Vol. 10 (2005), Paper no. 37, pages 1236-1259.
Journal URL
http://www.math.washington.edu/~ejpecp/

# SMALL-TIME ASYMPTOTIC ESTIMATES IN LOCAL DIRICHLET SPACES 

TEPPEI ARIYOSHI AND MASANORI HINO ${ }^{\dagger}$

Risk Management Department
Tokio Marine \& Nichido Fire Insurance Co., Ltd.
5-1, Otemachi 1-Chome, Chiyoda-ku, Tokyo, 100-0004, Japan
and
Graduate School of Informatics, Kyoto University
Kyoto, 606-8501, Japan

Abstract. Small-time asymptotic estimates of semigroups on a
logarithmic scale are proved for all symmetric local Dirichlet forms
on $\sigma$-finite measure spaces, which is an extension of the work by
Hino and Ramírez [4].
Keywords and phrases: Dirichlet spaces, heat kernel, small-time asymptotics, intrinsic metric.

AMS Subject Classification (2000): Primary 31C25, 60J60, 47D07; secondary 58J65.

Submitted to EJP on July 20, 2004. Final version accepted on September 23, 2005.

[^0]
## 1. Introduction

Let $(X, \mathcal{B}, \mu)$ be a $\sigma$-finite measure space and $(\mathcal{E}, \mathbb{D})$ a symmetric Dirichlet form on the $L^{2}$ space of $(X, \mathcal{B}, \mu)$. Let $\left\{T_{t}\right\}$ denote the semigroup associated with $(\mathcal{E}, \mathbb{D})$, and set $P_{t}(A, B)=\int_{X} 1_{A} \cdot T_{t} 1_{B} d \mu$ for $A, B \in \mathcal{B}$ and $t>0$. The small-time asymptotic behavior of $P_{t}(A, B)$ on a logarithmic scale is the main interest of this paper. In the paper [4], under assumptions that the total mass of $\mu$ is finite and $(\mathcal{E}, \mathbb{D})$ is conservative and local, the following small-time asymptotic estimate was proved:

$$
\begin{equation*}
\lim _{t \rightarrow 0} t \log P_{t}(A, B)=-\frac{\mathrm{d}(A, B)^{2}}{2} \tag{1.1}
\end{equation*}
$$

where $\mathrm{d}(A, B)$ is an intrinsic distance between $A$ and $B$ defined by

$$
\begin{align*}
& \mathrm{d}(A, B)=\sup _{f \in \mathbb{D}_{0}}\{\underset{x \in B}{\operatorname{essinf}} f(x)-\underset{x \in A}{\operatorname{esssup}} f(x)\},  \tag{1.2}\\
& \mathbb{D}_{0}=\left\{\begin{array}{l|l}
f \in \mathbb{D} \cap L^{\infty}(\mu) & \begin{array}{l}
2 \mathcal{E}(f h, h)-\mathcal{E}\left(f^{2}, h\right) \leq \int_{X}|h| d \mu \\
\text { for every } h \in \mathbb{D} \cap L^{\infty}(\mu)
\end{array}
\end{array}\right\} . \tag{1.3}
\end{align*}
$$

This result generalizes former works (see [4] and references therein) and can be regarded as an integral version of the small-time asymptotics of the transition density of Varadhan type

$$
\lim _{t \rightarrow 0} t \log p_{t}(x, y)=-\frac{d(x, y)^{2}}{2}
$$

which was proved in [6] for a class of symmetric and non-degenerate diffusion processes on Lipschitz manifolds.

In this paper, we further weaken the assumptions in [4] and prove the small-time estimate (1.1) holds for any $A, B \in \mathcal{B}$ with finite measure, for all local symmetric Dirichlet forms on $\sigma$-finite measure spaces. In other words, (1.1) now holds without assuming the finiteness of the total measure nor the conservativeness of $(\mathcal{E}, \mathbb{D})$, which may be considered as one of the most general results in this direction. The definition of the intrinsic distance $\mathrm{d}(A, B)$ here has to be suitably modified, by introducing the notion of nests. Note that we do not assume any topological structure of the underlying space, as in [4].

The proof is purely analytic and is done by careful modifications of the proof in [4] based on the Ramírez method [7]. In contrast to the simple statement of the result, the proof is rather technical. We will explain an idea of the proof here following the articles [7, 4] and how to generalize it.

The upper side estimate

$$
\limsup _{t \rightarrow 0} t \log P_{t}(A, B) \leq-\frac{\mathrm{d}(A, B)^{2}}{2}
$$

is an easier part and follows from what is called Davies' method. In order to give the outline of the proof of the lower side estimate, let us consider a typical example; suppose that $X$ has a differential structure and a gradient operator $\nabla$ taking values in a Hilbert space with inner product $\langle\cdot, \cdot\rangle$ as in the case of Riemannian manifolds, and $\mathcal{E}$ is given by $\mathcal{E}(f, g)=\frac{1}{2} \int_{X}\langle\nabla f, \nabla g\rangle d \mu$. Let us further assume that $\mu(X)$ is finite. Then, we can deduce that $\mathbb{D}_{0}=\left\{f \in \mathbb{D} \cap L^{\infty}(X)| | \nabla f \mid \leq 1\right.$ a.e. $\}$. The function $u_{t}=-t \log T_{t} 1_{A}$ satisfies the equation

$$
\begin{equation*}
t\left(\partial_{t} u_{t}-\mathcal{L} u_{t}\right)=u_{t}-\frac{1}{2}\left|\nabla u_{t}\right|^{2} \tag{1.4}
\end{equation*}
$$

where $\mathcal{L}$ is the generator of $\left\{T_{t}\right\}$. Letting $t \rightarrow 0$, we expect that $\left|\nabla u_{0}\right|^{2}=2 u_{0}$ for a limit $u_{0}$ of $u_{t}$, which implies that $\left|\nabla \sqrt{2 u_{0}}\right|^{2}=1$. (What we can actually expect is $\left|\nabla \sqrt{2 u_{0}}\right|^{2} \leq 1$.) Since $u_{0}$ should vanish on $A$, this relation informally implies that

$$
\lim _{t \rightarrow 0} \sqrt{-2 t \log T_{t} 1_{A}(x)} \leq \mathrm{d}(A,\{x\})
$$

which is close to the lower side estimate. In practice, we cannot prove the convergence of the left-hand side of (1.4) in this form and have to consider the time-average $\bar{u}_{t}=\frac{1}{t} \int_{0}^{t} u_{s} d s$ in place of $u_{t}$ and utilize the Tauberian theorem. Moreover, we have to take the integrability of $\bar{u}_{t}$ into consideration. In [7], this was assured by an additional assumption, the spectral gap property. To remove such assumption, a suitable cutoff function $\phi$ was introduced in [4] and the proof was done by replacing $\bar{u}_{t}$ by $\bar{\phi}_{t}=\frac{1}{t} \int_{0}^{t} \phi\left(u_{s}\right) d s$; bounded functions are always integrable as long as $\mu$ is a finite measure. When $\mu(X)=\infty$, this modification is not sufficient. In order to include this case, in this paper, we further introduce a sequence $\left\{\chi_{k}\right\}$ of 'cut-off functions in the space-direction' and consider $\bar{\phi}_{t} \chi_{k}$ to guarantee the integrability. By such modification, more and more extra terms appear in the argument, which have to be estimated appropriately. This makes the proof rather long.

The organization of this paper is as follows. In Section 2, we state the notion of nests and define the intrinsic distance d , which is naturally consistent with what was given in [4]. Their basic properties are discussed in Section 3. In Section 4, we prove the main theorem. In the last section, we give a few additional claims which have also been discussed in [4].

## 2. Preliminaries

For $p \in[1, \infty]$, we denote by $L^{p}(\mu)$ the $L^{p}$-space on the $\sigma$-finite measure space $(X, \mathcal{B}, \mu)$ and its norm by $\|\cdot\|_{L^{p}(\mu)}$. The totality of all measurable functions $f$ on $X$ will be denoted by $L^{0}(\mu)$. Here, as usual, two functions which are equal $\mu$-a.e. are identified. Let $L_{+}^{p}(\mu)$ denote the set of all functions $f \in L^{p}(\mu)$ such that $f \geq 0 \mu$-a.e. We set

$$
\begin{aligned}
& C_{b}^{1}\left(\mathbb{R}^{d}\right)=\left\{\begin{array}{l|l}
\left.f \left\lvert\, \begin{array}{l}
f \text { is a } C^{1} \text {-function on } \mathbb{R}^{d} \text { and } \\
f \text { and } \partial f / \partial x_{i}(i=1,2, \ldots, d) \text { are all bounded }
\end{array}\right.\right\}, \\
\hat{C}_{b}^{1}\left(\mathbb{R}^{d}\right)=\left\{f \left\lvert\, \begin{array}{l}
f \text { is a } C^{1} \text {-function on } \mathbb{R}^{d} \text { and } \\
\partial f / \partial x_{i}(i=1,2, \ldots, d) \text { are all bounded }
\end{array}\right.\right\}, \\
C_{c}^{1}\left(\mathbb{R}^{d}\right)=\left\{f \mid f \text { is a } C^{1} \text {-function on } \mathbb{R}^{d} \text { with compact support }\right\} .
\end{array} .\right.
\end{aligned}
$$

Let $(\mathcal{E}, \mathbb{D})$ be a symmetric Dirichlet form on $L^{2}(\mu)$. The norm $\|\cdot\|_{\mathbb{D}}$ of $\mathbb{D}$ is defined by $\|f\|_{\mathbb{D}}=\left(\mathcal{E}(f, f)+\|f\|_{L^{2}(\mu)}^{2}\right)^{1 / 2}$. We use the notation $\mathcal{E}(f)$ for $\mathcal{E}(f, f)$. We assume that $(\mathcal{E}, \mathbb{D})$ is local ${ }^{1}$, namely, for any $f \in \mathbb{D}$ and $F, G \in C_{b}^{1}(\mathbb{R})$ with $\operatorname{supp} F \cap \operatorname{supp} G=\emptyset$,

$$
\mathcal{E}(F(f)-F(0), G(f)-G(0))=0
$$

This is equivalent to the condition that $\mathcal{E}(f, g)=0$ if $f, g \in \mathbb{D}$ and $(f+a) g=0 \mu$-a.e. for some $a \in \mathbb{R}$. (For the proof, see [2, Proposition I.5.1.3].) The semigroup, the resolvent, and the nonpositive selfadjoint operator on $L^{2}(\mu)$ associated with $(\mathcal{E}, \mathbb{D})$ will be denoted by $\left\{T_{t}\right\}_{t>0},\left\{G_{\beta}\right\}_{\beta>0}$, and $\mathcal{L}$, respectively. $\left\{T_{t}\right\}_{t>0}$ uniquely extends to a strongly continuous and contraction semigroup on $L^{p}(\mu)$ for $p \in[1, \infty)$. For $A \in \mathcal{B}$, set

$$
\mathbb{D}_{A}=\{f \in \mathbb{D} \mid f=0 \mu \text {-a.e. on } X \backslash A\} .
$$

We also set $\mathbb{D}_{b}=\mathbb{D} \cap L^{\infty}(\mu), \mathbb{D}_{A, b}=\mathbb{D}_{A} \cap L^{\infty}(\mu)$ and $\mathbb{D}_{A, b,+}=\mathbb{D}_{A} \cap$ $L_{+}^{\infty}(\mu)$.

Definition 2.1. An increasing sequence $\left\{E_{k}\right\}_{k=1}^{\infty}$ of measurable subsets of $X$ is called nest if the following two conditions are satisfied. ${ }^{2}$
(i) For every $k \in \mathbb{N}$, there exists $\chi_{k} \in \mathbb{D}$ such that $\chi_{k} \geq 1 \mu$-a.e. on $E_{k}$.
(ii) $\bigcup_{k=1}^{\infty} \mathbb{D}_{E_{k}}$ is dense in $\mathbb{D}$.

[^1]Remark 2.2. Concerning condition (i), we can take $\chi_{k}$ so that $\chi_{k}=1$ $\mu$-a.e. on $E_{k}$ and $0 \leq \chi_{k} \leq 1 \mu$-a.e. in addition, by considering $0 \vee \chi_{k} \wedge 1$ in place of $\chi_{k}$.
Remark 2.3. For every $k \in \mathbb{N}, \mu\left(E_{k}\right)<\infty$ because of condition (i). By condition (ii), we can prove $\mu\left(X \backslash \bigcup_{k=1}^{\infty} E_{k}\right)=0$.

We will see in Section 3 that there do exist many nests.
Definition 2.4. For a nest $\left\{E_{k}\right\}_{k=1}^{\infty}$, we set

$$
\begin{aligned}
& \mathbb{D}_{\text {loc }}\left(\left\{E_{k}\right\}\right) \\
& =\left\{\begin{array}{l|l}
f \in L^{0}(\mu) & \left.\begin{array}{l}
\text { there exists a sequence of functions }\left\{f_{k}\right\}_{k=1}^{\infty} \text { in } \mathbb{D} \\
\text { such that } f=f_{k} \mu \text {-a.e. on } E_{k} \text { for each } k
\end{array}\right\}, \\
\mathbb{D}_{\text {loc }, b}\left(\left\{E_{k}\right\}\right)=\mathbb{D}_{\text {loc }}\left(\left\{E_{k}\right\}\right) \cap L^{\infty}(\mu) .
\end{array}\right.
\end{aligned}
$$

For $f, g, h \in \mathbb{D}_{b}$, define

$$
I_{f, g}(h)=\mathcal{E}(f h, g)+\mathcal{E}(g h, f)-\mathcal{E}(f g, h)
$$

and write $I_{f}(h)$ for $I_{f, f}(h)$. The following are basic properties of $I$.
Lemma 2.5. Let $f, g, h, h_{1}$, and $h_{2}$ be elements of $\mathbb{D}_{b}$.
(i) If $h \geq 0 \mu$-a.e., then $0 \leq I_{f}(h) \leq 2\|h\|_{L^{\infty}(\mu)} \mathcal{E}(f)$.
(ii) $I_{f, g}\left(h_{1} h_{2}\right)^{2} \leq I_{f}\left(h_{1}^{2}\right) I_{g}\left(h_{2}^{2}\right)$.
(iii) $\sqrt{I_{f+g}(h)} \leq \sqrt{I_{f}(h)}+\sqrt{I_{g}(h)}$ if $h \geq 0 \mu$-a.e.

Proof. For $f, g, h \in L^{2}(\mu) \cap L^{\infty}(\mu)$ and $t>0$, define

$$
I_{f, g}^{(t)}(h)=\mathcal{E}^{(t)}(f h, g)+\mathcal{E}^{(t)}(g h, f)-\mathcal{E}^{(t)}(f g, h),
$$

where $\mathcal{E}^{(t)}(f, g)=t^{-1}\left(f-T_{t} f, g\right)$. By Lemma I.2.3.2.1 and Proposition I.2.3.3 in [2] and the limiting argument, the claims follow for $I^{(t)}$ in place of $I$. Letting $t \rightarrow 0$ reaches the conclusion.

By the properties (i) and (iii) above, we can define $I_{f}(h)$ for $f \in \mathbb{D}$ and $h \in \mathbb{D}_{b}$ by continuity. Due to the locality of $(\mathcal{E}, \mathcal{F}), I_{f}(h)=0$ if $(f+a) h=0 \mu$-a.e. for some $a \in \mathbb{R}$. This allows us to define $I_{f}(h)$ for $f \in \mathbb{D}_{\text {loc }, b}\left(\left\{E_{k}\right\}\right)$ and $h \in \mathbb{D}_{E_{k}, b}$ consistently by $I_{f}(h)=I_{f_{k}}(h)$, where $f_{k}$ is an arbitrary element in $\mathbb{D}_{b}$ such that $f_{k}=f \mu$-a.e. on $E_{k}$. In other words, $I_{f}(h)$ is well-defined for $f \in \mathbb{D}_{l o c, b}\left(\left\{E_{k}\right\}\right)$ and $h \in \bigcup_{k=1}^{\infty} \mathbb{D}_{E_{k}, b}$.

Definition 2.6. For a nest $\left\{E_{k}\right\}_{k=1}^{\infty}$, we set

$$
\begin{aligned}
& \mathbb{D}_{0}\left(\left\{E_{k}\right\}\right) \\
& =\left\{f \in \mathbb{D}_{\text {loc }, b}\left(\left\{E_{k}\right\}\right) \mid I_{f}(h) \leq\|h\|_{L^{1}(\mu)} \text { for every } h \in \bigcup_{k=1}^{\infty} \mathbb{D}_{E_{k}, b}\right\} .
\end{aligned}
$$

Clearly, we can replace $\mathbb{D}_{E_{k}, b}$ by $\mathbb{D}_{E_{k}, b,+}$ in the definition above. We will show in Proposition 3.9 that the set $\mathbb{D}_{0}\left(\left\{E_{k}\right\}\right)$ is in fact independent of the choice of $\left\{E_{k}\right\}_{k=1}^{\infty}$, so we denote it simply by $\mathbb{D}_{0}$ below.

For $A, B \in \mathcal{B}$ with positive $\mu$-measure, we define

$$
P_{t}(A, B)=\int_{X} 1_{A} \cdot T_{t} 1_{B} d \mu\left(=\int_{X} T_{t} 1_{A} \cdot 1_{B} d \mu\right), \quad t>0
$$

and

$$
\mathrm{d}(A, B)=\sup _{f \in \mathbb{D}_{0}}\{\underset{x \in B}{\operatorname{essinf}} f(x)-\underset{x \in A}{\operatorname{esssup}} f(x)\}
$$

The following is our main theorem.
Theorem 2.7. For any $A, B \in \mathcal{B}$ with $0<\mu(A)<\infty, 0<\mu(B)<\infty$, we have

$$
\lim _{t \rightarrow 0} t \log P_{t}(A, B)=-\frac{\mathrm{d}(A, B)^{2}}{2}
$$

Remark 2.8. To make the meaning of $\mathbb{D}_{0}\left(\left\{E_{k}\right\}\right)$ clearer, let us suppose that $X$ is a locally compact separable metric space, $\mu$ is a positive Radon measure with $\operatorname{supp} \mu=X,(\mathcal{E}, \mathbb{D})$ is a regular Dirichlet form on $L^{2}(\mu)$, and there exists a sequence of relatively compact open sets $\left\{O_{k}\right\}_{k=1}^{\infty}$ such that $\bar{O}_{k} \subset O_{k+1}$ for all $k$ and $\cup_{k} O_{k}=X$. Then, it is easy to see that $\left\{\bar{O}_{k}\right\}_{k=1}^{\infty}$ is a nest. Each $f \in \mathbb{D}_{\text {loc }}\left(\left\{\bar{O}_{k}\right\}\right)$ provides the energy measure $\mu_{\langle f\rangle}$, a positive Radon measure on $X$ such that $I_{f}(h)=\int_{X} h d \mu_{\langle f\rangle}$ for every $h \in \mathcal{F} \cap C_{0}(X)$, where $C_{0}(X)$ is a space of all continuous functions on $X$ with compact support. Then, $\mathbb{D}_{0}\left(\left\{\bar{O}_{k}\right\}\right)$ can be described as

$$
\left\{\begin{array}{l|l}
f \in \mathbb{D}_{l o c, b}\left(\left\{\bar{O}_{k}\right\}\right) & \begin{array}{l}
\mu_{\langle f\rangle} \text { is absolutely continuous w.r.t. } \mu \\
\text { and } \frac{d \mu_{\langle f\rangle}}{d \mu} \leq 1 \mu \text {-a.e. }
\end{array}
\end{array}\right\} .
$$

Therefore, $d$ is a natural generalization of the usual notion of intrinsic metric.

Example 2.9. The following are simple examples showing the necessity of introducing $\mathbb{D}_{l o c, b}$ instead of $\mathbb{D}$ or $\mathbb{D}_{l o c}$ in the definition of d and $\mathbb{D}_{0}$.
(i) Let $X=[-1,1], \mathcal{B}=$ the Borel $\sigma$-field on $X, \mu=$ the Lebesgue measure on $X, \mathbb{D}=\left\{f \in H^{1}([-1,1]) \mid f(0)=0\right\}$, and $\mathcal{E}(f, g)=$ $\frac{1}{2} \int_{X} f^{\prime}(x) g^{\prime}(x) d x, f, g \in \mathbb{D}$. The corresponding diffusion process is the Brownian motion on $X$ killed at 0 . Let $A=[-1,-1 / 2]$ and $B=$ $[1 / 2,1]$. For each $k \in \mathbb{N}$, let $E_{k}=[-1,-1 / k] \cup[1 / k, 1]$. Then, $\left\{E_{k}\right\}_{k=1}^{\infty}$ is a nest and a function $f_{M}(x):=M \cdot 1_{(0,1]}(x)$ belongs to $\mathbb{D}_{0}\left(\left\{E_{k}\right\}\right)$ for any $M>0$. Therefore, $\mathrm{d}(A, B)=\infty$. On the other hand, if we adopted (1.2) and (1.3) as a definition of $\mathrm{d}, \mathrm{d}(A, B)$ would be 1 , which
does not provide a correct distance. This implies the necessity of the notion of nests even if $\mu$ is a finite measure, when the Dirichlet form is not conservative.
(ii) Let $X=\mathbb{R}$ and $\mathcal{B}=$ the Borel $\sigma$-field on $X$. Let $m$ be the Lebesgue measure on $X$ and $\mu^{\prime}$ a positive Radon measure on $X$ such that supp $\mu^{\prime}$ is $X, \mu^{\prime}$ and $m$ are mutually singular, and $\mu^{\prime}((0, \infty))=\mu^{\prime}((-\infty, 0))=$ $\infty$. Define a Radon measure $\mu$ on $X$ by $\mu(A)=m(A \cap[-1,1])+\mu^{\prime}(A \backslash$ $[-1,1]), A \in \mathcal{B}$. Let

$$
\mathbb{D}=\left\{\begin{array}{l|l}
f \in C(X) \cap L^{2}(\mu) & \begin{array}{l}
f \text { is absolutely continuous } \\
\text { and } \int_{X}\left|f^{\prime}\right|^{2} d m<\infty
\end{array}
\end{array}\right\}
$$

and $\mathcal{E}(f, g)=\frac{1}{2} \int_{X} f^{\prime} g^{\prime} d m$ for $f, g \in \mathbb{D}$. Then, $(\mathcal{E}, \mathbb{D})$ is a regular Dirichlet form on $L^{2}(\mu)$. The corresponding diffusion process is a time changed Brownian motion. The energy measure $\mu_{\langle f\rangle}$ of $f \in \mathbb{D}$ is described as $d \underline{\mu}_{\langle f\rangle}=\left|f^{\prime}\right|^{2} d m$. Let $A=[-2,-1]$ and $B=[1,2]$. By Remark 2.8, $\left\{\bar{O}_{k}\right\}_{k=1}^{\infty}$ is a nest where $O_{k}=(-k, k), k \in \mathbb{N}$, and $\mathbb{D}_{0}\left(\left\{\bar{O}_{k}\right\}\right)$ is represented as

$$
\left\{\begin{array}{l|l}
f \in \mathbb{D}_{l o c, b}\left(\left\{\bar{O}_{k}\right\}\right) & \begin{array}{l}
f \text { is constant on }(-\infty, 1] \text { and on }[1, \infty), \\
\text { and }\left|f^{\prime}\right| \leq 1 m \text {-a.e. on }(-1,1)
\end{array}
\end{array}\right\},
$$

because of the singularity of $\mu$ and $m$ on $X \backslash[-1,1]$. Then, one of the functions $f$ attaining the infimum in the definition of $\mathrm{d}(A, B)$ is given by $f(x)=(-1) \vee x \wedge 1$, and $\mathrm{d}(A, B)=2$. However, $f$ does not belong to $\mathbb{D}$. Indeed, any function $g$ in $\mathbb{D}_{0}\left(\left\{\bar{O}_{k}\right\}\right) \cap \mathbb{D}$ has to satisfy $g=0$ on $X \backslash[-1,1]$ to assure the $L^{2}(\mu)$-integrability. In particular, we cannot replace $\mathbb{D}_{\text {loc }, b}$ by $\mathbb{D}$ in the definition of $\mathbb{D}_{0}$.
(iii) Let $X=\mathbb{R}, \mathcal{B}=$ the Borel $\sigma$-field on $X, d \mu(x)=\left(x^{-2} \wedge 1\right) d x$. Define $\mathcal{E}(f, g)=\frac{1}{2} \int_{X} f^{\prime} g^{\prime} d \mu$ for $f, g \in C_{0}^{\infty}(X)$. Then, $\left(\mathcal{E}, C_{0}^{\infty}(X)\right)$ is closable on $L^{2}(\mu)$. The closure, which will be denoted by $(\mathcal{E}, \mathbb{D})$, is a regular Dirichlet form on $L^{2}(\mu)$. Note that $1 \in \mathbb{D}$. Define $E_{k}=[-k, k]$ and $E_{k}^{\prime}=X$ for each $k \in \mathbb{N}$. Then, both $\left\{E_{k}\right\}_{k=1}^{\infty}$ and $\left\{E_{k}^{\prime}\right\}_{k=1}^{\infty}$ are nests. We define a function space $\mathbb{D}_{0}^{\sharp}\left(\left\{E_{k}\right\}\right)$ by

$$
\mathbb{D}_{0}^{\sharp}\left(\left\{E_{k}\right\}\right)=\left\{f \in \mathbb{D}_{l o c}\left(\left\{E_{k}\right\}\right)| | f^{\prime} \mid \leq 1 \mu \text {-a.e. }\right\}
$$

and $\mathbb{D}_{0}^{\sharp}\left(\left\{E_{k}^{\prime}\right\}\right)$ in the same way. Then, the function $f(x)=x$ belongs to $\mathbb{D}_{0}^{\sharp}\left(\left\{E_{k}\right\}\right)$ but does not belong to $\mathbb{D}_{0}^{\sharp}\left(\left\{E_{k}^{\prime}\right\}\right)$. Indeed, $\mathbb{D}_{0}^{\sharp}\left(\left\{E_{k}^{\prime}\right\}\right) \subset$ $\mathbb{D}_{l o c}\left(\left\{E_{k}^{\prime}\right\}\right)=\mathbb{D} \subset L^{2}(\mu)$, but $f \notin L^{2}(\mu)$. Therefore, the set $\mathbb{D}_{0}^{\sharp}\left(\left\{E_{k}\right\}\right)$ depends on the choice of a nest $\left\{E_{k}\right\}_{k=1}^{\infty}$. This suggests that considering $\mathbb{D}_{l o c, b}$ is more natural than $\mathbb{D}_{l o c}$ in the definition of $\mathbb{D}_{0}$.

## 3. Basic properties

Recall that a function $f \in L^{2}(\mu)$ is called 1-excessive if $\beta G_{\beta+1} f \leq f$ $\mu$-a.e. for every $\beta \geq 0$.
Lemma 3.1. Let $\xi \in \mathbb{D}$ be a 1-excessive function with $\xi>0 \mu$-a.e. Define $E_{k}=\{\xi \geq 1 / k\}$ for each $k \in \mathbb{N}$. Then, $\left\{E_{k}\right\}_{k=1}^{\infty}$ is a nest.
Proof. Since $\chi_{k}:=k \xi$ satisfies condition (i) of Definition 2.1, it is enough to prove that $\bigcup_{k=1}^{\infty} \mathbb{D}_{E_{k}}$ is dense in $\mathbb{D}$. Set

$$
\begin{aligned}
\mathcal{C} & \left.=\left\{f \mid f \in L_{+}^{2}(\mu) \text { and there exists } c>0 \text { such that } f \leq c\right\} \mu \text {-a.e. }\right\} \\
\mathcal{D} & =\left\{G_{2} f \mid f \in \mathcal{C}\right\}
\end{aligned}
$$

Since $\mathcal{C}-\mathcal{C}=\{g-h \mid g, h \in \mathcal{C}\}$ is dense in $L^{2}(\mu), \mathcal{D}-\mathcal{D}$ is dense in $\mathbb{D}$. For $g=G_{2} f \in \mathcal{D}$, it holds that $g \leq c G_{2} \xi \leq c \xi \mu$-a.e. since $\xi$ is 1-excessive. Therefore, $g_{k}:=(g-c / k) \vee 0$ belongs to $\mathbb{D}_{E_{k}}$ and $g_{k}$ converges to $g$ in $\mathbb{D}$ as $k \rightarrow \infty$. This means that any element in $\mathcal{D}-\mathcal{D}$ can be approximated by functions in $\bigcup_{k=1}^{\infty} \mathbb{D}_{E_{k}}$, which proves the claim.

Note that for any function $f \in L^{2}(\mu)$ with $f>0 \mu$-a.e., $\xi=G_{1} f$ satisfies the condition of the lemma above. Therefore, there exist indeed many nests.

The following claim is what is naturally expected. We give a proof for it though it is not needed in the sequel.

Lemma 3.2. If both $\left\{E_{k}\right\}_{k=1}^{\infty}$ and $\left\{E_{k}^{\prime}\right\}_{k=1}^{\infty}$ are nests, then so is $\left\{E_{k} \cap\right.$ $\left.E_{k}^{\prime}\right\}_{k=1}^{\infty}$.

Proof. It suffices to prove that any element $f$ in $\bigcup_{l=1}^{\infty} \mathbb{D}_{E_{l},+}$ is approximated by functions in $\bigcup_{k=1}^{\infty} \mathbb{D}_{E_{k} \cap E_{k}^{\prime}}$. Let $f \in \mathbb{D}_{E_{l},+}$ for some $l \in \mathbb{N}$. Take $g_{k} \in \mathbb{D}_{E_{k}^{\prime}}(k \in \mathbb{N})$ such that $g_{k}$ converges to $f$ in $\mathbb{D}$ and $\mu$-a.e. as $k \rightarrow \infty$. Let $f_{k}=0 \vee g_{k} \wedge f$ for each $k$. Then, $f_{k} \in \mathbb{D}_{E_{l} \cap E_{k}^{\prime}} \subset \mathbb{D}_{E_{k} \cap E_{k}^{\prime}}$ when $k \geq l$. It also holds that $\left\|f_{k}\right\|_{\mathbb{D}} \leq\left\|g_{k}\right\|_{\mathbb{D}}+\|f\|_{\mathbb{D}}$ and $f_{k}$ converges to $f \mu$-a.e. Therefore, $\left\{f_{k}\right\}_{k=l}^{\infty}$ converges weakly to $f$ in $\mathbb{D}$. Taking the Cesàro mean of an appropriate subsequence, we obtain a desired approximating sequence.

In order to investigate the space $\mathbb{D}_{0}\left(\left\{E_{k}\right\}\right)$, we will prove some auxiliary properties.

Lemma 3.3. Let $f, h, f_{k}$, and $h_{k}(k \in \mathbb{N})$ be in $\mathbb{D}_{b}$.
(i) If $f_{k}$ converges weakly to $f$ in $\mathbb{D}$ and $h \geq 0 \mu$-a.e., then $\liminf _{k \rightarrow \infty} I_{f_{k}}(h) \geq I_{f}(h)$.
(ii) If $f_{k}$ converges to $f$ in $\mathbb{D}$, then $\lim _{k \rightarrow \infty} I_{f_{k}}(h)=I_{f}(h)$.
(iii) If $\left\{\left\|h_{k}\right\|_{L^{\infty}(\mu)}\right\}_{k=1}^{\infty}$ is bounded and $h_{k}$ converges to $h$ in $\mathbb{D}$, then $\lim _{k \rightarrow \infty} I_{f}\left(h_{k}\right)=I_{f}(h)$.

Proof. The first and the second claims follow from the fact that $I_{.,( }(h)$ is a nonnegative definite continuous bilinear form on $\mathbb{D}$ when $h \geq 0 \mu$-a.e. For the third one, it is enough to notice that $f h_{k}$ converges weakly to $f h$ in $\mathbb{D}$ as $k \rightarrow \infty$.

One of the important consequences of the locality of $(\mathcal{E}, \mathbb{D})$ is the following.

Theorem 3.4. For $f=\left(f_{1}, \ldots, f_{n}\right) \in \underbrace{\mathbb{D} \times \cdots \times \mathbb{D}}_{n \text { times }}$, there exists a unique family $\left(\sigma_{i, j}^{f}\right)_{1 \leq i, j \leq n}$ of signed Radon measures on $\mathbb{R}^{n}$ of finite total variation such that
(i) $\sigma_{i, j}^{f}=\sigma_{j, i}^{f}$ for all $i$ and $j$,
(ii) $\sum_{i, j=1}^{n} a_{i} a_{j} \sigma_{i, j}^{f}$ is a nonnegative measure for any $a_{i} \in \mathbb{R}(i=$ $1, \ldots, n)$,
(iii) the identity

$$
\begin{align*}
& \mathcal{E}(F(f)-F(0, \ldots, 0), G(f)-G(0, \ldots, 0))  \tag{3.1}\\
& =\sum_{i, j=1}^{n} \int_{\mathbb{R}^{n}} \frac{\partial F}{\partial x_{i}} \frac{\partial G}{\partial x_{j}} d \sigma_{i, j}^{f}
\end{align*}
$$

holds for any $F, G \in \hat{C}_{b}^{1}\left(\mathbb{R}^{n}\right)$.
Moreover, these measures satisfy the following properties.
(iv) $\sigma_{i, j}^{f}\left(\mathbb{R}^{n}\right)=\mathcal{E}\left(f_{i}, f_{j}\right)$.
(v) If $f_{i} \in[a, b]$ and $f_{j} \in[c, d] \mu$-a.e., then the topological support of $\sigma_{i, j}^{f}$ is included in $\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{i} \in[a, b], x_{j} \in\right.$ $[c, d]\}$.

Proof. By [2, Theorem I.5.2.1], uniquely determined are the family $\left(\sigma_{i, j}^{f}\right)_{1 \leq i, j \leq n}$ of signed Radon measures on $\mathbb{R}^{n}$ such that (i) and (ii) hold, and (3.1) is true for any $F$ and $G \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$. By the way of construction of $\sigma_{i, j}^{f}$ (see also [8]), for any $F \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$,

$$
2 \int_{\mathbb{R}^{n}} F d \sigma_{i, j}^{f}=I_{\psi\left(f_{i}\right), \psi\left(f_{j}\right)}(F(f)),
$$

where $\psi(x)=(-M) \vee x \wedge M$ for sufficiently large $M$ depending on $F$. Then,

$$
\left|\int_{\mathbb{R}^{n}} F d \sigma_{i, i}^{f}\right| \leq\|F\|_{\infty} \mathcal{E}\left(\psi\left(f_{i}\right)\right) \leq\|F\|_{\infty} \mathcal{E}\left(f_{i}\right)
$$

so that $\sigma_{i, i}^{f}\left(\mathbb{R}^{n}\right) \leq \mathcal{E}\left(f_{i}\right)$. In addition, we have

$$
\left|\int_{\mathbb{R}^{n}} F d \sigma_{i, j}^{f}\right| \leq\left|\int_{\mathbb{R}^{n}} F d \sigma_{i, i}^{f}\right|^{1 / 2}\left|\int_{\mathbb{R}^{n}} F d \sigma_{j, j}^{f}\right|^{1 / 2} \leq\|F\|_{\infty} \mathcal{E}\left(f_{i}\right)^{1 / 2} \mathcal{E}\left(f_{j}\right)^{1 / 2}
$$

Therefore, $\sigma_{i, j}^{f}$ is of finite variation and $\left|\sigma_{i, j}^{f}\right|\left(\mathbb{R}^{n}\right) \leq \mathcal{E}\left(f_{i}\right)^{1 / 2} \mathcal{E}\left(f_{j}\right)^{1 / 2}$. Equation (3.1) now follows for $F$ and $G$ in $\hat{C}_{b}^{1}\left(\mathbb{R}^{n}\right)$, by taking an approximate sequence from $C_{c}^{1}\left(\mathbb{R}^{n}\right)$ and using the dominated convergence theorem. Letting $F(x)=x_{i}$ and $G(x)=x_{j}$, we obtain $\sigma_{i, j}^{f}\left(\mathbb{R}^{n}\right)=\mathcal{E}\left(f_{i}, f_{j}\right)$. To prove (v), it is enough to prove that the support $\sigma_{i, i}^{f}$ is included in $\left\{x \in \mathbb{R}^{d} \mid x_{i} \in[a, b]\right\}$ when $f_{i} \in[a, b] \mu$-a.e. Take $F(x)=\phi\left(x_{i}\right)$, where $\phi$ is in $\hat{C}_{b}^{1}(\mathbb{R})$ and $\phi(x)=0$ on $[a, b], 0<\phi^{\prime}(x) \leq 1$ on $(-\infty, a) \cup(b, \infty)$. Then, by (3.1), $0=\int_{\mathbb{R}^{n}} \phi^{\prime}\left(x_{i}\right)^{2} d \sigma_{i, i}^{f}$. This implies the assertion.

The following theorem is also necessary for subsequent arguments.
Theorem 3.5 ([2, Theorem I.5.2.3]). When $n=1$ in Theorem 3.4, any $\sigma_{1,1}^{f}$ is absolutely continuous with respect to one dimensional Lebesgue measure.

Let $f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{l}, h_{1} \ldots, h_{m}$ be functions in $\mathbb{D}$ and let $f=$ $\left(f_{1}, \ldots, f_{k}\right), g=\left(g_{1}, \ldots, g_{l}\right)$, and $h=\left(h_{1} \ldots, h_{m}\right)$. Set $\lambda_{i, j}^{f, g, h}=2 \sigma_{i, k+j}^{(f, g, h)}$ for $i=1, \ldots, k$ and $j=1, \ldots, l$, where $\sigma_{\cdot}^{(f, g, h)}$ is provided in Theorem 3.4 by letting $n=k+l+m$ and taking $\left(f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{l}\right.$, $h_{1}, \ldots, h_{m}$ ) as $f$. Then,

$$
\lambda_{i, j}^{f, g, h}\left(\mathbb{R}^{k+l+m}\right)=2 \mathcal{E}\left(f_{i}, g_{j}\right),
$$

and simple calculation deduces the following identities.
Proposition 3.6. For all $F \in \hat{C}_{b}^{1}\left(\mathbb{R}^{k}\right), G \in \hat{C}_{b}^{1}\left(\mathbb{R}^{l}\right)$, and $H \in C_{b}^{1}\left(\mathbb{R}^{k+l+m}\right)$ with $F(0, \ldots, 0)=G(0, \ldots, 0)=H(0, \ldots, 0)=0$,

$$
\begin{align*}
& I_{F(f), G(g)}(H(f, g, h))  \tag{3.2}\\
& =\sum_{i=1}^{k} \sum_{j=1}^{l} \int_{\mathbb{R}^{k+l+m}} \partial_{i} F(x) \partial_{j} G(y) H(x, y, z) d \lambda_{i, j}^{f, g, h}(x, y, z) .
\end{align*}
$$

When $k=1$ and $l=1$, we will write $\lambda^{f, g, h}$ for $\lambda_{1,1}^{f, g, h}$. By Proposition 3.6, we have the integral expression

$$
\begin{equation*}
I_{f, g}(F(h))=\int_{\mathbb{R}^{3}} F(z) d \lambda^{f, g, h}(x, y, z) \tag{3.3}
\end{equation*}
$$

for $f, g, h \in \mathbb{D}$ and $F \in C_{b}^{1}(\mathbb{R})$ with $F(0)=0$. We can define $I_{f, g}(F(h))$ for $F \in C_{b}^{1}(\mathbb{R})$ (possibly with $F(0) \neq 0$ ) by the right-hand side of (3.3).

In other words, when we set $\hat{\mathbb{D}}_{b}=\left\{h \mid h=h_{0}+\alpha, h_{0} \in \mathbb{D}_{b}, \alpha \in \mathbb{R}\right\}$,

$$
I_{f, g}(h)=\int_{\mathbb{R}^{3}}(z+\alpha) d \lambda^{f, g, h_{0}}(x, y, z)=I_{f, g}\left(h_{0}\right)+2 \alpha \mathcal{E}(f, g)
$$

for $f, g \in \mathbb{D}$ and $h=h_{0}+\alpha \in \hat{\mathbb{D}}_{b}$ is well-defined. Then, Lemma 2.5 and Lemma 3.3 (i) (ii) are true for $h, h_{1}, h_{2} \in \hat{\mathbb{D}}_{b}$.
Lemma 3.7. (i) Let $f=\left(f_{1}, \ldots, f_{k}\right), f_{i} \in \mathbb{D}, g=\left(g_{1}, \ldots, g_{l}\right)$, $g_{j} \in \mathbb{D}$, and $h \in \hat{\mathbb{D}}_{b}$. Then,

$$
I_{F(f), G(g)}(h)=\sum_{i=1}^{k} \sum_{j=1}^{l} I_{f_{i}, g_{j}}\left(\partial_{i} F(f) \partial_{j} G(g) h\right)
$$

for $F \in \hat{C}_{b}^{1}\left(\mathbb{R}^{k}\right), G \in \hat{C}_{b}^{1}\left(\mathbb{R}^{l}\right)$ with $F(0, \ldots, 0)=G(0, \ldots, 0)=$ 0.
(ii) For $f, g \in \mathbb{D}_{b},\{2 \mathcal{E}(f g)\}^{1 / 2}=I_{f g}(1)^{1 / 2} \leq I_{f}\left(g^{2}\right)^{1 / 2}+I_{g}\left(f^{2}\right)^{1 / 2}$.

Proof. This is immediately proved by the integral representation of $I$.

Lemma 3.8. Let $f \in \mathbb{D}_{0}\left(\left\{E_{k}\right\}\right)$ for some nest $\left\{E_{k}\right\}_{k=1}^{\infty}$ and $g \in \mathbb{D}_{b}$. Then, $f g \in \mathbb{D}$ and $\|f g\|_{\mathbb{D}} \leq \sqrt{2}\|f\|_{L^{\infty}(\mu)}\|g\|_{\mathbb{D}}+\|g\|_{L^{2}(\mu)}$.
Proof. We can take sequences $\left\{f_{k}\right\}_{k=1}^{\infty}$ and $\left\{g_{k}\right\}_{k=1}^{\infty}$ from $\mathbb{D}$ such that $f_{k}=f \mu$-a.e. on $E_{k},\left\|f_{k}\right\|_{L^{\infty}(\mu)} \leq\|f\|_{L^{\infty}(\mu)}, g_{k} \in \mathbb{D}_{E_{k}},\left\|g_{k}\right\|_{L^{\infty}(\mu)} \leq$ $\|g\|_{L^{\infty}(\mu)}$ for every $k$, and $g_{k}$ converges to $g$ in $\mathbb{D}$ and $\mu$-a.e. as $k \rightarrow \infty$. By Lemma 3.7 (ii) and Lemma 2.5 (i), we have

$$
\begin{aligned}
\left\{2 \mathcal{E}\left(f_{k} g_{k}\right)\right\}^{1 / 2} & \leq I_{f_{k}}\left(g_{k}^{2}\right)^{1 / 2}+I_{g_{k}}\left(f_{k}^{2}\right)^{1 / 2} \\
& \leq\left\|g_{k}^{2}\right\|_{L^{1}(\mu)}^{1 / 2}+\left\|f_{k}\right\|_{L^{\infty}(\mu)}\left\{2 \mathcal{E}\left(g_{k}\right)\right\}^{1 / 2} \\
& \leq\left\|g_{k}\right\|_{L^{2}(\mu)}+\|f\|_{L^{\infty}(\mu)}\left\{2 \mathcal{E}\left(g_{k}\right)\right\}^{1 / 2} \\
\left\|f_{k} g_{k}\right\|_{L^{2}(\mu)} & \leq\|f\|_{L^{\infty}(\mu)}\left\|g_{k}\right\|_{L^{2}(\mu)}
\end{aligned}
$$

Therefore, $\left\{f_{k} g_{k}\right\}_{k=1}^{\infty}$ is bounded in $\mathbb{D}$. Since $f_{k} g_{k}$ converges to $f g$ $\mu$-a.e., we obtain that $f g \in \mathbb{D}$ and

$$
\begin{aligned}
\|f g\|_{\mathbb{D}} & \leq \liminf _{k \rightarrow \infty}\left\|f_{k} g_{k}\right\|_{\mathbb{D}} \\
& \leq \liminf _{k \rightarrow \infty}\left(\mathcal{E}\left(f_{k} g_{k}\right)^{1 / 2}+\left\|f_{k} g_{k}\right\|_{L^{2}(\mu)}\right) \\
& \leq 2^{-1 / 2}\|g\|_{L^{2}(\mu)}+\|f\|_{L^{\infty}(\mu)} \mathcal{E}(g)^{1 / 2}+\|f\|_{L^{\infty}(\mu)}\|g\|_{L^{2}(\mu)} \\
& \leq\|g\|_{L^{2}(\mu)}+\sqrt{2}\|f\|_{L^{\infty}(\mu)}\|g\|_{\mathbb{D}} .
\end{aligned}
$$

Proposition 3.9. The set $\mathbb{D}_{0}\left(\left\{E_{k}\right\}\right)$ does not depend on the choice of the nest $\left\{E_{k}\right\}_{k=1}^{\infty}$.

Proof. Let $\left\{E_{k}\right\}_{k=1}^{\infty}$ and $\left\{E_{k}^{\prime}\right\}_{k=1}^{\infty}$ be two nests and $f \in \mathbb{D}_{0}\left(\left\{E_{k}^{\prime}\right\}\right)$. It is enough to prove $f \in \mathbb{D}_{0}\left(\left\{E_{k}\right\}\right)$. Take $\left\{\chi_{k}\right\}_{k=1}^{\infty} \subset \mathbb{D}$ as in Definition 2.1 and Remark 2.2 for the nest $\left\{E_{k}\right\}_{k=1}^{\infty}$. From Lemma 3.8, $f \chi_{k} \in \mathbb{D}$ for each $k$. Therefore, $f \in \mathbb{D}_{\text {loc, } b}\left(\left\{E_{k}\right\}\right)$. Let $h \in \mathbb{D}_{E_{k}, b,+}$ for some $k \in \mathbb{N}$. As in the proof of Lemma 3.2, we can take $\left\{h_{l}\right\}_{l=1}^{\infty}$ such that $h_{l} \in \mathbb{D}_{E_{k} \cap E_{l}^{\prime}}, 0 \leq h_{l} \leq h \mu$-a.e. for all $l$ and $h_{l}$ converges to $h$ in $\mathbb{D}$ as $l \rightarrow \infty$. Then, for all $l$,

$$
\left\|h_{l}\right\|_{L^{1}(\mu)} \geq I_{f}\left(h_{l}\right)=I_{f \chi_{k}}\left(h_{l}\right) .
$$

Letting $l \rightarrow \infty$, we obtain from Lemma 3.3 (iii) that

$$
\|h\|_{L^{1}(\mu)} \geq I_{f_{\chi_{k}}}(h)=I_{f}(h) .
$$

Hence, we conclude $f \in \mathbb{D}_{0}\left(\left\{E_{k}\right\}\right)$.
By this proposition, we will use the notation $\mathbb{D}_{0}$ as well as $\mathbb{D}_{0}\left(\left\{E_{k}\right\}\right)$ from now on. Note that $1 \in \mathbb{D}_{0}$. When $\mu(X)<\infty$ and $1 \in \mathbb{D}$, the space $\mathbb{D}_{0}$ is the same as given in [4], namely (1.3), because we can take $E_{k}=X(k \in \mathbb{N})$ as a nest.

Proposition 3.10. Let $f, g \in \mathbb{D}_{0}$. Then, $-f, f \vee g$, and $f \wedge g$ also belong to $\mathbb{D}_{0}$.

Proof. It is trivial that $f \in \mathbb{D}_{0}$ implies $-f \in \mathbb{D}_{0}$. Let $f$ and $g$ be in $\mathbb{D}_{0}$. Take an arbitrary nest $\left\{E_{k}\right\}_{k=1}^{\infty}$. It is easy to see that $f \vee g \in$ $\mathbb{D}_{\text {loc }, b}\left(\left\{E_{k}\right\}\right)$. Take $\left\{f_{k}\right\}_{k=1}^{\infty}$ and $\left\{g_{k}\right\}_{k=1}^{\infty}$ from $\mathbb{D}$ so that $f_{k}=f, g_{k}=g$ $\mu$-a.e. on $E_{k},\left\|f_{k}\right\|_{L^{\infty}(\mu)} \leq\|f\|_{L^{\infty}(\mu)}$ and $\left\|g_{k}\right\|_{L^{\infty}(\mu)} \leq\|g\|_{L^{\infty}(\mu)}$ for each $k$. Take any $h \in \mathbb{D}_{E_{k}, b,+}, k \in \mathbb{N}$. Define for $l \in \mathbb{N}$

$$
h_{1, l}=\left(0 \vee l\left(f_{k}-g_{k}\right) \wedge 1\right) h, \quad h_{2, l}=\left(0 \vee l\left(g_{k}-f_{k}+1 / l\right) \wedge 1\right) h .
$$

Then, $h_{1, l}, h_{2, l} \in \mathbb{D}_{E_{k}, b,+}, h=h_{1, l}+h_{2, l}, h_{1, l}=0 \mu$-a.e. on $\left\{f_{k} \vee g_{k} \neq f_{k}\right\}$, and $h_{2, l} \leq F_{l}\left(f_{k} \vee g_{k}-g_{k}\right)\|h\|_{L^{\infty}(\mu)}$ for every $l$. Here, $F_{l}$ is an arbitrary $C^{1}$-function on $\mathbb{R}$ such that $0 \leq F_{l} \leq 1, F_{l}(x)=0$ on $(-\infty,-1 / l] \cup$ $[2 / l, \infty)$, and $F_{l}(x)=1$ on $[0,1 / l]$. Then, we have

$$
\begin{aligned}
& I_{f \vee g}(h)-\|h\|_{L^{1}(\mu)} \\
& =I_{f_{k} \vee g_{k}}\left(h_{1, l}\right)-\left\|h_{1, l}\right\|_{L^{1}(\mu)}+I_{f_{k} \vee g_{k}}\left(h_{2, l}\right)-\left\|h_{2, l}\right\|_{L^{1}(\mu)} \\
& \leq I_{f_{k}}\left(h_{1, l}\right)-\left\|h_{1, l}\right\|_{L^{1}(\mu)} \\
& \quad+\left(I_{f_{k} \vee g_{k}-g_{k}}\left(h_{2, l}\right)^{1 / 2}+I_{g_{k}}\left(h_{2, l}\right)^{1 / 2}\right)^{2}-\left\|h_{2, l}\right\|_{L^{1}(\mu)} \\
& \leq\left(1+\varepsilon^{-1}\right)\|h\|_{L^{\infty}(\mu)} I_{f_{k} \vee g_{k}-g_{k}}\left(F_{l}\left(f_{k} \vee g_{k}-g_{k}\right)\right)+(1+\varepsilon) I_{g_{k}}\left(h_{2, l}\right) \\
& \quad-\left\|h_{2, l}\right\|_{L^{1}(\mu)} \\
& \leq\left(1+\varepsilon^{-1}\right)\|h\|_{L^{\infty}(\mu)} \int_{\mathbb{R}} F_{l}(x) \sigma_{1,1}^{f_{k} \vee g_{k}-g_{k}}(d x)+\varepsilon I_{g_{k}}(h),
\end{aligned}
$$

for any $\varepsilon>0$, where $\sigma_{1,1}^{f_{k} \vee g_{k}-g_{k}}$ is a measure on $\mathbb{R}$ given in Theorem 3.4 with $n=1$. Since Theorem 3.5 implies $\sigma_{1,1}^{f_{k} \vee g_{k}-g_{k}}(\{0\})=0$, we obtain $I_{f \vee g}(h)-\|h\|_{L^{1}(\mu)} \leq 0$ by letting $l \rightarrow \infty$, then $\varepsilon \rightarrow 0$. This means $f \vee g \in \mathbb{D}_{0}$. We also have $f \wedge g=-((-f) \vee(-g)) \in \mathbb{D}_{0}$.

For $A \in \mathcal{B}$ and $M \geq 0$, define

$$
\mathbb{D}_{A, M}:=\left\{f \in \mathbb{D}_{0} \mid f=0 \text { on } A \text { and } f \leq M \mu \text {-a.e. }\right\}
$$

Proposition 3.11. For each $A \in \mathcal{B}$, there exists a unique $[0, \infty]$-valued measurable function $\mathrm{d}_{A}$ such that, for every $M>0, \mathrm{~d}_{A} \wedge M$ is the maximal element of $\mathbb{D}_{A, M}$. Namely, $\mathrm{d}_{A}=0 \mu$-a.e. on $A$ and $f \leq \mathrm{d}_{A} \wedge M$ for every $f \in \mathbb{D}_{A, M}$. Moreover, $\mathrm{d}(A, B)=\operatorname{essinf}_{x \in B} \mathrm{~d}_{A}(x)$ for every $B \in \mathcal{B}$.

Proof. Take a finite measure $\nu$ on $X$ such that $\nu$ and $\mu$ are mutually absolutely continuous. Fix $M>0$ and let $a=\sup \left\{\int_{X} f d \nu \mid\right.$ $\left.f \in \mathbb{D}_{A, M}\right\}(<\infty)$. There is a sequence $\left\{g_{k}\right\}_{k=1}^{\infty}$ in $\mathbb{D}_{A, M}$ such that $\lim _{k \rightarrow \infty} \int_{X} g_{k} d \nu=a$. Let $f_{k}=g_{1} \vee g_{2} \vee \cdots \vee g_{k}$. By Proposition 3.10, $f_{k} \in \mathbb{D}_{A, M}$. It also holds that $f_{k}$ converges to some $f \mu$-a.e. and $\int_{X} f d \nu=a$. We will prove $f \in \mathbb{D}_{A, M}$. Take a nest $\left\{E_{k}\right\}_{k=1}^{\infty}$ and functions $\left\{\chi_{k}\right\}_{k=1}^{\infty}$ as in Definition 2.1 and Remark 2.2. By Lemma 3.8, $f_{k} \chi_{l} \in \mathbb{D}$ for every $k$ and $l$, and $\left\{f_{k} \chi_{l}\right\}_{k=1}^{\infty}$ is bounded in $\mathbb{D}$ for each $l$. Therefore, $f \chi_{l} \in \mathbb{D}$ and $f_{k} \chi_{l}$ converges to $f \chi_{l}$ weakly in $\mathbb{D}$ as $k \rightarrow \infty$. For any $h \in \mathbb{D}_{E_{l}, b,+}$, we have

$$
I_{f_{k} \chi_{l}}(h)=I_{f_{k}}(h) \leq\|h\|_{L^{1}(\mu)}
$$

Lemma 3.3 (i) assures that $I_{f}(h)=I_{f \chi_{l}}(h) \leq\|h\|_{L^{1}(\mu)}$ by letting $k \rightarrow$ $\infty$. Therefore, $f \in \mathbb{D}_{0}$. It is easy to see that $f$ is the maximal element in $\mathbb{D}_{A, M}$. Denote $f$ by $f^{M}$ to indicate the dependency of $M$. Since $f^{M}$ has consistency in $M$, namely, $f^{M^{\prime}}=f^{M} \wedge M^{\prime}$ when $M>M^{\prime}$, the existence of $d_{A}$ follows. The uniqueness of $d_{A}$ is clear.

To prove the latter part of the proposition, let $B \in \mathcal{B}$. By definition, $\mathrm{d}(A, B) \geq \operatorname{essinf}_{x \in B} \mathrm{~d}_{A}(x) \wedge M$ for every $M$. Letting $M \rightarrow \infty$, we get $\mathrm{d}(A, B) \geq \operatorname{essinf}_{x \in B} \mathrm{~d}_{A}(x)$. For the converse inequality, let $f \in \mathbb{D}_{0}$ and define $\hat{f}=\left(f-\operatorname{esssup}_{x \in A} f(x)\right) \vee 0$. Then, $\hat{f} \in \mathbb{D}_{A, M}$ for some $M>0$ and

$$
\underset{x \in B}{\operatorname{essinf}} f(x)-\underset{x \in A}{\operatorname{esssup}} f(x) \leq \underset{x \in B}{\operatorname{essinf}} \hat{f}(x) \leq \underset{x \in B}{\operatorname{essinf}} \mathrm{~d}_{A}(x) .
$$

Taking a supremum over $f$, we obtain $\mathrm{d}(A, B) \leq \operatorname{essinf}_{x \in B} \mathrm{~d}_{A}(x)$.

## 4. Proof of Theorem 2.7

We first prove the upper side estimate.

Theorem 4.1. For any $A, B \in \mathcal{B}$ with $0<\mu(A)<\infty$ and $0<\mu(B)<$ $\infty$,

$$
P_{t}(A, B) \leq \sqrt{\mu(A) \mu(B)} \exp \left(-\frac{\mathrm{d}(A, B)^{2}}{2 t}\right), \quad t>0 .
$$

In particular, $\lim \sup _{t \rightarrow 0} t \log P_{t}(A, B) \leq-\mathrm{d}(A, B)^{2} / 2$.
Proof. Let $w \in \mathbb{D}_{A, M}$ and let $\left\{E_{k}\right\}_{k=1}^{\infty}$ be an arbitrary nest. There exists $\left\{w_{k}\right\}_{k=1}^{\infty} \subset \mathbb{D}$ such that $\left\|w_{k}\right\|_{L^{\infty}(\mu)} \leq M$ and $w_{k}=w \mu$-a.e. on $E_{k}$ for all $k$. Note that $w_{k}$ converges to $w \mu$-a.e. Set $v_{t}=T_{t} 1_{A}$ for $t>0$. For $\alpha \in \mathbb{R}$, define $q(t)=\int_{X}\left(e^{\alpha w} v_{t}\right)^{2} d \mu, t>0$. Fix $t>0$. We can take $\left\{u_{k}\right\}_{k=1}^{\infty}$ from $\mathbb{D}$ so that $u_{k} \in \mathbb{D}_{E_{k}}, 0 \leq u_{k} \leq 1 \mu$-a.e. for each $k$, and $u_{k}$ converges to $v_{t}$ in $\mathbb{D}$ and $\mu$-a.e. as $k \rightarrow \infty$. Then,

$$
\begin{aligned}
q^{\prime}(t) & =\int_{X} 2 \mathcal{L} v_{t} \cdot v_{t} e^{2 \alpha w} d \mu \\
& =\lim _{k \rightarrow \infty} \int_{X} 2 \mathcal{L} v_{t} \cdot u_{k} e^{2 \alpha w_{k}} d \mu \\
& =\lim _{k \rightarrow \infty}-2 \mathcal{E}\left(v_{t}, u_{k} e^{2 \alpha w_{k}}\right)
\end{aligned}
$$

Since $u_{k} \rightarrow v_{t}$ in $\mathbb{D}$ as $k \rightarrow \infty$, we have

$$
\lim _{k \rightarrow \infty}\left(\mathcal{E}\left(v_{t}, u_{k}\right)-\mathcal{E}\left(u_{k}, u_{k}\right)\right)=0
$$

In the inequality

$$
\begin{aligned}
& \left|\mathcal{E}\left(v_{t}, u_{k}\left(e^{2 \alpha w_{k}}-1\right)\right)-\mathcal{E}\left(u_{k}, u_{k}\left(e^{2 \alpha w_{k}}-1\right)\right)\right| \\
& \leq \mathcal{E}\left(v_{t}-u_{k}\right)^{1 / 2} \mathcal{E}\left(u_{k}\left(e^{2 \alpha w_{k}}-1\right)\right)^{1 / 2},
\end{aligned}
$$

the right-hand side converges to 0 as $k \rightarrow \infty$, since

$$
\begin{aligned}
& \left\{2 \mathcal{E}\left(u_{k}\left(e^{2 \alpha w_{k}}-1\right)\right)\right\}^{1 / 2} \\
& \leq I_{u_{k}}\left(\left(e^{2 \alpha w_{k}}-1\right)^{2}\right)^{1 / 2}+I_{e^{2 \alpha w_{k}-1}}\left(u_{k}^{2}\right)^{1 / 2} \quad(\text { by Lemma } 3.7 \text { (ii) }) \\
& \leq\left(e^{2|\alpha| M}+1\right)\left\{2 \mathcal{E}\left(u_{k}\right)\right\}^{1 / 2}+I_{w_{k}}\left(\left(2 \alpha e^{2 \alpha w_{k}}\right)^{2} u_{k}^{2}\right)^{1 / 2}
\end{aligned}
$$

(by Lemma 2.5 (i) and Lemma 3.7 (i))

$$
\leq\left(e^{2|\alpha| M}+1\right)\left\{2 \mathcal{E}\left(u_{k}\right)\right\}^{1 / 2}+2|\alpha| e^{2|\alpha| M}\left\|u_{k}\right\|_{L^{2}(\mu)}
$$

which is bounded in $k$. Thus we have

$$
q^{\prime}(t)=\lim _{k \rightarrow \infty}-2 \mathcal{E}\left(u_{k}, u_{k} e^{2 \alpha w_{k}}\right)
$$

Letting $f=\left(u_{k}, w_{k}\right)$ in Theorem 3.4, we have

$$
\begin{aligned}
-2 \mathcal{E}\left(u_{k}, u_{k} e^{2 \alpha w_{k}}\right) & =-2 \int_{\mathbb{R}^{2}} e^{2 \alpha y} d \sigma_{1,1}^{f}(x, y)-2 \int_{\mathbb{R}^{2}} 2 \alpha x e^{2 \alpha y} d \sigma_{1,2}^{f}(x, y) \\
& \leq 2 \int_{\mathbb{R}^{2}} \alpha^{2} x^{2} e^{2 \alpha y} d \sigma_{2,2}^{f}(x, y) \\
& =\alpha^{2} I_{w_{k}}\left(u_{k}^{2} e^{2 \alpha w_{k}}\right) \leq \alpha^{2}\left\|u_{k}^{2} e^{2 \alpha w_{k}}\right\|_{L^{1}(\mu)} .
\end{aligned}
$$

Therefore, we have

$$
q^{\prime}(t) \leq \alpha^{2}\left\|v_{t}^{2} e^{2 \alpha w}\right\|_{L^{1}(\mu)}=\alpha^{2} q(t)
$$

Solving this differential inequality, we have

$$
\begin{equation*}
q(t) \leq q(0) e^{\alpha^{2} t}, \quad t>0 \tag{4.1}
\end{equation*}
$$

By setting $w=\mathrm{d}_{A} \wedge M$, (4.1) implies that

$$
\left\|e^{\alpha w} T_{t} 1_{A}\right\|_{L^{2}(\mu)} \leq \sqrt{\mu(A)} e^{\alpha^{2} t / 2}
$$

A similar calculation for $v_{t}=T_{t} 1_{B}$ gives, for $\alpha \geq 0$,

$$
\left\|e^{-\alpha w} T_{t} 1_{B}\right\|_{L^{2}(\mu)} \leq \sqrt{\mu(B)} e^{-\alpha(\mathrm{d}(A, B) \wedge M)+\alpha^{2} t / 2}
$$

Therefore,

$$
\begin{aligned}
P_{t}(A, B) & \leq\left\|e^{\alpha w} T_{t / 2} 1_{A}\right\|_{L^{2}(\mu)}\left\|e^{-\alpha w} T_{t / 2} 1_{B}\right\|_{L^{2}(\mu)} \\
& \leq \sqrt{\mu(A) \mu(B)} e^{-\alpha(\mathrm{d}(A, B) \wedge M)+\alpha^{2} t / 2}
\end{aligned}
$$

The conclusion follows by optimizing the right-hand side in $\alpha$ and letting $M \rightarrow \infty$.

We turn to the lower side estimate. Fix a nest $\left\{E_{k}\right\}_{k=1}^{\infty}$ and associated functions $\left\{\chi_{k}\right\}_{k=1}^{\infty}$ as in Definition 2.1 and Remark 2.2. Take functions $\phi^{K}, \Phi^{K}, \Psi^{K}$ for $K>0$ as in Section 2.1 of [4]. That is, using an arbitrary concave function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

- $g$ is bounded and three times continuously differentiable;
- $g(x)=x$ for $x \leq 1$ and $0<g^{\prime}(x) \leq 1$ for any $x \in \mathbb{R}_{+}$;
- there is a positive constant $C$ such that $0 \leq-g^{\prime \prime}(x) \leq C g^{\prime}(x)$ for all $x \geq 0$,
define

$$
\phi^{K}(x)=K g(x / K), \quad \Phi^{K}(x)=\int_{0}^{x}\left(\phi^{K}\right)^{\prime}(s)^{2} d s, \quad \Psi^{K}(x)=x\left(\phi^{K}\right)^{\prime}(x)^{2} .
$$

In what follows, we suppress the symbol $K$ from the notation since $K$ is fixed in most of the argument. The following are some basic properties for these functions, proved in [4].

- $0<\phi^{\prime}(x) \leq 1,0 \leq-\phi^{\prime \prime}(x) \leq(C / K) \phi^{\prime}(x)$,
- $0 \leq \Psi(x) \leq \Phi(x) \leq \phi(x) \leq L K$, where $L:=\lim _{x \rightarrow \infty} g(x)<$ $\infty$.
- $\Phi(x)=\Psi(x)=x$ for $x \in[0, K]$.

We also adopt the same abbreviations there; for functions $u_{t}^{\delta}$ on $X$ with parameters $t$ and $\delta$, we write $\phi_{t}^{\delta}$ for $\phi\left(u_{t}^{\delta}\right), \Phi_{t}^{\delta}$ for $\Phi\left(u_{t}^{\delta}\right), \bar{\phi}_{t}^{\delta}$ for $t^{-1} \int_{0}^{t} \phi_{s}^{\delta} d s$, and so on. We denote $\int_{X} f g d \mu$ by $(f, g)$ for functions $f$ and $g$ on $X$.

For $\delta \in(0,1]$ and $f \in L^{2}(\mu)$ with $0 \leq f \leq 1-\delta \mu$-a.e., define for $t>0$

$$
u_{t}^{\delta}(x)=-t \log \left(T_{t} f(x)+\delta\right), \quad e_{t}^{\delta}=-t \log \delta
$$

Lemma 4.2. $u_{t}^{\delta}-e_{t}^{\delta} \in \mathbb{D}$ and

$$
\begin{align*}
& \partial_{t}\left(\Phi_{t}^{\delta}, \rho\right)  \tag{4.2}\\
& =-\mathcal{E}\left(\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{2} \rho, u_{t}^{\delta}-e_{t}^{\delta}\right)-\frac{1}{2 t} I_{u_{t}^{\delta}-e_{t}^{\delta}}\left(\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{2} \rho\right)+\frac{1}{t}\left(\Psi_{t}^{\delta}, \rho\right)
\end{align*}
$$

for $\rho \in L^{1}(\mu) \cap \mathbb{D}_{b}$.
Proof. Since $u_{t}^{\delta}-e_{t}^{\delta}=F\left(T_{t} f\right)$, where $F(s)=-t \log ((s+\delta) / \delta)$ is a Lipschitz function on $[0, \infty)$ with $F(0)=0$, we conclude that $u_{t}^{\delta}-e_{t}^{\delta} \in$ $\mathbb{D}$. The identity (4.2) is proved in the same way as [4, Lemma 2.10], but we give the proof for completeness.

Using Lemma 3.7, it holds that

$$
\mathcal{E}\left(u_{t}^{\delta}-e_{t}^{\delta}, \rho\right)=-t \mathcal{E}\left(T_{t} f, \frac{\rho}{T_{t} f+\delta}\right)-\frac{1}{2 t} I_{u_{t}^{\delta}-e_{t}^{\delta}}(\rho) .
$$

Then,

$$
\begin{aligned}
\partial_{t}\left(u_{t}^{\delta}, \rho\right) & =\frac{1}{t}\left(u_{t}^{\delta}, \rho\right)-\left(\frac{t \mathcal{L} T_{t} f}{T_{t} f+\delta}, \rho\right) \\
& =\frac{1}{t}\left(u_{t}^{\delta}, \rho\right)-t \mathcal{E}\left(T_{t} f, \frac{\rho}{T_{t} f+\delta}\right) \\
& =\frac{1}{t}\left(u_{t}^{\delta}, \rho\right)-\mathcal{E}\left(u_{t}^{\delta}-e_{t}^{\delta}, \rho\right)-\frac{1}{2 t} I_{u_{t}^{\delta}-e_{t}^{\delta}}(\rho) .
\end{aligned}
$$

By using the identity $\partial_{t}\left(\Phi_{t}^{\delta}, \rho\right)=\left(\partial_{t} u_{t}^{\delta},\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{2} \rho\right)$ and replacing $\rho$ by $\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{2} \rho$ in the relation above, we obtain (4.2).

Define $u_{t}^{\delta}=-t \log \left((1-\delta) T_{t} 1_{A}+\delta\right)$ for $A \in \mathcal{B}$ with $\mu(A)<\infty$.
Lemma 4.3. There exists $T_{0}>0$ such that both $\left\{\mathcal{E}\left(\bar{\phi}_{t}^{\delta} \chi_{k}\right)\right\}_{0<t \leq T_{0}, 0<\delta \leq 1}$ and $\left\{\mathcal{E}\left(\bar{\Phi}_{t}^{\delta} \chi_{k}\right)\right\}_{0<t \leq T_{0}, 0<\delta \leq 1}$ are bounded for each $k$.

Proof. Let $U_{t}^{\delta}=2 \mathcal{E}\left(\phi_{t}^{\delta} \chi_{k}\right)$ and $a_{k}=2 \mathcal{E}\left(\chi_{k}\right)$. Since $\phi_{t}^{\delta}=\phi\left(\left(u_{t}^{\delta}-e_{t}^{\delta}\right)+\right.$ $e_{t}^{\delta}$ ), Lemma 3.7 and Lemma 2.5 imply

$$
\begin{align*}
U_{t}^{\delta} & =I_{u_{t}^{\delta}-e_{t}^{\delta}}\left(\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{2} \chi_{k}^{2}\right)+2 I_{u_{t}^{\delta}-e_{t}^{\delta}, \chi_{k}}\left(\phi_{t}^{\delta}\left(\phi^{\prime}\right)_{t}^{\delta} \chi_{k}\right)+I_{\chi_{k}}\left(\left(\phi_{t}^{\delta}\right)^{2}\right)  \tag{4.3}\\
& \leq 2 I_{u_{t}^{\delta}-e_{t}^{\delta}}^{\left.\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{2} \chi_{k}^{2}\right)+2 I_{\chi_{k}}\left(\left(\phi_{t}^{\delta}\right)^{2}\right)} \\
& \leq 2 I_{u_{t}^{\delta}-e_{t}^{\delta}}\left(\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{2} \chi_{k}^{2}\right)+2 K^{2} L^{2} a_{k}
\end{align*}
$$

Set $V_{t}^{\delta}=I_{u_{t}^{\delta}-e_{t}^{\delta}}\left(\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{2} \chi_{k}^{2}\right)$. By letting $\rho=\chi_{k}^{2}$ in Lemma 4.2,

$$
V_{t}^{\delta}=-2 t \partial_{t}\left(\Phi_{t}^{\delta}, \chi_{k}^{2}\right)-2 t \mathcal{E}\left(\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{2} \chi_{k}^{2}, u_{t}^{\delta}-e_{t}^{\delta}\right)+2\left(\Psi_{t}^{\delta}, \chi_{k}^{2}\right)
$$

The last term of the right-hand side is dominated by $2 K L$. Regarding the second term, we have

$$
\begin{aligned}
& \mathcal{E}\left(\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{2} \chi_{k}^{2}, u_{t}^{\delta}-e_{t}^{\delta}\right) \\
&= I_{\chi_{k}, \phi_{t}^{\delta} \chi_{k}}\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)-I_{\chi_{k}}\left(\left(\phi^{\prime}\right)_{t}^{\delta} \phi_{t}^{\delta}\right)+I_{u_{t}^{\delta}-e_{t}^{\delta}}\left(\left(\phi^{\prime \prime}\right)_{t}^{\delta}\left(\phi^{\prime}\right)_{t}^{\delta} \chi_{k}^{2}\right) \\
& \geq-\left\{2 \mathcal{E}\left(\chi_{k}\right)\right\}^{1 / 2}\left\{2 \mathcal{E}\left(\phi_{t}^{\delta} \chi_{k}\right)\right\}^{1 / 2}-K L \cdot 2 \mathcal{E}\left(\chi_{k}\right) \\
&-(C / K) I_{u_{t}^{\delta}-e_{t}^{\delta}}\left(\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{2} \chi_{k}^{2}\right) \\
&=-a_{k}^{1 / 2}\left(U_{t}^{\delta}\right)^{1 / 2}-K L a_{k}-(C / K) V_{t}^{\delta} .
\end{aligned}
$$

Here, the first equality follows from Lemma 3.7. By combining these estimates,

$$
\begin{aligned}
\left(1-\frac{2 C t}{K}\right) V_{t}^{\delta} & \leq-2 t \partial_{t}\left(\Phi_{t}^{\delta}, \chi_{k}^{2}\right)+2 a_{k}^{1 / 2} t\left(U_{t}^{\delta}\right)^{1 / 2}+2 K L a_{k} t+2 K L \\
& \leq-2 t \partial_{t}\left(\Phi_{t}^{\delta}, \chi_{k}^{2}\right)+U_{t}^{\delta} / 8+8 a_{k} t^{2}+2 K L a_{k} t+2 K L
\end{aligned}
$$

Take $T_{0}=K /(4 C)$. For $t \in\left(0, T_{0}\right], V_{t}^{\delta} / 2 \leq(1-(2 C t) / K) V_{t}^{\delta}$. Putting this and the above inequalities into (4.3),

$$
U_{t}^{\delta} \leq 4\left\{-2 t \partial_{t}\left(\Phi_{t}^{\delta}, \chi_{k}^{2}\right)+U_{t}^{\delta} / 8+8 a_{k} t^{2}+2 K L a_{k} t+2 K L\right\}+2 K^{2} L^{2} a_{k}
$$

so that

$$
U_{t}^{\delta} \leq-16 t \partial_{t}\left(\Phi_{t}^{\delta}, \chi_{k}^{2}\right)+c
$$

where $c$ is a constant independent of $t$ and $\delta$. Therefore,

$$
\begin{aligned}
\int_{\varepsilon}^{t} \mathcal{E}\left(\phi_{s}^{\delta} \chi_{k}\right) d s & =\frac{1}{2} \int_{\varepsilon}^{t} U_{s}^{\delta} d s \\
& \leq-8 \int_{\varepsilon}^{t} s\left(\partial_{s} \Phi_{s}^{\delta}, \chi_{k}^{2}\right) d s+\frac{c}{2}(t-\varepsilon) \\
& =-\left.8 s\left(\Phi_{s}^{\delta}, \chi_{k}^{2}\right)\right|_{s=\varepsilon} ^{s=t}+8 \int_{\varepsilon}^{t}\left(\Phi_{s}^{\delta}, \chi_{k}^{2}\right) d s+\frac{c}{2}(t-\varepsilon)
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$ and dividing by $t$, we obtain

$$
\mathcal{E}\left(\bar{\phi}_{t}^{\delta} \chi_{k}\right) \leq \frac{1}{t} \int_{0}^{t} \mathcal{E}\left(\phi_{s}^{\delta} \chi_{k}\right) d s \leq 8 K L+\frac{c T_{0}}{2} .
$$

Therefore, $\left\{\mathcal{E}\left(\bar{\phi}_{t}^{\delta} \chi_{k}\right)\right\}_{0<t \leq T_{0}, 0<\delta \leq 1}$ is bounded. Moreover, since

$$
\begin{aligned}
\mathcal{E}\left(\Phi_{t}^{\delta} \chi_{k}\right) & =I_{u_{t}^{\delta}-e_{t}^{\delta}}\left(\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{4} \chi_{k}^{2}\right)+2 I_{u_{t}^{\delta}-e_{t}^{\delta}, \chi_{k}}\left(\Phi_{t}^{\delta}\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{2} \chi_{k}\right)+I_{\chi_{k}}\left(\left(\Phi_{t}^{\delta}\right)^{2}\right) \\
& \left.\leq 2 I_{u_{t}^{\delta}-e_{t}^{\delta}}\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{4} \chi_{k}^{2}\right)+2 I_{\chi_{k}}\left(\left(\Phi_{t}^{\delta}\right)^{2}\right) \\
& \leq 2 V_{t}^{\delta}+2 K^{2} L^{2} a_{k},
\end{aligned}
$$

we can prove the boundedness of $\left\{\mathcal{E}\left(\bar{\Phi}_{t}^{\delta} \chi_{k}\right)\right\}_{0<t \leq T_{0}, 0<\delta \leq 1}$ in the same way.

Since $\bar{\phi}_{t}^{\delta} \chi_{k}$ converges to $\bar{\phi}_{t} \chi_{k} \mu$-a.e. as $\delta \rightarrow 0$, we conclude that $\bar{\phi}_{t} \chi_{k} \in \mathbb{D}$ and $\left\{\bar{\phi}_{t} \chi_{k}\right\}_{t \in\left(0, T_{0}\right]}$ is bounded in $\mathbb{D}$ for each $k$. By the diagonal argument, for any decreasing sequence $\left\{t_{n}\right\} \downarrow 0$, we can take a subsequence $\left\{t_{n^{\prime}}\right\}$ such that for every $k, \bar{\phi}_{t_{n^{\prime}}} \chi_{k}$ converges weakly to some $\psi_{k}$ in $\mathbb{D}$. Since $\chi_{k}=1$ on $E_{l}$ if $k \geq l, \psi_{k}$ and $\psi_{l}$ should be identical on $E_{l}$ for $k \geq l$. Therefore, there exists $\bar{\phi}_{0} \in \mathbb{D}_{\text {loc, },++}\left(\left\{E_{k}\right\}\right)$ such that $\psi_{k}=\bar{\phi}_{0}$ on $E_{k}$ for every $k$.

We may also assume, by taking a further subsequence if necessary, that there exist $\Phi_{0}, \bar{\Phi}_{0}$, and $\bar{\Psi}_{0}$ in $L_{+}^{\infty}(\mu)$ such that $\Phi_{t_{n^{\prime}}} \rightarrow \Psi_{0}, \bar{\Phi}_{t_{n^{\prime}}} \rightarrow$ $\bar{\Phi}_{0}, \bar{\Psi}_{t_{n^{\prime}}} \rightarrow \bar{\Psi}_{0}$ both in weak- $L^{2}(\nu)$ sense and in weak ${ }^{*}-L^{\infty}(\mu)$ sense. Here, $\nu$ is an arbitrarily fixed finite measure on $X$ such that $\nu$ and $\mu$ are mutually absolutely continuous, and $L^{\infty}(\mu)$ is regarded as the dual space of $L^{1}(\mu)$.

Now, fix $k$ and let $h \in \mathbb{D}_{E_{k}, b,+}$. By Lemma 3.7 and Lemma 4.2,

$$
\begin{aligned}
I_{\phi_{t}^{\delta} \chi_{k}}(h) & =I_{u_{t}^{\delta}-e_{t}^{\delta}}\left(\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{2} \chi_{k}^{2} h\right)+2 I_{u_{t}^{\delta}-e_{t}^{\delta}, \chi_{k}}\left(\left(\phi^{\prime}\right)_{t}^{\delta} \phi_{t}^{\delta} \chi_{k} h\right)+I_{\chi_{k}}\left(\left(\phi_{t}^{\delta}\right)^{2} h\right) \\
& =I_{u_{t}^{\delta}-e_{t}^{\delta}}\left(\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{2} h\right) \\
& =-2 t \partial_{t}\left(\Phi_{t}^{\delta}, h\right)-2 t \mathcal{E}\left(\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{2} h, u_{t}^{\delta}-e_{t}^{\delta}\right)+2\left(\Psi_{t}^{\delta}, h\right)
\end{aligned}
$$

Regarding the second term, we have

$$
\begin{aligned}
\mathcal{E}\left(\left(\left(\phi^{\prime}\right)_{t}^{\delta}\right)^{2} h, u_{t}^{\delta}-e_{t}^{\delta}\right) & =\mathcal{E}\left(\Phi_{t}^{\delta} \chi_{k}, h\right)+I_{u_{t}^{\delta}-e_{t}^{\delta}}\left(\left(\phi^{\prime}\right)_{t}^{\delta}\left(\phi^{\prime \prime}\right)_{t}^{\delta} h\right) \\
& \geq \mathcal{E}\left(\Phi_{t}^{\delta} \chi_{k}, h\right)-(C / K) I_{\phi_{t}^{\delta}-\phi\left(e_{t}^{\delta}\right)}(h) .
\end{aligned}
$$

It also holds that

$$
I_{\phi_{t}^{\delta}-\phi\left(e_{t}^{\delta}\right)}(h)=I_{\phi_{t}^{\delta} \chi_{k}-\phi\left(e_{t}^{\delta}\right) \chi_{k}}(h)=I_{\phi_{t}^{\delta} \chi_{k}}(h) .
$$

Then,

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{T} I_{\phi_{t}^{\delta} \chi_{k}}(h) d t \leq & -\left.t\left(\Phi_{t}^{\delta}, h\right)\right|_{t=0} ^{t=T}+\int_{0}^{T}\left(\Phi_{t}^{\delta}, h\right) d t \\
& -\int_{0}^{T} t\left\{\mathcal{E}\left(\Phi_{t}^{\delta} \chi_{k}, h\right)-(C / K) I_{\phi_{t}^{\delta} \chi_{k}}(h)\right\} d t+T\left(\bar{\Psi}_{T}^{\delta}, h\right) \\
\leq & -T\left(\Phi_{T}^{\delta}, h\right)+T\left(\bar{\Phi}_{T}^{\delta}, h\right)-\int_{0}^{T} t \mathcal{E}\left(\Phi_{t}^{\delta} \chi_{k}, h\right) d t \\
& +\frac{C T}{K} \int_{0}^{T} I_{\phi_{t}^{\delta} \chi_{k}}(h) d t+T\left(\bar{\Psi}_{T}^{\delta}, h\right),
\end{aligned}
$$

which implies

$$
\begin{align*}
& \left(\frac{1}{2}-\frac{C T}{K}\right) \frac{1}{T} \int_{0}^{T} I_{\phi_{t}^{\delta} \chi_{k}}(h) d t  \tag{4.4}\\
& \leq-\left(\Phi_{T}^{\delta}, h\right)+\left(\bar{\Phi}_{T}^{\delta}, h\right)-\frac{1}{T} \int_{0}^{T} t \mathcal{E}\left(\Phi_{t}^{\delta} \chi_{k}, h\right) d t+\left(\bar{\Psi}_{T}^{\delta}, h\right)
\end{align*}
$$

For the third term of the right-hand side, the integration by parts formula gives

$$
\begin{aligned}
& \frac{1}{T} \int_{0}^{T} t \mathcal{E}\left(\Phi_{t}^{\delta} \chi_{k}, h\right) d t \\
& =\left.\frac{t}{T} \int_{0}^{t} \mathcal{E}\left(\Phi_{s}^{\delta} \chi_{k}, h\right) d s\right|_{t=0} ^{t=T}-\frac{1}{T} \int_{0}^{T} \int_{0}^{t} \mathcal{E}\left(\Phi_{s}^{\delta} \chi_{k}, h\right) d s d t \\
& =T \mathcal{E}\left(\bar{\Phi}_{T}^{\delta} \chi_{k}, h\right)-\frac{1}{T} \int_{0}^{T} t \mathcal{E}\left(\bar{\Phi}_{t}^{\delta} \chi_{k}, h\right) d t
\end{aligned}
$$

which converges to 0 as $\delta \rightarrow 0$ and $T \rightarrow 0$ because $\mathcal{E}\left(\bar{\Phi}_{t}^{\delta} \chi_{k}\right)$ is bounded in $\delta$ and $t$ by Lemma 4.3.

Letting $\delta \rightarrow 0$, dividing by $T$ and letting $T \rightarrow 0$ along the sequence $\left\{t_{n^{\prime}}\right\}$ in (4.4), we obtain

$$
\begin{equation*}
\frac{1}{2} I_{\bar{\phi}_{0}}(h) \leq\left(-\Phi_{0}+\bar{\Phi}_{0}+\bar{\Psi}_{0}, h\right) \leq\left(2 \bar{\phi}_{0}, h\right) . \tag{4.5}
\end{equation*}
$$

Then, for $\varepsilon>0$,

$$
I_{\sqrt{\bar{\phi}_{0}+\varepsilon}-\sqrt{\varepsilon}}(h)=\frac{1}{4} I_{\bar{\phi}_{0}}\left(\frac{h}{\bar{\phi}_{0}+\varepsilon}\right) \leq \frac{1}{2}\left(2 \bar{\phi}_{0}, \frac{h}{\bar{\phi}_{0}+\varepsilon}\right) \leq\|h\|_{L^{1}(\mu)} .
$$

Hence $\sqrt{\bar{\phi}_{0}+\varepsilon}-\sqrt{\varepsilon} \in \mathbb{D}_{0}$, which implies $\sqrt{\bar{\phi}_{0}} \in \mathbb{D}_{0}$ by Lemma 3.3 (i).
Lemma 4.4. $\bar{\phi}_{0}=0 \mu$-a.e. on $A$.
Proof. Since $T_{s} 1_{A}$ converges to $1_{A}$ in $L^{2}(\mu)$ as $s \rightarrow 0$, we can take a subsequence $\left\{s_{k^{\prime}}\right\}$ from an arbitrary sequence $\left\{s_{k}\right\} \downarrow 0$ such that $T_{s_{k^{\prime}}} 1_{A} \rightarrow 1_{A} \mu$-a.e. as $k^{\prime} \rightarrow \infty$. By the dominated convergence theorem,
$\lim _{k^{\prime} \rightarrow \infty} \int_{A} \phi_{s_{k^{\prime}}} d \mu=0$. This means that $\lim _{t \rightarrow 0} \int_{A} \phi_{t} d \mu=0$. Then, by letting $t \rightarrow 0$ along the sequence $\left\{t_{n^{\prime}}\right\}$ in the identity

$$
\int_{A} \bar{\phi}_{t} d \mu=\frac{1}{t} \int_{0}^{t} \int_{A} \phi_{s} d \mu d s,
$$

we obtain $\int_{A} \bar{\phi}_{0} d \mu=0$, which implies the claim.
From these arguments, we conclude that $\sqrt{\bar{\phi}_{0}} \in \mathbb{D}_{A, \sqrt{K L}}$ and therefore, $\bar{\phi}_{0} \leq \mathrm{d}_{A}^{2} \mu$-a.e. But this inequality is not optimal; a sharper estimate is obtained by the following lemma.

Lemma 4.5. If the inequality

$$
\bar{\phi}_{0}^{K}(x) \leq c \frac{\mathrm{~d}_{A}(x)^{2}}{2}
$$

holds true $\mu$-a.e. for some $c>1$ for every $K$ and every limit $\bar{\phi}_{0}^{K}$, then

$$
\bar{\phi}_{0}^{K}(x) \leq\left(2-c^{-1}\right) \frac{\mathrm{d}_{A}(x)^{2}}{2} \quad \mu \text {-a.e. }
$$

Proof. The proof is a modification of Lemma 2.12 in [4]. Given $K$, we can choose $M<\infty$ such that $\Phi^{K}(M) \leq \sup _{x} \Psi^{K}(x)$. Then $\Phi^{K}\left(\phi_{t}^{M}\right) \geq$ $\Psi_{t}^{K}$ holds $\mu$-a.e. Let $D$ be a measurable set with $0<\mu(D)<\infty$. Using the convexity of $\Phi(-t \log (\cdot))$ for small $t$ (see Lemma 2.1 in [4]), we have

$$
\begin{aligned}
\left(\Phi_{t}^{K}, 1_{D}\right) & \left.=\int_{D} \Phi^{K}\left(-t \log T_{t} 1_{A}\right)\right) d \mu \\
& \geq \mu(D) \Phi^{K}\left(-t \log \left(\frac{1}{\mu(D)}\left(T_{t} 1_{A}, 1_{D}\right)\right)\right)
\end{aligned}
$$

Also, by Theorem 4.1,

$$
\liminf _{t \rightarrow 0}-t \log \left(T_{t} 1_{A}, 1_{D}\right)=\liminf _{t \rightarrow 0}-t \log P_{t}(A, D) \geq \frac{\mathrm{d}(A, D)^{2}}{2}
$$

Therefore, in the limit,

$$
\left(\Phi_{0}^{K}, 1_{D}\right) \geq \mu(D) \Phi^{K}\left(\frac{\mathrm{~d}(A, D)^{2}}{2}\right) \geq \frac{\mu(D)}{c} \underset{x \in D}{\operatorname{essinf}} \Phi^{K}\left(\bar{\phi}_{0}^{M}(x)\right) .
$$

Since $\Phi^{K}$ is concave,

$$
\Phi^{K}\left(\bar{\phi}_{t}^{M}\right)=\Phi^{K}\left(\frac{1}{t} \int_{0}^{t} \phi_{s}^{M} d s\right) \geq \frac{1}{t} \int_{0}^{t} \Psi_{s}^{K} d s=\bar{\Psi}_{t}^{K} \quad \mu \text {-a.e. }
$$

Lemma 2.2 in [4] is applied to obtain that $\Phi^{K}\left(\bar{\phi}_{0}^{M}\right) \geq \bar{\Psi}_{0}^{K} \mu$-a.e. Therefore,

$$
\begin{equation*}
\left(\Phi_{0}^{K}, 1_{D}\right) \geq \frac{\mu(D)}{c} \underset{x \in D}{\operatorname{essinf}} \bar{\Psi}_{0}^{K}(x) . \tag{4.6}
\end{equation*}
$$

We will prove

$$
\begin{equation*}
\Phi_{0}^{K} \geq c^{-1} \bar{\Psi}_{0}^{K} \quad \mu \text {-a.e. } \tag{4.7}
\end{equation*}
$$

from the estimate (4.6). If (4.7) is false, there exists some $D^{\prime} \in \mathcal{B}$ with $0<\mu\left(D^{\prime}\right)<\infty$ and $\varepsilon>0$ such that $\Phi_{0}^{K} \leq c^{-1} \bar{\Psi}_{0}^{K}-\varepsilon \mu$-a.e. on $D^{\prime}$. Let

$$
D=\left\{x \in D^{\prime} \mid \bar{\Psi}_{0}^{K}(x) \leq \operatorname{essinf}_{x \in D^{\prime}} \bar{\Psi}_{0}^{K}+c \varepsilon / 2\right\} .
$$

Then $\mu(D)>0$ and $\Phi_{0}^{K} \leq c^{-1} \operatorname{essinf}_{x \in D} \bar{\Psi}_{0}^{K}-\varepsilon / 2 \mu$-a.e. on $D$. This is contradictory to (4.6).

Combining (4.7) with (4.5), we obtain

$$
\frac{1}{2} I_{\bar{\phi}_{0}^{K}}(h) \leq\left(-c^{-1} \bar{\Psi}_{0}^{K}+\bar{\Phi}_{0}^{K}+\bar{\Psi}_{0}^{K}, h\right) \leq\left(\left(2-c^{-1}\right) \bar{\phi}_{0}^{K}, h\right)
$$

for every $h \in \bigcup_{k=1}^{\infty} \mathbb{D}_{E_{k}, b,+}$. The claim follows by the same argument after Eq. (4.5).

By the iterated use of Lemma 4.5, we obtain that $\bar{\phi}_{0} \leq \mathrm{d}_{A}^{2} / 2 \mu$-a.e. and, therefore, $\bar{\Phi}_{0} \leq \mathrm{d}_{A}^{2} / 2 \mu$-a.e.

Now, Lemmas 2.13 and 2.14 in [4] are valid in the present setting (by replacing $\mu$ with $\nu$ suitably in the proof), and we know that $\bar{\Phi}_{t}$ converges both in weak $L^{2}(\nu)$ sense and in weak ${ }^{*} L^{\infty}(\mu)$ sense as $t \rightarrow 0$ and the limit $\bar{\Phi}_{0}$ is equal to $\Phi\left(\mathrm{d}_{A}^{2} / 2\right)$.

Lemma 4.6. Let $\tau>0$ and $B \in \mathcal{B}$ with $\mu(B)<\infty$. Then,

$$
\lim _{t \rightarrow 0}\left(T_{\tau-t} 1_{B}, \Phi_{t}\right)=\left(T_{\tau} 1_{B}, \bar{\Phi}_{0}\right)=\left(T_{\tau} 1_{B}, \Phi\left(\mathrm{~d}_{A}^{2} / 2\right)\right)
$$

Proof. Let $f(t)=\left(T_{\tau-t} 1_{B}, \Phi_{t}-\Phi(\infty)\right), t>0$. If we check the following two conditions:
(i) $T^{-1} \int_{0}^{T} f(t) d t \rightarrow\left(T_{\tau} 1_{B}, \bar{\Phi}_{0}-\Phi(\infty)\right)$ as $T \rightarrow 0$,
(ii) there exist $M>0$ and $t_{0}>0$ such that $f(t)-f(s) \leq M(t-s) / s$ for any $0<s<t \leq t_{0}$,
then we can apply the Tauberian theorem (Lemma 3.11 in [7]) to obtain that $\lim _{t \rightarrow 0} f(t)=\left(T_{\tau} 1_{B}, \bar{\Phi}_{0}-\Phi(\infty)\right)$, which implies the assertion.

Condition (i) is proved as follows:

$$
\begin{aligned}
& \left|\frac{1}{T} \int_{0}^{T} f(t) d t-\left(T_{\tau} 1_{B}, \bar{\Phi}_{0}-\Phi(\infty)\right)\right| \\
& \leq\left|\frac{1}{T} \int_{0}^{T} f(t) d t-\frac{1}{T} \int_{0}^{T}\left(T_{\tau} 1_{B}, \Phi_{t}-\Phi(\infty)\right) d t\right|+\left|\left(T_{\tau} 1_{B}, \bar{\Phi}_{T}-\bar{\Phi}_{0}\right)\right| \\
& \leq \frac{2 L K}{T} \int_{0}^{T}\left\|1_{B}-T_{t} 1_{B}\right\|_{L^{1}(\mu)} d t+\left|\left(T_{\tau} 1_{B}, \bar{\Phi}_{T}-\bar{\Phi}_{0}\right)\right| \\
& \rightarrow 0 \quad \text { as } T \rightarrow 0 .
\end{aligned}
$$

Regarding (ii), for $\delta \in(0,1)$, Lemma 4.2 implies

$$
\begin{aligned}
&\left.\left(T_{\tau-r} 1_{B}, \Phi_{r}^{\delta}-\Phi\left(e_{r}^{\delta}\right)\right)\right|_{r=s} ^{r=t} \\
&= \int_{s}^{t}\left(T_{\tau-r} 1_{B}, \partial_{r} \Phi_{r}^{\delta}\right) d r-\int_{s}^{t}\left(T_{\tau-r} 1_{B}, \partial_{r} \Phi\left(e_{r}^{\delta}\right)\right) d r \\
&+\int_{s}^{t}\left(\partial_{r} T_{\tau-r} 1_{B}, \Phi_{r}^{\delta}-\Phi\left(e_{r}^{\delta}\right)\right) d r \\
&=-\int_{s}^{t} \mathcal{E}\left(\left(\left(\phi^{\prime}\right)_{r}^{\delta}\right)^{2} T_{\tau-r} 1_{B}, u_{r}^{\delta}-e_{r}^{\delta}\right) d r-\int_{s}^{t} \frac{1}{2 r} I_{u_{r}^{\delta}-e_{r}^{\delta}}\left(\left(\left(\phi^{\prime}\right)_{r}^{\delta}\right)^{2} T_{\tau-r} 1_{B}\right) d r \\
&+\int_{s}^{t} \frac{1}{r}\left(\Psi_{r}^{\delta}, T_{\tau-r} 1_{B}\right) d r-\int_{s}^{t}\left(T_{\tau-r} 1_{B}, \frac{1}{r} \Psi\left(e_{r}^{\delta}\right)\right) d r \\
&+\int_{s}^{t} \mathcal{E}\left(T_{\tau-r} 1_{B}, \Phi_{r}^{\delta}-\Phi\left(e_{r}^{\delta}\right)\right) d r \\
&=-J_{1}-J_{2}+J_{3}-J_{4}+J_{5} .
\end{aligned}
$$

We have

$$
\begin{aligned}
J_{3} & \leq \int_{s}^{t} \frac{K L \mu(B)}{s} d r \leq K L \mu(B)(t-s) / s, \quad J_{4} \geq 0, \\
J_{1} & =\frac{1}{2} \int_{s}^{t} I_{u_{r}^{\delta}-e_{r}^{\delta}}\left(2\left(\phi^{\prime}\right)_{r}^{\delta}\left(\phi^{\prime \prime}\right)_{r}^{\delta} T_{\tau-r} 1_{B}\right) d r+\frac{1}{2} \int_{s}^{t} I_{T_{\tau-r} 1_{B}, u_{r}^{\delta}-e_{r}^{\delta}}\left(\left(\left(\phi^{\prime}\right)_{r}^{\delta}\right)^{2}\right) d r \\
& \geq-\frac{C}{K} \int_{s}^{t} I_{u_{r}^{\delta}-e_{r}^{\delta}}\left(\left(\left(\phi^{\prime}\right)_{r}^{\delta}\right)^{2} T_{\tau-r} 1_{B}\right) d r+J_{5} .
\end{aligned}
$$

If $t \leq t_{0}:=K /(2 C)$, then $J_{1} \geq-J_{2}+J_{5}$. Therefore,

$$
\left.\left(T_{\tau-r} 1_{B}, \Phi_{r}^{\delta}-\Phi\left(e_{r}^{\delta}\right)\right)\right|_{r=s} ^{r=t} \leq K L \mu(B)(t-s) / s
$$

for $s<t \leq t_{0}$. By letting $\delta \rightarrow 0$, condition (ii) follows.
In the identity

$$
\int_{B} \Phi_{t} d \mu=\left(\Phi_{t}, T_{\tau-t} 1_{B}\right)+\left(\Phi_{t}, 1_{B}-T_{\tau-t} 1_{B}\right)
$$

the first term of the right-hand side converges to $\int_{B} \bar{\Phi}_{0} d \mu$ as $t \rightarrow 0$, then $\tau \rightarrow 0$, by the lemma above. The modulus of the second term is dominated by $K L\left\|1_{B}-T_{\tau-t} 1_{B}\right\|_{L^{1}(\mu)}$, which also converges to 0 as $t \rightarrow 0$ and $\tau \rightarrow 0$. Therefore,

$$
\lim _{t \rightarrow 0} \int_{B} \Phi_{t} d \mu=\int_{B} \bar{\Phi}_{0} d \mu=\int_{B} \Phi\left(\mathrm{~d}_{A}^{2} / 2\right) d \mu
$$

for any $B \in \mathcal{B}$ with $\mu(B)<\infty$. Now, by the exactly same argument as the end of Section 2.6 of [4], it follows that

$$
\limsup _{t \rightarrow 0}-t \log P_{t}(A, B) \leq \frac{\mathrm{d}(A, B)^{2}}{2}
$$

Combining Theorem 4.1, we finish the proof of Theorem 2.7.

## 5. Additional Results

Proposition 5.1. For every $t>0$ and $A \in \mathcal{B}$ with $0<\mu(A)<\infty$, it holds that $\left\{T_{t} 1_{A}=0\right\}=\left\{\mathrm{d}_{A}=\infty\right\} \mu$-a.e. Moreover, the following are equivalent for $A, B \in \mathcal{B}$ with $0<\mu(A)<\infty, 0<\mu(B)<\infty$.

- $\mathrm{d}(A, B)=\infty$.
- $P_{t}(A, B)=0$ for every $t>0$.
- $P_{t}(A, B)=0$ for some $t>0$.

Proof. This is almost the same as Lemma 2.16 in [4]. By Theorem 4.1, it holds that $\left\{T_{t} 1_{A}=0\right\} \supset\left\{\mathrm{d}_{A}=\infty\right\} \mu$-a.e. Let $0<s<t$ and suppose $P_{t}(A, B)=0$. Then we have

$$
\begin{aligned}
0 & =P_{t}(A, B)=\left(1_{A}, T_{t-s} T_{s} 1_{B}\right) \geq\left(1_{A} \cdot T_{s} 1_{B}, T_{t-s}\left(1_{A} \cdot T_{s} 1_{B}\right)\right) \\
& =\left\|T_{(t-s) / 2}\left(1_{A} \cdot T_{s} 1_{B}\right)\right\|_{L^{2}(\mu)} .
\end{aligned}
$$

Therefore, $1_{A} \cdot T_{s} 1_{B}=0$, in particular, $P_{s}(A, B)=0$. By Theorem 2.7, we obtain $\left\{T_{t} 1_{A}=0\right\} \subset\left\{\mathrm{d}_{A}=\infty\right\} \mu$-a.e. The second assertion follows from the first one.

The proof of Theorem 1.3 of [4] is also valid in our setting here with slight modification, and we have the following counterpart.

Theorem 5.2. Let $A \in \mathcal{B}$ with $0<\mu(A)<\infty$ take any probability measure $\nu$ which is mutually absolutely continuous with respect to $\mu$. Then, the functions $u_{t}=-t \log T_{t} 1_{A}$ converges to $\mathrm{d}_{A}^{2} / 2$ as $t \rightarrow 0$ in the following senses.
(i) $u_{t} \cdot 1_{\left\{u_{t}<\infty\right\}}$ converges to $\mathrm{d}_{A}^{2} / 2 \cdot 1_{\left\{\mathrm{d}_{A}<\infty\right\}}$ in $\nu$-probability.
(ii) If $F$ is a bounded function on $[0, \infty]$ that is continuous on $[0, \infty)$, then $F\left(u_{t}\right)$ converges to $F\left(\mathrm{~d}_{A}^{2} / 2\right)$ in $L^{2}(\nu)$.

Acknowledgment. The second author thanks Professor K. Kuwae for useful discussions on the notion of nests. Thanks are also due to the referee for helpful comments on the first version of the paper.

## References

[1] L.-E. Andersson, On the representation of Dirichlet forms, Ann. Inst. Fourier, Grenoble 25 (1975), 11-25.
[2] N. Bouleau and F. Hirsch, Dirichlet forms and analysis on Wiener space. Walter de Gruyter, Berlin-New York, 1991.
[3] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes. Walter de Gruyter, Berlin-New York, 1994.
[4] M. Hino and J. A. Ramírez, Small-time Gaussian behavior of symmetric diffusion semigroups, Ann. Probab. 31 (2003), 1254-1295.
[5] Z. M. Ma and M. Röckner, Introduction to the theory of (non-symmetric) Dirichlet forms. Springer, Berlin, 1992.
[6] J. R. Norris, Heat kernel asymptotics and the distance function in Lipschitz Riemannian manifolds, Acta Math. 179 (1997), 79-103.
[7] J. A. Ramírez, Short time asymptotics in Dirichlet spaces, Comm. Pure Appl. Math. 54 (2001), 259-293.
[8] J. P. Roth, Formule de représentation et troncature des formes de Dirichlet sur $\mathbb{R}^{m}$, in Séminaire de Théorie du Potentiel Paris, pp. 260-274, Lecture Notes in Math. 563, Springer, Berlin, 1976.

Risk Management Department, Tokio Marine \& Nichido Fire Insurance Co., Ltd., 5-1, Otemachi 1-Chome, Chiyoda-ku, Tokyo, 100-0004, JAPAN

E-mail address: TEPPEI.ARIYOSHI@tmnf.jp
Graduate School of Informatics, Kyoto University, Kyoto, 6068501, Japan

E-mail address: hino@i.kyoto-u.ac.jp
URL: http://www-an.acs.i.kyoto-u.ac.jp/~hino/


[^0]:    ${ }^{\dagger}$ Supported in part by Ministry of Education, Culture, Sports, Science and Technology, Grant-in-Aid for Encouragement of Young Scientists, 15740089.

[^1]:    ${ }^{1}$ This terminology is taken from Bouleau-Hirsch's book [2]. In Fukushima-Oshima-Takeda's book [3], the essentially same property is called strong local.
    ${ }^{2}$ This definition is slightly different from that in standard textbooks such as $[3,5]$. Note that $X$ does not need any topology here.

