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Abstract

We consider a transient nearest neighbor random walk on a group G with finite set of
generators Σ. The pair (G,Σ) is assumed to admit a natural notion of normal form words
where only the last letter is modified by multiplication by a generator. The basic examples
are the free products of a finitely generated free group and a finite family of finite groups,
with natural generators. We prove that the harmonic measure is Markovian of a particular
type. The transition matrix is entirely determined by the initial distribution which is itself
the unique solution of a finite set of polynomial equations of degree two. This enables to
efficiently compute the drift, the entropy, the probability of ever hitting an element, and the
minimal positive harmonic functions of the walk. The results extend to monoids.
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1 Introduction

Consider a Markov chain whose state space is the Cayley graph of a group (G, ∗) with a finite
set of generators Σ. If the Markov chain moves from a node g to a node g ∗h with a probability
µ(h) depending only on h, we say that it is a randow walk. If the support of µ is included in Σ,
we say that we have a nearest neighbor random walk (with respect to Σ).

A remarkable and well known result is that the harmonic measure of a transient nearest neighbor
random walk on a finitely generated free group is Markovian [6, 19, 25]. This can be viewed
as a consequence of the multiplicative structure of the Green kernel. If one tries to extend the
setting by assuming that the probability µ defining the random walk is not of nearest neighbor
type but only of finite support, then the result fails to be true, see [17]. In other words, having
a Markovian harmonic measure is a property which depends not only on the group but also on
the choosen set of generators.

Consider now a nearest neighbor random walk on a free product of finitely many finite groups.
It is easily seen that the Green kernel still has a multiplicative structure. The Markovian nature
of the harmonic measure is therefore natural. What we prove is that it is a Markovian measure
with a very specific structure that we callMarkovian multiplicative. In particular, the Markovian
measure is entirely determined by its initial distribution r, where r is the unique solution of a
finite set of polynomial equations that we call the Traffic Equations. Understanding this point
enables us to define precisely the setting in which the result holds: nearest neighbor random
walks on a class of pairs (G,Σ) that we coin as 0-automatic pairs.

A pair (G,Σ) formed by a group (group law ∗, unit element 1G) and a finite set of generators
is 0-automatic if the set of words L(G,Σ) = {u1 · · ·uk | ∀i, ui ∗ ui+1 6∈ Σ ∪ 1G} is a cross-
section of G. Such pairs were first considered by Stallings [27] under another name. Consider a
group G = F(S) ? G1 ? · · · ? Gk which is a free product of a finitely generated free group and a
finite family of finite groups, also called plain group. Consider the natural (but not necessarily
minimal) set of generators Σ = S tS−1 tiGi\{1Gi

}. Then the pair (G,Σ) is 0-automatic. Now
consider an arbitrary 0-automatic pair (G,Σ). Then G is isomorphic to a plain group. On the
other hand, Σ may be strictly larger than a natural set of generators of the group seen as a free
product. (See Example 3.5.) And what is relevant in our context is the pair group - generators
rather that the group itself, since the generators form the support of the measure defining the
nearest neighbor random walk. The larger is the set of generators, the more general is the
model.

With the above definition, we can describe more precisely the main result. Let (G,Σ) be a
0-automatic pair and let (Xn)n be a realization of a transient nearest neighbor random walk
on G. The random walk can be viewed as evolving on L(G,Σ). Let L∞ be the set of right-
infinite words whose finite prefixes belong to L(G,Σ). Then X∞ = limnXn is a well-defined
r.v. living on L∞. The law µ∞ of X∞ is called the harmonic measure of the random walk.
Intuitively, µ∞ gives the directions in which the random walk escapes to infinity. We prove
that the harmonic measure is a Markovian measure. Furthermore, let r and P be respectively
the initial distribution and the transition matrix of the Markov chain defining µ∞. Then, P is
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entirely determined by r, and r is itself characterized as the unique solution to the finite set of
Traffic Equations.

Mutatis mutandis, the result extends to random walks on 0-automatic pairs formed by a monoid
and a finite set of generators.

Apart from the structural aspect, the above mentioned result also provides a simple and direct
approach for computational purposes. The drift and the entropy of the random walk exist as a
direct consequence of Kingman’s Subadditive Ergodic Theorem. But subadditive limits are in
general hard to compute explicitly, and drift and entropy are no exceptions to the rule. Here,
using the shape of the harmonic measure, we can express the drift and the entropy in a ‘semi-
explicit’ way, as a simple function of r. In comparison, the ‘classical’ approach of [25] consists
in expressing the drift as a functional of the first-passage generating series of the random walk.
This provides also a potential method for explicit computations, but a less direct one (and which
does not work for the entropy). Using the Traffic Equations yields more chances to solve the
model completely and to get closed form formulas. Examples of drift computations are given
in §6. In the companion paper [22], we perform a more precise and systematic study for free
products of cyclic groups.

Let us clarify a couple of points.

• Following Dynkin & Malyutov [6], random walks on plain groups have been extensively studied
in the 1980ies. General formulas for the harmonic measure are available, see in particular [30,
Section 6]. For a detailed account and bibliographic references, see the monograph of Woess [31],
and in particular the Chapters II-9, III-17, III-19, and IV-26. There are two main differences
between the previous results and the work presented here. First, the previous results are usually
stated in a more general framework, and are therefore less simple and less precise. Second, they
are centered around the probabilities of hitting elements instead of the quantity r. We come
back to this point at the end of §4.3.
• All the random walks considered here belong to the general setting of random walks on regular
languages studied in [18]. In [18], local limit theorems are proved. Also, our random walks can
be viewed as random walks on a tree with finitely many cone types in the sense of [24], but
they are specific since they arise from a group, and since they have one-step moves at distance
1 and 2. In [24], it is proved that the harmonic measure is Markovian for random walks on a
tree with finitely many cone types, but for one-step moves at distance 1. (See also [28].) Our
method of proof is different from the one in [24], and the nature of the result is different as well
(Markovian multiplicative versus Markovian). We discuss this point in §5.3.
• Some important aspects of the theory of random walks on discrete infinite groups are barely
touched upon here, for instance, boundary theory, or the asymptotics of P{Xn = 1G}. The
interested reader should consult [14, 29, 31] and the references there. Of a different nature, but
somehow related, are the ‘homesick random walks’ on Cayley graphs of groups, see [20].

• There exists a completely orthogonal approach to the study of random walks on monoids.
The random walk is viewed as evolving in the egg-box diagram of the monoid. In general, any
box of the diagram may contain monoid elements of arbitrary lengths (with respect to a given
finite set of generators). For instance if the monoid is a group, then the egg-box diagram is
trivial. See [13] for details.
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The paper is organized as follows. Zero-automatic pairs are defined in §3. The main results for
groups are then proved in §4, and the extension to monoids is done in §5.

The results presented here, as well as the ones from the companion paper [22], were announced
without proofs in the Proceedings of the International Colloquium of Mathematics and Com-
puter Science held in Vienna in Septembre 2004 [23].

Notations. Let N be the set of non-negative integers and let N∗ = N\{0}. We also set
R∗+ = R+\{0}. We denote the support of a random variable by supp. If µ is a measure on a
group (G, ∗), then µ∗n is the n-fold convolution product of µ, that is the image of the product
measure µ⊗n by the product map G×· · ·×G→ G, (g1, . . . , gn) 7→ g1 ∗ g2 ∗ · · · ∗ gn. The symbol
t is used for the disjoint union of sets. Given a finite set Σ, a vector x ∈ RΣ, and S ⊂ Σ, set
x(S) =

∑
u∈S x(u).

2 Finitely Generated Groups and Random Walks

Given a set Σ, the free monoid it generates is denoted by Σ∗. As usual, Σ is called the alphabet,
the elements of Σ and Σ∗ are called respectively letters and words, and the subsets of Σ∗ are
called languages. The empty word is denoted by 1 and we set Σ+ = Σ∗\{1}. The concatenation
product of two elements u and v of Σ∗ is written uv. The length (number of letters) of a word
u is denoted by |u|Σ. The longest prefix of two words u and v is denoted by u ∧ v.

Consider a finitely generated group (G, ∗) with unit element 1G. The inverse of the element
u is denoted u−1. Let Σ ⊂ G be a finite set of generators of G. Throughout the paper, we
always assume that 1G 6∈ Σ and that u ∈ Σ =⇒ u−1 ∈ Σ. Denote by π : Σ∗ → G the monoid
homomorphism which associates to a word a1 · · · ak the group element a1 ∗ · · · ∗ ak. A word
u ∈ π−1(g) is called a representative of g.

The length with respect to Σ of a group element g is:

|g|Σ = min{k | g = s1 ∗ · · · ∗ sk, si ∈ Σ} . (1)

A representative u of g is a geodesic if |u|Σ = |g|Σ.

The Cayley graph X(G,Σ) of a group G with respect to a set of generators Σ is the directed
graph with set of nodes G and with an arc from g to h if g−1 ∗ h ∈ Σ. As usual, an arc from g
to h is represented graphically by g −→ h. It is often convenient to view X(G,Σ) as a labelled
graph with set of labels Σ (with u

a−→ v if u ∗ a = v). For examples of Cayley graphs, see
Figures 1 or 2. For simplicity, we draw a single undirected edge g −−g ∗ a instead of the two
directed arcs g À g ∗ a.
Observe that |g|Σ is the geodesic distance (in number of arcs) from 1G to g in the Cayley graph.

Consider a relation R ⊂ Σ∗ × Σ∗, and let ∼R be the least congruence on Σ∗ such that u ∼R v
if (u, v) ∈ R. Let M be isomorphic to the quotient monoid (Σ∗/ ∼R). We say that 〈 Σ | u =
v, (u, v) ∈ R 〉 is a monoid presentation of M .
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Given a set S, denote by F(S) the free group generated (as a group) by S. A monoid presentation
of F(S) is

〈 S t S−1 | aa−1 = 1, a−1a = 1, ∀a ∈ S 〉 . (2)

Consider a relation R ⊂ (S t S−1)∗ × (S t S−1)∗. Let G be isomorphic to the quotient group
(F(S)/ ∼R). We say that 〈 S | u = v, (u, v) ∈ R 〉 is a group presentation of G. A monoid
presentation of G is 〈 S t S−1 | u = v, (u, v) ∈ R, aa−1 = 1, a−1a = 1, ∀a ∈ S 〉.
We write, respectively, M = 〈 Σ | u = v, (u, v) ∈ R 〉 and G = 〈 S | u = v, (u, v) ∈ R 〉, precising
when necessary if we are dealing with a monoid or a group presentation.

Given two groupsG1 andG2, letG1?G2 be the free product ofG1 andG2. Roughly, the elements
of G1 ?G2 are the finite alternate sequences of elements of Σ1 = G1\{1G1

} and Σ2 = G2\{1G2
},

and the group law is the concatenation with simplification. More rigorously, set Σ = Σ1 t Σ2
and define R ⊂ Σ∗ × Σ∗ by

R = {(ab, c) | a, b ∈ Σi, c ∈ Σi ∪ 1, πi(ab) = πi(c), i ∈ {1, 2}} ,

where πi : Σ
∗
i → Gi is the canonical monoid homomorphism. Then the monoid presentation

〈 Σ | u = v, (u, v) ∈ R 〉 defines a group called the free product of G1 and G2 and denoted by
G1 ? G2.

Following [12], define a plain group as the free product of a finitely generated free group and a
finite family of finite groups. Let G = F(S) ? G1 ? · · · ? Gk be a plain group. Then

Σ = S t S−1 ti Σi, Σi = Gi\{1Gi
} , (3)

is a set of generators for G that we call natural generators. (Even for a fixed decomposition
(F(S), G1, . . . , Gk) of G, the set of natural generators is not unique as soon as #S ≥ 2, because
of the flexibility in choosing the free generators of the free group.)

Random walks. Let µ be a probability distribution over Σ. Consider the Markov chain on
the state space G with one-step transition probabilities given by: ∀g ∈ G, ∀a ∈ Σ, Pg,g∗a = µ(a).
This Markov chain is called the (right) random walk (associated with) (G,µ). It is a nearest
neighbor random walk: one-step moves occur between nearest neighbors in the Cayley graph
X(G,Σ).

Let (xn)n be a sequence of i.i.d. r.v.’s distributed according to µ. Set

X0 = 1G, Xn+1 = Xn ∗ xn = x0 ∗ x1 ∗ · · · ∗ xn . (4)

The sequence (Xn)n is a realization of the random walk (G,µ). The law of Xn is µ∗n.

Drift, entropy. The first natural question concerning the random walk (G,µ) is whether it
is recurrent or transient. Assuming transience, the next natural question is the speed at which
the random walk escapes all the finite sets.

For any u, v ∈ G, we have |u ∗ v|Σ ≤ |u|Σ + |v|Σ. It implies immediately that Un,n+m =
|xn ∗ · · · ∗xn+m−1|Σ forms a doubly-indexed subadditive sequence of r.v.’s. Applying Kingman’s
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Subadditive Ergodic Theorem [16] yields the following (first noticed by Guivarc’h [11]). There
exists γ ∈ R+ such that

lim
n→∞

|Xn|Σ
n

= γ a.s. and in Lp , (5)

for all 1 ≤ p < ∞. We call γ the drift of the random walk. Intuitively, γ is the rate of escape
to infinity of the walk.

Another quantity of interest is the entropy. The entropy of a probability measure µ with finite
support S is defined by H(µ) = −∑

x∈S µ(x) log[µ(x)]. The entropy of the random walk (G,µ),
introduced by Avez [2], is

h = lim
n

H(µ∗n)

n
= lim

n
− 1

n
log µ∗n(Xn) , (6)

a.s. and in Lp, for all 1 ≤ p < ∞. The existence of the limits as well as their equality follow
again from Kingman’s Subadditive Ergodic Theorem, see [2, 4].

3 Zero-Automatic Pairs

Let (G, ∗) be a group with finite set of generators Σ ⊂ G. A language L of Σ∗ is a cross-section
of G (over the alphabet Σ) if the restriction of π to L defines a bijection, that is if every element
of G has a unique representative in L. A word of L is then called a normal form word. The
map φ : G→ L which associates to a group element its unique representative in L is called the
normal form map.

Definition 3.1. Let G be a group with finite set of generators Σ. Define the language L(G,Σ) ⊂
Σ∗ of locally reduced words by:

L(G,Σ) = {u1 · · ·uk | ∀i ∈ {1, . . . , k − 1}, ui ∗ ui+1 6∈ Σ ∪ 1G} . (7)

We say that the pair (G,Σ) is 0-automatic if L(G,Σ) is a cross-section of G.

Such pairs were introduced and studied by Stallings in [27] under the name unique factorization
groups, a terminology that we did not adopt for several reasons. It is convenient to introduce
the sets:

∀a ∈ Σ, Next(a) =
{
b ∈ Σ | a ∗ b 6∈ Σ ∪ {1G}

}
, Prev(a) =

{
b ∈ Σ | b ∗ a 6∈ Σ ∪ {1G}

}
. (8)

Then we can reformulate (7) as:

L(G,Σ) = {u1 · · ·uk | ∀i ∈ {2, . . . , k}, ui ∈ Next(ui−1)}
= {u1 · · ·uk | ∀i ∈ {1, . . . , k − 1}, ui ∈ Prev(ui+1)} .

Here are some consequences of Definition 3.1. First, let φ : G → L(G,Σ) be the normal form
map. Then: ∀g ∈ G s.t. φ(g) = u1 · · ·uk, ∀a ∈ Σ,

φ(g ∗ a) =





u1 · · ·uk−1 if a = u−1k

u1 · · ·uk−1v if uk ∗ a = v ∈ Σ

u1 · · ·uk−1uka if uk ∗ a 6∈ Σ ∪ 1G

, (9)
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and the analog for φ(a ∗ g) also holds.

Second, the language L(G,Σ) is regular and recognized by the following automaton: Set of

states: Σ ∪ 1G, initial state: 1G, final states: Σ ∪ 1G; Transitions: a
b−→ b if a ∗ b 6∈ Σ ∪ 1G.

Third, the Cayley graph X(G,Σ) has a tree-like structure. In particular, if G is infinite then
X(G,Σ) has uniform node-connectivity 1, that is, the removal of any node disconnects the graph.

Fourth, all the group elements have a unique geodesic representative with respect to Σ, and the
set of these geodesic representatives is precisely L(G,Σ).

Fifth, the set of simple circuits going through the node 1G in X(G,Σ) is finite. In fact, this last
property is equivalent to the property that L(G,Σ) be a cross-section, see [12].

Let us now describe the pairs which are 0-automatic. The following is easy to prove.

Proposition 3.2. Consider a plain group G and a set of natural generators Σ (see §2). Then
the pair (G,Σ) is 0-automatic.

Let G = F(S) ? G1 ? · · · ? Gk and Σ = S t S−1 ti Σi, Σi = Gi\{1Gi
}. The sets Next(·),Prev(·),

defined in (8), can be explicited:

∀a ∈ S t S−1, Next(a) = Prev(a) = Σ\{a−1}, ∀a ∈ Σi, Next(a) = Prev(a) = Σ\Σi .

Conversely, next Proposition can be proved using results from Stallings [27]:

Proposition 3.3. Let (G,Σ) be a 0-automatic pair. Then G is isomorphic to a plain group.

The proof of Stallings is constructive and provides more precise information. Let ϕ be any
isomorphism from G to the plain group G̃. Then there exists a set S of natural generators of G̃
such that S ⊂ ϕ(Σ). The inclusion may be strict, but for u ∈ ϕ(Σ), we must have |u|S = 1, 2,
or 3. This is illustrated in Example 3.5.

Plain groups are hyperbolic in the sense of Gromov [10] and automatic in the sense of Epstein
& al [7]. Besides, (G,Σ) is 0-automatic iff (Σ, L(G,Σ)) is an automatic pair (in the sense of [7])
satisfying the 0-fellow traveller property. This is our justification for the chosen terminology.

Example 3.4. Consider the group G = Z ? Z/2Z ? Z/4Z. Let a, b, and c be the respective
generators of Z, Z/2Z, and Z/4Z. Set S = {a, a−1, b, c, c−1}. We have represented the Cayley
graph of G with respect to S in Figure 1.

Observe that (G,S) is not 0-automatic. For instance, c ∗ c has two representatives in L(G,S):
cc and c−1c−1; hence L(G,S) is not a cross-section. Now, let us switch from the minimal set of
generators S to the natural (but non-minimal) set of generators Σ = {a, a−1, b, c, c2, c3 = c−1}.
According to Proposition 3.2, (G,Σ) is 0-automatic. This shows that 0-automaticity is not
intrinsic: it depends on the set of generators.

Example 3.5. Consider the group G = 〈a, b | abab = 1〉. (This is the dihedral Artin group 〈a, b |
abab = baba〉 quotiented by its center.) Set Σ = {a, b, ab = (ab)−1, ba = (ba)−1, aba = b−1, bab =
a−1}. Then (G,Σ) is a 0-automatic pair. Here, Next(x) = {a, ab, aba} if x ∈ {a, ba, aba} and
Next(x) = {b, ba, bab} if x ∈ {b, ab, bab}.
Now, the groupG is isomorphic to F(a)?〈ab〉 ∼ Z?Z/2Z, see Figure 2. Set S = {a, a−1 = bab, ab}
for the corresponding set of natural generators. We have for instance |b|S = 2 and |ba|S = 3.
Concentrating on the right of Figure 2, it is not obvious that (G,Σ) is 0-automatic.
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c−1
c−1

c−1 c−1

a
a−1a−1

a

b

c c

c c

Figure 1: The Cayley graph of the group Z ? Z/2Z ? Z/4Z.

Zero-automatic pairs are studied in detail in [3, 21]. In [21], we compile several characterizations
of 0-automatic pairs, some known and some new. The following natural question is also answered
in [3, 21]: Given a plain group G and a finite set of generators Σ, is the pair (G,Σ) 0-automatic?

Another simple result proved in [21], and which will be used several times below, is the following.
The graph of successors Next(G,Σ) of a 0-automatic pair (G,Σ) is the directed graph with:

nodes: Σ, arcs: u→ v if v ∈ Next(u) . (10)

Lemma 3.6. Let (G,Σ) be a 0-automatic pair with G infinite and not isomorphic to Z. The
graph of successors Next(G,Σ) is strongly connected.

4 Random Walks on Zero-Automatic Pairs

Consider a 0-automatic pair (G,Σ). Assume that G is infinite and not isomorphic to Z or
Z/2Z ? Z/2Z. Let µ be a probability measure on Σ which generates the whole group, that is,
∪nsupp(µ

∗n) = G. Consider the random walk (G,µ).

This random walk is always transient. Indeed, in a non-amenable group, any random walk
supported by the whole group is transient and has a strictly positive drift (see [11] and [31,
Chapter 1.B] for details). And it is easily shown that the only plain groups which are amenable
are Z and Z/2Z ? Z/2Z. (Observe that nearest-neighbor random walks on Z or Z/2Z ? Z/2Z
are elementary.)

Let L(G,Σ) and φ be defined as in §3. Define the set of infinite normal form words L∞ ⊂ ΣN
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a.a

a.ab a.aba ab.b ab.ba

ab.bab

aba

bba

aba

bab

a.ab

a

bab ab

ab.bab

aba.a

aba

aa

b

bab.bab

ba

1

1

Figure 2: The Cayley graph of 〈 a, b | abab = 1 〉 with respect to {a, a−1, b, b−1} (left), and
{a, a−1, ab} (right).

by
L∞ = {u0u1 · · ·uk · · · ∈ ΣN, ∀i ∈ N, ui+1 ∈ Next(ui)} . (11)

A word belongs to L∞ iff all its finite prefixes belong to L(G,Σ). The set L∞ is the end
boundary, as well as the hyperbolic boundary, of G. Using the symbolic dynamic terminology,
it is a one-sided subshift of finite type.

Consider the map Σ × L∞ → L∞, (a, ξ) 7→ a · ξ, with a · ξ = aξ0ξ1 · · · if a ∈ Prev(ξ0),
a · ξ = (a ∗ ξ0)ξ1 · · · if a ∗ ξ0 ∈ Σ, and a · ξ = ξ1ξ2 · · · if a = ξ−10 . Equip ΣN with the Borel σ-
algebra associated with the product topology. This induces a σ-algebra on L∞. Given a measure
ν∞ on L∞ and a ∈ Σ, define the measure aν∞ by:

∫
f(ξ)d(aν∞)(ξ) =

∫
f(a · ξ)dν∞(ξ). A

probability measure ν∞ on L∞ is µ-stationary if

ν∞(·) =
∑

a∈Σ

µ(a)[aν∞](·) . (12)

Proposition 4.1. Let (Xn)n be a realization of the random walk (G,µ) and set Yn = φ(Xn).
There exists a r.v. Y∞ valued in L∞ such that a.s.

lim
n→∞

Yn = Y∞ ,

meaning that the length of the common prefix between Yn and Y∞ goes to infinity a.s. Let µ∞ be
the distribution of Y∞. The measure µ∞ is µ-stationary and is the only µ-stationary probability
on L∞.

We call µ∞ the harmonic measure of (G,µ). Intuitively, the harmonic measure gives the direc-
tion in which (Xn)n goes to infinity.

Proposition 4.2. The drift and the entropy of the random walk are given by:

γ =
∑

a∈Σ

µ(a)
[
−µ∞(a−1ΣN) +

∑

b∈Next(a)

µ∞(bΣN)
]

(13)

h = −
∑

a∈Σ

µ(a)

∫
log

[da−1µ∞
dµ∞

(ξ)
]
dµ∞(ξ) , (14)
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where dx−1µ∞/dµ∞ is the Radon-Nikodym derivative of x−1µ∞ with respect to µ∞.

In words, γ is the expected change of length of an infinite normal form distributed according
to µ∞, when left-multiplied by an element distributed according to µ. The entropy h is the
mutual information of Y1 and Y∞, or equivalently, the relative entropy of the law of (Y1, Y

∞)
with respect to the product law of Y1 and Y∞.

In the context of the free group, Propositions 4.1 and 4.2 are proved for instance in [19, Theorem
1.12, Theorem 4.10, Corollary 4.5]. Concerning the entropy, see also [5, 15]. The proofs adapt
easily to the present setting. In adapting the proof of [19, Theorem 1.12], one has to argue that
L∞ is the unique closed G-invariant and non-empty subset included in L∞. But this follows
from Lemma 3.6.

Several of the key arguments for Propositions 4.1 and 4.2 go back to Furstenberg [8, 9], see [19]
for precise references.

4.1 Markovian multiplicative measure

Define B̊ = {x ∈ RΣ | ∀u ∈ Σ, x(u) > 0,
∑

u∈Σ x(u) = 1}. Consider r ∈ B̊. Define the matrix
P of dimension Σ× Σ by

Pu,v =

{
r(v)/r(Next(u)) if v ∈ Next(u)

0 otherwise
. (15)

It is the transition matrix of a Markov Chain on the state space Σ. According to Lemma 3.6,
this Markov chain is irreducible.

Let (Un)n be a realization of the Markov chain with transition matrix P and starting from U1
such that P{U1 = x} = r(x). Set U∞ = limn U1 · · ·Un, and let ν∞ be the distribution of U∞.
Clearly the support of ν∞ is included in L∞. For u1 · · ·uk ∈ L(G,Σ), we have

ν∞(u1 · · ·ukΣN) = r(u1)Pu1,u2
· · ·Puk−1,uk

= r(u1)
r(u2)

r(Next(u1))
· · · r(uk)

r(Next(uk−1))

=
r(u1)

r(Next(u1))
· · · r(uk−1)

r(Next(uk−1))
r(uk) . (16)

We call ν∞ the Markovian multiplicative probability measure associated with r.

The measure ν∞ is in general non-stationary with respect to the translation shift τ : ΣN →
ΣN, (xn)n 7→ (xn+1)n. Indeed, the distribution of the first marginal is r which is different in
general from the stationary distribution of P .

4.2 Markovian harmonic measure

Definition 4.3 (Traffic Equations). The Traffic Equations associated with (G,µ) are the
equations of the variables x(a), a ∈ Σ, defined by: ∀a ∈ Σ,

x(a) = µ(a)
∑

u∈Next(a)

x(u) +
∑

u∗v=a

µ(u)x(v) +
∑

u∈Prev(a)

µ(u−1)
x(u)∑

v∈Next(u) x(v)
x(a) . (17)

1426



The Traffic Equations are closely related to the harmonic measure of (G,µ).

Lemma 4.4. If the harmonic measure µ∞ is the Markovian multiplicative measure associated
with r ∈ B̊, then r is a solution to the Traffic Equations (17). Conversely, if the Traffic Equa-
tions admit a solution r ∈ B̊, then the harmonic measure µ∞ is the Markovian multiplicative
measure associated with r.

Proof. Assume that the harmonic measure µ∞ is the Markovian multiplicative measure associ-
ated with some r ∈ B̊. According to Proposition 4.1, µ∞ is µ-stationary. So, applying (12), we
get, for all a ∈ Σ,

µ∞(aΣN) = µ(a)
∑

x∈Next(a)

µ∞(xΣN) +
∑

u∗v=a

µ(u)µ∞(vΣN) +
∑

x∈Prev(a)

µ(x−1)µ∞(xaΣN) .

Simplifying using (16), we obtain

r(a) = µ(a)
∑

x∈Next(a)

r(x) +
∑

u∗v=a

µ(u)r(v) + r(a)
∑

x∈Prev(a)

µ(x−1)
r(x)∑

y∈Next(x) r(y)
. (18)

Therefore, r is a solution to the Traffic Equations.

Conversely, let r ∈ B̊ be a solution to the Traffic Equations. Let ν∞ be the Markovian multiplica-
tive measure associated with r. According to Proposition 4.1, the measure ν∞ is the harmonic
measure if and only if it is µ-stationary, i.e. iff it satisfies: for all u = u1 · · ·uk ∈ L(G,Σ), k ≥ 2,

ν∞(uΣN) = µ(u1)ν
∞(u2 · · ·ukΣN)+

∑

x∗y=u1

µ(x)ν∞(yu2 · · ·ukΣN)+
∑

x∈Prev(u1)

µ(x−1)ν∞(xuΣN) .

Set q(a) = r(a)/r(Next(a)) for all a. The previous equation holds if and only if:

q(u1) = µ(u1)
q(u2) · · · q(uk−1)r(uk)
q(u2) · · · q(uk−1)r(uk)

+
∑

x∗y=u1

µ(x)
q(y)q(u2) · · · q(uk−1)r(uk)
q(u2) · · · q(uk−1)r(uk)

+
∑

x∈Prev(u1)

µ(x−1)
q(x)q(u1) · · · q(uk−1)r(uk)
q(u2) · · · q(uk−1)r(uk)

.

This is equivalent to:

r(u1) = µ(u1)r(Next(u1)) +
∑

x∗y=u1

µ(x)r(y)
r(Next(u1))

r(Next(y))
+

∑

x∈Prev(u1)

µ(x−1)
r(x)

r(Next(x))
r(u1).

(19)
Now let us prove that

Next(x ∗ y) = Next(y) . (20)

By definition, a ∈ Next(y) iff φ(y ∗ a) = ya. Using that x ∗ y ∈ Σ and applying (9), we deduce
that φ(x ∗ (y ∗ a)) = (x ∗ y)a. In particular a ∈ Next(x ∗ y). So we have Next(y) ⊂ Next(x ∗ y).
Now using that y = x−1 ∗ (x ∗ y), we conclude easily that (20) holds.
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It follows that r(Next(u1)) = r(Next(y)). So Equation (19) is equivalent to:

r(u1) = µ(u1)r(Next(u1)) +
∑

x∗y=u1

µ(x)r(y) +
∑

x∈Prev(u1)

µ(x−1)
r(x)

r(Next(x))
r(u1) .

This last equation holds since r is a solution to the Traffic Equations. We conclude that ν∞ is
indeed the harmonic measure.

Since the harmonic measure is uniquely defined, a corollary of the above is that the Traffic
Equations (17) have at most one solution x ∈ B̊. We are now ready to state the main result.

Theorem 4.5. Let G be an infinite group with finite set of generators Σ, such that (G,Σ) is
0-automatic. Assume that G is not isomorphic to Z or Z/2Z ? Z/2Z. Let µ be a probability
measure on Σ such that

⋃
n∈N∗ supp µ∗n = G. Then the Traffic Equations (17) have a unique

solution r ∈ B̊. The harmonic measure of the random walk is the Markovian multiplicative
measure associated with r.

When specializing Theorem 4.5 to the case G = F(Σ), the free group generated by Σ, we recover
the classical results of [6, 19, 25].

Corollary 4.6. Under the assumptions of Theorem 4.5, the drift is given by

γ =
∑

a∈Σ

µ(a)
[
−r(a−1) + r(Next(a))

]
, (21)

and the entropy is given by

h = −
∑

a∈Σ

µ(a)
[
log

[ 1

q(a−1)

]
r(a−1) +

∑

b|a∗b∈Σ

log
[q(a ∗ b)

q(b)

]
r(b) + log[q(a)]r(Next(a))

]
, (22)

where ∀a ∈ Σ, q(a) = r(a)/r(Next(a)).

In particular, if the probabilities µ(a), a ∈ Σ, are algebraic numbers, then the drift and the
entropy are also algebraic numbers.

We are going to prove Theorem 4.5 using a fixed point argument.

Proof of Theorem 4.5. Define the application Φ : (R∗+)
Σ −→ (R∗+)

Σ as follows. For a ∈ Σ and
for X ∈ (R∗+)

Σ,

Φ(X)(a) = µ(a)
( ∑

u∈Next(a)

X(u)
)

︸ ︷︷ ︸
A

+
∑

u∗v=a

µ(u)X(v)

︸ ︷︷ ︸
B

+X(a)
∑

u∈Prev(a)

µ(u−1)
X(u)∑

v∈Next(u)X(v)

︸ ︷︷ ︸
C

.

(23)
Hence, a solution to the Traffic Equations is a vector r ∈ B̊ such that r = Φ(r).
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Let us prove that Φ(B̊) ⊂ B̊. Consider X ∈ B̊. We consider separately the contributions from
the terms A,B, and C in

∑
a∈ΣΦ(X)(a). We have

∑

a∈Σ

Φ(X)(a) =
[∑

a∈Σ

Φ(X)(a)
]
A
+
[∑

a∈Σ

Φ(X)(a)
]
B
+
[∑

a∈Σ

Φ(X)(a)
]
C
,

with

[∑

a∈Σ

Φ(X)(a)
]
A

=
∑

u∈Σ

µ(u)
∑

v|u∗v 6∈Σ∪1G

X(v)

[∑

a∈Σ

Φ(X)(a)
]
B

=
∑

a∈Σ

∑

u∗v=a

µ(u)X(v) =
∑

u∈Σ

µ(u)
∑

v|u∗v∈Σ

X(v) ,

and

[∑

a∈Σ

Φ(X)(a)
]
C

=
∑

a∈Σ

X(a)
∑

u−1∈Prev(a)

µ(u)
X(u−1)∑

v∈Next(u−1)X(v)

=
∑

u∈Σ

µ(u)
X(u−1)∑

v∈Next(u−1)X(v)

∑

a|u−1∈Prev(a)

X(a) =
∑

u∈Σ

µ(u)X(u−1)

Collecting the three contributions, we obtain
∑

a∈ΣΦ(X)(a) =
∑

a∈Σ µ(a) = 1. We have proved

that Φ(B̊) ⊂ B̊.

Define B = {x ∈ RΣ | ∀i, xi ≥ 0,
∑

i xi = 1}. The set B is a convex compact subset of RΣ,
which suggests to look for a fixed point argument. However, Φ cannot in general be extended
continuously on B. Indeed, set Φ(X)a = A(X)+B(X)+C(X) with the same decomposition as
in (23). Clearly the maps A(X) and B(X) can be extended continuously on B. On the other
hand, C(x) can be extended iff

∑
v∈Next(u)X(v) 6= 0 for all u ∈ Prev(a).

For x ∈ B\B̊, let Φ(x) ⊂ B be the set of possible limits of Φ(xn), xn ∈ B̊, xn → x. We have
extended Φ to a correspondence Φ : B ³ B. Clearly this correspondence has a closed graph
and nonempty convex values. Therefore, we are in the domain of application of the Kakutani-
Fan-Glicksberg Theorem, see [1, Chapter 16]. The correspondence has at least one fixed point:
∃x ∈ B such that x ∈ Φ(x). Now let us prove that a fixed point x satisfies x ∈ B̊. Using the
shape of the Traffic Equations, we get that:

x(a) > 0 =⇒ [∀b ∈ Prev(a), x(b) > 0] .

The graph G with nodes Σ and arcs a → b, b ∈ Prev(a), is the graph obtained from the graph
Next(G,Σ) by reverting the direction of the arcs. Hence G is strongly connected according to
Lemma 3.6. We deduce that x must necessarily belong to B̊.

Finally, according to Lemma 4.4, there is at most one fixed point in B̊, by uniqueness of the
harmonic measure. Therefore there is exactly one r in B̊ such that Φ(r) = r and the Markovian
multiplicative measure associated with r is the harmonic measure.
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4.3 Probability of ever hitting a group element

Asymptotic properties of random walks on plain groups have been extensively studied via the
Green kernel, see [31, Chapters II-9 and III-17]. The purpose of this section is to clarify the
link between this classical approach and the results in §4.2.

For all g ∈ G, let q(g) be the probability of ever hitting g:

q(g) = P{∃n | Xn = g} . (24)

Clearly, 0 < µ∞(φ(g)ΣN) < q(g) < 1. If φ(g) = u1 · · ·uk ∈ L(G,Σ), by the strong Markov
property, we have

q(g) = q(u1)q(u2) · · · q(uk) .
Therefore, all we need to compute are the quantities q(a), a ∈ Σ. Set Σa = {b ∈ Σ | ∃c ∈
Σ ∪ 1G, a ∗ c = b}. Now, (q(a))a∈Σ has to be a solution of the set of equations: ∀a ∈ Σ,

x(a) = µ(a) +
∑

u∗v=a

µ(u)x(v) + x(a)
∑

c∈Σ\Σa

µ(c)x(c−1) . (25)

Let us justify it. The first two terms on the right-hand side are more or less obvious. Now
assume that the random walk starts with an initial step of type c ∈ Σ\Σa. Given the tree-like
structure of the Cayley graph, it has to go back to 1G before possibly reaching a. Now, the
probability of ever hitting 1G starting from c is equal to the probability of ever hitting c−1

starting from 1G. This accounts for the third right-hand term in (25).

The Equations (25) are close enough to the Traffic Equations (17). Let (r(a))a∈Σ be the unique
solution in B̊ of the Traffic Equations (Theorem 4.5). We have:

r(a) = µ(a)r(Next(a)) +
∑

u∗v=a

µ(u)r(v) + r(a)
∑

u∈Σ\Σa

µ(u)
r(u−1)

r(Next(u−1))

=⇒ r(a)

r(Next(a))
= µ(a)

∑

u∗v=a

µ(u)
r(v)

r(Next(v))
+

r(a)

r(Next(a))

∑

u∈Σ\Σa

µ(u)
r(u−1)

r(Next(u−1))
,

where we have used that [u ∗ v = a] =⇒ [Next(v) = Next(a)]. Hence q̃(a) =
r(a)/r(Next(a)), a ∈ Σ, is a solution to (25). To conclude that q = q̃, it is enough to show
that the Equations (25) have a unique solution.

Lemma 4.7. The Equations (25) have a unique solution in (0, 1)Σ, which is

∀a ∈ Σ, q(a) = P{∃n | Xn = a} = r(a)∑
v∈Next(a) r(v)

. (26)
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Proof. Define the map Φ : RΣ → RΣ as follows: Φ(x)(a) is equal to the right-hand term in
(25). Observe that Φ is a non-decreasing function (for the coordinate-wise ordering). Besides,
we have:

Φ(0, . . . , 0) = (µ(a))a∈Σ, Φ(1, . . . , 1) = (1, . . . , 1) .

Consequently, Φ(
∏

a∈Σ[µ(a), 1]) ⊂
∏

a∈Σ[µ(a), 1]. According to the above, Φ also has a fixed
point in

∏
a∈Σ(µ(a), 1) which is q̃ = (q̃(a))a∈Σ. Now let us prove that q̃ and (1, . . . , 1) are the

only fixed points of Φ in
∏

a∈Σ[µ(a), 1].

We have Φ(x) = µ+Ax+Q(x), where A is a non-negative matrix and Q(.) is a quadratic map
with non-negative coefficients. Set 1 = (1, . . . , 1). Assume that there exist two fixed points u
and v of Φ in

∏
a∈Σ[µ(a), 1] such that u ≤ v ≤ 1 and u, v,1 are all different. Then we have:

Φ(v)− Φ(u) = A(v − u) +Q(v)−Q(u) = v − u =⇒ Q(v) = Q(u) + (I −A)(v − u) ,

and similarly Q(1) = Q(u) + (I − A)(1− u). It implies that the quadratic map Q has to be a
linear map, which is not the case.

Now assume that there exist two different fixed points of Φ in
∏

a∈Σ(µ(a), 1), say u and v.
According to the above, there exists i, j, such that ui < vi, uj > vj . Set w = u ∧ v, where
the minimum is taken coordinate-wise. Since Φ is increasing, we have Φ(w) ≤ Φ(v) = v and
Φ(w) ≤ Φ(u) = u. So Φ(w) ≤ w. Therefore, we have Φ(

∏
a∈Σ[µ(a), w(a)]) ⊂

∏
a∈Σ[µ(a), w(a)].

By Brouwer Fixed Point Theorem, the continuous map Φ has a fixed point x in
∏

a∈Σ[µ(a), w(a)]
and x ≤ u, which contradicts the first part of the argument. This completes the proof.

A consequence of Lemma 4.7 is the following way of defining the harmonic measure µ∞: ∀u =
u1 · · ·uk ∈ L(G,Σ),

µ∞(uΣN) = q(u1) · · · q(uk−1)r(uk) = P{∃n | φ(Xn) = u1 · · ·uk−1}r(uk) .

Inverting the formulas (26) to get (r(a))a as a function of (q(a))a does not provide easy to
handle formulas in general. But it does for some examples. For the free group F(S) and the
free product Z/2Z ? · · · ? Z/2Z, we get respectively

r(a) =
q(a)(1− q(a−1))

1− q(a)q(a−1)
, r(a) =

q(a)

1 + q(a)
. (27)

Harmonic functions, Martin boundary, and Poisson boundary. For ξ ∈ L∞, define
Kξ : G → R+ by Kξ(x) = limnKπ(ξ[n])(x) = limn q(x

−1 ∗ π(ξ[n]))/q(π(ξ[n]), where ξ[n] is the
length n prefix of ξ. Set ξ = ξ0ξ1 · · · . For x ∈ G with φ(x) = x0 · · ·xn−1 ∈ L(G,Σ), set
k = |φ(x) ∧ ξ|Σ, the length of the longest joint prefix of φ(x) and ξ. We have

Kξ(x) =

{[
q(x−1k ) · · · q(x−1n−1)

]
/
[
q(ξ0) · · · q(ξk−1)

]
if x−1k ∈ Prev(ξk)[

q(x−1k ∗ ξk)q(x−1k+1) · · · q(x−1n−1)
]
/
[
q(ξ0) · · · q(ξk)

]
otherwise

. (28)

The minimal positive harmonic functions are the functions Kξ, ξ ∈ L∞. (This is easily proved,
for instance by adapting the argument in [19, Theorem 2.10]. Here, the only small novelty is to
have the precise expression (28) in the framework of 0-automatic pairs.)
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In particular, we recover the classical fact that the Martin boundary and minimal Martin
boundary of the random walk coincide with the end boundary L∞. (This holds in much more
general contexts, see [31, Chapter IV-26] and the references therein.) The pair (L∞, µ∞) is the
Poisson boundary.

Comparison with the literature. The importance of the Equations (25) in q is well-known.
In the seminal paper of Dynkin & Malyutov [6], these equations are explicitely solved in the free
group case, and the harmonic functions are then derived as above. In [25], the authors prove
that µ∞ is Markovian for the free group as follows: they use the expression for q obtained in [6],
they define r as in (27), and then they prove that the measure defined by ν∞(u1 · · ·ukΣN) =
q(u1) · · · q(uk−1)r(uk) is the harmonic measure. The approach of [30] is similar. For trees with
finitely many cone types, the proof in [24] that the harmonic measure is Markovian is also
centered around the analog of the Equations (25). The series version of (25) is still the main
ingredient in getting central or local limit theorems. See for instance [25, 18, 24] for nearest
neighbor random walks, and [17] for finite range random walks on free groups.

Here the proof that µ∞ is Markovian multiplicative is different and based on the Traffic Equa-
tions (17) instead of the Equations (25). This is a more direct path and the only way to proceed
in the general case since we cannot retrieve a solution to the Traffic Equations from a solution
to (25). This point becomes even clearer in the context of monoids, see §5.

5 From Groups to Monoids and Beyond

At the cost of some added technicalities in the definitions, Theorem 4.5 holds when replacing
groups by monoids. The main result is Theorem 5.3. The notion of zero-automaticity for
monoids is discussed in more details in [21].

5.1 Zero-automaticity for monoids

Let (M, ∗) be a finitely generated monoid with unit element 1M . Let Σ ⊂ M be a finite set of
generators. We always assume that 1M 6∈ Σ. Let π : Σ∗ → M be the corresponding monoid
homomorphism.

Mutatis mutandis, the following notions and notations are defined as in §2: a representative
word u ∈ π−1(m), a cross-section of M , a normal form word, the normal form map, the length
|·|Σ, a geodesic, the Cayley graph X(M,Σ). Define the language L(M,Σ) ⊂ Σ∗ of locally reduced
words by:

L(M,Σ) = {u1 · · ·uk | ∀i ∈ {1, . . . , k − 1}, ui ∗ ui+1 6∈ Σ ∪ 1M} . (29)

Define the sets Next(.),Prev(.) as in (8).

We now want a notion of 0-automaticity for monoids. The condition that L(M,Σ) is a cross-
section of M is not sufficient to get an analog of Theorem 4.5. We propose the following
definition:
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Definition 5.1. Let (M, ∗) be a monoid with finite set of generators Σ. Assume that the
language of locally reduced words L(M,Σ) is a cross-section of M . Let φ : M → L(M,Σ) be the
corresponding normal form map. Assume that: ∀u ∈M s.t. φ(u) = u1 · · ·uk, ∀a ∈ Σ,

φ(u∗a) =





u1 · · ·uk−1 if uk ∗ a = 1M

u1 · · ·uk−1v if uk ∗ a = v ∈ Σ

u1 · · ·uk−1uka if uk ∗ a 6∈ Σ ∪ 1M

, φ(a∗u) =





u2 · · ·uk if a ∗ u1 = 1M

vu2 · · ·uk if a ∗ u1 = v ∈ Σ

au1 · · ·uk if a ∗ u1 6∈ Σ ∪ 1M

.

(30)
Assume furthermore that: ∀a, b ∈ Σ such that a ∗ b ∈ Σ,

Prev(a) = Prev(a ∗ b), Next(b) = Next(a ∗ b) . (31)

Then we say that the pair (M,Σ) is 0-automatic.

Definition 5.1 is more complex than its analog for groups, Definition 3.1. For groups, the
assumption that L(G,Σ) is a cross-section implies both (30) and (31) (see Equations (9) and
(20)).

As for groups, the above definition of zero-automatic pairs has several consequences. First, the
cross-section L(M,Σ) is precisely the set of geodesics. Second, if M is infinite, then X(M,Σ)
has uniform node-connectivity 1.

Define a plain monoid to be the free product of a finitely generated free group, a finitely
generated free monoid, and a finite family of finite monoids. Given a plain monoid M =
F(S) ? Σ∗ ? M1 ? · · · ? Mk, the set of generators S t S−1 t Σ tM1\1M1

t · · · tMk\1Mk
is said

to be a set of natural generators. Next result is the counterpart of Prop. 3.2.

Proposition 5.2. The pair formed by a plain monoid and natural generators is 0-automatic.

There is no counterpart to Proposition 3.3. That is, the family of plain monoids does not
exhaust the monoids appearing in 0-automatic pairs. Consider for instance the monoids given
by the following monoid presentations:

M1 = 〈 a, b | ab = 1 〉, M2 = 〈 a, b, c | ab = 1 〉 . (32)

The monoid M1 is known as the bicyclic monoid. Set Σ1 = {a, b} and Σ2 = {a, b, c}. One can
show that (M1,Σ1) and (M2,Σ2) are 0-automatic. However, neither M1 nor M2 is isomorphic
to a plain monoid. We have represented the Cayley graphs of the two monoids in Figure 3.

The graph of successors. Let (M,Σ) be 0-automatic and define the graph of successors
Next(M,Σ) as in (10). The graph Next(M,Σ) is not always strongly connected, i.e. there is no
counterpart to Lemma 3.6. Consider for instance the monoids in (32). The graph Next(M2,Σ2)
is strongly connected, but not the graph Next(M1,Σ1).

On the other hand, the pair formed by a plain monoid and a set of natural generators
has a strongly connected graph of successors. In [26], random walks on the monoids M =
〈 a1, b1, . . . , ak, bk | a1b1 = 1, . . . , akbk = 1 〉 are considered. Except for the case k = 1, the pair
(M,Σ), Σ = {a1, b1, . . . , ak, bk}, is 0-automatic and Next(M,Σ) is strongly connected.
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Figure 3: The Cayley graphs of 〈 a, b | ab = 1 〉 (left) and 〈 a, b, c | ab = 1 〉 (right).

5.2 Random walks

Let M be a monoid with finite set of generators Σ. Let µ be a probability measure on Σ such
that

⋃
n∈N∗ supp µ∗n = M . The (right) random walk (associated with) (M,µ) is defined as in

the group case. The drift is defined as in (5) and the entropy as in (6).

¿From now on, assume that the pair (M,Σ) is 0-automatic. We make three additional assump-
tions. First, that the graph of successors Next(M,Σ) is strongly connected. Second, that M is
infinite. Third, that the random walk (M,µ) is transient.

This last assumption is not restrictive. IfM is in fact a group, see the discussion at the beginning
of §4. If M is not a group, then (M,µ) is transient. Indeed, there must exist b ∈ Σ with no
inverse. Consider c ∈ Σ such that b ∗ d = c for some d ∈ Σ. Clearly, c has no inverse either. Let
(Yn)n be a realization of the random walk on L(M,Σ). In view of (30), if Yn equals an element
ending with the letter b, then we have ∀m ≥ n, |Ym|Σ ≥ |Yn|Σ. The transience follows easily.

Define L∞ as in (11). Define a µ-stationary probability measure as in (12). The analog of
Proposition 4.1 holds. Indeed, the proof of Proposition 4.1 given in [19, Theorem 1.12] translates
to the new setting. In particular, to get the uniqueness of the µ-stationary measure, one uses
the assumption that Next(M,Σ) is strongly connected.

So the harmonic measure µ∞ of the random walk is well-defined. The formulas for the drift
and the entropy are now:

γ =
∑

a∈Σ

µ(a)
∑

b∈Σ

(
|a ∗ b|Σ − |b|Σ

)
µ∞(bΣN), h = −

∑

a∈Σ

µ(a)

∫
log

[dµ∞(a ∗ ·)
dµ∞

(ξ)
]
dµ∞(ξ) ,

with obvious notations for the entropy. Once again, this is proved by slightly modifying the
arguments in [19, Theorem 4.10, Corollary 4.5].

The Traffic Equations are defined by: ∀a ∈ Σ,

x(a) = µ(a)
∑

u∈Next(a)

x(u) +
∑

u∗v=a

µ(u)x(v) +
∑

t∗u=1M ,u∈Prev(a)

µ(t)
x(u)∑

v∈Next(u) x(v)
x(a) . (33)
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The proof of Lemma 4.4 carries over. The only modification is that the equality [Next(x ∗ y) =
Next(y)] which was proved in the group case (see (20)), is now true by definition (see (31)).

All the ingredients are in place to state the extension of Theorem 4.5 for monoids. The proof
of Theorem 4.5 can be used, mutatis mutandis, to prove Theorem 5.3.

Theorem 5.3. Let M be an infinite monoid with finite set of generators Σ, such that (M,Σ)
is 0-automatic. Assume that the graph of successors Next(M,Σ) is strongly connected. Let µ
be a probability measure on Σ. Assume that

⋃
n∈N∗ supp µ∗n = M and that the random walk

(M,µ) is transient. Then the Traffic Equations have a unique solution r ∈ B̊. The harmonic
measure of the random walk is the Markovian multiplicative measure associated with r. The
drift is given by:

γ =
∑

a∈Σ

µ(a)
[
−

∑

b|a∗b=1M

r(b) + r(Next(a))
]
,

and the entropy is given by:

h = −
∑

a∈Σ

µ(a)
[ ∑

b|a∗b=1M

log
[ 1

p(b)

]
r(b) +

∑

b|a∗b∈Σ

log
[p(a ∗ b)

p(b)

]
r(b) + log[p(a)]r(Next(a))

]
,

where ∀a ∈ Σ, p(a) = r(a)/r(Next(a)).

Define q(a), the probability of ever hitting a, as in (24). The results of §4.3 do not extend to
the monoid case. Indeed there is no direct link anymore between the Traffic Equations and the
equations defining q. This is best understood on an example.

Let B = 〈 a | a2 = a 〉 be the Boolean monoid, let G be a non-trivial finite group (Σ1 =
G\{1G}), and consider the free product B ? G. Here are the respective equations satisfied by
r(a)/r(Next(a)) = r(a)/r(Σ1) and by q(a):

r(a)/r(Σ1) = µ(a) + µ(a)r(a)/r(Σ1) + r(a)/r(Σ1)
∑

b∈Σ1

µ(b)r(b−1)/r(a)

q(a) = µ(a) + q(a)
∑

b∈Σ1

µ(b)q(b−1) .

There is an additional term in the first equation with respect to the second.

5.3 Beyond monoids

To delimit the precise role of the group or monoid assumption in Theorems 4.5 and 5.3, we may
consider the following model.

Let Σ be a finite set. Consider a map f : Σ × Σ → 1 ∪ Σ ∪ Σ2 such that f(a, b) ∈ Σ2 =⇒
f(a, b) ∈ aΣ. Define the map Ψ : Σ∗ → Σ∗ recursively as follows: (i) ∀x ∈ 1 ∪ Σ,Ψ(x) = x; (ii)
if Ψ(u1 · · ·un) = v1 · · · vk then Ψ(u1 · · ·unun+1) = v1 · · · vk−1f(vk, un+1).
Let µ be a probability measure on Σ, let (xn)n∈N be a sequence of i.i.d. r.v.’s with law µ.
Define the Σ∗-valued Markov chain (Yn)n by Yn = Ψ(x0 · · ·xn−1). This is a generalization of
the previous group and monoid random walks, with f replacing the group or monoid law.
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Assume that f and µ are such that the Markov chain (Yn)n is transient, i.e. limn |Yn|Σ = ∞
a.s. Define the ΣN-valued r.v. Y∞ = limn Yn and let µ∞ be its law. (The limit exists since the
chain is transient and since the dynamic affects only the last letter of a word).

Proposition 5.4. The measure µ∞ is a Markovian measure. That is, there exist a vector r
of dimension Σ and a stochastic matrix P of dimension Σ × Σ such that µ∞(u1 · · ·unΣN) =
r(u1)Pu1,u2

· · ·Pun−1,un.

Proof. Consider the realization (Yn)n of the random walk defined on the canonical product
space ΣN equipped with the product measure µ⊗N. By definition, Yn(w) = Ψ(w[n]), where w[n]
is the prefix of length n of w ∈ ΣN. Set Y∞(w) = limn Yn(w).

The idea of the proof is simple and goes as follows. If Y ∞(w) = u1 · · ·ui · · · , then there is a
last integer ni such that Yni

(w) = u1 · · ·ui, and we can parse the trajectories according to the
sequence (ni)i. We use in an essential way the fact that Yn and Yn+1 differ only by the last
letter.

Fix u = u1 · · ·uk ∈ Σk, k ≥ 2, such that µ∞(uΣN) > 0. Define

S =
{
w ∈ ΣN | Y∞(w) ∈ u1 · · ·ukΣN}, Sx =

{
w ∈ ΣN | Y∞(w) ∈ u1 · · ·ukxΣN} .

Observe that S =
⊔

x∈Σ Sx: the set S is the disjoint union of the sets Sx. Besides,

µ∞(uxΣN)/µ∞(uΣN) = µ⊗N(Sx)/µ
⊗N(S) . (34)

Define also
T =

{
w ∈ Σ∗ | Ψ(w) = u1 · · ·uk

}
.

Now, define for all a ∈ Σ ∪ 1 and b ∈ Σ,

Ua,b =
{
w ∈ Σ∗ | Ψ(w) = b, ∀1 ≤ n ≤ |w|Σ, aΨ(w[n]) ∈ aΣ+

}
.

At last, define for all a ∈ Σ,

Va =
{
w ∈ ΣN | ∀n ≥ 1, aΨ(w[n]) ∈ aΣ+

}
.

Observe that Va = tb Ua,bVb. Consider w ∈ S and set τ = sup{n | Ψ(w[n]) = u1 · · ·uk}. We
have w ∈ (T ∩ Στ )Vuk

. Besides, the sets [(T ∩ Σn)Vuk
]n are clearly disjoint. Consider now

w ∈ Sx. Set τ
′ = sup{n | Ψ(w[n]) = u1 · · ·ukx}. We have w ∈ (T ∩ Στ )(Uuk,x ∩ Στ ′−τ )Vx. The

sets [(T ∩ Σn1)(Uuk,x ∩ Σn2)Vx]n1,n2
are disjoint. Hence we get

S =
⊔

n∈N

(T ∩ Σn)Vuk
, Sx =

⊔

n1,n2∈N

(T ∩ Σn1)(Uuk,x ∩ Σn2)Vx .

Therefore,

µ⊗N(Sx) =
∑

n1,n2∈N

µ⊗N((T ∩ Σn1)(Uuk,x ∩ Σn2)Vx

)

=
∑

n1,n2∈N

µ⊗N(T ∩ Σn1)µ⊗N(Uuk,x ∩ Σn2)µ⊗N(Vx) = µ⊗N(T )µ⊗N(Uuk,x)µ
⊗N(Vx)

µ⊗N(S) =
∑

n∈N

µ⊗N((T ∩ Σn)Vuk

)
=
∑

n∈N

µ⊗N(T ∩ Σn)µ⊗N(Vuk
) = µ⊗N(T )µ⊗N(Vuk

) .
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Using (34), we get

µ∞(uxΣN)

µ∞(uΣN)
=
µ⊗N(Sx)

µ⊗N(S)
=
µ⊗N(Uuk,x)µ

⊗N(Vx)

µ⊗N(Vuk
)

= Puk,x ,

and, with a similar argument, for all a ∈ Σ,

µ∞(aΣN) =
µ⊗N(U1,a)µ

⊗N(Va)∑
x∈Σ µ

⊗N(U1,x)µ⊗N(Vx)
= r(a) .

This completes the proof.

As opposed to the group or monoid case, the measure µ∞ is Markovian but not necessarily
Markovian multiplicative. Hence the crucial link, via Lemma 4.4, with the Traffic Equations is
cut. It is not possible anymore to characterize µ∞ using the Traffic Equations. To illustrate
this last point, consider the following example.

Example 5.5. Consider the monoid M = 〈 a, b, c | ac = a, cb = b, c2 = c 〉, the generators
Σ = {a, b, c}, and a transient random walk on (M,Σ). Here L(M,Σ) is a cross-section and
(30) holds but not (31): {b} = Prev(c) 6= Prev(c ∗ b) = Prev(b) = {a, b}. Therefore, the pair
(M,Σ) is not 0-automatic. However, we are in the domain of application of Proposition 5.4.
Furthermore, |Yn+1|Σ ≥ |Yn|Σ. Consequently µ∞ can be explicitly determined using elementary
arguments. In particular, we have

µ∞(aΣN) = µ(a), µ∞(bΣN) = µ(b) + µ(c)
µ(b)

µ(a) + µ(b)
, µ∞(cΣN) = µ(c)

µ(a)

µ(a) + µ(b)
,

and for instance

µ∞(aaΣN) = µ(a)
µ(a)

µ(a) + µ(b)
6= µ∞(aΣN)

µ∞(aΣN)

µ∞(aΣN) + µ∞(bΣN)
.

This last equation shows that µ∞ is not Markovian multiplicative.

Trees with finitely many cone types. In [24], the authors prove that a transient Near-
est Neighbor (NN) random walk on a Tree with Finitely Many Cone Types (TFMCT) has a
Markovian ‘harmonic measure’. Let us compare more closely the result from [24] and Theorems
4.5 and 5.3.

Let (M,Σ) be a 0-automatic pair, and let φ : M → L(M,Σ) be the normal form map. Define
the directed and labelled tree T (M,Σ) with set of nodes M and arcs:

u
a−→ v, a ∈ Σ, if φ(v) = φ(u)a or φ(u) = φ(v)b, b ∗ a = 1M .

Let Tx(M,Σ), x ∈ M, be the cone rooted at x, that is, the subtree of T (M,Σ) with nodes
{u | φ(u) ∈ φ(x)Σ∗}. Then Tx(M,Σ) and Ty(M,Σ) are isomorphic as soon as φ(x) and φ(y)
end up with the same letter. In particular, T (M,Σ) is a TFMCT.

Now consider the random walk (M,µ) where µ is a probability on Σ. There are three possible
types of one-step moves, see (30): the lines 1 and 3 in (30) correspond to one-step moves between
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adjacent nodes in T (M,Σ), the line 2 corresponds to a one-step move between nodes at distance
2 in T (M,Σ).

To summarize, we have a non-NN random walk on a specific type of TFMCT. It is not straight-
forward to adapt the proof of Markovianity of the harmonic measure in [24] to such a random
walk. There are two difficulties: (i) the steps at distance 2; (ii) the fact that the TFMCT is not
irreducible in the sense of [24]. On the other hand, the approach via the Traffic Equations has no
chance to apply to a general NN random walk on a TFMCT. Indeed, the Traffic Equations yield
a Markovian multiplicative harmonic measure, whereas the harmonic measure is Markovian but
not Markovian multiplicative in [24]. In the same spirit, see also Proposition 5.4.

6 Examples

In small examples, the Traffic Equations can be completely solved to provide closed form ex-
pressions for the harmonic measure, the drift, or the entropy. We illustrate this on a couple of
examples. The computations have been carried out using Maple.

Denote the cyclic group of order 2 by Z2 = Z/2Z and the Boolean monoid by B (monoid
presentation: B = 〈x | x2 = x 〉). Consider the free product Z2 ?B?B, and denote the respective
generators by a, b, and c. Let µ be a non-degenerate probability measure on {a, b, c}. The
Traffic Equations can easily be solved. The unique solution in B̊, which defines the harmonic
measure, is:

r(a) =
µ(a)

1 + µ(a)
, r(b) =

µ(b)

1− µ(a)2
, r(c) =

µ(c)

1− µ(a)2
.

The drift is then:

γ =
1− 2µ(a)2(1− µ(a))− µ(a)2 − µ(b)2 − µ(c)2

1− µ(a)2
.

Consider now a free product of the form M = Ma ? Mb ? Mc ? Md, where Mi is equal either to
Z2 or to B. Let ai be the generator of Mi. We consider the simple random walk on M , that
is the random walk defined by µ : ∀i, µ(ai) = 1/4. In Fig. 4, we have represented this random
walk for Z2 ? Z2 ? Z2 ? B. (Recall that the undirected edges −− correspond to two directed arcs
À.)

The values of the drift for all the possible cases are given in the Table below.

Z2 ? Z2 ? Z2 ? Z2 Z2 ? Z2 ? Z2 ? B Z2 ? Z2 ? B ? B Z2 ? B ? B ? B B ? B ? B ? B

γ 1/2 (12 + 3
√
2)/28 (6 +

√
3)/12 7/10 3/4

The values 1/2, 7/10, and 3/4, can be obtained by elementary arguments without having to
solve the Traffic Equations. For instance consider the case M = Z2 ? B ? B ? B. Denote by
z, resp. b, the set of elements of M whose normal form representatives end with the letter a1
(the generator of Z2), resp. with one of the letters a2, a3, a4 (the generators of the copies of
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1/4

1/4

1/4

1/4

1/4

1/4

1/4
1/4

Figure 4: The simple random walk on Z2 ? Z2 ? Z2 ? B.

B). When we are far from 1M , the random walk on M induces a Markov chain on {z, b} with
transition matrix P defined by: P (b, b) = 3/4, P (b, z) = 1/4, P (z, b) = 1, P (z, z) = 0. The
corresponding stationary distribution π is given by: π(b) = 4/5, π(z) = 1/5. According to the
Ergodic Theorem for Markov chains, we have: γ = π(b)× (3/4) + π(z)× (1/2) = 7/10.

On the other hand, the values (12 + 3
√
2)/28 and (6 +

√
3)/12 cannot be retrieved using such

elementary arguments. Here it is necessary to solve the Traffic Equations.
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on groups, VIII, volume 1210 of Lecture Notes in Math., pages 241–284. Springer, Berlin,
1986.

1439



[6] E. Dynkin and M. Malyutov. Random walk on groups with a finite number of generators.
Sov. Math. Dokl., 2:399–402, 1961.

[7] D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, and W. Thurston. Word processing
in groups. Jones and Bartlett, Boston, 1992.

[8] H. Furstenberg. Noncommuting random products. Trans. Amer. Math. Soc., 108:377–428,
1963.

[9] H. Furstenberg. Random walks and discrete subgroups of Lie groups. In Advances in
Probability and Related Topics, Vol. 1, pages 1–63. Dekker, New York, 1971.

[10] M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math. Sci. Res.
Inst. Publ., pages 75–263. Springer, 1987.

[11] Y. Guivarc’h. Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire.
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