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1 Introduction

We are dealing with an L,-theory of parabolic stochastic partial differential equations (SPDEs)
of the types - ' '
du = (P uyiy; + biug: + cu+ f)dt + (6% uy + vFu+ gF) dw? (1.1)
du = (Di(auy; + bu+ 1) + blugs + cu+ f)dt + (0% uy + vFu + g*) dwf (1.2)
considered for t > 0 and 2 € G. Here w} are independent one-dimensional Wiener processes
and G is a bounded domain in R?.

In this article we assume that the equations have the "degeneracy o” near G : 3dg, K > 0 such
that for any A € R,

Sop**(2)\]* < (a¥(t,2) — @ (t,2) NN < Kp**(x)[A]” (1.3)

where p(z) := dist(z,0G) and o := 13, 0%g/*. Note that if & = 0 then the equations are
uniformly nondegenerate. In this case, unique solvability of the equations in appropriate Banach
spaces has been widely studied in many articles. See, for instance, [3], [4], [5], [8], [10], [14], [15]
and [17].

Our motivation of considering SPDEs with such degeneracy comes from several articles related to
PDEs with different types of degeneracies. We refer to [16], [19] and [20] for degenerate elliptic
equations. For parabolic PDEs we refer to [1], [18] (and references therein), where interior
Schauder estimates for equations with the degeneracy o < 1/2 were established.

An Ly-theory of equation (1.1) with the degeneracy o = 1 can be found in [12]. In this article,
we extend the results in [12]. We prove the unique solvability of equations (1.1) and (1.2)
with arbitrary degeneracy « € [1,00) in appropriate Sobolev spaces. Also we give some Holder
estimates of the solutions.

One of main applications of the theory of SPDEs is a nonlinear filtering problem. Consider a
pair of diffusion processes (X;,Y;) € R? x R~

dX; = pa(Xt)b(t’ X, }/t)dt + pa (Xt)r(tv X, Y;f)tha X(O) = Xo
dY;f = B(ta Xtv}/t)dt‘FR(th;f)tha Y(O) :}/ba

where W; is di-dimensional Wiener process and b,r, B, R are Lipschitz continuous matrices.
The nonlinear filtering problem is computing the conditional density m; of X; given by the
observations {Y; : s < t}. It was shown in [8] that when a = 0, there exists a conditional density
7, and 7, satisfies a SPDE of type (1.1). Based on our L,-theory, one can easily construct the
corresponding results when o« > 1. The motivations of considering the case @ > 0 were discussed
at length in [12]. We only mention that usually the process X; evolves in a bounded region
due to, for instance, mechanical restrictions, and therefore the above model is suitable when the
process X; stays in the bounded domain. Note that since p® (o > 1) is Lipschitz continuous
in R? (p(z) := 0 if ¢ G), by the unique solvability of the above SDE, if Xy is in G then the
process X; never cross the boundary of G.

Here are notations used in the article. As usual R¢ stands for the Euclidean space of points
r=(2',...,2%) and B,(x) := {y € R? : |[z—y| < r}. Fori = 1,...,d, multi-indices 8 = (1, ..., Ba),
G €{0,1,2,...}, and functions u(x) we set

Uyi = Ou/dx' = Dyu, DPu= Dlﬁ1 . ngu, 1Bl = B1+ ... + Ba.
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We also use the notation D™ for a partial derivative of order m with respect to x.

The author is sincerely grateful to the referee for giving several useful comments.

2 Main results

Let (Q,F, P) be a complete probability space, and {F;,t > 0} be an increasing filtration of o-
fields F; C F, each of which contains all (F, P)-null sets. By P we denote the predictable o-field
generated by {F;,t > 0} and we assume that on 2 we are given independent one-dimensional
Wiener processes w}, w?, ..., each of which is a Wiener process relative to {F;,t > 0}.

Choose and fix a smooth function 1) such that ¢ (z) ~ p(x) (see (2.9)). We rewrite equations
(1.1) and (1.2) in the following forms.

du = (w2o‘aijuxixj + wabiuxi +cu+ f)dt

+ (o™ uy + vFu + gF) dwf, (2.4)

and
du = (D;(V**a“uy; + vb'u + F) + b uy: + cu+ f)dt
+ W *uy: + vFu + gF) dw?, (2.5)

Here, i and j go from 1 to d, and k runs through {1,2,...}. The coefficients al bl bt e, otk vk

and the free terms f?, f, g* are random functions depending on ¢ and z. Throughout the article,
for functions defined on  x [0, 7] x G, the argument w € Q will be omitted.

To describe the assumptions of f?, f and g we use Sobolev spaces introduced in [8], [9] and [13].
If # € R and n is a nonnegative integer, then

H' = H'(R?) = {u:u,Du,...,D"u € Ly},
Lpﬁ(G) = HS,@(G) = Lp(Ga pe_ddx)7
p0(G) ={u:u,pug,....p"D"u € Ly p(G)}. (2.6)
In general, by Hy = Hy(R?) = (1—A)™"/2L, we denote the space of Bessel potential. We define
el gy = (L = A)2ull,,.
The space H; (@) is defined as the set of all distributions u on G such that

[e.9]

N no n n
HuHZ;e(G) =Y e"ll¢ (e ule Wiy <00, (2.7)

n=—oo

where {(, : n € Z} is a sequence of smooth functions such that

D™ Co()] < N(m)e™, ) (o > const > 0, (2.8)

Cn S CBXJ(Gn), Gn = {CU eqG: €7n71 < p(rc) < efn+1}.
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If G, is empty set, then we put (, = 0. One can construct the function (,, for instance, by
mollifying the indicator function of G,. It is known that up to equivalent norms the space
ng(G) and its norm are independent of {(,} (see Lemma 2.1(iv)).

We also use the above notations for /-valued functions g = (g1, g2, ...). We define

lollg = lolla ey = (1 = A)"2gles I,
9l cr = 3 €ICn(e™)gle™ )

Fix a smooth function v in G such that

sup o)™ D™+ ap(a)] < ox,

p(x) < Ny(z) < Np(x), VzeG. (2.9)
For instance one can take ¢(z) =), e "(y(x).

In the following lemma we collect some properties of H ) ,(G) (see [9] and [13] for detail). For
v € (0, 1], we denote

lulecx) = P [u@)],  [ulov(x) = sup

Lemma 2.1. (i) Assume that v —d/p=m+ v for some m =0,1,... and v € (0,1]. Leti,j be
multi-indices such that |i| < m,|j| = m. Then for any u € H;Q(G), we have

Y0P Dy e C(G), TP DIu e Cry (@),

|¢‘i|+9/PDiu|C(G) + [wm—l—u—l—@/PDju]Cu(G) < NHUHH;’B(G)'

(13) YD, D - H;e(G) — H;gl(G) are bounded linear operators, and for any u € H;e(G)

Il @ < Mty -16 + Nl -1y < My (210
g e < NI ls16) + N1y < Nl o (.11)
(iii) For any v,y € R, y"H) ,(G) = H),  (G) and

lllay, (e < NI sl ) < Nllulla, @

pr
(iv) Let {&n} be a sequence of CG°(G) functions such that
D™, < Ne™™,  suppé, C {z e G:e "R < pla) < e TR0}

for some ko > 0. Then for any u € H;e(G)
n n P p
Sl ) < Nl oy
And, if in addition )", &,(x) > 6 > 0, then

lullyy (o) <N Y Inleaule ey
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Now we define stochastic Banach spaces. For any stopping time 7, denote (0,7] = {(w,?) : 0 <
t<7(w)}
HZ(T) - LP(([07 T]]a Pa Hg)? H;,Q(Gv T) = LP(QOa T]]a P? H;Q(G))a
L.(..)=H°(..), U)=Ly(Q,Fo, H72/7),
o _2 —Q -2
Uy (G) = v O L (0, o, 1) PP(G)).

Definition 2.2. We write u € ﬁ;§2’a(G, 7)if u € wH;QQ(G, 7), u(0,-) € U;;FZ’O‘(G) and for
some f € ¢~ T2HD (G, T), g € waH;;l(G, 7, 02)

du = fdt + g* dwF, (2.12)

in the sense of distribution. In other words, for any ¢ € C§°(G), the equality

(U(ta‘),¢)=(U(0,')7¢)+/0 (f(S,')7¢)d8+Z/O (9"(5,), ¢) dwy
k=1

holds for all ¢ < 7 with probability 1. In this situation we also write f = Du,g = Su. Let

HIEENG, ) = 575G, ) N {0, ) = 0},

The norm in 5’);;2’0‘((}, 7) is introduced by
||u”55;7ﬂ;2*a((;77) = HtuJ;/jgz’a(G,T) + [[u(0, ')||U;§2’a(c)7
where

)2 6y = 197l .y + 162Dl ) + 1Sl .

2(1—a)—
= B[y (0, )|

2—2 N
oy P(@)

AP
H'LL(O, )HU;-;Q,&(G)

Remark 2.3. Up to equivalent norms, the space ﬁ;gQ’O‘(G, 7) is independent of the choice of 9,
and for instance the norm ||1/J_1u||H7+2(G 5 can be replaced by ||u||yy+2 (G Also note that if
p,0 ’ p,0—p\

u € l/JH;Jf(G, 7), then by Lemma 2.1
U Au € TR (G 7), ¢ Du € ¢OH)GH(G, 7).

Thus considering equation (2.4), we find that the spaces for Du and Su are defined naturally.

To state our assumptions on the coefficients, we take some notations from [2]. Denote p(z,y) =
pa(z,y) = p(x) A p(y). For § € (0,1), and k =0,1,2, ..., define

A =171 = sggp’“(x)lD’“f(x)!,

0 _pn0  _ ktar. IDPf(x) = D f(y)|
[f]k+5 [f]k.mg sup p (x,y)

z,yeG |(lZ - y|a
|B|=k

Y
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o

0 0 0
1Y = =STA% 119 = 1A o = 119 + 179,
7=0

By DPf we mean either classical derivatives or Sobolev ones and in the latter case sup’s in the
above are understood as ess sup’s. We also use the same notations for ¢s-valued functions.

Fix a function do(7) > 0 defined on [0, c0) such that do(7) > 0 unless 7 € {0,1,2,...}. For 7 >0
define
T+ =7+ do(7),

and fix some constants
do, K € (0,00), ~€R.

Assumption 2.4. (i) For each x € G, the coefficients a™ (¢, x), b(t, ), b'(t, x) c(t,x), o™*(t, x)
and v*(t, ) are predictable functions of (w,t).

(ii) For any z,t, w and A € RY,

6ol A2 < (a¥(t,x) — a¥(t,z)) NN < K|, (2.13)
where o/ = 23, oiFaik,
Assumption 2.5. For any ¢ > 0, there exists 6 = §(¢) > 0 such that

sup(la” (t, @) — a” (t,y)| + |o"(t,2) = o' (t,y)le,) <€

w,t
whenever z,y € G and |z — y| < d(e)p(z,y).

Assumption 2.6. For any ¢t > 0 and w € €2,
ij azi —a) 0
a7 (8, )0+ [0 o+ 192t )[O),

Ho' (1,01, + [ v )|y, < K

Remark 2.7. Assumption 2.5 is much weaker than uniform continuity of ¥ and o’. For instance,
let G = (0,1) and a(t,z) = 2 + sin(lnz(1 — z)). Then one can easily check that a satisfies
Assumptions 2.5 and 2.6 for any v € R.

Here are our main results. From this point on we assume that
T<T, a€c[l,0), pE€]l2,00).

Theorem 2.8. Let Assumptzons 2.4, 2.5 and 2.6 be satisfied. Then

(i) for any f € ¢~ 1H2H 20(GiT),g € waHWH(G 7) and ug € U7+2Q(G), equation (2.4) with
initial data ug admits a umque solution u (in the sense of distribution) in the class ﬁ;;za(G, 7),
(ii) for this solution

HUHﬁwza(q (||1/’1 2afH o(G,7) + [l QHHwH(G +HU0”U7+2a(G))7 (2.14)

where the constant N depends only on d,~,p, 0,0, K and T.
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Note that in the following theorem Assumption 2.6 is not assumed.
Theorem 2.9. Let Assumptions 2.4 and 2.5 be satisfied, and

[ OB+ [0+ (2N + [T < K, Y, it o (2.15)
Then

(i) for any f* € wQO‘prg(G, T), f € ¢_1+QQH;é(G,T), g € YL, o(G,T) and ug € Upl”:(G),
equation (2.5) with initial data uy admits a unique solution w (in the sense of distribution) in
the class ﬁ;’g(G, T),

(ii) for this solution

p —2a £||P 1-2a p(p
HUHYJ;ZS(GJ) S N(Hlb f”Lp,G(Gﬂ') + H¢ f”H;}Q(G,T)

—a P P
F I, 6y 01 ) (2.16)
where the constant N depends only on d,~,p, 0,0, K and T.

Now we state the regularity of the solutions in terms of Holder continuity in time and space, both
inside the domain and near the boundary. The following results are immediate consequences of
Lemma 2.1, Remark 3.2 and Theorem 3.3.

Corollary 2.10. Letu € ﬁz—gz’a(G, T) be the solution of Theorem 2.8 or Theorem 2.9. Let
2/l p<pu<pfB<l, v+2—-pB—-d/p=m+v,

for some m =0,1,..., v € (0,1]. Then for any multi-indices i, j such that |i| < m,|j| =m
[0/ D (u(t) — u(s)) [0y
o < oo 2.17
S It — s[pr/2—1 (2.17)
[t =140/P Di (4 (t) — U(S))]%V(G)
o < . 2.18
0Ss<It)§T ’t — 3’17#/2—1 ( )

Remark 2.11. In particular, if v > —1 and
ko:=1—2/p—d/p >0,
then for any k € (0, ko), we have

[P (@ )u(t, x) — <P (y)ult y) P

E < 00, 2.19
sup sup, PR > (249)
veC ts [t — sfer? | |

Indeed, to estimate the first term take 5 = ko — kK +2/p, then 1 — f —d/p = v = k and (2.18)
implies (2.19). For the second estimate, take 4 = k+2/p and 8 = 1—d/p, then pu/2—1 = kp/2
and (2.17) implies (2.20). Obviously (2.19) and (2.20) yield that if § < p,

Esup sup ’u(tv 1’) - u(ta y) ’p + E sup sup |(u(t7 .%') - U(S, x)‘p
>0 z,yeG |z — y|~P 2€G t#s |t — s|wp/2

< 00.
Remark 2.12. The condition « > 1 in the previous theorems is crucial in our proof. More

precisely, our scaling argument fails if & < 1. The case a < 1 will be treated differently
elsewhere under some additional conditions.
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3 Auxiliary Results

In this section, we introduce an embedding theorem and few results about partitions of unity
and point-wise multipliers.

A similar version of the following lemma can be found in [6] and [14].

Lemma 3.1. There exists a constant N = N(d,p,~, |y|+) such that
0
laflm e < Nlaliy) 1 fllmy - (3:21)
Proof. By Lemma 5.2 in [§],

la /W ey < N > lale"e)¢ (e ) e )|l

< Nsup |a(e"z)¢n(€" )| g1+ > _lCnemn)f(e )

n

where B is a natural Holder’s norm in R%. Therefore, it is enough to show

la(e"2)¢n(€"@)| i+ < Nlall)),. (3.22)

Let |y|[+=m+ 9, € [0,1). Assume that 6 = 0. Observe that

supsup |DF(¢_,(e"z))| < oo, Vk > 0. (3.23)

If £ <m and e"z € supp(_y(e-), then (since p(e™z) ~ e"),
n n n n 0
e (Dka)(e"2)| < Np*(e"a)|(D¥a)(e"a)] < Nlaljj),. (3.24)
Obviously, (3.23) and (3.24) prove (3.22). Next let 6 # 0. To show
[D™a(e"x)¢n(€"x) — D™al(e"y)¢—n(e")] < Nl —y|°,Va,y € RY,

we may assume that |z —y| < e and "z € supp(_,(e-). In this case, ey € B,-an(e"x) C G
and p(e™z) ~ p(e™x,e™y) ~ e". Thus, due to (3.23),

[D™a(e"z)¢n(e"x) — D™ a(e"y)C-n(e")]
< NS Hens, emy)l(Dra)(e") — (DRa) (€)D" H(Cn(em))|
k<m

+N D e I(DFa) ()| D™ H(Con(e"x)) = DR ())
k<m
0 _
< Nla| () (e7]e"z — e"y|® + & — y|) < N|w — y|°,
The lemma is proved.
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Remark 3.2. Let 01 < 65. By Lemmas 2.1 and 3.1
Hu||H;02(G) < NH¢(92791)/puHH;’91(G) < NHUHH;%(G)-

Consequently, if a3 < a then
||U||53;;§‘1(G,T) < N"u‘|ﬁ;:32(G,T)'

The following results are due to Lototsky ([12]).

Theorem 3.3. (i) For any t <T,
1 t
- p < p
”1/) UHH;”'EI(G,t) — N(d777p7 T)/O HUH,S’J;:EQ’I(G,S) ds.

(ii) Let
2/lp<p<pB<l.
Then

p p
EHu"C“/2*1/p([07‘r],H;:gi_pﬁ(G)) < N(Ma ﬁv d, D, T) HuHﬁzj{;Q,l(G)'

We choose and fix smooth functions &, such that |[D™¢,| < N(m)e™™, suppé, C (Gp-1 UGy U
Gn+1) and &, = 1 on the support of (,.

Lemma 3.4. Let Assumptions 2./ (ii) and 2.5 be satisfied. By I we denote d x d identity matriz.
Define - -
@il (t,w) = e 22 (") (" w)a (2" €M) + (1 — &2, (o),

ok (t,z) = e (e"x)Ep (") (2N TV, €M),
Then
(i) For any A € R,
e 495| A2 < (0¥ — 1/20 K GIFININ < e K|A2
(ii) For any € > 0, there exists § = d(e) > 0 such that

supsup(|ag(t,x) - ag(tvyﬂ + |O-7Z‘L(t7x) - O-;L‘L(tay)D <g,

n  w,t

whenever x,y € R? and |z — y| < 6.
(iii)

supsup(|a;] (¢, )| g+ + o] ghe+) < 0. (3.25)

n  w,t
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Proof. (i) is obvious and (3.25) follows from the same arguments as in the proof of Lemma 3.1.
Thus we only give a proof of the second assertion. Let § < e and |z — y| < 6. Without loss of
generality, we assume that {_,(e"z) # 0. Observe that

e"y € B := Beng(e"z) C G, |e"x —e"y| < b < Nodp(e'z,ey),
and for any z € Beng(ez) we have p(z) ~ ™. Thus,

[€-n(€"2) = &n(€"y)| < o —yle" sup | D(E-n)(2)] < Nifz — ],

> (e"x) — ¥ (e"y)| < sup |[DY*(2)|[e"z — e™y| < Ne*' |z — vy,
zeB

and

€722 Mol 2)E n(€7) — €Y "y )a(e"y)E n(")
< 2N (") a(ems) — ale"y)
Hla(emy)le 2y () (ez) = € n(e"y)]
Ha(emy)en(ey)le 2 (e) — P ey
< Ny(la(e"s) — a(e"y)| + 6 + )

Note that the constant N; are independent of z,y and n. So, if ¢ > 0 is given, then it is
enough to take 6 > 0 such that (N1 + 2N2)d < ¢/2 and Nala(t,z) — a(t,y)| < /3 whenever
|z —y| < Nodp(z,y).

We handle ¢¢, similarly. The lemma is proved.

The following lemma is taken from [13].

Lemma 3.5. Let {¢, : k =1,2,...} be a collection of C5°(G) functions such that for each m > 0

supz,o x)| D" ()| < M(m) < .
Then there exists a constant N = N(d,~, M) such that for any f € H;Q(G),
P P
%Nmmwwﬂémmgmm

If in addition
> ler(@)P > ¢ >0,
k

then
HfHH’Y (G) (d v, M, c Z H¢kf||H’Y Q)
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4 Proof of Theorem 2.8

As usual, we may assume that 7 = 7' (see [8]). For a moment, we assume that b’ = ¢ = v* = 0.
Take a;; and ¥ from Lemma 3.4. Denote
ey 1= e 2n(1-2) wf(n) = e Im) )k

e2n(l—a)t

Then for each n, wf(n) are independent one dimensional Wiener processes. By Theorem 5.1 in

[8], for any f € H})(c,T), g € H)™ (¢, T) and ug € UJ ™2 the equation

du = (a%ugiy; + f)dt + (0Fugy + gF)dwF(n)  u(0,-) = up, (4.26)
has a unique solution u € H}*?(¢,T) and u satisfies

lalhgg 2o,y < NNty + Il oy + Tuollo2) (127

where the constant N depends only d, p,7, do, K, ¢TI, |an| givi+ » |on| glve11+ and uniform continu-
ity of ay,op,.
By S.(f,g,u0) we denote the the solution of (4.26). Define

Sn(fv g, Uo)(t, 'I) = Sn(fa 9, UO)(Cnt7 e—nx)‘
From now on, without loss of generality, we assume that

Y () =1, Vzed.

Remember the fact that a function v satisfies
dv:fdt+gkdwf, t<T
if and only if v.(t, z) := v(c?*t, cx) (¢ > 0) satisfies
dve =  f(c*t, cx) dt + cg(ct, cx)d(c wh,), t < T.

It follows that if u € ﬁ;;za(G,T) is a solution of equation (2.4), then wv,(t,x) =
(C_nu)(c,'t, enx) satisfies
dvp = (090,105 + Apu+ fr)dt 4+ (00, + BFu+ gF)dwk(n),

where -
Apu(t, ) := —2a% e* ui(c; ', e"x) (i (e"x)

Qe M, €) i (€72),
Bru(t,z) .= —o®e™u(c; Mt e"x) ¢, i (e ),
Falt @) = 0 (20070, ) (),
gh(t, ) = "1 g(2M0=N¢ en) ¢, (), (4.28)

Uop, 1= up(e"x)(_n(e"z).
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Consequently,
vp(t,z) := (C_nu)(cﬁlt, e"x) = Sy (Anu+ fr, Bpu + gn, ton)

and

U= Z Cn(Cpu) = Z CnSn(Apu + fr, Bot + gn, ton). (4.29)

To proceed further, we need the following lemma.

Lemma 4.1. Fiz f € ¢~'*2H (G, T), g € Y°H) 3 (G, T) and ug € U)§*(G). Then a suffi-
ciently high power of the operator

R:u— Z CnSn(Anu + frn, Bott + gn, Uon) (4.30)

is a contraction in .‘?)ZH (G, T)N{u:u(0,-) =wup}, and the unique solution u € 5’);’;2’0‘(61’, T)
of (4.29) satisfies the estimate (2.14).

Proof. For simplicity, we use the notations S,, and S, instead of S,,(Anu + fn, Bott + gn, Uon)
and Sy, (Apu + fn, Bt + gn, uon), respectively.

Note that (,(mn = 0 if [n —m| > 1. By Lemmas 3.5 and 3.1,
”Ruuﬁwza @1 = NZ I¢- Ru”ﬁvwa G NZ 1¢—nSn Hﬁwza(G T (4.31)

By definition,

HC— S ||5;J'Y+2a (G,T) = HQ/) 1C S HH”’”(GT + ”wl_QQD(C—nS”)H%gﬂ(G,T)

— ) P
HSCnSu) o1 + 0l

Remember that ||u(e*'2)|gv ~ ||u(z)|| g and sup,, |(_n(e"x)|p» < oo for each v > 0. Thus (cf.
Lemma 5.2 in [8]),

I e DL [SHCL LACE e

< NZe”(e PH2=20)|8,, (¢, ) ||P (4.32)

Hy P2 (enT)
By writing the equation for ¢_,(e"x)S,, we find that v, := (_,S,, satisfies
dtp = D(C_nSn) dt +S(C_pS,,) dwf

= [¢2aamvnx igd 2¢2a Z]( nC—nxi)xj + wQaaijSHC—nxixj
_2¢2aa’”ugﬂ' Cfnxj C—n - ¢2aaiju<;n:viwj C—n =+ an.ﬂ dt
+[waaik’l_jnxi - waaik‘gng—nxi - wao—ikuC—nxi Cn + Czng} dwf
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Thus, by Lemmas 2.1 and 3.1,

Z |’1}Z)1_2QD(<7”S”) H%Z o(G.T)
n

SN I (CnSa)eallty iy + N DM (Snlnadellty
+NZ|W) 'S el oom) +NZ||uw<,m||

+NZ||¢ " Cnaallly +NZW # fCnlliy

S NZ ”C_nganﬂngip(G,T) + NZ Hgng_"muﬁl;”él(cj)
n ’ )

+llv UHHW-H(GT +N[p'~ 2”fHHv o(GT)"

Here,

q ||P
D 6naSullss .

n

= 3 DS )G (G (D1

<NZ€ 0=p)|| G, (t, z)(e"2)||"

H’Y+2 )

SR e T

similarly, and conclude that

We estimate 5, 4SS0 1 .,

[Rullg < N~ ull?

L2 (eN ) (G.T)

1-2a p||P
H'y+1(G T) + NW fHH;9

£y s, Hﬁmm (133

n

Since G is bounded, we may assume that (_, = 0 for all n > 1. For each n < 0, we have
enT = e~ 2= <, (4.34)

Thus by (4.27), there exists a constant N independent of n (due to Lemma 3.4 and (4.34)) such
that for each n <0,

15n (2, )15 < N|[Anu+ fn

H) 2 (e, T) HH"’ (enT)

+N‘|Bnu+gnuﬁp+1 —|—N||u0n||U7+2.
P p

(enT)
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Also, by Lemma 2.1,

0— —
Zen( p+2 2“)(”‘4”““%;@ nt ||Bnu||HM (n T))
n<0

=" "D (Agu)(ent, z) sy T | (Baw)(ent, x)HHW(T)
n<0

< NZ eneuux(enx)enc—m:(enx)Hﬁ;(T)

n<0

N D7 O (" 2)e (€0 [ o

n<0
EN Y P e )" (D1 o,
n<0
< Nluslly iy + Mulss ) < NIV 0l .
Similarly,
DA (A P AL
n<0
(0+p(1—20)) p
< NS ORI (1, M) [
n<0
N Y O g t, ) Conle )y 1 g
n<0
< NI Sl oy + NI gIIHM(GT)
and

n 2 —)— n
Ze (O+p(5 (1) 1))Hu0(e x)C_pn(e" )prz S NHUOHUwz(G)

n

Hence, coming back to (4.33), we get

1—2a p||P
||Ru‘|ﬁ'y+2a(G < N[y~ UIIHM o I gy )
I )+ 0015 (435)

Note that 55;;2’0(G,T) .67+2a(G T)N{u : u(0,-) = up} is a complete Banach space and
contains RO (thus not empty) where

RO := ZC— fnagn’UOn)

By (4.35) and Theorem 3.3, for any u,v € 557+2 “(G,T),

Ru—Ro = ¢ nSn(An(u =), By(u—0),0),
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IRu =Rl gyt gr) < Nljep~ (u— U)H%;;l(a,ﬂ

T
_ p
SNAHU?mmMm@@. (4.36)

(4.36) shows that there exists mg > 0 such that R™ is a contraction in B;ZQ’Q(G,T), and all
the assertions of the lemma follow from this and (4.35). For more technical details, we refer to
the proof of Theorem 6.4 in [8]. The lemma is proved.

O]

Let u be the solution of (4.29). We will show that u satisfies equation (2.4). Obviously «(0,-) =
ug, and (by definition) for some fj € w*HQO‘H;ﬂ(G,T) and go € wO‘H;;l(G, T)

du = fodt + g¥ dw?.

Observe that u satisfies equation (2.4) with f := fo — ¥**a“u,,; and gF = g(])C — %o,
instead of f and g*, respectively. By the above arguments (see (4.29))

u = Z C—ngn(Anu + f_na Bpu + n, u(]n)a

where f,,, Gn, uon are defined from f, g, ug as in (4.28). Also,

0= Zc—ngn(fmgmo)v (437)

where f =f—f,§=9g—gand fn, gn are defined as before.
Define the operators A,, and B,, such that

flnu = 2aij1112°‘uxiC_mj - aijw2auC—n$in’
Bpu = ¢po*ul_, .
From (4.37),
0=D Z C—nsn(fny Ins 0) = f - Z AnSn(frw Ins 0)7
0=5Y ¢nSu(f,5n,0) =G =D _ BuSn(fnsGn,0).

Therefore, to show f = §&¥ = 0, we only need to prove that a sufficiently high power of the
operator

R : (f, g) - (Z Angn(fnagmo)a Z Bngn(fnagmo))

is a contraction in F (G, T) == ¢~ T*H] ,(G, T) x wo‘H;”ng(G, T).

By Lemma 3.5,

1D ¢ naSrellp ey SN Do 19CmCnaSnelli ey

|m—n|<1

LY



=N Y [na(SnC e = 267 Sl CmeCnslfy

m,n
lm—n|<1

SN W Sl gy <N / > IenSilne g 4o

|m— n\gl |m— n|§1
As in the proof of Lemma 4.1 (see (4.31) and (4.35)),

Z ||C S ”'6'y+2a G,s) <NH¢1 2af||H"/ (Gs +N”1/] gHHW'H(G’,s)‘

m,n
|m—n|<1

We estimate other terms in ) A, S, and don B,,S,, similarly (actually much easily) and get

T
» p p
IR iy <N [ 179l gt

This shows that a sufficiently high power of R is a contraction and f = f,§ = g.

For general case (previously we assumed that b’ = ¢ = v* = 0), having the method of continuity
in mind, we only show that (2.14) holds true given that a solution u € ﬁ;JgZ’a(G,T) already

exists. Let @ € ﬁzgza(G, T) be the solution of
di = **Aadt, u(0,-) = ug.

Then

ulf < Nuoll

f)"/‘f’z Q(G T U'Y+2(G)

Thus by considering v — u, as usual, we may assume that ug = 0.
By the previous results (when b* = ¢ = v* = 0),
Il sy < VOV 2 T iy + 10701 )
where . A ‘
f=v%ug+cu+f, §'k=vFu+ g~
By Lemma 3.1,
qubl 20éf” GT) + Hd) g||H’Y+1(G T)

< Ny 2|2, GT)+N||¢ S

( H) N (G.T)

Thus, by Theorem 3.3 for each t < T,

20y < NI 21y

(S S

This and Gronwall’s inequality lead to (2.14). The theorem is proved.
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5 Proof of Theorems 2.9

Consider the operators
Lou := ¥**Au = D;(¢p*“u,:) — 200p* )iy,
Liu = Di(**a"uy; + b'u) + biug: + cu,  A¥u: o™y + vFu.

One can easily check that the coefficients of the operators Ly := (1 —\)Lg+ ALj and Ay := Ay
satisfy Assumptions 2.4, 2.5 and (2.15). Also note that

HW*QO‘JE;HHP SN Ny 0 apai@) < NI FllL, o)
By Theorem 2.8, the equation
du= (Lou+ fi; + f)dt + (Afu + gF)dwf

has a unique solution u € ﬁl’o‘(G 7). Thus by the method of continuity, we only need to prove

that the estimate (2.16) holds true given that a solution u € 53 o (G, 1) of equation (2.5) already
exists.

Again without loss of generality we assume that 7 =T and (_,, = 0 for all n > 0. Also as in the
proof of Theorem 2.8, we assume that ug = 0.

Step 1. We will show that there exists a constant €9 = €¢(d, p, do, i) > 0 such that the theorem
holds true if T' < gg < 1. As before, denote ¢, := e—2n(l-a) By Lemma 2.1,

97l iy < N 3 Pl Iy

n<0

n(0—p+2—2a) 2n(l—a n n
- N;) —PHE2=20) 1y (2000 )¢ (e )y ey (5.38)

Denote vy, (t, ) = u(e?* (1=t e"x)(_,(e"x). Then v, satisfies
dvy, = (Di(a% 0,55 + b + F1) + bppgi + Cnvn + fo) dt
+ (kv 05 + VFv, + gF) dwk (n), (5.39)

where al | 0% wk(n) are defined as before and

bl (t, ) = e 29 (ex)E_, (e"x)bi (c; M, e,
bl (t, ) = e 29 (ex)E (e )b (e 1, €M),
) = 207Nt ea)en (),
l/s(t,:v) e”(lfo‘)l/k(cflt e"x)_p(e"x),
( _

ot ) = —a €' ppa(e"w)uley 't e"a) + €720 fi ey Mt ) (o),
g

en(t,

n

gn(t,w) = —oifulcy ', " x)e" (i (") + "7 gM (e M e a) (e ),
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fu(t,z) = —e"auy;(c; 't e"x)e" (i (")
+bpu(c, 'ty e"x)e™ (. i(e"r) + e fi (e Mt e a) ey i (™)
b€ i€ u(c; e x) + 2P0 fer it e ) Cp(ex).
Note that 9 (e"x) ~ €™ on the support of {_,(e"x). It follows from (2.15) that

sup sup(]bz | + b v+ len] + |vnl) <

n W L
By Theorem 2.12 in [4],

ol erry < VORI, erry + NUSalE 1 oy + 10l o) (5.40)

Actually, due to the term —e"ai u,; (c;'t, e"z)e™(_,i(e"x) of fn, (5.40) only yields

-1
Hw u”%zl;,e(GvT) < N”"¢ ’U,H GT)

Of course, this estimate is useless unless N < 1. The following argument below is to avoid
estimating ||e™al u,, (c; ¢, e"w)e”(_mi(e"x)HH;l(CnT).

Denote B
fult, o) = —e"aug; (e, ', e"x)e" (g (e"x) € Ly(c,T).

By Theorem 5.1 in [8], the equation
du = (Au+ f)dt, u(0,-)=0
has a unique solution u,, € H2(¢,T), and (see Theorems 7.1 and 7.2 in [8])

< N(T) (5.41)

Hun”Hl (cnT) an”ﬁp(chy

where N (T') is independent of n (since ¢, < T'), and N(T') | 0 as T'— 0.
Up := Uy, — Uy, satisfies (5.39) with

fn = fn + bpun + (ailj — 6ij)um¢,

fn = fp = fn + bpnz + Colln, Gn = gn + Uiumi + vuy,

instead of f,, f, and g,, respectively. Thus by Theorem 2.12 in [4], there exists a constant N
depending only on d, p,dyp and K (remember ¢, T < T < 1) such that

1ol 1) < (anllp (en) T ||fn|\p ey T 19nIL, (e, ))- (5.42)

Consequently,
||Un||H1(C T) (anH »(cnT) + anH%;l(ch) + ||§7n”£p(ch) + ”unHH}J(ch))
< ND)|emua (et €"2)e ol 1)
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Nl @Yuler DD
+N (|02 F(eptt, €@ [Con(e"T) + € Cna(e" )] IE, ()
2n(l—a) -1, _n n p
—|—N”€ f(cn tae .T)C_n(e x)HHgl(ch)
-f—N”en(l*a)g(c;lt, en$)c_n(€nx) ”ip(ch)
Coming back to (5.38), by Lemma 2.1, we get
[ UH Jam SNIv™ wllf, o TNIWTR e

+Nw'~ 2“f\|p 1) T VI, ) T NN DI ullg 6,

Now fix g such that NN(T') < 1/2 for each T < ¢, then by Theorem 3.3 for each ¢t <T

t
ull?, . <N/ ull?, . ds
H ||$’);:9(G,t) — 0 H ||.‘?J117:0(G,S)

N2 FIE, i + 10" s gy + 10701, )

Gronwall’s inequality leads to (2.16).

Step 2. Consider the case T' > ¢g. To proceed further, we need the following lemma.

Lemma 5.1. Let 7 < T be a stopping time. Let u € 53;;200‘( ), and

du(t) = f(t)dt + g~ (t)dw?.

Then there erists a unique U € ﬁzg%a(T) such that u(t) = u(t) fort < t(a.s) and, on (0,T),

dit = (Y2 Aa(t) + f(b))dt + ¢* Li<rdw?, (5.43)
where f = (f(t) — »**Au(t))I1<,. Furthermore,
||ﬁ”ﬁ;;2’a(G,T) S NHUHYJZ;Q’O‘(G,T)7 (544)
where N is independent of v and T.

Proof. Note that f € ¢~ 1+2QH76(G T) and gli<; € waHv;l(G,T), so that, by Theorem 2.8,

equation (5.43) has a unique solution @ € Y);;QOO‘(G,T) and (5.44) holds. To show that u(t) =
u(t) for t < 7, notice that, for ¢t < 7, the function v(t) = u(t) — u(t) satisfies the equation

dv = ¢**Avdt, v(0,-) =0.

Theorem 2.8 shows that v(¢t) = 0 for t < 7 (a.e). O
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Now, to complete the proof, we repeat the arguments in [5]. Take an integer M > 2 such that
T/M < gg, and denote t,,, = T'm/M. Assume that, for m = 1,2, ..., M — 1, we have the estimate
(2.16) with t,, in place of 7 (and N depending only on d,p,dp, K and T'). We are going to use
the induction on m. Let u,, € f);:;o be the continuation of u on [t,,, T'], which exists by Lemma
5.1 with v = —1 and 7 = t,,,. Denote vy, := u — Uy, then (a.s) for any t € [t,,,T], ¢ € C§°(G)
(since duy, = V2 Aupdt on [ty,, T] and vy, (tm, ) = 0)

t
@Mm@:—/XW%%MHW%mfw%%M$w

tm

t t
+/ (wabzvmwi + cum + fm7 ¢)(S)d$ + / (djaoﬂkvmxi + Vkvm + g?l%’ ¢)(S)dw§7
tm

tm
Where —_ .. .. —_ —_
Fon = 7@ = 67 )5 + 0 U + [,
fon = Vb U0 + Cum + f, gfn = @Daaikumxi + vFuy, + g~
Next instead of random processes on [0,7] we consider processes given on [t,,,T] and, in a

natural way, introduce spaces ﬁ;’g‘(G, [tm,T1), Lpo(G, [tm,t]), HZG(G’ [tm,T]). Then we get a
counterpart of the result of step 1 and conclude that

tm+1
—1 o p
B[ ) @) s

tm41 _.
SNEL’ [0~ Fi )1y ds

i1
+NE [~ () |I"

sz,é(G) + [ gm(s) Hip,g(g)ds-

tm

Thus by the induction hypothesis,

tm41 T 1
B[ Ny s < NE [ ()l s

tm 1
+NE [ (U_Um)(s)”?ﬁg(g)ds

tm

< NP, sty + 10 s gy 197, Gt

We see that the induction goes through and thus the theorem is proved.
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