| ≤ ℓ−1. (This assumption is made for arbitrary Aih , and
corresponding H ′.) Assume that |H ′| = ℓ. There exists 1 ≤ j ≤ h such that {ti : i ∈ H ′} ⊆ Aij

but {ti : i ∈ H ′} 6⊆ Aij−1 .

Since {ti : i ∈ H ′} ⊆ Aij , it follows that for j < k ≤ h, if N(Cik) > 0 then N(Aik \ Aik−1
) =

N(Cik) and (as in (16)), probabilities of the form

P (∩h
r=j+1{N(Cir ) = kir} ∩q∈H′′,tq<tih ,tq 6≤tij

{N(Cq) = 0})

are determined by the laws of Nf for flows f connecting (tij , ..., tih). If it can be shown that
probabilities of the form (assuming kir > 0 for r = 1, ..., j)

P (∩1≤r≤j{N(Cir) = kir} ∩j∈H′ {N(Cj) = 0} ∩q∈H′′ ,tq<tij
{N(Cq) = 0})

= P (∩1≤r≤j{N(Cir) = kir} ∩j∈H
′ {N(Cj) = 0}) (17)

can be determined by the laws of Nf for flows f connecting (t0, t1, ..., tij−1 , tij ), then flows from
the two families can be joined at tij to yield a single family of flows F ′ ⊆ F such that (15) is
determined by the laws of {Nf : f ∈ F ′}.

Therefore, the final step in the proof is to show that probabilities of the form (17) can be
determined by the laws of Nf for flows f ∈ F connecting (t0, t1, ..., tij−1 , tij ). By the induction
hypothesis, such flows will determine the following probabilities:

P (∩1≤r≤j−1{N(Cir) = kir} ∩q∈H
′
,tq<tij−1

{N(Cq) = 0}

∩{N(Aij \ Aij−1) = kij}) (18)

where we must have kir > 0, i = 1, ..., j − 1, but kij can take on any value. We note that since
kij−1 > 0, N(Cv) = 0 if tv ∈ Aij \ Aij−1 and tv 6> tij−1 . Therefore,

N(Aij \ Aij−1) = N(Cij ) +
∑

v∈H′:tij−1
<tv<tij

N(Cv). (19)

Consider probabilities of the form

P (∩j
r=1{N(Cir) = kir} ∩ ∩v∈H

′
,tij−1

<tv<tij
{N(Cv) = kv}

∩q∈H′ ,tq<tij−1
{N(Cq) = 0}). (20)

where kir > 0, i = 1, ..., j − 1 and kv > 0 for at least one v ∈ H
′

such that tij−1 < tv < tij .
Different scenarios must be considered. The first scenario is as follows:
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• kij > 0 and there exist r ≥ 1 and v1, ...vr ∈ H ′ such that tij−1 < tv1 < ... < tvr < tij ,
kvh

> 0 ∀1 ≤ h ≤ r, and kv = 0 for all other v ∈ H ′ with tij−1 < tv < tij .

The induction hypothesis may be applied to P (N(Cq) = kq : tq ≤ tij), and the probability in (20)
is determined by the laws of Nf for f ∈ F in the family of flows connecting (t0, t1, ..., tij−1 , tv1 ,
..., tvr , tij ). The other scenario is:

• kij = 0 and there exist r ≥ 1 and v1, ...vr ∈ H ′ such that tij−1 < tv1 < ... < tvr < tij ,
kvh

> 0 ∀1 ≤ h ≤ r, and kv = 0 for all other v ∈ H ′ with tij−1 < tv ≤ tij .

In this case we may write

(20) = P (∩j−1
r=1{N(Cir) = kir} ∩ ∩r

h=1{N(Cvh
) = kvh

} ∩

∩q∈H′ ,tq<tv ,q 6=v1,...,vr
{N(Cq) = 0} ∩ {N(Aij \ Avr ) = 0}). (21)

Now the induction hypothesis may be applied to P (N(Cq) = kq : tq ≤ tvr), and by extending
the flows from tvr to tij , the probability in (21) is determined by the laws of Nf for f ∈ F in
the family of flows connecting (t0, t1, ..., tij−1 , tv1 , ..., tvr , tij ).

To summarize, we have shown that the probability in (20) is completely determined by the
laws of Nf for f ∈ F in the family of flows connecting (t0, t1, ..., tij−1 , tij ) provided that kir >

0, r = 1, ..., j − 1 and kv > 0 for at least one v ∈ H
′
, tij−1 < tv < tij . In particular, if

kir > 0, r = 1, ..., j − 1 and k > 0, the laws of Nf for f ∈ F in the family of flows connecting
(t0, t1, ..., tij−1 , tij ) determine

P (∩j
r=1{N(Cir ) = kir} ∩ {N(Sj) = k} ∩q∈H′ ,tq<tij−1

{N(Cq) = 0}), (22)

where Sj := ∪v∈H′ ,tij−1
<tv<tij

Cv.

Returning to (17), if ki1 , ..., kij > 0 we may apply (22) to obtain

P (∩1≤r≤j{N(Cir ) = kir} ∩j∈H′ {N(Cj) = 0})

= P (∩j
r=1{N(Cir) = kir} ∩ {N(Sj) = 0} ∩q∈H′ ,tq<tij−1

{N(Cq) = 0})

= P (∩1≤r≤j−1{N(Cir ) = kir} ∩ {N(Aij \ Aij−1) = kij})

−

kij
∑

k=1

P (∩j−1
r=1{N(Cir) = kir} ∩ {N(Cij ) = kij − k} ∩ {N(Sj) = k}

∩q∈H′ ,tq<tij−1
{N(Cq) = 0}). (23)

>From (22) we see that the probabilities in (23) are determined by the laws of Nf for f ∈ F in
the family of flows connecting (t0, t1, ..., tij−1 , tij). This completes the proof. 2

Proof of Theorem 4.7:

The proof will proceed in a series of Lemmas. First, we must verify that in fact Ñ is a totally
ordered point process on U ; i.e. a measurable mapping from (Ω,F) to the space of counting
measures on (U ,FU), where FU is the Borel σ-field generated by dH , that N({L}) = 0 or 1,
and that the jumps are totally ordered.
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Lemma A.1. If N is a strictly simple point process on T , then Ñ is a totally ordered point
process on (U ,FU).

Proof. By Proposition 7.1.VIII of (3), Ñ is a point measure if it can be shown that Ñ(U) is a
random variable for all U in a semiring of bounded Borel sets in U generating FU . (Keep in
mind that U is a set of sets.) By the proof of the preceding Lemma, it is easily seen that the
class of left-neighbourhoods associated with Un for n ≥ 1 form such a semiring.

Next, for any left-neighbourhood U associated with Un, Ñ(U) can be expressed as a linear
combination of random elements of the form Ñ(AL) for some L ∈ Un, so it suffices to show
that Ñ(AL) is a random variable. Since ∪nTn is dense in T , measurability follows from the
representation in (24) below:

{Ñ(AL) ≥ k} = {ξk ⊇ L}

= {L ⊆ ∪τ1,...τk∈∆NEτ1∨...∨τk
}

= ∩n ∩t∈Tn,t∈L {N(At) ≥ k}. (24)

Ñ is an integer-valued measure putting mass 1 on ξ1, ξ2, ..., and by definition, we have
ξ1 ≤ ξ2 ≤ ... (in the partial order of reverse set-inclusion). That Ñ is simple follows from that
fact that N is strictly simple. First, no jump point in ∆N can be the sup of other jump points,
since if τk = ∨k−1

1 τi where τk−1 6= ∨k−2
1 τi, then any flow f connecting (∨k−2

1 τi)
+
n with (τk)

+
n

would have a projection Nf with a double jump at u, where u = inf{v : f(v) ≥ τk}. Since
s 6= t ⇔ Es 6= Et, it follows that ξk−1 6= ξk. ⋄

To complete the proof of the first statement of Theorem 4.7, we must prove that the
embedded process Ñ is strictly simple.

Lemma A.2. If N is strictly simple, then so is Ñ . F Ñ can be restricted to the class of basic
flows on U .

Proof. It is enough to show that for L0 = T ⊃ L1 ⊃ ... ⊃ Lm = {1} ∈ Un there exists a flow

f̃ : [0, 1] → U with f̃( k
m) = Lk, k = 0, ...,m such that Ñ

f̃
is simple. Without loss of generality,

we may assume that for 0 ≤ j ≤ m, Lj = ∪m
i=jEti where Tn = (t0 = 0, t1, ..., tm = 1) is a

consistent ordering of the elements of Tn: i.e. ti > tj ⇒ i > j.

To construct the flow f̃ , for each 0 ≤ j ≤ m − 1, choose tj+ ∈ {tj+1, ..., tm} such that tj+ > tj
and there exist no other points th ∈ {tj+1, ..., tm} with tj < th < tj+. Note that t(m−1)+ = 1

since the ordering is consistent. Since N is strictly simple, for 0 ≤ j ≤ m − 1 we may choose
a flow fj connecting tj and tj+ such that (with an appropriate reparametrization) fj(

j
m) = tj ,

fj(
j+1
m ) = tj+ and Nfj(u) is simple for u ∈ ( j

m , j+1
m ]. Now define f̃(0) := E0 = T and for

u ∈ ( j
m , j+1

m ],

f̃(u) := Efj(u) ∪ ∪m
h=j+1Eth . (25)

To see that f̃ is a flow on U , we first observe that f̃ is strictly increasing since fj is and so
j
m < u < v ≤ j+1

m ⇒ fj(u) < fj(v) ⇒ Efj(u) ⊃ Efj(v); by the choice of tj+, Efj(u) 6⊆ ∪m
h=j+1Eth

for u ∈ ( j
m , j+1

m ). By Lemma 4.3, if tr →d t then Etr →dH
Et, and since the fj’s are continuous

on T , continuity of f̃ needs to be checked only at points of the form j
m . If ur ↑ j

m then by
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definition of tj+ and continuity of fj, f̃(ur) →dH
∪m

h=jEth = f( j
m). Conversely, if ur ↓ j

m , then

using continuity of fj again we see that f̃(ur) →dH
Etj ∪∪m

h=j+1Eth = ∪m
h=jEth = f( j

m). We see

from (25) that f̃ is basic.

We now prove that Ñ
f̃

is simple where Ñ
f̃
(u) = Ñ(Af̃(u)). If Ñ

f̃
({u}) > 1 for u ∈ ( j

m , j+1
m ]

then since

Ñ
f̃
({u}) = Ñ({Efj(u) ∪ ∪m

h=j+1Eth})

there exists k such that ξk ⊃ ξk+1 ⊇ Efj(u) ∪ ∪m
h=j+1Eth , but ξk 6⊇ Efj(u−) ∪ ∪m

h=j+1Eth and
ξk+1 6⊇ Efj(u−) ∪ ∪m

h=j+1Eth . This implies the simpler statement that ξk ⊃ ξk+1 ⊇ Efj(u), but
ξk 6⊇ Efj(u−) and ξk+1 6⊇ Efj(u−). From this it follows that NAfj(u)

≥ k+1 while NAfj(u−)
≤ k−1

- in other words, Nfj({u}) > 1. This is a contradiction, since fj was chosen so that Nfj is simple.

Therefore, we are able to construct a basic flow f̃ connecting any increasing (in the partial

order of reverse set inclusion) sequence (Lj) ⊆ ∪nUn so that Ñ
f̃

is simple. By definition, Ñ is

strictly simple and we can restrict F Ñ to the class of basic flows. ⋄

To prove the second statement in Theorem 4.7, we show that N and Ñ are dual: each determines
the law of the other. First, we need the following:

Lemma A.3. For t ∈ T , N(At) = k if and only if Ñ(AEt) = k.

Proof. Lemma 4.1 implies that

{NAt = k} = {NAt ≥ k} \ {NAt ≥ k + 1}

= {ξk ⊇ Et} \ {ξk+1 ⊇ Et}

= {ÑAEt
≥ k} \ {ÑAEt

≥ k + 1}

= {ÑAEt
= k}. ⋄

Lemma A.4. The law of N determines and is determined by the law of Ñ .

Proof. Since the laws of N and Ñ are determined by the finite dimensional distributions on
the left-neighbourhoods generated by Tn and Un respectively, for n ≥ 1 (cf. (3). Proposition
6.2.III), by additivity it is enough to consider the finite dimensional distributions of the form

P (N(At1) = k1, ..., N(Atj ) = kj) and P (Ñ (AL1) ≥ k1, ..., Ñ (ALj
) ≥ kj).

>From Lemma A.3, we have that for t1, ..., tj ∈ T

P (N(At1) = k1, ..., N(Atj ) = kj) = P (Ñ(AEt1
) = k1, ..., Ñ (AEtj

) = kj),

and so the law of Ñ determines that of N . Conversely, since Tn is finite, (24) implies that the
law of N determines that of Ñ :

P (Ñ(AL1) ≥ k1, ..., Ñ (ALj
) ≥ kj)

= lim
n

P
(

∩t∈Tn,t∈L1{N(At) ≥ k1}, ...,∩t∈Tn,t∈Lj
{N(At) ≥ kj}

)

.

⋄

This completes the proof of Theorem 4.7. 2

72



B Appendix: Renewal Processes

Here we define renewal processes on [0, 1]2, adapting the definition given in (8) to the notation
used in this paper. We refer the reader to (8) for details.

Definition B.1. For an arbitrary Borel set B ⊆ [0, 1]2, the set of minimal points of B is

min(B) := {t ∈ B : s 6≤ t, ∀s ∈ B such that s 6= t}.

Definition B.2. Let N be a strictly simple point process on [0, 1]2. With ξn defined as in (8),
denote:

• ∆N := {τ : N({τ}) = 1}. This is the set of jump points of the process N .

• ε(ξn) is the finite set of minimal points of ξn, and let εN := ∪∞
n=1ε(ξn). The points in ε(ξn)

will be denoted by {τ
(n)
j , j = 1, ..., }; the numbering τ

(n)
1 , τ

(n)
2 ... may be defined arbitrarily.

• ξ+
n := ∪ k 6=j(Eτ

(n)
k

∩ E
τ
(n)
j

). If ξn has only one minimal point, then ξ+
n := ∅.

Comments B.3.

1. In general, ∆N ⊆ εN and εN is the closure of ∆N under suprema; both sets are finite. If

τ ∈ ∆N and N(Aτ ) = i, then τ = τ
(i)
j for some j. Conversely, while all of the minimal

points of ξ1 are in ∆N (in fact, ε(ξ1) = min(∆N )), if i > 1, τ
(i)
j is not necessarily a jump

point of N but will always be the supremum of i jump points.

2. The random sets ξn are determined by ε(ξn) and vice versa. Likewise, ξ+
n is determined

by ε(ξn); each of its minimal points is the sup of a pair of minimal points of ξn, and the
set ξn \ ξ+

n is the disjoint union of the mutually incomparable sets E
τ
(n)
j

\ ξ+
n , j = 1, 2, ...

3. By definition, N(At) ≥ i + 1 if t ∈ ξ+
i , and so ξi ⊆ ξi+1 ⊆ ξ+

i , ∀i. The set of minimal
points of ξi+1 consists of the minimal points of ξ+

i as well as the minimal jump points of
N contained in the set ξi \ ξ+

i : i.e.

ε(ξi+1) = ε(ξ+
i ) ∪ min(∆N ∩ (ξi \ ξ+

i ))

= ε(ξ+
i ) ∪ ∪j min(∆N ∩ (E

τ
(i)
j

\ ξ+
i )). (26)

The representation in (26) motivates the following definition of the renewal property.

Definition B.4. Let N be a (strictly simple) point process on [0, 1]2 with associated adapted

random sets ξi, i ≥ 1, and let τ
(i)
1 , τ

(i)
2 , .... denote the minimal points of ξi. Let N1 be the single

line process with jump points ε(ξ1). N is a renewal point process if for every i ≥ 1,

• Given ξi, the process N behaves independently on each of the disjoint incomparable sets
E

τ
(i)
j

\ ξ+
i , j = 1, 2, ... .

• Given ξi, the law of min(∆N ∩ (E
τ
(i)
j

\ ξ+
i )) is the same as the law of ((∆M ⊕ τ

(i)
j )∩ (E

τ
(i)
j

\

ξ+
i )), where M is an independent copy of N1, and (∆M ⊕ τ

(i)
j ) is the set of jump points of

M each translated by τ
(i)
j .
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We see that the law of ξi+1 given ξi does not depend on i, and is determined by the law of
min(∆N ∩ (E

τ
(i)
j

\ ξ+
i )); this in turn is determined by the law of N1. Therefore, the law of

the renewal process N is completely characterized by the law of N1. See (8) for a rigorous
development.
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