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Abstract

Let (S0, S1, . . . ) be a supermartingale relative to a nondecreasing sequence of σ-algebras
(H60,H61, . . . ), with S0 6 0 almost surely (a.s.) and differences Xi := Si − Si−1. Suppose
that for every i = 1, 2, . . . there exist H6(i−1)-measurable r.v.’s Ci−1 and Di−1 and a positive
real number si such that Ci−1 6 Xi 6 Di−1 and Di−1−Ci−1 6 2si a.s. Then for all natural
n and all functions f satisfying certain convexity conditions

Ef(Sn) 6 Ef(sZ),

where s :=
√

s2
1 + · · ·+ s2

n and Z ∼ N(0, 1). In particular, this implies

P(Sn > x) 6 c5,0P(sZ > x) ∀x ∈ R,

where c5,0 = 5!(e/5)5 = 5.699 . . . . Results for max06k6n Sk in place of Sn and for concentra-
tion of measure also follow
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1 Introduction

The sharp form,
Ef (ε1a1 + · · ·+ εnan) 6 Ef(Z), (1.1)

of Khinchin’s inequality (15) for f(x) = |x|p for the normalized Rademacher sum ε1a1+· · ·+εnan,
with

a2
1 + · · ·+ a2

n = 1,

was proved by Whittle (1960) (35) for p > 3 and Haagerup (1982) (12) for p > 2; here and
elsewhere, the εi’s are independent Rademacher random variables (r.v.’s), so that P(εi = 1) =
P(εi = −1) = 1/2 for all i, and Z ∼ N(0, 1).

For f(x) = eλx (λ > 0), inequality (1.1) follows from Hoeffding (1963) (13), whence

P (ε1a1 + · · ·+ εnan > x) 6 inf
λ>0

EeλZ

eλx
= e−x2/2 ∀x > 0.

Since P(Z > x) ∼ 1
x
√

2π
e−x2/2 as x →∞, a factor � 1

x is “missing” here. The apparent cause of

this deficiency is that the class of the exponential moment functions f(x) = eλx (λ > 0) is too
small (and so is the class of the power functions f(x) = |x|p).

Consider the much richer classes F (α)
+ (α > 0) consisting of all the functions f : R → R given by

the formula
f(x) =

∫ ∞

−∞
(x− t)α

+ µ(dt) ∀x ∈ R,

where µ = µf > 0 is a Borel measure, x+ := max(0, x), xα
+ := (x+)α, 00 := 0; note that the

condition f : R → R implies that
∫∞
−∞(x − t)α

+ µf (dt) < ∞ ∀x ∈ R, which is equivalent to the
requirement that

∫ x
−∞(1 + |t|)α µf (dt) < ∞ ∀x ∈ R.

Define F (α)
− as the class of all functions of the form u 7→ f(−u), where f ∈ F (α)

+ . Let F (α) :=
{f + g : f ∈ F (α)

+ , g ∈ F (α)
− }.

It is easy to see (25, Proposition 1(ii)) that

0 6 β 6 α implies F (α)
+ ⊆ F (β)

+ . (1.2)

Proposition 1.1. (29) For natural α, one has f ∈ F (α)
+ if and only if f has finite derivatives

f (0) := f, f (1) := f ′, . . . , f (α−1) on R such that f (α−1) is convex on R and f (j)(−∞+) = 0 for
all j = 0, 1, . . . , α− 1.

It follows from Proposition 1.1 that, for every t ∈ R, every β > α, and every λ > 0, the
functions u 7→ (u − t)β

+ and u 7→ eλ(u−t) belong to F (α)
+ , while the functions u 7→ |u − t|β and

u 7→ coshλ(u− t) belong to F (α).

Eaton (1970) (6) proved the Khinchin-Whittle-Haagerup inequality (1.1) for a class of moment
functions, which essentially coincides with the class F (3), as seen from (22, Proposition A.1).
Based on asymptotics, numerics, and a certain related inequality, Eaton (1974) (7) conjectured
that the mentioned moment comparison inequality of his implies that

P (ε1a1 + · · ·+ εnan > x) 6
2e3

9
1

x
√

2π
e−x2/2 ∀x >

√
2.
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Pinelis (1994) (22) proved the following improvement of this conjecture:

P (ε1a1 + · · ·+ εnan > x) 6
2e3

9
P(Z > x) ∀x ∈ R, (1.3)

as well as certain multidimensional extensions of these results.

Later it was realized (Pinelis (1998) (24)) that the reason why it is possible to extract tail
comparison inequality (1.3) from the Khinchin-Eaton moment comparison inequality (1.1) for
f ∈ F (3)

+ is that the tail function x 7→ P(Z > x) is log-concave. This realization resulted in
a general device, which allows one to extract the optimal tail comparison inequality from an
appropriate moment comparison inequality. The following is a special case of Theorem 4 of
Pinelis (1999) (25); see also Theorem 3.11 of Pinelis (1998) (24).

Theorem 1.2. Suppose that 0 6 β 6 α, ξ and η are real-valued r.v.’s, and the tail function
u 7→ P(η > u) is log-concave on R. Then the comparison inequality

Ef(ξ) 6 Ef(η) for all f ∈ F (α)
+ (1.4)

implies
Ef(ξ) 6 cα,β Ef(η) for all f ∈ F (β)

+ (1.5)

and, in particular, for all real x,

P(ξ > x) 6 inf
f∈F(α)

+

Ef(η)
f(x)

(1.6)

= Bopt(x) := inf
t∈(−∞,x)

E(η − t)α
+

(x− t)α
(1.7)

6 min
(

cα,0 P(η > x), inf
h>0

e−hx Eehη

)
, (1.8)

where
cα,β :=

Γ(α + 1)(e/α)α

Γ(β + 1)(e/β)β
if β > 0, (1.9)

and cα,β is extended by continuity to the case when β = 0. Moreover, the constant cα,β is the
best possible in (1.5) and (1.8) (over all pairs (ξ, η) of r.v.’s satisfying (1.4)).

A similar result for the case when α = 1 and β = 0 is contained in the book by Shorack and
Wellner (1986) (33), pages 797–799.

Remark 1.3. Typically, a log-concave tail function q(x) := P(η > x) of a r.v. η with sup supp η =
∞ will satisfy the regularity condition( q(x)

q′(x)

)′
→ 0 as x →∞. (1.10)

It follows from the special case r = ∞ of (24, Theorem 4.2) that the constant factor cα,β in (1.5)
and (1.8) is optimal not only over all pairs (ξ, η) satisfying (1.4), but also for every given r.v. η
whose tail function q satisfies condition (1.10) and over all r.v.’s ξ satisfying (1.4). In particular,
this is true when η has a normal or exponential distribution. (This remark was prompted by an
anonymous referee’s question.)
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Remark 1.4. As follows from (24, Remark 3.13), a useful point is that the requirement of the
log-concavity of the tail function q(x) := P(η > x) in Theorem 1.2 can be relaxed by replacing
q with any (e.g., the least) log-concave majorant of q. However, then the optimality of cα,β is
not guaranteed.

Note that c3,0 = 2e3/9, which is the constant factor in (1.3). Bobkov, Götze, and Houdré (2001)
(4) (BGH) obtained a simpler proof of inequality (1.3), but with a constant factor 12.0099 . . .
in place of 2e3/9 = 4.4634 . . .. To obtain the comparison of the tails of Sn := ε1a1 + · · ·+ εnan

and Z, BGH used a more direct method, based on the Chapman-Kolmogorov identity for the
Markov chain (Sn) (rather than on comparison of generalized moments). Such an identity was
used, e.g., in Pinelis (2000) (26) to disprove a conjecture by Graversen and Peškir (1998) (11)
on maxk6n |Sk|. In Pinelis (2006) (31), it was shown that a modification of the BGH method
can be used to prove that the best constant factor (in place of 2e3/9) in inequality (1.3) is in an
interval ≈ [3.18, 3.22]. For related improvements of a result of Edelman (1990) (8), see Pinelis
(2006) (30).

Pinelis (1999) (25) obtained the “discrete” improvement of (1.3):

P (ε1a1 + · · ·+ εnan > x) 6
2e3

9
P

(
1√
n

(ε1 + · · ·+ εn) > x

)
(1.11)

for all values x that r.v. 1√
n
(ε1 + · · ·+ εn) takes on with nonzero probability.

In this paper, we obtain upper bounds on generalized moments and tails of supermartingales
with bounded, possibly asymmetric differences. These bounds are substantially more precise
than the corresponding exponential ones and appear to be new even for sums of independent
r.v.’s.

2 Domination by normal moments and tails

Throughout, unless specified otherwise, let (S0, S1, . . . ) be a supermartingale relative to a nonde-
creasing sequence (H60,H61, . . . ) of σ-algebras, with S0 6 0 almost surely (a.s.) and differences
Xi := Si − Si−1, i = 1, 2, . . . . Unless specified otherwise, let Ej and Varj denote the conditional
expectation and variance, respectively, given H6j . The following theorem is the basic result in
this paper.

Theorem 2.1. Suppose that for every i = 1, 2, . . . there exist H6(i−1)-measurable r.v.’s Ci−1

and Di−1 and a positive real number si such that

Ci−1 6 Xi 6 Di−1 and (2.1)
Di−1 − Ci−1 6 2si (2.2)

a.s. Then for all f ∈ F (5)
+ and all n = 1, 2, . . .

Ef(Sn) 6 Ef(sZ), (2.3)

where
s :=

√
s2
1 + · · ·+ s2

n

and Z ∼ N(0, 1).
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The proofs of this and other statements (wherever a proof is necessary) are deferred to Section
5.
By virtue of Theorem 1.2, one has the following corollary under the conditions of Theorem 2.1.

Corollary 2.2. For all β ∈ [0, 5], all f ∈ F (β)
+ , and all n = 1, 2, . . .

Ef(Sn) 6 c5,β Ef(sZ). (2.4)

In particular, for all real x,

P(Sn > x) 6 inf
f∈F(5)

+

Ef(sZ)
f(x)

(2.5)

= inf
t∈(−∞,x)

E(sZ − t)5+
(x− t)5

(2.6)

6 min
(

c5,0 P(sZ > x), inf
h>0

e−hx EehsZ

)
(2.7)

= min
(

c5,0 Φ
(x

s

)
, exp

(
− x2

2s2

))
, (2.8)

and
c5,0 = 5!(e/5)5 = 5.699 . . . .

(Cf. (28).) In (2.8) and in what follows,

Φ(x) :=
∫ ∞

x
ϕ(u) du, where ϕ(x) :=

1√
2π

e−x2/2.

Remark 2.3. The class F (5)
+ in Theorem 2.1 and hence the constant factors c5,β in Corollary 2.2

originate in the crucial Lemma 5.1.2. A natural question is whether the index 5 in F (5)
+ and

c5,β is the least, and hence the best, possible (recall (1.2)). It can be shown that this value, 5,
cannot be replaced by 4. It may be possible to replace 5 by some number α in the interval (4, 5).
However, in view of the proof of Lemma 5.1.2, it appears that the proof for a (non-integer!)
α ∈ (4, 5) in place of 5 would be very difficult, if attainable at all, and its benefits will not be
very significant; indeed, for any α ∈ (4, 5) the factor cα,0 will be in the rather narrow interval
(c4,0, c5,0) ≈ (5.119, 5.699); that is, the constant factor c5,0 cannot be significantly reduced. Cf.
Remark 2.5 below.
Remark 2.4. The upper bound exp

(
− x2

2s2

)
was obtained by Hoeffding (1963) (13) for the case

when the Ci−1’s and Di−1’s are non-random. The upper bound c5,0 P(sZ > x) = c5,0 Φ
(

x
s

)
is

better than Hoeffding’s bound exp
(
− x2

2s2

)
for all x

s > 1.89, and at that c5,0 Φ (1.89) = 0.16 . . . ,
which is significantly greater than 0.05, the standard statistical value. Thus, this improvement
is quite relevant for statistics.
Remark 2.5. The upper bound (2.8) – but with a constant factor greater than 427 in place
of c5,0 = 5.699 . . . was obtained in Bentkus (2001) (1) for the case when (Si) is a martingale.
(Bentkus was using direct methods, rather than a generalized moment comparison inequality
such as (2.3).) The large value, 427, of the constant factor renders the bound in (1) hardly usable
in statistics. Indeed, the upper bound 427Φ

(
x
s

)
improves the Hoeffding bound exp

(
− x2

2s2

)
only

when x
s > 170, in which case (in view of (2.8)) one has P(Sn > x) < c5,0 Φ (170) < 10−6200.
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However, the following improvement of the bound in (1) may in certain instances be even more
significant.

Theorem 2.6. Suppose that for every i = 1, 2, . . . there exist a positive H6(i−1)-measurable r.v.
Di−1 and a positive real number ŝi such that

Xi 6 Di−1 and (2.9)
1
2

(
Di−1 +

Vari−1Xi

Di−1

)
6 ŝi (2.10)

a.s. Let
ŝ :=

√
ŝ2
1 + · · ·+ ŝ2

n. (2.11)

Then one has all the inequalities (2.3)–(2.8), only with s replaced by ŝ.

Remark 2.7. Theorem 2.1 may be considered as a special case Theorem 2.6. Indeed, it can be
seen from the proofs of these two theorems (see Lemma 5.1.1 in this paper and Lemma 3.1 in
(29)) that one may assume without loss of generality that the supermartingales (Si) in Theorem
2.1 and 2.6 are actually martingales with S0 = 0. Therefore, to deduce Theorem 2.1 from
Theorem 2.6, it is enough to observe that for any r.v. X and constants c < 0 and d > 0, one
has the following implication:

EX = 0 & P(c 6 X 6 d) = 1 =⇒ VarX 6 |c|d. (2.12)

In turn, implication (2.12) follows from (14) (say), which reduces the situation to that of a r.v.
X taking on only two values. Alternatively, in light of the duality result (24, (4)), it is easy to
give a direct proof of (2.12). Indeed, EX = 0 and P(c 6 X 6 d) = 1 imply

0 > E(X − c)(X − d) = EX2 + cd = VarX − |c|d.

However, instead of deducing Theorem 2.1 from Theorem 2.6, we shall go in the opposite direc-
tion, proving Theorem 2.6 based on Theorem 2.1.

Thus, Theorem 2.1 is seen as the main result of this paper.

Remark 2.8. The set of conditions (2.9)–(2.10) is equivalent to

Xi 6 Di−1 and σ∗(Di−1,Vari−1Xi) 6 ŝi

a.s., where

σ∗(d0, σ
2) :=

1
2

inf
d>d0

(
d +

σ2

d

)
= min

(
σ ∨ d0,

1
2

(
d0 +

σ2

d0

))
=

{
σ if σ > d0,
1
2

(
d0 + σ2

d0

)
if σ < d0,

for positive σ and d0. This follows simply because the inequalities Xi 6 Di−1 and d > Di−1

imply Xi 6 d.

Thus, in the case when Vari−1Xi < D2
i−1 a.s., conditions (2.9)–(2.10) represent an improvement

of condition D2
i−1 ∨ Vari−1Xi 6 ŝ2

i a.s., considered in (2; 3). In a certain variety of cases, this
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improvement may be even more significant than the improvement in the constant factor from
427 to 5.699 . . . before the probability sign.

On the other hand, it can be shown that the value σ∗(d0, σ
2) is equal or close to the optimal

value s = s∗(d0, σ
2), which is the smallest value s > 0 satisfying the inequality E(X − t)5+ 6

E(sZ − t)5+ ∀t ∈ R, where X is a zero-mean r.v. taking on values d0 and −σ2/d0 only. If
u := σ2/d2

0 is > 1, then σ∗(d0, σ
2) = s∗(d0, σ

2). It can be seen that, even if u is as small as
0.1, one has σ∗(d0, σ

2) < 1.13 s∗(d0, σ
2)

(
whereas σ ∨ d0 = d0 > 2 s∗(d0, σ

2)
)
; if u = 0.4, then

σ∗(d0, σ
2) < 1.01 s∗(d0, σ

2)
(
whereas σ ∨ d0 = d0 > 1.4 s∗(d0, σ

2)
)
.

From the “right-tail” bounds stated above, “two-tail” ones immediately follow:

Corollary 2.9. Let (S0, S1, . . . ) be a martingale with S0 = 0 a.s. Suppose that conditions (2.1)
and (2.2) hold. Then inequalities (2.3) and (2.4) hold for all f ∈ F (5) and f ∈ F (β) (β ∈ [0, 5]),
rather than only for all f ∈ F (5)

+ and f ∈ F (β)
+ , respectively.

Corollary 2.10. Let (S0, S1, . . . ) be a martingale with S0 = 0 a.s. Suppose that condition (2.10)
holds, and condition (2.9) holds for |Xi| in place of Xi. Then inequalities (2.3) and (2.4) with
s replaced by ŝ hold for all f ∈ F (5) and f ∈ F (β) (β ∈ [0, 5]).

That (S0, S1, . . . ) in Theorems 2.1 and 2.6 is allowed to be a supermartingale (rather than only a
martingale) makes it convenient to use the simple but powerful truncation tool. (Such a tool was
used, for example, in (20; 21) to prove limit theorems for large deviation probabilities based only
on precise enough probability inequalities and without using Cramér’s transform, the standard
device in the theory of large deviations.) Thus, for instance, one has the following corollary from
Theorem 2.6.

Corollary 2.11. For every i = 1, 2, . . . , let Di−1 be a positive H6(i−1)-measurable r.v. and let
ŝi be a positive real number such that (2.10) holds (while (2.9) does not have to). Let ŝ be still
defined by (2.11).

Then for all real x

P(Sn > x) 6 P

(
max
16i6n

Xi

Di−1
> 1

)
+ min

(
c5,0 Φ

(x

ŝ

)
, exp

(
− x2

2ŝ2

))
(2.13)

6
∑

16i6n

P (Xi > Di−1) + min
(

c5,0 Φ
(x

ŝ

)
, exp

(
− x2

2ŝ2

))
. (2.14)

These bounds are much more precise than the exponential bounds in (10; 9; 19).

3 Maximal inequalities

Introduce
Mn := max

06k6n
Sk.

Theorem 3.1. The upper bounds on P(Sn > x) given in Corollary 2.2 and Theorem 2.6 are
also upper bounds on P(Mn > x), under the same conditions: (2.1)–(2.2) and (2.9)–(2.10),
respectively.
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Theorem 3.2. Let 0 6 β 6 α and x > t, and let (Sn) be a martingale or, more generally, a
submartingale. Assume, moreover, that α > 1. Then, for any natural n,

E(Mn − x)β
+ 6 k1;α,β

E(Sn − t)α
+

(x− t)α−β
, (3.1)

where

k1;α,β := sup
σ>0

σ−β(α−1)

(∫ σ

0

βsβ−1 ds

1 + s

)α

(3.2)

if β > 0, and k1;α,0 := 1. The particular cases of (3.1), corresponding to β = 0 and β = α,
respectively, are Doob’s inequalities

P(Mn > x) 6
E(Sn − t)α

+

(x− t)α
(3.3)

and

E(Mn)α
+ 6

(
α

α− 1

)α

E(Sn)α
+. (3.4)

Proposition 3.3. Let 0 6 β < α, x > t, and

kα,β :=
ββ(α− β)α−β

αα
. (3.5)

Then

∀u ∈ R (u− x)β
+ 6 kα,β

(u− t)α
+

(x− t)α−β
, (3.6)

and kα,β is the best constant factor here – even under condition u = 0. (The values at β = 0 are
understood here as the corresponding limits as β ↓ 0.)

Theorem 3.4. Under the same conditions: (2.1)–(2.2) and (2.9)–(2.10), respectively, the upper
bounds given in Corollary 2.2 and Theorem 2.6 hold with Mn in place of Sn and the constant

factor
k1;5,β

k5,β
c5,β in place of c5,β.

Similarly, results of (29) can be extended.

Remark 3.5. Note that∫ σ

0

βsβ−1 ds

1 + s
= σβ

2F1(β, 1; 1 + β;−σ) = βσβ

∫ 1

0
(1− u)β−1(1 + σu)−β du,

where 2F1 is a hypergeometric function. Note also that, for β ∈ (0, α), there is some σα,β ∈ (0,∞)
such that the expression under the sup sign in (3.2) is increasing in σ ∈ (0, σα,β) and decreasing
in σ ∈ (σα,β,∞); this can be seen from the proof of Proposition 3.8. Thus, the sup is attained
at the unique point σα,β.

Proposition 3.6. Let α and β be as in Theorem 3.2. Then

k1;α,β 6 k2;α,β :=
Γ(1 + β)Γ(α− β)

Γ(α)
. (3.7)
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Remark 3.7.
k2;α,0 = kα,0 = 1 = k1;α,0.

Proposition 3.8. Let α and β be as in Theorem 3.2. Then

k1;α,β 6 k3;α,β := kα,β

(
α

α− 1

)α

, (3.8)

where kα,β is defined by (3.5).

Proposition 3.9. Let α > 1. Then

k1;α,α = k3;α,α =
(

α

α− 1

)α

. (3.9)

Corollary 3.10. Let α and β be as in Theorem 3.2. Then

kα,β 6 k1;α,β 6 k2;α,β ∧ k3;α,β; (3.10)

at that
kα,0 = k1;α,0 = k2;α,0 = 1, (3.11)

while

k1;α,α = k3;α,α =
(

α

α− 1

)α

> kα,α = 1. (3.12)

4 Concentration inequalities for separately Lipschitz functions

Definition 4.1. Let us say that a real-valued function g of n (not necessarily real-valued)
arguments is separately Lipschitz if it satisfies a Lipschitz type condition in each of its arguments:

|g(x1, . . . , xi−1, x̃i, xi+1, . . . , xn)− g(x1, . . . , xn)| 6 ρi(x̃i, xi) < ∞ (4.1)

for all i and all x1, . . . , xn, x̃i, where ρi(x̃i, xi) depends only on i, x̃i, and xi. Let the radius of
the separately Lipschitz function g be defined as

r :=
√

r2
1 + · · ·+ r2

n,

where
ri :=

1
2

sup
x̃i,xi

ρi(x̃i, xi). (4.2)

The concentration inequalities given in this section follow from martingale inequalities given in
Section 2. The proofs here are based on the improvements given in (20) and (32) of the method
of Yurinskĭı(1974) (36); cf. (17; 18) and (1).

Papers (36), (20), and (32) deal mainly with separately Lipschitz function g of the form

g(x1, . . . , xn) = ‖x1 + · · ·+ xn‖,

where the xi’s are vectors in a normed space; however, it was already understood there that the
methods would work for much more general functions g – see e.g. (32, Remark 1). In a similar
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fashion, various concentration inequalities for general functions g were obtained in (17; 18) and
(1).

Suppose that a r.v. Y with a finite mean can be represented as a real-valued Borel function g
of independent (not necessarily real-valued) r.v.’s X1, . . . , Xn:

Y = g(X1, . . . , Xn).

Theorem 4.2. If g is separately Lipschitz with a radius r > 0, then

Ef(Y − EY ) 6 Ef(rZ) for all f ∈ F (5) and (4.3)

Ef(Y − EY ) 6 c5,β Ef(rZ) for all β ∈ [0, 5] and all f ∈ F (β), (4.4)

where Z ∼ N(0, 1). In particular, for all real x,

P(Y − EY > x) 6 c5,0 P(rZ > x). (4.5)

Inequality (4.5) – but with a constant factor greater than 427 in place of c5,0 = 5.699 . . . was
obtained in Bentkus (2001) (1); cf. Remark 2.5.

The already comparatively weak separately-Lipschitz condition assumed in Theorem 4.2 can be
further relaxed, as follows.

Theorem 4.3. Inequalities (4.3), (4.4), and (4.5) will hold if the separately-Lipschitz condition
of Theorem 4.2 is relaxed so that ri is replaced by

r̂i :=
1
2

sup
x1,...,xi,x̃i

|Eg(x1, . . . , xi−1, x̃i, Xi+1, . . . , Xn)

− Eg(x1, . . . , xi, Xi+1, . . . , Xn)|, (4.6)

for every i. Note that r̂i 6 ri for all i.

Theorems 4.2 and 4.3 are based on Theorem 2.1 (and also on the mentioned improvements of
Yurinskĭı’s method). Using Theorem 2.6 instead of Theorem 2.1, one can obtain the following
improvement of these results.

Theorem 4.4. Suppose that

Ξi(x1, . . . , xi−1, xi) := Eg(x1, . . . , xi−1, xi, Xi+1, . . . , Xn) (4.7)
− Eg(x1, . . . , xi−1, Xi, Xi+1, . . . , Xn)
6 Di−1(x1, . . . , xi−1), (4.8)

and
1
2

(
Di−1(x1, . . . , xi−1) +

EΞi(x1, . . . , xi−1, Xi)2

Di−1(x1, . . . , xi−1)

)
6 si, (4.9)

for all i and all x1, . . . , xi−1, xi, where Di−1(x1, . . . , xi−1) > 0 depends only on i and x1, . . . , xi−1,
and si depends only on i. Let

s :=
√

s2
1 + · · ·+ s2

n.

Then inequalities (4.3), (4.4), and (4.5) will hold if r is replaced there by s.
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Remark 4.5. Under the conditions of Theorem 4.2 or Theorem 4.3, bound (4.5) can be replaced
by any one of the better bounds (2.6)–(2.8) with s in the latter bounds replaced by r. Similarly,
under the conditions of Theorem 4.4, bound (4.5) can be replaced by any one of the bounds
(2.6)–(2.8).

The next proposition shows how to obtain good upper bounds on Ξi(x1, . . . ,
xi−1, xi) and EΞi(x1, . . . , xi−1, Xi)2, to be used in Theorem 4.4.

Proposition 4.6. If g is separately Lipschitz so that (4.1) holds, then for all i and all
x1, . . . , xi−1,

EΞi(x1, . . . , xi−1, Xi)2 6 inf
xi

Eρi(Xi, xi)2 6 Eρi(Xi,EXi)2; (4.10)

it is assumed that the function ρi is measurable in an appropriate sense; for the second inequality
in (4.10), it is also assumed that an appropriately defined expectation EXi exists, for all i. If,
moreover, the function g is convex in each of its arguments, then for all i and all x1, . . . , xi,

Ξi(x1, . . . , xi−1, xi) 6 ρi(xi,EXi). (4.11)

Remark 4.7. We do not require that ρi be a metric. However, the smallest possible ρi, which is
the supremum of the left-hand side of (4.1) over all x1, . . . , xi−1,
xi+1, . . . , xn, is necessarily a pseudo-metric. Note also that, for ri defined by (4.2),

ρi(xi,EXi) = ρi(xi, 0) 6 ri

for all xi, provided e.g. the additional conditions that (i) ρi(xi, x̃i) = ‖xi − x̃i‖i for some semi-
norms ‖ · ‖i and all i, xi and x̃i; (ii) Xi is symmetrically distributed; and (iii) xi belongs to the
support of the distribution of Xi.

Corollary 4.8. Let here X1, . . . , Xn be independent r.v.’s with values in a separable Banach
space with norm ‖ · ‖, and let

Y := ‖X1 + · · ·+ Xn‖.

Suppose that, a.s.,

‖Xi − EXi‖ 6 di (4.12)

and
1
2

(
di +

E‖Xi − EXi‖2

di

)
6 si, (4.13)

for all i, where di > 0 and si > 0 are non-random constants. Let

s :=
√

s2
1 + · · ·+ s2

n.

Then inequalities (4.3), (4.4), and (4.5) will hold if r is replaced there by s.

Concerning exponential bounds for sums of independent B-valued r.v.’s and for martingales in
2-smooth spaces, see (23).

The separately-Lipschitz condition (4.1) is obviously equivalent the `1-like Lipschitz condition

|g(x̃1, . . . , x̃n)− g(x1, . . . , xn)| 6
n∑

i=1

ρi(x̃i, xi) < ∞ (4.14)
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for all x1, . . . , xn, x̃1, . . . , x̃n (provided that each ρi is the smallest possible and hence a pseudo-
metric, as indicated in Remark 4.7). A particular case of the `1-like pseudo-metric is the widely
used (especially in combinatorics and computer science (17; 18)) Hamming distance. The upper
bounds presented in this section are substantially more precise than exponential bounds such as
ones found in (17; 18); cf. Remark 2.4.

There is a great amount of literature on the measure concentration phenomenon, including treat-
ments in terms of metrics other than `1; refer e.g. to Talagrand (34), Ledoux (16), Dembo (5),
and Bobkov, Houdré and Götze (4).

5 Proofs

5.1 Proofs for Section 2

Let us first observe that Theorem 2.1 can be easily reduced to the case when (Sn) is a martingale.
This is implied by the following lemma, which is obvious and stated here for the convenience of
reference.

Lemma 5.1.1. Let (Sn) be a supermartingale as in Theorem 2.1, so that conditions (2.1) and
(2.2) are satisfied. Let

X̃i := Xi − Ei−1Xi, C̃i−1 := Ci−1 − Ei−1Xi, and D̃i−1 := Di−1 − Ei−1Xi.

Then X̃i is H6i-measurable, C̃i−1 and D̃i−1 are H6(i−1)-measurable, and one has

Xi 6 X̃i, Ei−1X̃i = 0, C̃i−1 6 X̃i 6 D̃i−1, and D̃i−1 − C̃i−1 6 2si. a.s.

Proof of Theorem 2.1. The proof is similar to the proof of Theorem 2.1 in (29) but based on the
crucial Lemma 5.1.2 below, in place of Lemma 3.2 in (29). Also, one has to refer here to Lemma
5.1.1 instead of Lemma 3.1 in (29). Indeed, by Lemma 5.1.1, one may assume that Ei−1Xi = 0
for all i. Let Z1, . . . , Zn be independent standard normal r.v.’s, which are also independent of
the Xi’s, and let

Ri := X1 + · · ·+ Xi + si+1Zi+1 + · · ·+ snZn.

Let Ẽi denote the conditional expectation given X1, . . . , Xi−1, Zi+1, . . . , Zn. Note that, for all i =
1, . . . , n, one has ẼiXi = Ei−1Xi = 0; moreover, Ri−Xi = X1+ · · ·+Xi−1+si+1Zi+1+ · · ·+snZn

is a function of X1, . . . , Xi−1, Zi+1, . . . , Zn. Hence, by Lemma 5.1.2, for any f ∈ F (5)
+ , f̃i(x) :=

f(Ri − Xi + x), and all i = 1, . . . , n, one has Ẽif(Ri) = Ẽif̃i(Xi) 6 Ẽif̃i(siZi) = Ẽif(Ri−1),
whence Ef(Sn) 6 Ef(Rn) 6 Ef(R0) = Ef(sZ) (the first inequality here follows because S0 6 0
a.s. and any function f in F (5)

+ is nondecreasing).

Lemma 5.1.2. Let X be a r.v. such that EX = 0 and c 6 X 6 d a.s. for some real constants c

and d (whence c 6 0 and d > 0). Let Z ∼ N(0, 1). Then for all f ∈ F (5)
+

Ef(X) 6 Ef(d−c
2 Z). (5.1)
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Proof. This proof is rather long. Let Xc,d be the set of all r.v.’s X such that EX = 0 and
c 6 X 6 d a.s. Without loss of generality (w.l.o.g.), f = ft for some t ∈ R, where

ft(x) := (x− t)5+.

In view of (14) (say), for any given real t, a maximum of Eft(X) over all r.v.’s X in Xc,d is
attained when X takes on only two values, say a and b, in the interval [c, d]. Since the function
ft is convex, it then follows that w.l.o.g. a = c and b = d.

(
Indeed, one can prove that Eft(σZ)

is non-decreasing in σ > 0 by an application of Jensen’s inequality.
)

Moreover, by rescaling,
w.l.o.g. d− c = 2. In other words, then one has the following:

X =

{
2r with probability 1− r,

2r − 2 with probability r,

for some r ∈ [0, 1]. Now the right-hand side of inequality (5.1) can be written as

Eft(Z) = R(t) := P (t)ϕ(t)−Q(t)Φ(t), (5.2)

where
P (t) := 8 + 9t2 + t4 and Q(t) := t(15 + 10t2 + t4),

and its left-hand side as

Eft(X) = L(r, t) := r(2r − 2− t)5+ + (1− r)(2r − t)5+, (5.3)

so that (5.1) is reduced to the inequality

L(r, t) 6 R(t) (5.4)

for all r ∈ [0, 1] and all real t.

Note that (5.4) is trivial for t > 2r, because then L(r, t) = 0 6 Eft(Z) = R(t).

Therefore, it remains to consider two cases: (r, t) ∈ B and (r, t) ∈ C, where

B := {(r, t) : 0 6 r 6 1, t 6 2r − 2} and
C := {(r, t) : 0 6 r 6 1, 2r − 2 6 t 6 2r}.

Case 1 (r, t) ∈ B. Note that in this case t 6 0 and, by (5.3),

L(r, t) = r(2r − 2− t)5 + (1− r)(2r − t)5.

For t 6= 0, one has the identity

Q(t)2

ϕ(t)
∂t

(
R(t)− L(r, t)

Q(t)

)
= Q2(r, t) :=

Q1(r, t)
ϕ(t)

− 120, (5.5)

where
Q1(r, t) := Q′(t)L(r, t)−Q(t) ∂tL(r, t),

which is a polynomial in r and t. Note that
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∂rQ2(r, t) =
∂rQ1(r, t)

ϕ(t)
and ∂tQ2(r, t) =

20 Q(t)
ϕ(t)

d(r, t),

where
d(r, t) :=

tQ1(r, t) + ∂tQ1(r, t)
20 Q(t)

.

Therefore, the critical points of Q2 in the interior intB of domain B are the solutions (r, t) of
the system of polynomial equations {

d(r, t) = 0,

∂rQ1(r, t) = 0.

Further, d(r, 2r− 2− u) is a polynomial in r and u, of degree 2 in r; moreover, for (r, t) ∈ intB,
one has t < 2r − 2, so that, in terms of u := 2r − 2− t > 0,

d(r, t) = 0 if and only if r = r1(u) or r = r2(u),

where

r1(u) :=
1 + u/2
1 + u

∈ (0, 1) and r2(u) :=
2 + 2u + u2/2
2 + 2u + u2

∈ (0, 1).

Using the Sturm theorem or the convenient command Reduce of Mathematica, one can see
that the only solution u = u1 > 0 of the algebraic equation ∂rQ1(r, t)|r=r1(u),t=2r1(u)−2−u = 0 is
0.284 . . . , and
Q2(r, t)|r=r1(u1),t=2r1(u1)−2−u1

< 0. As for the equation
∂rQ1(r, t)|r=r2(u),t=2r2(u)−2−u = 0, it has no solutions u > 0.

Thus, Q2 < 0 at the only critical point (r, t) =
(
r1(u1), 2r1(u1)− 2− u1

)
of Q2 in intB.

Next, with u > 0,

Q2(r, t)|r=0,t=2r−2−u = −20
(

6 +
(2 + u)5

ϕ(2 + u)
(
7 + 4 u + u2

))
< 0.

Similarly, with u > 0,

Q2(r, t)|r=1,t=2r−2−u = −20
(

6 +
u5(3 + u2)

ϕ(u)

)
< 0.

Now consider the function
q2(r) := Q2(r, t)|t=2r−2.

Then ϕ(2r−2)q′2(r) is a polynomial, whose only root r = r3 ∈ (0, 1) is 0.865 . . . . But q2(r3) < 0.
Therefore, Q2 < 0 at the only critical point of Q2 in the relative interior of the boundary t = 2r−2
of domain B.

Thus, as far as the sign of Q2 on B is concerned, it remains to consider the behavior of Q2 as
t → −∞, which is as follows: Q2(r, t) ∼
20(2r − 1)2t7/ϕ(t) → −∞ < 0 for every r 6= 1/2 and Q2(r, t) ∼ 40t5/ϕ(t) → −∞ < 0 for
r = 1/2.
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(As usual, a ∼ b means a/b → 1.)

We conclude that Q2 < 0 on B. Hence, in view of (5.5), the ratio R(t)−L(r,t)
Q(t) is decreasing in t

on B (letting here R(t)−L(r,t)
Q(t) := −∞ at (r, t) = (1, 0)).

Next, note that ϕ(t) and 1−Φ(t) are o(1/|t|p) for every p > 0 as t → −∞. Hence, in view of (5.2),
one has the following as t → −∞: R(t)−L(r, t) = −Q(t)−L(r, t)+ o(1) ∼ −10(2r− 1)2t3 →∞
for every r 6= 1/2 and R(t)− L(r, t) ∼ −10t →∞ for r = 1/2.

Hence, R(t)−L(r,t)
Q(t) < 0 for each r ∈ (0, 1) and all t < 0 with large enough |t|. Since R(t)−L(r,t)

Q(t) is

decreasing in t on B, one has R(t)−L(r,t)
Q(t) < 0 on B, whence L(r, t) 6 R(t) on B (because Q(t) 6 0

on B).

It remains to consider

Case 2 (r, t) ∈ C. Here, letting v := 2r − t, one has 0 6 v 6 2, and, by (5.3),

L(r, t) = (1− r)(2r − t)5.

Let us use here notation introduced in the above consideration of Case 1. Then

d(r, t)|t=2r−v = −(1− r)v3
(
1− v

2
r
)

< 0

for (r, t) = (r, 2r − v) ∈ intC. This implies that Q2 has no critical points in int C.

Next, with v > 0,

Q2(r, t)|r=0,t=2r−v = −20
(

6 +
v5(3 + v2)

ϕ(t)

)
< 0.

On the boundaries r = 1 and t = 2r of C, one has Q2 = −120 < 0. The boundary t = 2r − 2 of
C is common with B, and it was shown above that Q2 < 0 on that boundary as well.

Thus, Q2 < 0 on C. It follows by (5.5) that the ratio R(t)−L(r,t)
Q(t) is decreasing in t on C− :=

{(r, t) ∈ C : t < 0} and on C+ := {(r, t) ∈ C : t > 0}.
Hence, just as on B, one has that L(r, t) 6 R(t) on C−.

Moreover, R(t)−L(r,t)
Q(t) = R(t)

Q(t) > 0 for t = 2r, since Q > 0 on C+. Because R(t)−L(r,t)
Q(t) is decreasing

in t on C+, one has R(t)−L(r,t)
Q(t) > 0 on C+ and hence L(r, t) < R(t) on C+.

One concludes that L(r, t) 6 R(t) on the entire set C.

Proof of Theorem 2.6. This proof is similar to the proof of Theorem 2.1 in (29) and Theorem 2.1
of this paper, but based on the following lemma, instead of Lemma 3.2 in (29) or Lemma 5.1.2.
(Here one has also to refer to Lemma 3.1 in (29), rather than to Lemma 5.1.1.)

Lemma 5.1.3. Suppose that X is a r.v. such that EX = 0, X 6 d a.s., and EX2 6 σ2, for
some positive constants d and σ. Let

s :=
1
2

(
d +

σ2

d

)
and Z ∼ N(0, 1). Then for all f ∈ F (5)

Ef(X) 6 Ef(sZ). (5.6)

1063



Proof. In view of (1.2), one has F (5) ⊆ F (2). Therefore, by Lemma 3.2 in (29), one may assume
without loss of generality that here X = d ·Xa, where a = σ2/d2. Now it is seen that Lemma
5.1.3 follows from Lemma 5.1.2.

5.2 Proofs for Section 3

Proof of Theorem 3.1. Lemma 5.1.1 and Lemma 3.1 in (29) reduce Theorem 3.1 to the case when
(Sn) is a martingale, and then Theorem 3.1 follows by Doob’s inequality (3.3), Theorems 2.1
and 2.6, and inequality (1.8).

Proof of Theorem 3.2. For every y > t, by Doob’s inequality,

P(Mn > y) 6
E(Sn − t)+I{Mn > y}

y − t
.

Hence, letting

J(u) :=
∫ u

x

β(y − x)β−1

y − t
dy I{u > x} and α′ :=

α

α− 1
, (5.7)

and using Fubini’s theorem, one has

E(Mn − x)β
+ =

∫ ∞

x
β(y − x)β−1P(Mn > y) dy

6
∫ ∞

x
β(y − x)β−1 E(Sn − t)+I{Mn > y}

y − t
dy

= E

∫ ∞

x
β(y − x)β−1 (Sn − t)+I{Mn > y}

y − t
dy

= E(Sn − t)+J(Mn)

6
(
E(Sn − t)α

+

)1/α
(
EJ(Mn)α′

)1/α′

, (5.8)

by Hölder’s inequality.

Observe that for all real u

J(u) 6 c1/α(u− x)β/α′

+ , where c :=
k1;α,β

(x− t)α−β
. (5.9)

Indeed, introducing new variables σ := u−x
x−t and s := y−x

x−t , one can see that, for u > x,

J(u) = (x− t)β−1

∫ σ

0

βsβ−1 ds

1 + s
and

c1/α(u− x)β/α′

+ = k
1/α
1;α,βσβ(1−1/α)(x− t)β−1,

so that (5.9) follows, in view of (3.2).

Now (5.8) and (5.9) imply (3.1).

That (3.3) is the particular case of (3.1) corresponding to β = 0 follows because k1;α,0 was
defined as 1. Finally, that (3.4) is the particular case of (3.1) corresponding to β = α follows by
Proposition 3.9, to be proved later in this paper.
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Proof of Proposition 3.3. Elementary calculus.

Proof of Theorem 3.4. This is similar to the proof Theorem 3.1, but relies on inequality (3.1) in
place of Doob’s inequality (3.3). It also utilizes Theorems 2.1 and 2.6 and inequality

inf
t∈(−∞,x)

E(Z − t)α
+

(x− t)α−β
6

cα,β

kα,β
E(Z − x)β

+ (α > β > 0),

which in turn follows from the proof of Theorem 3.11 in (24); cf. the second inequality in (24),
identities (25) and (26), the second inequality in (23), and the definition in (16) there.

Proof of Proposition 3.6. Introduce

f(σ, α, β, γ) := σ−β(α−γ)/γ

(∫ σ

0

βsβ−1 ds

(1 + s)γ

)α/γ

,

K(α, β, γ) := sup
σ>0

f(σ, α, β, γ).

Then σ−β/αf(σ, α, β, γ)1/α = (EY γ)1/γ , where Y := 1
1+S and S is a r.v. with density s 7→

σ−ββsβ−1I{0 < s < σ}. Hence, f(σ, α, β, γ) is non-decreasing in γ, and then so is K(α, β, γ).
Therefore,

k1;α,β = K(α, β, 1) 6 K(α, β, α) = k2;α,β.

Proof of Proposition 3.8. W.l.o.g., 0 < β < α. By (3.2),

k1;α,β = sup
σ>0

r(σ)α, (5.10)

where

r(σ) :=
f(σ)
g(σ)

, f(σ) :=
∫ σ

0

βsβ−1 ds

1 + s
, and g(s) := σβ(1−1/α).

Note that the monotonicity pattern of

r1(σ) :=
f ′(σ)
g′(σ)

=
α

α− 1
σβ/α

1 + σ
(5.11)

on (0,∞) is ↗↘; that is, there exists some σ1(α, β) ∈ (0,∞) such that r1 ↗ (is increasing) on
(0, σ1(α, β)) and r1 ↘ (is decreasing) on (σ1(α, β),∞); namely, here

σ1(α, β) =
β

α− β
. (5.12)

Also, gg′ > 0 on (0,∞). Hence, it follows from (27, Proposition 1.9) that r has one of these
monotonicity patterns on (0,∞): ↗ or ↘ or ↗↘ or ↘↗ or ↘↗↘. However, r(σ) is positive
on (0,∞) and converges to 0 when σ ↓ 0 as well as when σ →∞. This leaves only one possible
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pattern for r: ↗↘. Hence, there is some σ(α, β) ∈ (0,∞), at which r attains its maximum on
(0,∞); moreover, r′(σ(α, β)) = 0, which is equivalent to r(σ(α, β)) = r1(σ(α, β)). Thus,

k1;α,β = sup
σ>0

r(σ)α = r(σ(α, β))α = r1(σ(α, β))α 6 sup
σ>0

r1(σ)α

= r1(σ1(α, β))α = k3;α,β,

in view of (5.11), (5.12), and the definition in (3.8).

Proof of Proposition 3.9. In the case β = α > 1, the function r1 given by (5.11) is increasing
on (0,∞) to r1(∞) = α

α−1 . Hence, so does r, according to (27, Proposition 1.1) and l’Hospital’s
rule rule for limits. Now Proposition 3.9 follows in view of (5.10).

Proof of Corollary 3.10. The second inequality in (3.10) follows by Propositions 3.6 and 3.8.
Equalities (3.11) follow from the definitions. The first two equalities in (3.12) follow by Propo-
sition 3.9, while the third equality in (3.12) follows from the definition.
It remains to prove the first inequality in (3.10). Suppose the contrary: kα,β > k1;α,β. Then
Theorem 3.2 (with Si = 0 a.s. ∀i) will imply that inequality (3.6) with u = 0 holds with constant
factor k1;α,β in place of kα,β, which contradicts Proposition 3.3, according to which kα,β is the
best constant factor in (3.6), even for u = 0.

5.3 Proofs for Section 4

The proofs here are based on the improvements given in (20) and (32) of the method of Yurin-
skĭı(1974) (36); cf. (17; 18) and (1).
For a r.v. Y as in Theorem 4.2, consider the martingale expansion

Y − EY = ξ1 + · · ·+ ξn,

of Y − EY with the martingale-differences

ξi := EiY − Ei−1Y, (5.13)

where Ei and Vari denote, respectively, the conditional expectation and variance given the σ-
algebra (say H6i) generated by (X1, . . . , Xi). For each i pick an arbitrary non-random xi, and
introduce the r.v.

ηi := Y − Ỹi, where Ỹi := g(X1, . . . , Xi−1, xi, Xi+1, . . . , Xn). (5.14)

Proof of Theorems 4.2 and 4.3. Note that, for the function Ξi defined by (4.7), one has
Ξi(X1, . . . , Xi) = ξi a.s., where ξi is defined by (5.13). It follows from (5.13) that

Ci−1 6 ξi 6 Di−1 and Di−1 − Ci−1 6 2r̂i 6 2ri, (5.15)

where ri and r̂i are given by (4.2) and (4.6), and

Ci−1 := inf
xi

Ei−1(−ηi) = inf
xi

Ei−1Ỹi − Ei−1Y and

Di−1 := sup
xi

Ei−1(−ηi) = sup
xi

Ei−1Ỹi − Ei−1Y

are H6(i−1)-measurable. Now Theorem 4.3 – and hence Theorem 4.2 – follow by Theorem 2.1
and Corollary 2.2.
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Proof of Theorem 4.4. This proof is similar to that of Theorems 4.2 and 4.3, but based on
Theorem 2.6 (in place of Theorem 2.1) and Corollary 2.2. (Note that EΞi(x1, . . . , xi−1, Xi)2 is
the same as conditional expectation Ei−1ξ

2
i given that X1 = x1, . . . , Xi−1 = xi−1.)

Proof of Proposition 4.6. For each i,

ξi = Eiηi − Ei−1ηi, (5.16)

because EiỸi = Ei−1Ỹi, in view of the independence of the Xi’s. By (4.1), for any given xi,

|ηi| 6 ρi(Xi, xi) (5.17)

a.s. It follows from (5.16) and (5.17) that, for any xi,

Ei−1ξ
2
i = Ei−1(Eiηi − Ei−1ηi)2 = Vari−1(Eiηi) 6 Ei−1(Eiηi)2 6 Ei−1Eiη

2
i

= Ei−1η
2
i 6 Ei−1ρi(Xi, xi)2 = Eρi(Xi, xi)2,

which proves (4.10).

To prove (4.11), suppose in addition that the function g is convex in each of its arguments, as
stated in the second part of Proposition 4.6. Let Ẽi denote the conditional expectation given
X1, . . . , Xi−1, Xi+1, . . . , Xn. Then, by Jensen’s inequality, one has for all i

Ei−1Y = Ei−1ẼiY = Ei−1Ẽig(X1, . . . , Xn)

> Ei−1g(X1, . . . , Xi−1, ẼiXi, Xi+1, . . . , Xn)

= Ei−1g(X1, . . . , Xi−1,EXi, Xi+1, . . . , Xn) = Ei−1Ỹ ,

in view of (5.14), if xi is chosen to coincide with EXi; hence,

Ei−1ηi = Ei−1Y − Ei−1Ỹ > 0.

This and formulas (5.16) and (5.17) imply that

ξi 6 Eiηi 6 ρi(Xi,EXi),

which is equivalent to (4.11).

Proof of Corollary 4.8. This follows immediately from Theorem 4.4 and Proposition 4.6, with
ρi(x̃i, xi) = ‖x̃i − xi‖.
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[4] Bobkov, S. G., Götze, F. and Houdré, C. (2001) On Gaussian and Bernoulli covariance
representations. Bernoulli 7, 439–451. MR1836739

[5] Dembo, A. (1997) Information inequalities and concentration of measure. Ann. Probab. 25,
927–939. MR1434131

[6] Eaton, M. L. (1970). A note on symmetric Bernoulli random variables. Ann. Math.
Statist. 41, 1223–1226. MR268930

[7] Eaton, M. L. (1974). A probability inequality for linear combinations of bounded random
variables. Ann. Statist. 2, 609–614.

[8] Edelman, D. (1990). An inequality of optimal order for the tail probabilities of the T
statistic under symmetry. J. Amer. Statist. Assoc. 85, 120–122. MR1137357

[9] Fuk, D. H. (1971). Certain probabilistic inequalities for martingales. Siberian Math. J. 14,
131–137. MR0293695

[10] Fuk, D. H. and Nagaev, S. V. (1971). Probabilistic inequalities for sums of independent
random variables. (Russian. English summary) Teor. Verojatnost. i Primenen. 16, 660–675.
MR293695
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