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Abstract

In this note we consider the time of the collision τ for n independent copies of
Markov processes X1

t , . . . , X
n
t , each starting from xi, where x1 < . . . < xn. We show

that for the continuous time random walk IPx(τ > t) = t−n(n−1)/4(Ch(x) + o(1)),
where C is known and h(x) is the Vandermonde determinant. From the proof one
can see that the result also holds for Xt being the Brownian motion or the Poisson
process. An application to skew standard Young tableaux is given.
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1 Introduction and the results

In this note Xt is either a standard Brownian motion (SBM) Wt or the standard symmetric
continuous time random walk (CTRW). Recall that a compound Poisson process with
intensity parameter λ = 1 and jump distribution 1

2
δ−1 + 1

2
δ1 is called CTRW; see also

Asmussen [2, page 99], with his µ = δ = 1
2
. We consider a sequence X1

t , . . . , X
n
t of

independent copies of Xt, each starting from X i
0 = xi. We assume that x ∈ W = {y ∈

IRn : y1 < y2 < . . . < yn}. Two processes X i
t and Xj

t collide at τij = min{t > 0 : X i
t = Xj

t }.
The time of the collision is τ = min1≤i<j≤n τij.

Let x = (x1, . . . , xn) and let

h(x) = det
[(
xj−1
i

)n
i,j=1

]

be the Vandermonde determinant. Our aim is the proof of the following theorem. The
Brownian part was first given by Grabiner [6], see also a new proof of Doumerc and
O’Connell [4] which uses the representation of collision time obtained there, and an ele-
mentary proof of PuchaÃla [11].

Theorem 1.1 For t→∞
IPx(τ > t) ∼ Ch(x)t−n(n−1)/4, (1.1)

where

C =
(2π)−n/2
∏n−1

j=1 j!

∫

W

e−
|y|2

2 h (y) dy. (1.2)

We also remark that from the theorem proof and Proposition 6.1 from Doumerc and
O’Connell [4] we may immediately conclude that the theorem also holds for Xt being the
Poisson process with unit intensity. Following Mehta [10, page 354], we may rewrite the
constant C in (1.2) in the following form:

C =
1∏n
j=1 j!

n∏

j=1

Γ
(
1 + j

2

)

Γ
(
1 + 1

2

) . (1.3)

The proof is based on the following recent result by Doumerc and O’Connell [4], which
expresses IPx(τ > t) in terms of Pfaffians. Let P = (pij)

n
i,j=1, where pij = pij(t) =

IPxi,xj(τij > t) for i ≤ j and pij = −pji. Then

IPx(τ > t) =

{
Pf(P ) if n is even,∑n

l=1(−1)l+1Pf(P (l)) if n is odd,
(1.4)

where P (l) = (pij)i,j 6=l. By Pf we denote the Pfaffian. To recall this notion, let for n even
P2(n) be the set of partitions of {1, . . . , n} into n

2
pairs and c(π) is the number of crossings.

For a given skew–symmetric matrix A = (aij)
n
i,j=1 we define the Pfaffian

Pf(A) =
∑

π∈P2

(−1)c(π)
∏

{i<j}∈π

aij .
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In particular we have the formula:

Pf(A) =
√

det(A).

The paper is organized as follows. In Section 2 we give some preliminary ideas and
we state without proofs two key lemmas and a proposition. We work out special cases for
the Brownian motion and the continuous time random walk in Section 3. An application
to Young tableaux is given in Section 4. There is also mentioned some relationship of
Theorem 1.1 with Markovian tandem queues. Proofs are given in Section 5.

2 Preliminaries

We need some technical facts. Suppose that x ∈ Rn and n ∈ 2N. If

Ak(xi) =
k∑

l=0

ak,2l+1x
2l+1
i

are odd polynomials of degree 2k + 1, and Q = (qij(t))
n
i,j=1, where

qij(t) =
∞∑

k=0

t−kAk(xj − xi), (2.5)

then Pf(Q) can be written in the form

Pf(Q) =
∞∑

k=0

t−kWk(x) (2.6)

for some polynomials Wk(x). A simple argument shows that Wk(x) is a polynomial of
degree 2k + n

2
. Furthermore Pf(Q) is a skew–symmetric polynomial of variable x (that is

Pf(Q(σx)) = sign(σ)Pf(Q(x)) ). Hence we conclude that all polynomials Wk must be skew
symmetric polynomials too. We will also use the generalized Vandermonde determinant

hl(x) = det[(x
lj
i )ni,j=1],

where l = (l1, . . . , ln). The special case is the Vandermonde determinant when l =
(0, 1, . . . , n− 1). Since generalized Vandermonde determinants creates basis for skew poly-
nomials (see Macdonald [8, page 24]) we can write Wk as a linear combination of generalized
Vandermonde determinants.

The following lemmas will be useful in calculating asymptotics, which proofs will be
demonstrated in Section 5. Notice that in both the lemmas we suppose that n is even,
because only for this case Pfaffian is defined.
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Lemma 2.1 If n is even, then

Wn(n−2)/4(x) = Ceven(n)h(x),

where

Ceven(n) = det

[(
ai+j,2j+2i+1

(
2i+ 2j + 1

2i

))n/2−1

i,j=0

]
. (2.7)

Lemma 2.2 If n is even, then

Wn2

4

(x) =
∑

|u|≤n(n+1)/2

Cuhu(x).

In particular

C(1,2,...,n) = (−1)(n/2) det

[(
ai+j−1,2i+2j−1

(
2i+ 2j − 1

2i

))n
2

i,j=1

]

= Codd(n) . (2.8)

The next proposition will be the key to calculate asymptotics.

Proposition 2.3 If n ∈ 2N then

lim
t→∞

Pf(Q)tn(n−2)/4 = Ceven(n)h(x) .

If n ∈ 2N + 1 then

lim
t→∞

n∑

l=1

(−1)l+1Pf(Q(l))t
(n−1)2/4 = Codd(n− 1)h(x) .

Notice that constants Ceven(n) and Codd(n) depend only on coefficients ak,2k+1. The above
lemmas and the proposition will be proved in Section 5.

3 Special cases

We find here details of expansions (2.5) for two special cases, from which with the use of
Proposition 2.3 we may conclude the result of Theorem 1.1.

3.1 Brownian motion

To calculate pij(t) we will use the reflection principle:

pij(t) = IP(xi,xj)(τ > t) = IP0(−(xj − xi) < B2t ≤ xj − xi).
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Lemma 3.1 For t > 0

IP0(−x < B2t ≤ x) =
1√

2π2t
ψ2t(x) =

1√
2π2t

∞∑

k=0

a2k+1x
2k+1(2t)−k,

where

a2k+1 =
(−1)k

(2k + 1)2k−1k!
. (3.9)

Proof. We have

ψ2t(x) = 2

∫ x

0

e−y
2/(2·2t) dy = 2

∫ x

0

∞∑

k=0

(−1)k

k!

(
y2

2 · 2t

)k

dy

=
∞∑

k=0

a2k+1x
2k+1(2t)−k.

¤

Setting qij(t) = ψ2t(xj − xi), the assumptions of Proposition 2.3 are satisfied with

ak,l = 0 if l 6= 2k + 1,
ak,l = a2k+1 if l = 2k + 1.

We have

Pf(P ) = Pf

(
1√

2π2t
Q

)
=

(
1√

2π2t

)n/2

Pf(Q) .

Using formula (1.4) and Proposition 2.3 we obtain:
for n even:

lim
t→∞

(2π2t)n/4IPx(τ > t)(2t)n(n−2)/4 = Ceven(n)h(x),

and for n odd:

lim
t→∞

(2π2t)(n−1)/4IPx(τ > t)(2t)(n−1)2/4 = Codd(n− 1)h(x) ,

where the constants are defined in (2.7) and (2.8) respectively.
We can rewrite above

lim
t→∞

IPx(τ > t)tn(n−1)/4 = (2π)−n/42−n(n−1)/4Ceven(n)h(x),

and for n odd:

lim
t→∞

IPx(τ > t)tn(n−1)/4 = (2π)−(n−1)/42−n(n−1)/4Codd(n− 1)h(x) ,

In Section 5.4 we find another expressions for Ceven(n) and Codd(n), which gives an
alternative proof of Grabiner theorem (see Grabiner [6], Dourmerc and O’Connell [4], or
PuchaÃla [11]).
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3.2 CTRW

Let St be the standard symmetric CTRW. Following Asmussen [2, page 99] (with his
µ = δ = 1/2)

IP0(St = r) = e−tIr(t),

where Ir(t) is the modified Bessel function of order r. As in the Brownian case to calculate
pij we will use the reflection principle.

pij(t) = IP(xi,xj)(τ > t) = IP0(−(xj − xi) < S2t ≤ xj − xi) .

We need the asymptotic of

IP0(−x < St ≤ x) = 2
x−1∑

i=1

IP0(St = i) + IP0(St = 0) + IP0(St = x) .

For this we define

βt (r) =
∞∑

k=0

(−1)k (r, k)

(2t)k
,

where

(r, k) =
(4r2 − 12) (4r2 − 32) . . .

(
4r2 − (2k − 1)2)

22kk!
.

Recall that a function ft has the asymptotic expansion
∑∞

k=0 ckt
−k at ∞ if ft −∑n

k=0 ckt
−k = o(t−n) for all n = 0, 1 . . .. In this case we write ft '

∑∞
k=0 ckt

−k. For details
and basic facts on the asymptotic expansions we refer to Knopp [7]. By Watson [13, page
203] we have √

2πtIP0 (St = r) ' βt(r). (3.10)

Thus

IP(−x < St ≤ x) ' 1√
2πt

(
2
x−1∑

i=1

βt(i) + βt(0) + βt(x)

)

as t→∞. Define

ϕt(x) = 2
x∑

i=1

βt(i) + βt(0)− βt(x)

=
∞∑

k=0

Aϕ
k (x)t−k .

Setting qij(t) = ϕ2t(xj − xi), the assumptions of Proposition 2.3 are satisfied with

Ak(x) = Aϕ
k (x) .
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Hence we have (remember about doubling t)

√
2π2tpij(t) '

∞∑

k=0

Aϕ
k (xj − xi)(2t)

−k. (3.11)

Thus

Pf(P ) ' Pf

(
1√

2π2t
Q

)
= Pf

(
1√

2π2t

∞∑

k=0

Aϕ
k (xj − xi)(2t)

−k

)
.

Lemma 3.2 (see [14])

n∑

i=1

ip = np +

p∑

k=0

Bkp!

k! (p− k + 1)!
np−k+1 ,

where Bk are Bernoulli numbers.

In the next lemma we study polynomials Aϕ
k (x).

Lemma 3.3 Aϕ
k (x) is an odd polynomial (that is with even coefficient vanishing) of order

2k + 1 with the leading coefficient a2k+1 defined in (3.9). That is

Aϕ
k (x) =

k∑

i=1

ak,2i+1x
2i+1,

where ak,2k+1 = a2k+1.

Proof. We have that

2
x−1∑

i=1

i2m + x2m

is an odd polynomial of order 2m + 1 with the leading coefficient 2
2m+1

. This is because

B0 = 1, B1 = −1
2

and B2l+1 = 0 for l ≥ 1 and

2
x−1∑

i=1

i2m + x2m = 2
x∑

i=1

i2m − 2x2m + x2m

= 2x2m + 2
2m∑

k=0

Bk (2m)!

k! (2m− k + 1)!
x2m−k+1 − x2m .

Hence the above equals to

2

2m+ 1
x2m+1 + 2

2m∑

k=2

Bk (2m)!

k! (2m− k + 1)!
x2m−k+1 .
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Using now Proposition 2.3 we get: for n ∈ 2Z

lim
t→∞

(2π2t)n/4IPx(τ > t)(2t)n(n−2)/4 = Ceven(n)h(x)

and for n ∈ 2N + 1 we have

lim
t→∞

(2π2t)(n−1)/4IPx(τ > t)(2t)(n−1)2/4 = Codd(n− 1)h(x) ,

where the constants are defined in (2.7) and (2.8) respectively. Therefore this case is
identical to the Brownian case, which completes the proof of Theorem 1.1. We must notice
that above considerations are valid for Poisson process Nt, this is because difference of two
independent Poisson processes with intensity 1 is a CTRW with intensity 2.

N1
t −N2

t =d S2t,

so all calculations are identical.

4 Applications

Since the result of Theorem 1.1 is also valid in the case of independent Poisson processes,
we can apply it to obtain an aymptotics for Young tableaux, which generalizes some earlier
results of Regev[12].

Thus let Xt = (X1
t , . . . , X

n
t ) be vector of independent Poisson processes with intensity

1 starting from x ∈ W . Let σm denote the time of the m-th transition of Xt, and let
T = min{m > 0 : Xσm /∈W}. Observe that

IPx (τ > t) = IP(T > Nt) , (4.12)

where Nt = max{m : σm ≤ t} is a Poisson process with intensity n independent of T .

For integer partitions λ and µ with µ ≤ λ, let fλ/µ denote the number of skew standard

tableaux with shape λ/µ. Set δ = (n − 1, n − 2, . . . , 1, 0). We denote by λ̃1 the hight of
the Young diagram defined by partition λ (the number of boxes in the first row of the
conjugate diagram), see for definitions Fulton[5]. Put

φ̄(k) = n−k
∑

λ`k,λ̃1≤n

fλ/µ . (4.13)

The key observation relating our theorem with Young tableaux is that

φ̄(k) = IP(T > k),

which together with (4.13) links the exit time theory with Young tableaux. The following
corollary extends the asymptotics obtained by Regev[12] from Young tableaux to skew
Young tableaux.
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Corollary 4.1 As k →∞
∑

λ`k,λ̃1≤n

fλ/µ ∼ nk
(
k

n

)−n(n−1)/4
h(µ+ δ)

h(δ)

(2π)−n/2

n!

∫

IRn

e−|y|
2/2|h(y)|dy .

Proof. Let Nt be a Poisson variable with intensity nt. We first show that for each a > 0,
and g(t) ∼ ct−b, where c > 0 and 0 < b < 1/2 we have

lim
t→∞

taIP

(∣∣∣∣
Nt − nt

t

∣∣∣∣ > ct−b
)

= 0 . (4.14)

For the proof, without loss of generality, we may assume n = 1. The Fenchel-Legendre
transform for random variable X − 1, where X is Poisson distributed with mean 1 is

Λ∗(x) =

{
(1 + x) log(1 + x)− x x > −1,

∞ x ≤ −1 .

see Dembo and Zeitouni [3, page 35]. Note that Λ∗(x) = x2

2
+ o(x2) for x → 0. Following

Dembo and Zeitouni [3, page 27] we have the inequality: for all t nonnegative integer

IP

(∣∣∣∣
Nt − t

t

∣∣∣∣ > ct−b
)
≤ 2 exp(−t inf

x∈F
Λ∗(x)), (4.15)

where F = (−∞,−g(t)] ∪ [g(t),∞), which the inequality can be extended to all t ≥ 0.
Since

inf
x∈F

Λ∗(x) = (1 + g(t)) log(1 + g(t))− g(t) =
g2(t)

2
+ o(g2(t))) ,

we have

t inf
x∈F

Λ∗(x) = t

(
g2(t)

2
+ o(g2(t))

)
∼ ct1−2b

2

as t→∞. Thus from (4.15) the proof of (4.14) follows.
Observe now that

IPx(τ > t) = IPx(τ > t, |Nt − nt| < k − nt)

+IPx(τ > t, |Nt − nt| ≥ k − nt)

≥ φ̄(k)IP(|Nt − nt| < k − nt) (4.16)

and similarly
IPx(τ > t) ≤ φ̄(k) + IP(|Nt − nt| > nt− k) . (4.17)

We relate t and k above by t(k) = k−k3/4

n
and then

φ̄(k)

(
k

n

)n(n−1)/4

≥ IPx(τ > t(k))

(
k

n

)n(n−1)/4

− IP(|Nt(k) − nt(k)| > k − nt(k))

(
k

n

)n(n−1)/4

.
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By (4.14)

IP

(∣∣∣∣
Nt(k) − nt(k)

t(k)

∣∣∣∣ >
nk3/4

k − k3/4

)(
k

n

)n(n−1)/4

→ 0 ,

as k →∞. We also have by Theorem 1.1

IPx(τ > t(k))

(
k

n

)n(n−1)/4

= IPx(τ > t)tn(n−1)/4

(
k

k − k3/4

)n(n−1)/4

→ Ch(x),

where C is from (1.2). Hence by (4.16) we have

Ch(x) ≤ lim inf
k→∞

φ̄(k)

(
k

n

)n(n−1)/4

.

In the similar way, using (4.17) with t(k) = (k + k3/4)/n, we prove

lim sup
k→∞

φ̄(k)

(
k

n

)n(n−1)/4

≤ Ch(x).

which completes the proof of the corollary.
¤

¿From the corollary we have that for k →∞
∑

λ`k,λ̃1≤n

fλ/µ ∼
h(µ+ δ)

h(δ)

∑

λ`k,λ̃1≤n

fλ.

Note that following Regev [12, (F.4.5.1)]

∑

λ`k,λ̃1≤n

fλ = S(1)
n (k)

∼
√
n
n(n−1)/2

n!
Γ

(
3

2

)−n n∏

j=1

Γ

(
1 +

1

2
j

)(
1√
k

)n(n−1)/2

nk (4.18)

Now by (1.2) and (1.3) the right hand side of (4.18) equals

S(1)
n (k) ∼

√
n
n(n−1)/2 1

n!
Γ

(
3

2

)−n n∏

j=1

Γ

(
1 +

1

2
j

)(
1√
k

)n(n−1)/2

nk

= nk
(
k

n

)−n(n−1)/4
1

n!

n∏

j=1

Γ(1 + j
2
)

Γ(1 + 1
2
)

= nk
(
k

n

)−n(n−1)/4
(2π)−n/2

n!

∫

Rn
e−

|y|2

2 |h(y)|dy.
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The exit time result of the type like in Theorem 1.1 has also an application to the series
of queues M/M→ . . .→M/1 with n−1 stations, with service rate µi on the i-th station and
arrival rate µ0. Correspondingly we consider independent Poisson processes X1

t , . . . , X
n
t

with intensity µi−1 respectively and τ is the collision time. We observe that for 0 ≤ t ≤ τ ,
the queue size at the i-th station is Qi(t) = X i−1

t −X i
t , if there is at t = 0, qi = xi−1−xi > 0

jobs at i-th station. Thus in terms of the theory of queues, τ is the moment for the first
time a station is empty. Define γ = (

∏n−1
j=0 µj)

1/n and β1 = µ0/γ, βj = µ0 · · ·µj−1/γ
j. Let

α =
∑n−1

j=0 µj/n. Massey [9] showed that, if βj < 1

IPx(τ > t) = O

(
exp(−(n)(α− γ)t)

t
√
tn−1

)
.

No exact asymptotic is known. However for the case when µ0 = µ1 = . . . = µn−1, that is
not fulfilling conditions of Massey [9], our Theorem 1.1 shows the right asymptotics. The
exact asymptotics for IPx(τ > t) in the case of independent but not necessarily identically
distributed process X1

t , . . . , X
n
t is an open problem.

5 Proofs

In this section we show details of proofs. We use the following vector notations. By
l = (l1, . . . , ln), k = (k1, . . . , kn), s = (s1, . . . , sn) or s − l = (s1 − l1, . . . , sn − ln) we
denote vectors from Zn

+, where n is the number of particles. Let 0 = (0, . . . , 0) ∈ Zn
+ and

1 = (1, . . . , 1). In this section m = (m1, . . . ,mn) = 2k+ 1. By l ≤ s we mean that li ≤ si
for i = 1, . . . , n. We also write

∑

0≤l≤m

=

m1∑

l1=0

. . .

mn∑

ln=0

, |k| = k1 + . . .+ kn

By σ we denote a permutation of (1, . . . , n) and Sn is the family of all permutations. For
l ∈ Zn

+ we define σ(l) = (lσ(1), . . . , lσ(n)).

5.1 Proof of Lemma 2.1

The proof is partitioned into lemmas.

Lemma 5.1 For all m = (m1, . . . ,mn) ∈ Zn
+ we have

∑

σ∈Sn

det
[
((xi − xj)

mσ(i))
n
i,j=1

]
=
∑

0≤l≤m

(
m1

l1

)
. . .

(
mn

ln

)
hl (−x)hm−l (x) . (5.19)

Proof. Using Newton coefficients we write the LHS of (5.19)

∑

σ∈Sn

det






mσ(i)∑

lσ(i)=0

(
mσ(i)

lσ(i)

)
x
mσ(i)−lσ(i)

i (−xj)lσ(i)




n

i,j=1


 .
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Next using elementary properties of determinants the above is

∑

σ∈Sn

mσ(1),...,mσ(n)∑

lσ(1),...,lσ(n)=0

(
mσ(1)

lσ(1)

)
. . .

(
mσ(n)

lσ(n)

)
x
mσ(1)−lσ(1)

1 . . . x
mσ(n)−lσ(n)
n det

[(
(−xi)lσ(j)

)n
i,j=1

]
,

which can be written as

∑

σ∈Sn

m1,...,mn∑

l1,...,ln=0

(
m1

l1

)
. . .

(
mn

ln

)
x
mσ(1)−lσ(1)

1 . . . x
mσ(n)−lσ(n)
n sgn(σ)hl (−x)

and finally
m1,...,mn∑

l1,...,ln=0

(
m1

l1

)
. . .

(
mn

ln

)
hl (−x)hm−l (x) . (5.20)

¤

Lemma 5.2 Suppose that n is even and consider m = 2k+1 for which there exist l,m−
l ∈ Zn

+ having different elements respectively. Then the minimal k is such that |k| =
n(n− 2)/2.

Proof. Notice that |m| = 2|k|+ n. Take l = (0, 1, . . . , n− 1) and m− l a permutation of
l which maps even numbers of l to odd numbers respectively. Then m has odd elements.
Such a permutation exists when n is even. Now |l| = |m− l| = n(n−1)/2 so m = n(n−1)
and hence |k| = (|m| − n)/2 = n(n− 2)/2.

¤

Lemma 5.3 Let n be an even number. Suppose that for x ∈ IRn we have qij(t) =∑∞
k=0Ak(xj − xi)t

−k. Then

det
[
(qij(t))

n
i,j=1

]
=

∞∑

v=v0

t−v
∑

|k|=v
k1≤···≤kn

Jk
∑

σ∈Sn

det

[(
Akσ(i)

(xi − xj)
)n
i,j=1

]
,

=
∞∑

v=v0

Hv(x), (5.21)

where

Hv(x) =

2k1+1,...,2kn+1∑

s1,...,sn

n∏

j=1

akj ,sj

s1,...,sn∑

l1,...,ln

n∏

i=1

(
si
li

)
hl (x)hs−l (−x) .

and

v0 =
n(n− 2)

2
,

Jk =
1

(#{ki = 1})!(#{ki = 2})! . . . (#{ki = ν})! .
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Proof. We write

det
[
(qij(t))

n
i,j=1

]
=

∞∑

v=0

∑

|k|=v

t−ν det
[
(Aki (xi − xj))

n
i,j=1

]

=
∞∑

v=0

t−v
∑

|k|=v
k1≤···≤kn

Jk
∑

σ∈Sn

det

[(
Akσ(i)

(xi − xj)
)n
i,j=1

]
. (5.22)

We now show that the first v0 − 1 coefficients vanish. Then the inside sum in (5.22),
for |k| = v and k1 ≤ . . . ≤ kn, with the use of Lemma 5.1, can be transformed as follows
(note that si’s are odd)

∑

σ∈Sn

det

[(
Akσ(i)

(xi − xj)
)n
i,j=1

]

=

2k1+1,...,2kn+1∑

l1,...,ln

n∏

j=1

akj ,lj
∑

σ∈Sn

det
[
(xi − xj)

li
]

=

2k1+1,...,2kn+1∑

s1,...,sn

n∏

j=1

akj ,sj

s1,...,sn∑

l1,...,ln

n∏

i=1

(
si
li

)
hl (x)hs−l (−x) .

We now analyze the sum

s1,...,sn∑

l1,...,ln

n∏

i=1

(
si
li

)
hl (x)hs−l (−x) .

For hl(x)hs−l (−x) 6= 0, both the sequences l, s − l ∈ Zn
+ must have different elements

respectively. By Lemma 5.2, the minimal possible case is when l and s−l are permutations
of {0, 1, . . . , n− 1}. This corresponds to v0 = |k| = n(n− 2)/2.

¤

Lemma 5.4 Let m = 2k + 1. Then

∑

k1≤···≤kn
|k|=n(n−2)/2

Jk
∑

0≤l≤m

n∏

i=1

ami

(
mi

li

)
hl (x)hm−l (−x)

=

(
h (x) det

[(
a2i+2j+1

(
2i+ 2j + 1

2i

))n
2
−1

i,j=0

])2

.

Proof. Let

g(l, s) =
n∏

i=1

ali+si

(
li + si
li

)
hl (x)hs (−x) .

1371



Recall that since k has components k1 ≤ . . . ≤ kn, then for components of m we have
m1 ≤ . . . ≤ mn and they are odd. Moreover we have |m| = 2|k| + n. For |k| = v0, the
only admissible splits are of the following form. Let Seo

n be the set of all permutations σ of
(1, 2, . . . , n) such that σ(i) is odd if and only if i is even. We may identify this family with
Sn/2 × Sn/2. We define for s ∈ Zn

+, σ(s) = (sσ(1), . . . , sσ(n)). Let l = l∗ = (0, 1, . . . , n− 1).
Then {(l∗, σ(l∗) : σ ∈ Seo

n } has the property that components of s = l∗ + σ(l∗) are
odd. However the components of l∗+σ(l∗) are not always nondecreasing components, and
therefore we must introduce another permutation σ

′
, defined for a given s ∈ Z+, which

makes the components of σ
′
(s) nondecreasing. Let σ

′
be defined by l∗ + σ(l∗). Then the

set of all admissible entries is
{(σ′(l∗), σ′(σ(l∗))}.

Fortunately, if σ
′′

is defined by l + s, then

g(l, s) = g(σ
′′

(l), σ
′′

(s)).

¿From these considerations we see that

∑

k1≤···≤kn
|k|=n(n−2)/2

Jk

m1,...,mn∑

l1,...,ln

n∏

i=1

ami

(
mi

li

)
hl (x)hm−l (−x)

=
∑

σ∈Seo
n

n∏

i=1

ali+lσ(i)

(
li + lσ(i)

li

)
h (x)h (σ (x)) (−1)n(n−1)/2

= h2 (x) (−1)n(n−1)/2
∑

σ∈Seo
n

n∏

i=1

ali+lσ(i)

(
li + lσ(i)

li

)
sign(σ).

Now σ ∈ Seo
n is identified with (η, ξ) ∈ Sn/2×Sn/2. Notice that sign(σ) = (−1)n/2sign(η)sign(ξ),

where (−1)n/2 is responsible for n/2 transpositions from odds to evens, and that (−1)n/2 =
(−1)n(n−1)/2. Hence the above can be rewritten in the form:

h2 (x)
∑

η∈Sn/2

sign(η)

n/2∏

i=1

al2i−1+l2η(i)

(
l2i−1 + l2η(i)

l2i−1

)
×

×
∑

ξ∈Sn/2

sign(η)

n/2∏

i=1

al2i+l2ξ(i)−1

(
l2i + l2ξ(i)−1

l2i

)
.

Using standard properties of determinants we write above as:

h2 (x) det

[(
a2i+2j−3

(
2i+ 2j − 3

2i− 2

))n/2

i,j=1

]
det

[(
a2i+2j−3

(
2i+ 2j − 3

2i− 1

))n/2

i,j=1

]

=

(
h (x) det

[(
a2i+2j+1

(
2i+ 2j + 1

2i

))n
2
−1

i,j=0

])2
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¤

The proof of lemma 2.1 is completed.

5.2 Proof of Lemma 2.2

We want to calculate constant Codd(n) defined in (2.8). Recall that this is the one which
stands at h(1,2,...,n)(x) in polynomial Wn2/4(x). Since Pfaffian of a matrix is the square root
of the corresponding determinant, it suffices to look for the constant in the asymptotic
expansion of the determinant standing at h(0,...,n−1)(x)h(1,...,n)(x) at t−n(n−1)/2 and divide it
by the already known constant Ceven(n). The following argument provides the proof of the
uniqueness for this procedure, that is h0,...,n−1h1,...,n cannot be represented as a combination
of other Vandermondes. This means that if

h(0,...,n−1)(x)h(1,...,n)(x) =
∑

buhu(x)bvhv(x) ,

where the summation runs over |u| + |v| ≤ n2 without pairs (u = (0, 1, . . . , n − 1),v =
(1, 2, . . . , n)) or (u = (1, 2, . . . , n− 1),v = (0, 1, . . . , n− 1)), then

x1 . . . xn =
∑

µ,ν

bµsµ(x)bνsν(x) ,

where µ = u−(1, . . . , n)+1, ν = v−(1, . . . , n)+1 and sµ(x), sν(x) are Schur polynomials.
Now using the Littlewood-Richardson rule we may write above as

s(1,...,1)(x) = x1 . . . xn =
∑

µ,ν

bµbν
∑

λ

bλµνsλ(x) .

Since Schur polynomials form a basis and µ,ν is not a subtableaux of (1, . . . , 1) the above
equality cannot be satisfied.

The method of calculating is similar to the one presented before in Section 2.1. Since
v0 = n(n−1)

2
, by Lemma 5.3 the coefficient standing with t−v0 is

∑

|k|=
n(n−1)

2

Jk

2k1+1,...2kn+1∑

s1,...,sn

n∏

i=1

aki,si

s1,...,sn∑

l1,...,ln

n∏

i=1

(
si
li

)
hl (x)hs−l (−x) .

Since we are only interested in hl(x)hs−l(x), where l is a permutation of (0, 1, . . . , n− 1)
and s− l is a permutation of (1, 2, . . . , n), for which

|l|+ |s− l| = |s| =
n (n− 1)

2
+
n (n+ 1)

2
= n2 ,

we also have
|2k + 1| = 2 |k|+ n = n2 − n+ n = n2 .
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Therefore si cannot be less than 2k + 1, and so we have

∑

|k|=
n(n−1)

2

Jk

n∏

i=1

aki,2ki+1

2k1+1,...,2kn+1∑

l1,...,ln

n∏

i=1

(
2ki + 1

li

)
hl (x)h(2k+1−l) (−x) .

Using the same argumentation as in the proof of Lemma 2.1 we can assume that
l = (0, 1, . . . , n− 1) and 2k + 1 − l is a permutation of (1, 2, . . . , n), which places even
numbers into even places. We denote the resulting set of permutations by See

n . Thus we
have

∑

σ∈See
n

n∏

i=1

ai−1+σ(i)

(
i− 1 + σ (i)

i− 1

)
h(0,1,...,n−1) (x)hσ(1,2,...,n) (−x)

= h (x)h(1,2,...,n) (x) (−1)
n(n+1)

2

∑

σ∈See
n

n∏

i=1

ai−1+σ(i)

(
i− 1 + σ (i)

i− 1

)
sign(σ) .

As in the proof of Lemma 5.3 we identify See
n with the product of permutations Sn/2×Sn/2 of

even numbers and permutations of odd numbers respectively. Hence the above expression
can be written as

h (x)h(1,2,...,n) (x) (−1)
n(n+1)

2

∑

η,ξ∈Sn/2

∏

i∈{2,4,...,n}

ai−1+2η( i
2)

(
i− 1 + 2η

(
i
2

)

i− 1

)
sign(η)×

×
∏

i∈{1,3,...,n−1}

ai−1+2ξ( i+1
2 )−1

(
i− 1 + 2ξ

(
i+1
2

)
− 1

i− 1

)
sign(ξ) ,

which equals

h (x)h(1,2,...,n) (x) (−1)
n(n+1)

2

∑

η,ξ∈Sn/2

n/2∏

i=1

a2i−1+2η(i)

(
2i− 1 + 2η (i)

2i− 1

)
×

×
n/2∏

i=1

a2i−2+2ξ(i)−1

(
2i− 2 + 2ξ (i)− 1

2i− 2

)
sign(ξ) .

We now recognize in the expression above the product of two determinants, so we rewrite
it in the form

h (x)h(1,2,...,n) (x) (−1)
n(n+1)

2 det

[
a2i−1+2j

(
2i− 1 + 2j

2i− 1

)]
det

[
a2i−3+2j

(
2i− 3 + 2j

2i− 2

)]

= Ceven(n)h (x)h(1,2,...,n) (x) (−1)
n(n+1)

2 det

[(
a2i+2j−1

(
2i+ 2j − 1

2i− 1

))n
2

i,j=1

]
.

Thus we conclude that

Codd(n) = (−1)
n
2 det

[(
a2i+2j−1

(
2i+ 2j − 1

2i

))n
2

i,j=1

]
.
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5.3 Proof of Proposition 2.3

Suppose first n is even. Since polynomials Wk are linear combinations of generalized
Vandermonde determinants and the minimal degree of Vandermonde determinant is n(n−
1)/2 we have

Pf(Q) =
∞∑

k=n(n−2)/4

t−kWk(x) ,

which together with Lemma 2.1 yield

lim
t→∞

Pf(Q)tn(n−2)/4 = Ceven(n)h(x) .

Suppose now that n is odd. Recall the notation Q(l) = (pij)i,j 6=l. We need then to work
out the sum:

n∑

l=1

(−1)l+1Pf(Q(l)) =
n∑

l=1

(−1)l+1

∞∑

k=0

t−kWk(x(l))

=
∞∑

k=0

t−k
n∑

l=1

(−1)l+1Wk(x(l))

=
∞∑

k=0

t−k
n∑

l=1

(−1)l+1
∑

|u|≤2k+n−1
2

c(k;u)hu(x(l))

=
∞∑

k=0

t−k
∑

|u|≤2k+n−1
2

n∑

l=1

(−1)l+1c(k;u)hu(x(l))

=
∞∑

k=0

t−k
∑

|u|≤2k+n−1
2

c(k;u)h(0,u)(x) .

We now make the following observations. If there is a zero entry in u, then h(0,u)(x) = 0.
Similarly u cannot have two entries the same. Thus the first non-vanishing element is for
u = (1, 2, . . . , n−1), which yields the minimal exponent (n−1)2/4. The constant standing
at t(n−1)2/4h(1,2,...,n−1) in the asymptotic expansion of Pfaffian (remember that of matrix of
size n− 1) is called Codd(n− 1) which is calculated in Lemma (2.2). Hence we have

lim
t→∞

(
n∑

l=1

(−1)l+1Pf(Q(l))

)
t(n−1)2/4 = Codd(n− 1)h(x), (5.23)
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5.4 Calculating constants

Let n be even. We will work out alternative expressions for constant (2.7):

Ceven(n) = det

[(
a2i+2j+1

(
2i+ 2j + 1

2i

))n
2
−1

i,j=0

]

= det



(

(−1)i+j

(i+ j)!2i+j−1 (2i+ 2j + 1)

(2i+ 2j + 1)!

(2i)! (2j + 1)!

)n
2
−1

i,j=0




=

n
2
−1∏

i=0

1

(2i)! (2i+ 1)!2i−12i
det

[(
(2i+ 2j)!

(i+ j)!

)n
2
−1

i,j=0

]

= 2−
n(n−4)

4

n−1∏

i=0

1

i!
det

[(
(2i+ 2j)!

(i+ j)!

)n
2
−1

i,j=0

]

We now consider the determinant in the product above (with the substitution K = n
2
− 1).

Since
(2i+ 2j)!

(i+ j)!
=

(2i)!

i!
2i

i−1∏

k=0

(2j + 1 + 2k)

we have

det

[(
(2i+ 2j)!

(i+ j)!

)K

i,j=0

]
=

K∏

i=0

(
(2i)!2i

i!

)
det



(

i−1∏

k=0

(2j + 1 + 2k)

)K

j,i=0


 .

Using

det



(

i−1∏

k=0

(2j + 1 + 2k)

)K

j,i=0


 = h

(
(2j + 1)Kj=0

)

=
∏

i<j

(2j + 1− 2i− 1) =
K∏

i=1

(2i)!!

we write

det

[(
(2i+ 2j)!

(i+ j)!

)K

i,j=0

]
=

K∏

i=0

(
(2i)!2i (2i)!!

i!

)

=
K∏

i=0

(
(2i)!2i2i

)
= 2K(K+1)

K∏

i=0

(2i)! .
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Thus finally

Ceven(n) = det

[(
a2i+2j+1

(
2i+ 2j + 1

2i

))n
2
−1

i,j=0

]

= 2−
n(n−4)

4

n−1∏

i=0

1

i!
2(n2−1)n2

n
2
−1∏

i=0

(2i)!

= 2
n
2

n−1∏

i=0

1

i!

n
2
−1∏

i=0

(2i)! .

Consider now the constant defined in (2.8). Similarly as before

Codd(n) = (−1)
n
2 det

[(
a2i+2j−1

(
2i+ 2j − 1

2i

))n
2

i,j=1

]

= (−1)
n
2 det



(

(−1)i+j−1

(i+ j − 1)!2i+j−2 (2i+ 2j − 1)

(2i+ 2j − 1)!

(2i)! (2j − 1)!

)n
2

i,j=1




=

n
2∏

i=1

1

(2i)! (2i− 1)!2i−22i
det

[(
(2i+ 2j − 2)!

(i+ j − 1)!

)n
2

i,j=1

]

= 2
4n
4
−n

2 (n2 +1)
n∏

i=1

1

i!
det

[(
(2i+ 2j − 2)!

(i+ j − 1)!

)n
2

i,j=1

]

= 2−
n(n−2)

4

n∏

i=1

1

i!
det

[(
(2i+ 2j − 2)!

(i+ j − 1)!

)n
2

i,j=1

]
.

The determinant in the product above is (with K = n
2
)

det

[(
(2i+ 2j − 2)!

(i+ j − 1)!

)K

i,j=1

]
=

K∏

i=1

(
(2i)!2i−1

i!

)
det



(

i−1∏

k=1

(2j − 1 + 2k)

)K

j,i=1


 .

Notice that

det



(

i−1∏

k=1

(2j − 1 + 2k)

)K

j,i=1


 = h

(
(2j − 1)Kj=1

)

=
K−1∏

i=1

(2i)!!
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and hence

det

[(
(2i+ 2j)!

(i+ j)!

)K

i,j=1

]
=

K∏

i=1

(
(2i)!2i−1

i!

)K−1∏

i=1

(2i)!!

=
K∏

i=0

(
(2i)!2i−1

)K−1∏

i=1

2i
1

K!
=

2K(K−1)

K!

K∏

i=0

(2i)! .

Thus

Codd(n) = (−1)
n
2 det

[(
a2i+2j+1

(
2i+ 2j − 1

2i

))n
2

i,j=1

]

= 2−
n(n−2)

4

n∏

i=1

1

i!
2
n(n−2)

4
1(
n
2

)
!

n
2∏

i=0

(2i)! =
1(
n
2

)
!

n∏

i=0

1

i!

n
2∏

i=0

(2i)! .

We now demonstrate that our constants are consistent with the ones in Grabiner the-
orem. Following Mehta [10, p. 354 ],

E [h (Y ) 1W (Y )] = (2π)−n/2
∫

W

e−
|y|2

2 h (y) dy

=
1

n!

n∏

j=1

Γ
(
1 + j

2

)

Γ
(
1 + 1

2

) ,

where Y is the vector of i.i.d. standard random variables. Suppose n ∈ 2N. Since

Γ

(
1

2
+ j

)
=

(2j − 1)!!

2j
√
π

(see e.g. Abramowitz and Stegun [1, formula 6.1.12 ]), we have

1

n!

n∏

j=1

Γ
(
1 + j

2

)

Γ
(
1 + 1

2

) =
1

n!

(
1

2

√
π

)−n
2−

n
2 (n2 +1)/2 (√π

)n
2

n
2∏

j=1

(2j − 1)!!

n
2∏

j=1

(
2j2−jj!

)

=
1

n!
(2π)−

n
4 2−

n(n−8)
8 2−

n
2 (n2 +1)/2

n
2∏

j=1

(2j − 1)!!

n
2∏

j=1

(2j)!!

=
1

n!
(2π)−

n
4 2−

n(n−3)
4

n
2∏

j=1

(2j)! = (2π)−
n
4 2−

n(n−3)
4

n
2
−1∏

j=1

(2j)! .
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Suppose now n is odd. Then

E [h (y) 1W (Y )] =
1

n!
(2π)−

n−1
4 2−

(n−1)(n−1−3)
4

n−1
2∏

j=1

(2j)!
Γ
(
1 + n

2

)

Γ
(
1 + 1

2

)

=
1

n!
(2π)−

n−1
4 2−

(n−1)(n−4)
4

n−1
2∏

j=1

(2j)!
n!!

2
n+1

2

2

= (2π)−
n−1

4 2−
n2−3n+2

4

n−1
2∏

j=1

(2j)!
n!!

n!
.

Since
n!!

n!
=

1

(n− 1)!!
=

1

2
n−1

2

(
n−1

2

)
!
,

the above equals

E [h (Y ) 1W (Y )] = (2π)−
n−1

4 2−
n(n−1)

4

n−1
2∏

j=1

(2j)!
1(

n−1
2

)
!
.

We conclude the considerations in this subsection.

Lemma 5.5 If n is even, then

E [h (Y ) 1W (Y )] = (2π)−
n
4 2−

n(n−3)
4

n
2
−1∏

j=1

(2j)!

and if n is odd, then

E [h (Y ) 1W (Y )] = (2π)−
n−1

4 2−
n(n−1)

4

n−1
2∏

j=1

(2j)!
1(

n−1
2

)
!
.
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