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1 Introduction

In the recent paper [3] the first two authors studied large deviations for the spatial Lp

norms of Brownian local time Lxt . In particular they showed that there are explicit
constants C1(p), C2(p) such that for any p > 1 and λ, h > 0

lim
t→∞

1

t
logE

(
eλ‖L

·
t‖p
)
= λ2p/(p+1)C1(p)(1.1)

and

lim
t→∞

1

t
logP

{
‖L·t‖p ≥ ht

}
= −h2p/(p−1)C2(p).(1.2)

Similar results were obtained for products of independent local times and for local times of
random walks with finite second moment. The methods of that paper depended heavily on
the continuity of the Brownian path and the fact that the generator of Brownian motion,
the Laplacian, is a local operator. The goal of this paper is to generalize these results to
local times of symmetric stable processes and stable random walks, i.e. random walks in
the domain of attraction of a symmetric stable process.

To describe our results let {Xt ; t ≥ 0} denote the symmetric stable process of order
β > 1 in R1, and let Lxt denote its local time. We normalize Xt so that E(eiλXt) = e−t|λ|

β
.

(Note that when β = 2 this gives a multiple of the standard Brownian motion). Let

Eβ(f, f) =:
∫

R1
|λ|β|f̂(λ)|2 dλ(1.3)

where f̂(λ) =
∫
R1 f(x)e−2πiλxdx denotes the Fourier transform of f , and

Fβ = {f ∈ L2(R1) | ‖f‖2 = 1 and Eβ(f, f) <∞}.(1.4)

Theorem 1 Let Lxt be the local time for the symmetric stable process of index β > 1 in
R1. For any p > 1 and λ > 0

lim
t→∞

1

t
logE

(
eλ‖L

·
t‖p
)
= λ

pβ
pβ−(p−1)Mβ,p(1.5)

where

Mβ,p = sup
g∈Fβ

{
‖g‖22p − Eβ(g, g)

}
<∞.(1.6)

Equivalently, for any h > 0

lim
t→∞

1

t
logP

{
‖L·t‖p ≥ ht

}
= −hpβ/(p−1)Aβ,p(1.7)

where

Aβ,p =

(
p− 1

pβ

)(
pβ − (p− 1)

pβMβ,p

) pβ−(p−1)
p−1

.(1.8)
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We will see that the constant Mβ,p can be expressed in terms of the best possible
constant in a Gagliardo-Nirenberg type inequality, see (2.8) and (2.9).

By the scaling property of X, for each s ≥ 0 and a ≥ 0, we have Lxas
d
= a1−1/βLa

−1/βx
s

so that ‖L·t‖p
d
= t1−(p−1)/pβ‖L·1‖p. Using this, our Theorem is equivalent to the fact that

for any h > 0
lim
t→∞

t−1 logP
{
‖L·1‖pβ/(p−1)p ≥ ht

}
= −hAβ,p.(1.9)

Thus

E(eλ‖L
·
1‖
pβ/(p−1)
p )

{
<∞ if λ < A−1β,p
=∞ if λ > A−1β,p.

(1.10)

We also note that when p is an integer, ‖L·t‖pp can be expressed as an intersection local
time. To see this, let f ∈ S(Rd) be a positive, symmetric function with

∫
f dx = 1 and

set fε(x) = f(x/ε)/εd. Then it is well known that for β > 1

Lxt = lim
ε→0

∫ t

0
fε(Xs − x) ds

where the limit exists a.s. locally uniformly and in all Lp spaces. Thus it is clear, at least
formally, that ∫

R1
(Lxt )

p dx = lim
ε→0

∫

[0,t]p

∫

R1

p∏

j=1

fε(Xsj − x) dx
p∏

j=1

dsj

which measures the ‘amount’ of time spent by the path in p−fold intersections. This can
be justified.

There has also been interest in the literature in studying Lp norms for products of
independent local times. Let {Xj,t ; t ≥ 0} j = 1, . . . ,m denote m independent copies of
{Xt ; t ≥ 0}. We use Lxj,t to denote the local time at x of {Xj,t ; t ≥ 0} respectively. We
will develop the large deviation principle for the mixed intersection local time

∫

R1

m∏

j=1

(Lxj,t)
pdx, t ≥ 0(1.11)

where m ≥ 1 is an integer and real number p > 0 satisfying mp > 1. When p is an
integer, the above quantity measures the ‘amount’ of time thatm independent trajectories
intersect together, while each of them intersects itself p times.

By the scaling property of X, for each t ≥ 0 and a ≥ 0, we have Lxat = a1−1/βLa
−1/βx
t

so that ∫

R1

m∏

j=1

(Lxj,at)
pdx

d
= amp(1−1/β)+1/β

∫

R1

m∏

j=1

(Lxj,t)
pdx.(1.12)

Theorem 2 For each integer m ≥ 1 and real number p > 0 with mp > 1, and any λ > 0

lim
t→∞

1

t
logE exp

{
λ
( ∫

R1

m∏

j=1

(Lxj,t)
pdx

)1/mp}
(1.13)

= λmpβ/(mp(β−1)+1)c(β, p,m)Mβ,mp.
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with
c(β, p,m) = m−(mp−1)/(mp(β−1)+1).(1.14)

Equivalently, for any h > 0

lim
t→∞

1

t
logP

{( ∫

R1

m∏

j=1

(Lxj,t)
pdx

)1/mp

≥ ht
}
= −hmpβ/(mp−1)Aβ,m,p(1.15)

with

Aβ,m,p =

(
mp− 1

mpβ

)(
mpβ − (mp− 1)

mpβc(β, p,m)Mβ,mp

)mpβ−(mp−1)
mp−1

(1.16)

We also have the following law of the iterated logarithm, which is new even in th case
of m = 1.

Theorem 3 For each integer m ≥ 1 and real number p > 0 with mp > 1,

lim sup
t→∞

t−(mp(1−1/β)+1/β)(log log t)−(mp−1)/β
∫

R1

m∏

j=1

(Lxj,t)
pdx(1.17)

= A
−(mp−1)/β
β,m,p a.s.

Let now {Sn ; n = 1, 2, . . .} be a symmetric random walk in Z1 in the domain of
attraction of the symmetric stable process Xt of index β > 1, i.e.

Sn
b(n)

→ X1(1.18)

in law with b(x) a function of regular variaton of index 1/β. For simplicity we assume
further that our random walk is strongly aperiodic.

We will use

lxn =
n∑

j=1

1{Sj=x}(1.19)

for the local time of {Sn ; n = 1, 2, . . .} at x ∈ Z1.
Let {νn} represents a positive sequence satisfying

νn →∞ and νn/n→ 0.(1.20)

We use ‖ · ‖p,Z1 for the norm in lp(Z1), i.e. ‖f‖p,Z1 = (
∑
x∈Z1 |f(x)|p))1/p. We have the

following moderate deviation result for the local times of stable random walks.

Theorem 4 For any positive sequence {νn} satisfying (1.20), any p ≥ 1 and λ > 0,

lim
n→∞

1

νn
logE exp

{
λ
b(n/νn)

1−1/p

n/νn
‖l·n‖p,Z1

}
= λ

pβ
pβ−(p−1)Mβ,p.(1.21)

Equivalently, for any h > 0

lim
n→∞

1

νn
logP

{
‖l·n‖p,Z1 ≥ h

n

b(n/νn)1−1/p

}
(1.22)

= −hpβ/(p−1)
(
p− 1

pβ

)(
pβ − (p− 1)

pβMβ,p

) pβ−(p−1)
p−1

.
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An important application of the large and moderate deviations we establish is to obtain
the law of the iterated logarithm. Indeed, we have

Theorem 5

lim sup
n→∞

n−pb(n/ log log n)p−1
∑

x∈Z1

(lxn)
p = A

−(p−1)/β
β,1,p a.s.

The analogue of Theorem 2 for independent random walks is left to the reader.
Our paper is organized as follows. In Section 2 we develop the Sobolev inequalities

and Feynman-Kac formulae which are used throughout this paper. In Section 3 we study
large deviations for stable local times on the circle, which is then used in section 4 to
prove Theorem 1 on large deviations for stable local times in R1. In Section 5 we prove
Theorem 2 involving independent local times and Theorem 3, the law of the iterated
logarithm. Section 6 contains technical material on exponential moments for local times
which is needed in the paper. Section 7 explains how to get Theorems 4 and 5 for random
walks.

2 Sobolev inequalities and Feynman-Kac formulae

Lemma 1 If p > 1 and β > (p− 1)/p then Fβ ⊆ L2p(R1), and for any δ > 0

‖f‖22p ≤ Cδ‖f‖22 + δEβ(f, f)(2.1)

for some Cδ <∞. In particular for any λ > 0

Mp,β(λ) =: sup
f∈Fβ

(
λ‖f‖22p − Eβ(f, f)

)
<∞.(2.2)

Proof of Lemma 1: By the Hausdorff-Young inequality

‖f‖2p ≤ ‖f̂‖2p/(2p−1)(2.3)

where f̂ denotes the Fourier transform of f . We also have that for any r > 0

‖f̂‖2p/(2p−1)2p/(2p−1) =
∫

Rd

(r + |λ|β)p/(2p−1)
(r + |λ|β)p/(2p−1) |f̂(λ)|

2p/(2p−1) dλ(2.4)

≤ ‖(r + |λ|β)−p/(2p−1)‖(2p−1)/(p−1) ·
‖(r + |λ|β)p/(2p−1)|f̂(λ)|2p/(2p−1)‖(2p−1)/p.

Now
‖(r + |λ|β)p/(2p−1)|f̂(λ)|2p/(2p−1)‖(2p−1)/p(2p−1)/p = r‖f‖22 + Eβ(f, f)(2.5)

and

cr =: ‖(r + |λ|β)−p/(2p−1)‖(2p−1)/(p−1)(2p−1)/(p−1) =
∫

R1

1

(r + |λ|β)p/(p−1) dλ(2.6)

which is finite if β > (p− 1)/p, in which case we also have that limr→∞ cr = 0. Summa-
rizing,

‖f‖22p ≤ c(p−1)/pr

(
r‖f‖22 + Eβ(f, f)

)
.(2.7)

This gives (2.1) on taking r sufficiently large. This completes the proof of our Lemma.
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Lemma 2 If p > 1 and β > (p− 1)/p then

κp,β =: inf
{
C
∣∣∣ ‖f‖2p ≤ C‖f‖1−(p−1)/pβ2 [E1/2β (f, f)](p−1)/pβ

}
<∞(2.8)

and

Mp,β(1) =
pβ − (p− 1)

(p− 1)

(
(p− 1)κ2p,β

pβ

)pβ/(pβ−(p−1))
.(2.9)

Proof of Lemma 2: To see that (2.8) is finite, note that if we set f(x) = s1/2g(sx), then
‖f‖2 = ‖g‖2, ‖f‖22p = s1−1/p‖g‖22p and Eβ(f, f) = sβEβ(g, g) so that from (2.1) we obtain

‖g‖22p ≤ C
(
‖g‖22 + sβEβ(g, g)

)
s−(p−1)/p(2.10)

and the fact that (2.8) is finite follows on taking sβ = ‖g‖22/Eβ(g, g). Finally, (2.9) follows
as in the proof of Lemma 8.2 of [2]. This completes the proof of our Lemma.

Let Hβ be the self-adjoint operator associated to the Dirichlet form Eβ. Thus the form
domain Q(Hβ) = Fβ and for g ∈ Q(Hβ) we have (g,Hβg)2 = Eβ(g, g). Let Vf denote
the operator of multiplication by f . Note that if f ∈ Lp/(p−1)(R1), by using Hölder’s
inequality and then (2.1) we have that for any g ∈ Q(Hβ)

(g, Vfg)2 ≤ ‖g‖22p‖f‖p/(p−1) ≤ ‖f‖p/(p−1)
(
Cδ‖g‖22 + δEβ(g, g)

)
.(2.11)

In the terminology of [15], Vf is infinitesimally form bounded with respect to Hβ, written
Vf ≺≺ Hβ. It follows from [15], Theorem X.17 thatHβ−Vf can be defined as a self-adjoint
operator with Q(Hβ − Vf ) = Q(Hβ) = Fβ.

As usual, we write Eg(·) =
∫
g(x)Ex(·) dx. Aside from technical integrability issues,

the lemmas below are generalizations of the Feynman-Kac formula. We include the proofs
for lack of a suitable reference.

Lemma 3 If p > 1 and β > (p− 1)/p then for any f ∈ Lp/(p−1)(R1) and g, h ∈ L2(R1)

(g, e−t(Hβ−Vf )h)2 = Eg
(
e
∫ t
0
f(Xs) dsh(Xt)

)
.(2.12)

Proof of Lemma 3: If f ∈ S(R1) then using the right-continuity of paths, (2.12) follows
as in the proof of Theorem 6.1 in [16], see also Theorem 1.1 there. Let now fn ∈ S(R1)
with fn → f in Lp/(p−1)(R1). We therefore have for each n

(g, e−t(Hβ−Vfn )h)2 = Eg
(
e
∫ t
0
fn(Xs) dsh(Xt)

)
.(2.13)

Using (2.11), it follows from [10], Theorems IX, 2.16 and VIII, 3.6, that

lim
n→∞

(g, e−t(Hβ−Vfn )h)2 = (g, e−t(Hβ−Vf )h)2.(2.14)
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On the other hand the integrand on the right-hand side of (2.13) converges a.s. to the
corresponding integrand in (2.12). Thus to finish the proof we need only show uniform
integrabilty. We have

Eg
(
e(4/3)

∫ t
0
fn(Xs) dsh4/3(Xt)

)
(2.15)

≤
∫ (

Ex
(
e4
∫ t
0
fn(Xs) ds

))1/3 (
Ex

(
h2(Xt)

))2/3
g(x) dx

≤ sup
x0

(
Ex0

(
e4
∫ t
0
fn(Xs) ds

))1/3 ∫ (
Ex

(
h2(Xt)

))2/3
g(x) dx

We then use Ex (h2(Xt)) = pt ∗ h2(x) so that

∫ (
Ex

(
h2(Xt)

))2/3
g(x) dx ≤ ‖g‖2‖pt ∗ h2‖2/34/3(2.16)

and
‖pt ∗ h2‖4/3 ≤ ‖pt‖4/3‖h2‖1(2.17)

which is finite. In fact, for any r > 1

‖pt‖r ≤ C/t(r−1)/rβ.(2.18)

This follows from the fact that pt is a probability density function so that ‖pt‖r ≤
‖pt‖(r−1)/r∞ and ‖pt‖∞ = supx |

∫
eiλxe−tλ

β
dλ| ≤ ∫

e−tλ
β
dλ ≤ C/t1/β. (Alternatively, one

can use scaling: pt(x) = t−1/βp1(xt
−1/β)).

We now bound

sup
x0

Ex0

(
e4
∫ t
0
fn(Xs) ds

)
(2.19)

=
∞∑

k=0

4k
∫

{0≤t1≤...≤tk≤t}

∫

Rk

k∏

j=1

fn(xj)ptj−tj−1
(xj − xj−1) dxj dtj.

By Hölder’s inequality

∫

Rk

k∏

j=1

fn(xj)ptj(xj − xj−1) dxj(2.20)

≤ ‖fn‖kp/(p−1)‖
k∏

j=1

ptj−tj−1
(xj − xj−1)‖p

≤ ‖fn‖kp/(p−1)
k∏

j=1

‖ptj−tj−1
‖p.

Using (2.18) we have

k∏

j=1

‖ptj−tj−1
‖p = ck

k∏

j=1

(tj − tj−1)
−(p−1)/pβ(2.21)
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Since by assumption (p− 1)/pβ < 1 we have that

∫

{0≤t1≤...≤tk≤t}

k∏

j=1

(tj − tj−1)
−(p−1)/pβ dtj =

cktk(1−(p−1)/pβ)

Γ(k(1− (p− 1)/pβ))
.(2.22)

Thus we have shown that for fixed t

sup
x0

Ex0

(
e4
∫ t
0
fn(Xs) ds

)
≤

∞∑

k=0

ck‖fn‖kp/(p−1)
Γ(k(1− (p− 1)/pβ))

(2.23)

which is bounded uniformly in n. This completes the proof of Lemma 3.
Fix M > 0 and let TM = R1/MZ1 denote the circle of circumference M . We use the

notation ‖f‖p,TM to denote the Lp(TM) norm with the usual Lebesgue measure on TM .
Set

Eβ,TM (h, h) =:
∑

λ∈( 2π
M

)Z1

|λ|β |ĥ(λ)|2 1

M
(2.24)

where ĥ denotes the usual Fourier transform for functions on TM . Let

Fβ,TM = {f ∈ L2(TM) |‖f‖2,TM = 1 and Eβ,TM (f, f) <∞}.(2.25)

We introduce TM to deal with two technical problems in the proof of the upper bound
in Theorem 1. First, the stable infinitesimal generator is not a local operator when β < 2.
As a consequence, we will not have the upper bound for the Feymann-Kac large deviation
estimate which corresponds to the lower bound given in (4.2) below. Second, as pointed
out in [3] (p. 225-226), the family {t−1L·t} is not exponentially tight as a stochastic process
taking values in the Banach space Lp(R1). To fix these two problems we map the process
Xt into the compact space TM . It is crucial that the image process is Markovian.

An almost identical proof gives the following analogue of Lemma 1.

Lemma 4 If p > 1 and β > (p− 1)/p then Fβ,TM ⊆ L2p(TM), and for any δ > 0

‖f‖22p,TM ≤ Cδ‖f‖22,TM + δEβ,TM (f, f)(2.26)

for some Cδ <∞. In particular for any λ > 0

Mp,β,TM (λ) =: sup
f∈Fβ,TM

(
λ‖f‖22p,TM − Eβ,TM (f, f)

)
<∞.(2.27)

Let Yt be the image of Xt under the quotient map x ∈ R1 7→ x̄ ∈ TM . It is easily
seen that Yt is a Markov process with independent increments. Yt is called the symmetric
stable process of order β on TM .

As before, let Hβ,TM be the self-adjoint operator associated to the Dirichlet form Eβ,TM .
Thus Q(Hβ,TM ) = Fβ,TM and for g ∈ Q(Hβ,TM ) we have (g,Hβ,TMg)2 = Eβ,TM (g, g). Let Vf
denote the operator of multiplication by f . Using Lemma 4, we see that Vf ≺≺ Hβ,TM so
that, as before we can define Hβ,TM − Vf as a self-adjoint operator with Q(Hβ,TM − Vf ) =
Q(Hβ,TM ) = Fβ,TM . An almost identical proof gives the following analogue of Lemma 3.
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Lemma 5 If p > 1 and β > (p− 1)/p then for any f ∈ Lp/(p−1)(TM) and g, h ∈ L2(TM)

(g, e−t(Hβ−Vf )h)2 = Eg
(
e
∫ t
0
f(Ys) dsh(Yt)

)
.(2.28)

We next present an important large deviation result. It is possible to derive this result
from the methods of Donsker and Varadhan, see in particular [7], but we prefer to give a
simple self-contained proof.

Lemma 6 If p > 1 and β > (p−1)/p then for any non-negative function f ∈ Lp/(p−1)(TM)

lim
t→∞

1

t
logE

(
e
∫ t
0
f(Ys) ds

)
= sup

g∈Fβ,TM

(
(g, fg)2,TM − Eβ,TM (g, g)

)
.(2.29)

Note that using Hölder’s inequality and Lemma 4, the sup on the right-hand side is
finite.
Proof of Lemma 6: Let p̄t denote the density of Yt. Fix t0 > 0, and recall from (2.18),
(more precisely the analogue for TM), that p̄t0 ∈ L2(TM). Then using the non-negativity
of f , the Markov property and (2.28) we have

E
(
e
∫ t
0
f(Ys) ds

)
≥ E p̄t0

(
e
∫ t−t0
0

f(Ys) ds
)

(2.30)

= (p̄t0 , e
−(t−t0)(Hβ,TM

−Vf )1)2,TM .

By (2.24) we can see that σ(Hβ,TM ), the spectrum of Hβ,TM , is purely discrete. In fact

σ(Hβ,TM ) = {
(
2πj

M

)β
| j = 0, 1, . . .}

with a complete set of corresponding eigenvectors

{ 1√
M
} ∪ { e

±(2πi)jx/M

√
M

| j = 1, 2, . . .}.

Hence, using the fact that Vf ≺≺ Hβ,TM and [15], Theorem XIII.64, (iv), (v), see also
Theorem XIII.68, we find that Hβ,TM − a′Vf also has purely discrete spectrum for any a′.
(We note for later that these Theorem’s show that Hβ,TM − a′Vf has compact resolvent).
From Lemma 5 it follows that e−t(Hβ,TM

−a′Vf ) is positivity preserving and ergodic. It
follows from [15], Theorem XIII.43 that inf σ(Hβ,TM −a′Vf ) is a simple eigenvalue and the
associated eigenvector is strictly positive. Since p̄t0 is also strictly positive, we find from
(2.30) that

lim inf
t→∞

1

t
logE

(
e
∫ t
0
f(Ys) ds

)
≥ − inf σ(Hβ,TM − Vf ).(2.31)

The lower bound for (2.29) follows by the Rayleigh-Ritz principle, see [15].
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For the upper bound use the Markov property to see that for any a, a′ with 1/a+1/a′ =
1,

E
(
e
∫ t
0
f(Ys) ds

)
(2.32)

= E
(
e
∫ t0
0
f(Ys) dsEYt0

(
e
∫ t−t0
0

f(Ys) ds
))

≤
{
E
(
ea
∫ t0
0
f(Ys) ds

)}1/a
{
E

((
EYt0

(
e
∫ t−t0
0

f(Ys) ds
))a′

)}1/a′

≤
{
E
(
ea
∫ t0
0
f(Ys) ds

)}1/a {
E
(
EYt0

(
ea

′
∫ t−t0
0

f(Ys) ds
))}1/a′

=
{
E
(
ea
∫ t0
0
f(Ys) ds

)}1/a {
E p̄t0

(
ea

′
∫ t−t0
0

f(Ys) ds
)}1/a′

.

By (2.23), (more precisely the analogue for TM), we have that the first factor on the
right hand side is bounded for any fixed t0 and a. On the other hand, by (2.28)

E p̄t0

(
ea

′
∫ t−t0
0

f(Ys) ds
)
= (p̄t0 , e

−(t−t0)(Hβ,TM
−a′Vf )1)2.(2.33)

Hence

lim sup
t→∞

1

t
logE

(
e
∫ t
0
f(Ys) ds

)
≤ − inf σ(Hβ,TM − a′Vf )

a′
.(2.34)

Using once more the fact that Vf ≺≺ Hβ,TM we find that Hβ,TM − zVf is an analytic
family of type (B). We have noted in the last paragraph that Hβ,TM − a′Vf has compact
resolvent. It follows from [10], VII, Remark 4.22, that

lim
a′→1

inf σ(Hβ,TM − a′Vf ) = inf σ(Hβ,TM − Vf ).(2.35)

The upper bound for (2.29) follows by taking a′ → 1 and then applying the Rayleigh-Ritz
principle.

3 Large deviations for stable local times on the circle

We use the notation of the previous section. M > 0 is fixed throughout.

Theorem 6 Let L̄xt be the local time for the symmetric stable process of index β > 1 in
TM . For any p > 1 and λ > 0

lim
t→∞

1

t
logE

(
eλ‖L̄

·
t‖p,TM

)
= sup

g∈Fβ,TM

{
λ‖g‖22p,TM − Eβ,TM (g, g)

}
.(3.1)

Proof of Theorem 6: We first establish the lower bound for (3.1). We claim that for
any λ > 0

lim inf
t→∞

1

t
logE

(
eλ‖L̄

·
t‖p,TM

)
≥ sup

g∈Fβ,TM

{
λ‖g‖22p,TM − Eβ,TM (g, g)

}
.(3.2)

586



Indeed, if we take any f ∈ L(p−1)/p(TM) with ‖f‖(p−1)/p,TM = 1 then

‖L̄·t‖p,TM ≥
∫

TM
L̄xt f(x)dx =

∫ t

0
f(Ys)ds.(3.3)

Consequently, taking f non-negative, by Lemma 6

lim inf
t→∞

1

t
logE

(
eλ‖L̄

·
t‖p,TM

)
(3.4)

≥ sup
g∈Fβ,TM

{
λ(g, fg)2,TM − Eβ,TM (g, g)

}
.

Taking supremum on the right hand side over such f we obtain (3.2).
To establish the upper bound and complete the proof of (3.1) we shall prove that for

any λ > 0

lim sup
t→∞

1

t
logE

(
eλ‖L̄

·
t‖p,TM

)
≤ sup

g∈Fβ,TM

{
λ‖g‖22p,TM − Eβ,TM (g, g)

}
.(3.5)

By (3.3) and Lemma 6, for any non-negative f ∈ L(p−1)/p(TM)

lim
t→∞

t−1 logE exp
{
λ
∫

TM
L̄xt f(x)dx

}
(3.6)

= sup
g∈Fβ,TM

{
λ(g, fg)2,TM − Eβ,TM (g, g)

}
.

Let ε > 0 and γ > 0 be fixed and let K ⊂ Lp(TM) be the compact set given in Lemma
11. By the fact that the set of bounded measurable functions on TM is dense in the unit
ball of Lq(TM), and by the Hahn-Banach Theorem, for each h ∈ γK, there is a bounded
function f such that ‖f‖(p−1)/p,TM = 1 and

∫

TM
f(x̄)h(x̄)λ(dx̄) >

( ∫

TM
|h(x̄)|pλ(dx̄)

)1/p

− ε.

Consequently, there are finitely many bounded functions f1, · · · , fN in the unit sphere of
Lq(TM) such that

( ∫

TM
|h(x̄)|pλ(dx̄)

)1/p

< max
1≤i≤N

∫

TM
fi(x̄)h(x̄)λ(dx̄) + ε ∀h ∈ γK.

Therefore,

E
(
exp

{
λ‖L̄·t‖p,TM

}
; t−1L̄·t ∈ γK

)
(3.7)

≤ eεt
N∑

i=1

E exp
{ ∫

TM
fi(x)L̄

x
t dx

}
.
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In view of (3.6),

lim sup
t→∞

t−1 logE
(
exp

{
λ‖L̄·t‖p,TM

}
; t−1L̄·t ∈ γK

)
(3.8)

≤ ε+ max
1≤i≤N

sup
g∈Fβ,TM

{
λ(g, fig)2,TM − Eβ,TM (g, g)

}

≤ ε+ sup
g∈Fβ,TM

{
λ‖g‖22p,TM − Eβ,TM (g, g)

}

where the second step follows from the Hölder’s inequality and the fact ‖fi‖(p−1)/p,TM = 1
for 1 ≤ i ≤ N . Letting ε −→ 0 gives

lim sup
t→∞

t−1 logE
(
exp

{
λ‖L̄·t‖p,TM

}
; t−1L̄·t ∈ γK

)
(3.9)

≤ sup
g∈Fβ,TM

{
λ‖g‖22p,TM − Eβ,TM (g, g)

}
.

By the Cauchy-Schwarz inequality, on the other hand,

E
(
exp

{
λ‖L̄·t‖p,TM

}
; t−1L̄·t 6∈ γK

)
(3.10)

≤
(
E exp

{
2λ‖L̄·t‖p,TM

})1/2(
P
{
t−1L̄·t 6∈ γK

})1/2

.

Note that Lemma 8 and scaling (1.12) imply that

sup
t≤1

E exp
{
2λ‖L̄·t‖p,TM

}
<∞(3.11)

so that using the additivity of local time and the Markov property

lim sup
t→∞

t−1 logE exp
{
2λ‖L̄·t‖p,TM

}
≡ C1 <∞.

By (6.37)

lim sup
t→∞

t−1 logP
{
t−1L̄·t 6∈ γK

}
≤ −N(γ)

with limγ→∞N(γ) =∞. Combining above observations we have

lim sup
t→∞

1

t
logE

(
exp

{
λ‖L̄·t‖p,TM

}
; t−1L̄·t 6∈ γK

)
(3.12)

≤ (C1 −N(γ))/2.

Note that γ > 0 and hence N(γ) can be arbitrarily large. Combining (3.9) and (3.12) we
obtain (3.5) completing the proof of our theorem.
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4 Large deviations for stable local times in R1

Proof of Theorem 1: We first establish the lower bound for (1.5). We claim that for
any λ > 0

lim inf
t→∞

1

t
logE

(
eλ‖L

·
t‖p
)
≥ sup

g∈Fβ

{
λ‖g‖22p − Eβ(g, g)

}
.(4.1)

This will follow exactly as in the proof of Theorem 6 once we establish that for any
non-negative f ∈ L(p−1)/p(R1)

lim inf
t→∞

1

t
logE

(
e
∫ t
0
f(Xs)ds

)
≥ sup

g∈Fβ

{
(g, fg)2 − Eβ(g, g)

}
.(4.2)

But as in the proof of (2.30) we have, for any bounded g1, g2

E
(
e
∫ t
0
f(Xs) ds

)
≥ Ept0

(
e
∫ t−t0
0

f(Xs) ds
)

(4.3)

≥ Eg1pt0

(
e
∫ t−t0
0

f(Xs) dsg2(Xt−t0)
)
/‖g1‖∞‖g2‖∞

= (g1pt0 , e
−(t−t0)(Hβ−Vf )g2)2/‖g1‖∞‖g2‖∞.

Since pt0(x) > 0 for all x, by varying g1, g2 we obtain

lim
t→∞

1

t
logE

(
e
∫ t
0
f(Xs) ds

)
≥ − inf σ(Hβ − Vf )(4.4)

which gives (4.2) by the Rayleigh-Ritz principle.
We next establish the upper bound for (1.5). We claim that for any λ > 0

lim sup
t→∞

1

t
logE

(
eλ‖L

·
t‖p
)
≤ sup

g∈Fβ

{
λ‖g‖22p − Eβ(g, g)

}
.(4.5)

Fix M > 0 and recall from the last section the symmetric stable process Yt of index β
in TM and its local time L̄xt . It can be easily verified that

L̄xt =
∑

k∈Z1

Lx+kMt , t ≥ 0, x ∈ R1

Consequently, for any p > 1

∫

R1
(Lxt ))

p dx =
∑

k∈Z1

∫ M

0
(Lx+kMt ))p dx

≤
∫ M

0

( ∑

k∈Z1

Lx+kMt

)p
dx =

∫

TM
(L̄xt )

p dx.(4.6)

Hence (4.5), and thus our theorem, will follow from Theorem 6 once we verify the following
lemma.
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Lemma 7 For any p > 1, r > 0

lim sup
M→∞

sup
ḡ∈Fβ,TM

{
r‖ḡ‖22p,TM − Eβ,TM (ḡ, ḡ)

}
≤ sup

g∈Fβ

{
r‖g‖22p − Eβ(g, g)

}
.(4.7)

Proof of Lemma 7: Without loss of generality we will prove this lemma with r = 1.
Recall the definition

Eβ(f, f) =:
∫

R1
|λ|β|f̂(λ)|2 dλ.(4.8)

Using

|λ|β = cβ

∫

R1

1− cos(λy)

|y|1+β dy

where c−1β =
∫
R1

1−cos(y)
|y|1+β

dy and Parseval’s formula we find that

Eβ(f, f) = cβ

∫

R1

∫

R1

|f(y)− f(x)|2
|y − x|1+β dy dx.(4.9)

Similarly, for any M-periodic function h

Ēβ(h, h) =
∑

λ∈( 2π
M

)Z1

|λ|βĥ(λ)|2 1

M
= cβ

∫ M

0

∫

R1

|h(x+ y)− h(x)|2
|y|1+β dy dx(4.10)

where the last equality follows as in the proof of (4.9).
Let ḡ be an M-periodic function in Fβ,TM . We need to construct a function f ∈ Fβ

which is equal to ḡ on [M 1/2,M −M 1/2] and is negligible in some suitable sense on the
rest of the real line as M gets large. Let E = [0,M 1/2] ∪ [M −M 1/2,M ]. By Lemma 3.4
in Donsker-Varadhan (1975), there is a real number a such that

∫
E ḡ

2(x−a)dx ≤ 2M−1/2.
We may assume a = 0, i.e, ∫

E
ḡ2(x)dx ≤ 2M−1/2(4.11)

for otherwise we can replace ḡ(·) by ḡ(·+ a). Define

ϕ(x) =





xM−1/2 0 ≤ x ≤M 1/2

1 M−1/2 ≤ x ≤M −M 1/2

M1/2 − xM−1/2 M −M1/2 ≤ x ≤M
0 otherwise.

It is straightforward to verify that

0 ≤ ϕ(x) ≤ 1, |ϕ′(x)| ≤M−1/2, |(ϕ2(x))′| ≤ 2M−1/2, −∞ < x <∞.

Define

f(x) = ḡ(x)ϕ(x) ·
(∫ ∞

−∞
ḡ2(x)ϕ2(x)dx

)−1/2
.
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Set α =
∫∞
−∞ ḡ

2(x)ϕ2(x)dx. Note that

|ḡ(y)ϕ(y)− ḡ(x)ϕ(x)|2(4.12)

= |(ḡ(y)− ḡ(x))ϕ(y) + ḡ(x)(ϕ(y)− ϕ(x))|2
= |ḡ(y)− ḡ(x)|2ϕ2(y) + ḡ2(x)|ϕ(y)− ϕ(x)|2

+2|ḡ(y)− ḡ(x)|ϕ(y)ḡ(x)|ϕ(y)− ϕ(x)|

Now

cβ

∫

R1

∫

R1

|ḡ(y)− ḡ(x)|2ϕ2(y)

|y − x|1+β dy dx(4.13)

≤ cβ

∫

R1

∫ M

0

|ḡ(y)− ḡ(x)|2
|y − x|1+β dy dx

= Ēβ(ḡ, ḡ).

Using

ḡ2(x)|ϕ(y)− ϕ(x)|2(4.14)

≤ ḡ2(x)|ϕ(y)− ϕ(x)|2(1[0,M ](x) + 1[0,M ](y))

≤ 2M−1/2ḡ2(x)(1[0,M ](x) + 1[0,M ](y))(|y − x| ∧ |y − x|2)

we have

cβ

∫

R1

∫

R1

ḡ2(x)|ϕ(y)− ϕ(x)|2
|y − x|1+β dy dx(4.15)

≤ 2M−1/2cβ

∫ M

0

∫

R1

|ḡ(x)|2(|y − x| ∧ |y − x|2)
|y − x|1+β dy dx

+2M−1/2cβ

∫

R1

∫ M

0

|ḡ(x)|2(|y − x| ∧ |y − x|2)
|y − x|1+β dy dx

≤ cM−1/2

where for the first integral we used the change of variables y → y + x and for the second
we used the change of variables x→ y + x and the periodicity of ḡ(x). Finally we use

2|ḡ(y)− ḡ(x)|ϕ(y)ḡ(x)|ϕ(y)− ϕ(x)|(4.16)

≤ 4M−1/4|ḡ(y)− ḡ(x)|ḡ(x)(|y − x|1/2 ∧ |y − x|)1[0,M ](y).

the Cauchy-Schwarz inequality and (4.13), (4.15) to see that

2cβ

∫

R1

∫

R1

|ḡ(y)− ḡ(x)|ϕ(y)ḡ(x)|ϕ(y)− ϕ(x)|
|y − x|1+β dy dx(4.17)

≤ 8M−1/4cβ

( ∫

R1

∫

R1

|ḡ(y)− ḡ(x)|21[0,M ](y)

|y − x|1+β dy dx
)1/2

( ∫

R1

∫

R1

ḡ2(x)(|y − x|2 ∧ |y − x|)1[0,M ](y)

|y − x|1+β dy dx
)1/2

≤ cM−1/4Ē1/2β (ḡ, ḡ)
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Putting this all together we find that

αEβ(f, f)(4.18)

=
∫

R1

∫

R1

|ḡ(y)ϕ(y)− ḡ(x)ϕ(x)|2
|y − x|1+β dy dx

≤ Ēβ(ḡ, ḡ) + cM−1/4Ē1/2β (ḡ, ḡ) + cM−1/2

On the other hand,

( ∫ M

0
ḡ2p(x)dx

)1/p

≤
(
αp
∫ ∞

−∞
|f(x)|2pdx+

∫

E
|ḡ(x)|2pdx

)1/p

≤ α
( ∫ ∞

−∞
|f(x)|2pdx

)1/p

+
( ∫

E
|ḡ(x)|2pdx

)1/p

(4.19)

and from (4.11)

( ∫

E
|ḡ(x)|2pdx

)1/p

≤ sup
0≤x≤M

|ḡ(x)|2/q
( ∫

E
|ḡ(x)|2dx

)1/p

(4.20)

≤ (2M−1/2)1/p sup
0≤x≤M

|ḡ(x)|2/q.

Observe that since β > 1

sup
x
|ḡ(x)| ≤

∑

λ∈( 2π
M

)Z1

|̂̄g(k)| 1
M

(4.21)

≤
∑

λ∈( 2π
M

)Z1

√
1 + |k|β

√
1 + |k|β

|̂̄g(k)| 1
M

≤
( ∑

λ∈( 2π
M

)Z1

1

1 + |k|β
1

M

)1/2( ∑

λ∈( 2π
M

)Z1

(1 + |k|β)|̂̄g(k)|2 1

M

)1/2

≤ c
(
1 + Ēβ(ḡ, ḡ)

)1/2

.

Therefore, ( ∫

E
|ḡ(x)|2pdx

)1/p

≤ (2M−1/2)1/pc
(
1 + Ēβ(ḡ, ḡ)

)1/q

.(4.22)

Let J = supg∈Fβ

{
λ‖g‖22p − Eβ(g, g)

}
. By combining (4.18), (4.19), (4.22), we see

( ∫ M

0
ḡ2p(x)dx

)1/p

− (1− ε)Ēβ(ḡ, ḡ)(4.23)

−
(
cM−1/4

(
Ēβ(ḡ, ḡ)

)1/2

+ (2M−1/2)1/pc
(
1 + Ēβ(ḡ, ḡ)

)1/q)

≤ c(1− ε)M−1/2 + α
{( ∫ ∞

−∞
|f(x)|2pdx

)1/p

− (1− ε)Eβ(f, f)
}
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≤ cM−1/2 + sup
f∈Fβ

{( ∫ ∞

−∞
|f(x)|2pdx

)1/p

− (1− ε)Eβ(f, f)
}

= cM−1/2 +
( 1

1− ε

) p−1
p(β−1)+1J

where the second inequality follows from the fact that α ≤ 1 and the final step from the
substitution

f(x) =
( 1

1− ε

)p/2(p(β−1)+1)
h
(( 1

1− ε

)p/(p(β−1)+1)
x
)
.

Since q > 1, there is a sufficiently large M =M(ε) > 0 such that M−1/2 ≤ ε and that

cM−1/4x1/2 + (2M−1/2)1/pc(1 + x)1/q ≤ ε(x+ 1)

for all x ≥ 0. Note that the choice of M is independent of the function g!. For such M ,

( ∫ M

0
ḡ2p(x)dx

)1/p

− Ēβ(ḡ, ḡ) ≤ ε+
( 1

1− ε

) p−1
p(β−1)+1J(4.24)

This completes the proof of Lemma 7.

5 Large deviations for independent stable local times

and the law of the iterated logarithm

Proof of Theorem 2: The upper bound for (1.13) follows exactly as in [3]. Given
Lemma 11 and our proof of the lower bound in Theorem 1 the lower bound for (1.13) will
follow exactly as in [3].
Proof of Theorem 3: Using (1.15) and the scaling (1.12) we see that for any h > 0

lim
t→∞

1

t
logP

{ ∫

R1

m∏

j=1

(Lxj,1)
pdx ≥ ht(mp−1)/β

}
= −hβ/(mp−1)Aβ,m,p.(5.1)

Replacing t by log log t we get

lim
t→∞

1

log log t
logP

{ ∫

R1

m∏

j=1

(Lxj,1)
pdx ≥ h(log log t)(mp−1)/β

}
= −hβ/(mp−1)Aβ,m,p.(5.2)

Let tk = θk for θ > 1. Using (5.2) and the scaling (1.12) we see that

∞∑

k=1

P



∫

R1

m∏

j=1

(Lxj,tk)
pdx ≥ ct

(mp(1−1/β)+1/β)
k (log log tk)

(mp−1)/β


 <∞(5.3)

for any c > A
−(mp−1)/β
β,m,p . Borel-Cantelli and interpolation then give the upper bound in

Theorem 3.
To prove the lower bound, write sk = k2k, k ≥ 1 and notice that

Lxj,sk+1
− Lxj,sk = L

x−Xj,sk
j,k,sk+1−sk

(5.4)
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where Lxj,k,t is the local time of Xj,k,t:

Xj,k,t = Xj,sk+t −Xj,sk t ≥ 0, k ≥ 1, 1 ≤ j ≤ m.

Hence, using |a1/m − b1/m| ≤ 21/m|a− b|1/m
∣∣∣∣‖

m∏

j=1

[Lxj,sk+1
− Lxj,sk ]‖

1/m
p,R1 − ‖

m∏

j=1

Lxj,k,sk+1−sk
‖1/mp,R1

∣∣∣∣
m

(5.5)

=
∣∣∣∣‖

m∏

j=1

L
x−Xj,sk
j,k,sk+1−sk

‖1/mp,R1 − ‖
m∏

j=1

Lxj,k,sk+1−sk
‖1/mp,R1

∣∣∣∣
m

≤ 21/m‖
m∏

j=1

L
x−Xj,sk
j,k,sk+1−sk

−
m∏

j=1

Lxj,k,sk+1−sk
‖p,R1 .

Then using
∏m
j=1 aj−

∏m
j=1 bj =

∑m
j=1(

∏j−1
i=1 ai)(aj−bj)(

∏m
k=j+1 bk) followed by Hölder’s

inequality we see that

∣∣∣∣‖
m∏

j=1

[Lxj,sk+1
− Lxj,sk ]‖

1/m
p,R1 − ‖

m∏

j=1

Lxj,k,sk+1−sk
‖1/mp,R1

∣∣∣∣
m

(5.6)

≤ 21/m
m∑

j=1


∏

i6=j

‖Lxi,k,sk+1−sk
‖mp,R1


 ‖Lx−Xj,sk

j,k,sk+1−sk
− Lxj,k,sk+1−sk

‖mp,R1 .

By the already proven upper bound in Theorem 3, taking m = 1, replacing p by mp
and using the abbreviation φ(s) = smp(1−1/β)+1/β( log log s)(mp−1)/β we have

‖Lxi,k,sk+1−sk
‖mp,R1 = O(φ(sk+1))

1/mp a.s.(5.7)

for each 1 ≤ i ≤ m.
It follows from Lemma 10, after rescaling, that for any α > 0

lim
δ→0+

lim sup
t→∞

(log log t)−1

logP
{

sup
|x−y|≤δ(t/ log log t)1/β

‖Ly+·t − Lx+·t ‖mp,R1 ≥ αt1−1/β log log t1/β
}
= −∞.

Hence by the Borel-Cantelli lemma

lim
δ→0+

lim sup
k→∞

s
−(1−1/β)
k+1 log log s

−1/β
k+1(5.8)

sup
|x−y|≤δ(sk+1/ log log sk+1)1/β

‖Ly+·j,k,sk+1−sk
− Lx+·j,k,sk+1−sk

‖mp,R1

= 0 a.s.

However, it is easy to see that nk+1 − nk > nkk
2 as k → ∞ so that by the scaling

property of the stable process

P (|Xnk | >
(nk+1 − nk)

1/β

log log(nk+1 − nk)
) ≤ P (|X1| >

k2/β

log k
) ≤ C/k2−2ε
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for any ε > 0, since X1 has β−ε moments. By the Borel-Cantelli lemma, with probability
1 the events

{|(X1,nk , . . . , Xm,nk)| ≤
(nk+1 − nk)

1/β

log log(nk+1 − nk)
} k = 1, 2, · · ·

eventually hold. Therefore, by (5.8)

‖LXj,sk
+·

j,k,sk+1−sk
− L+·

j,k,sk+1−sk
‖mp,R1 = o(s

(1−1/β)
k+1 log log s

1/β
k+1) a.s.(5.9)

= o(φ(sk+1))
1/mp a.s.

Combining (5.6), (5.7) and (5.9), we reach the conclusion that

∣∣∣∣
( ∫ ∞

−∞

m∏

j=1

[Lxj,sk+1
− Lxj,sk ]

pdx
)1/mp

−
( ∫ ∞

−∞

m∏

j=1

(Lxj,k,sk+1−sk
)pdx

)1/mp∣∣∣∣(5.10)

= o(φ(sk+1))
1/mp a.s. (k →∞).

On the other hand, by (1.15) in Theorem 2, for any γ < A
−(mp−1)/β
β,m,p

∑

k

P





∫ ∞

−∞

m∏

j=1

(Lxj,k,sk+1−sk
)pdx ≥ γφ(sk+1)





=
∑

k

P





∫ ∞

−∞

( m∏

j=1

Lxj,sk+1−sk

)p
dx ≥ γφ(sk+1)



 =∞.

Then by the Borel-Cantelli lemma and the independence of the sequence

∫ ∞

−∞

m∏

j=1

(Lxj,k,sk+1−sk
)pdx, k = 1, 2, · · ·

we have

lim sup
k→∞

1

φ(sk+1)

∫ ∞

−∞

m∏

j=1

(Lxj,k,sk+1−sk
)pdx ≥ A

−(mp−1)/β
β,m,p a.s.(5.11)

In view of (5.10),

lim sup
k→∞

1

φ(sk+1)

∫ ∞

−∞

m∏

j=1

[Lxj,sk+1
− Lxj,sk ]

pdx ≥ A
−(mp−1)/β
β,m,p a.s.(5.12)

Note that ∫ ∞

−∞

m∏

j=1

(Lxj,sk+1
)pdx ≥

∫ ∞

−∞

m∏

j=1

[Lxj,sk+1
− Lxj,sk ]

pdx, ∀k ≥ 1.

Hence,

lim sup
t→∞

1

φ(sk+1)

∫ ∞

−∞

m∏

j=1

(Lxj,t)
pdx ≥ A

−(mp−1)/β
β,m,p a.s.

which finishes the proof of Theorem 3.
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6 Exponential moments for local times

Let Lxt denote the local time for X in R1, and L̄xt denote the local time for X∗ in TM . We
use ‖ · ‖p,R1 , ‖ · ‖p,TM to denote the norms in Lp(R1, dx) and Lp(TM , dx) respectively.

Lemma 8 Let p > 1. For the symmetric stable process in R1 of index β > 1 and any
γ <∞

E (exp (γ‖L·1‖p,R1)) <∞(6.1)

and for some ζ > 0

sup
x,y

E

(
exp

(
γ
‖Ly+·1 − Lx+·1 ‖p,R1

|y − x|ζ
))

<∞.(6.2)

Furthermore

lim
γ→0

sup
x,y

E

(
exp

(
γ
‖Ly+·1 − Lx+·1 ‖p,R1

|y − x|ζ
))

= 1.(6.3)

Similar results hold for the symmetric stable process in TM of index β > 1 with
‖L·1‖p,R1 , ‖Ly+·1 − Lx+·1 ‖p,R1 replaced by ‖L̄·1‖p,TM , ‖L̄y+·1 − L̄x+·1 ‖p,TM .

Proof of Lemma 8: We note that the tail estimate in [9] implies a slightly stronger
result than (6.1). The direct proof of (6.1) given here serves as a warmup for (6.2) and
(6.3). We will first assume that p is an integer greater than or equal to 2. Recall the
notation

Lxt,ε =
∫ t

0
fε(Xs − x) ds.(6.4)

For any integer m we have

E




m∏

j=1

(L
xj
t,ε)

p


 = E



∫

Rmp

∫

[0,1]mp

m∏

j=1

p∏

k=1

eiλj,k(xj−Xtj,k
)f̂(ελj,k) dtj,k dλj,k


(6.5)

=
∫

Rmp

∫

[0,1]mp

m∏

j=1

ei(
∑p

k=1
λj,k)xjE




m∏

j=1

p∏

k=1

e−iλj,kXtj,k




m∏

j=1

p∏

k=1

f̂(ελj,k) dtj,k dλj,k.

Using the Fourier inversion formula in the form

∫

Rm
ei
∑m

j=1
(
∑p−1

k=1
λj,k)xj

∫

Rm
ei
∑m

j=1
λj,pxjF (λj,p)

m∏

j=1

dλj,p dxj = F (−
p−1∑

k=1

λj,k)(6.6)

we have that

E
(
‖L·1,ε‖pmp,R1

)
=
∫

Rm
E




m∏

j=1

(L
xj
t,ε)

p




m∏

j=1

dxj(6.7)

=
∫

Rm(p−1)

∫

[0,1]mp
E




m∏

j=1

p∏

k=1

e−iλj,kXtj,k




m∏

j=1

p∏

k=1

f̂(ελj,k) dtj,k
m∏

j=1

p−1∏

k=1

dλj,k

596



where in the last line λj,p = −
∑p−1
k=1 λj,k. To evaluate the expectation, for each bijection

π of {1 ≤ n ≤ mp} onto {(j, k) ; 1 ≤ j ≤ m, 1 ≤ k ≤ p} we let

Dπ = {tj,k ; tπ(1) < tπ(2) < · · · < tπ(mp) < 1}(6.8)

and

uπ,n =
mp∑

l=n

λπ(l).(6.9)

We use C to denote the set of such bijections π. Then

E




m∏

j=1

p∏

k=1

e−iλj,kXtj,k


(6.10)

=
∑

π∈C

E
(
e
−i
∑mp

n=1
λπ(n)Xtπ(n)

)

=
∑

π∈C

E
(
e
−i
∑mp

n=1
uπ,n(Xtπ(n)

−Xtπ(n−1)
)
)

=
∑

π∈C

e−
∑mp

n=1
|uπ,n|β(tπ(n)−tπ(n−1)).

We will bound this by dropping the last factor in which λj,p appears for each j.
To be more precise, let νπ,j be the unique n such that uπ,n − uπ,n+1 = λj,p and set
Vπ = {νπ,j , 1 ≤ j ≤ m}. Combining the above we have uniformly in ε > 0

E
(
‖L·1,ε‖pmp,R1

)
(6.11)

≤
∑

π∈C

∫

Rm(p−1)

∫

Dπ

e
−
∑

n∈V cπ
|uπ,n|β(tπ(n)−tπ(n−1))

mp∏

n=1

dtπ(n)
m∏

j=1

p−1∏

k=1

dλj,k

≤ cmp
∑

π∈C

∫

Dπ

∏

n∈V c
π

1

|tπ(n) − tπ(n−1)|1/β
mp∏

n=1

dtπ(n)

≤ cmp(mp)!/Γ(m(p− 1)(1− 1/β) +m) ≤ cmp((mp)!)(p−1)/pβ.

Since this is true for any integer m we can use uniform integrability to obtain

E
(
‖L·1‖pmp,R1

)
≤ cmp((mp)!)(p−1)/pβ.(6.12)

Then for any integer n

E
(
‖L·1‖np,R1

)
≤
{
E
(
‖L·1‖pnp,R1

)}1/p ≤ cn(n!)(p−1)/pβ.(6.13)

This immediately gives (6.1). To obtain (6.2) and (6.3) we begin with p an even integer
and note that if we replace L·1,ε in (6.7) by Ly+·1,ε − Lx+·1,ε , then in the last line of (6.7) we

will have an extra factor of
∏m
j=1

∏p
k=1

(
eiλj,ky − eiλj,kx

)
. Using the bound

|eiλj,ky − eiλj,kx| ≤ 2|λj,k|ζ |y − x|ζ(6.14)
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which is valid for any 0 ≤ ζ ≤ 1 and proceeding in a manner similar to (6.11) leads to
(6.2) and (6.3).

If q > 1 is not an integer, then for some integer p ≥ 1 we have that q = αp+(1−α)(p+1)
for some 0 < α < 1. By Hölder’s inequality, for any g we have

‖g‖qq,R1 =
∫

R1
|g(x)|αp+(1−α)(p+1) dx ≤ ‖g‖αpp,R1‖g‖(1−α)(p+1)

p+1,R1(6.15)

so that
‖g‖q,R1 ≤ ‖g‖αp/qp,R1 ‖g‖(1−α)(p+1)/q

p+1,R1 ≤ ‖g‖p,R1 + ‖g‖p+1,R1(6.16)

The general case of q > 2 then follows from case of integral q ≥ 2. Finally, if 1 < q < 2,
since ‖L·1‖1,R1 = 1 we obtain (6.1) using (6.16). For (6.2) and (6.3), if q = α + 2(1 − α)
for some 0 < α < 1, we have by (6.15) and the fact that ‖Ly+·1,ε − Lx+·1,ε ‖1,R1 ≤ 2 that

‖Ly+·1,ε − Lx+·1,ε ‖q,R1 ≤ 2α/q‖Ly+·1,ε − Lx+·1,ε ‖
2(1−α)/q
2,R1(6.17)

and (6.2)-(6.3) for 1 < q < 2 now follows from the case of q = 2.
We now turn to the analogue of (6.1) for the symmetric stable process in TM . We

have as above for integer m, p

E




m∏

j=1

(L̄
xj
t )p


 = E


M−mp

∑

λ·∈(
2π
M
Z1)mp

∫

[0,1]mp

m∏

j=1

p∏

k=1

eiλj,k(xj−Xtj,k
) dtj,k


(6.18)

=M−mp
∑

λ·∈(
2π
M
Z1)mp

m∏

j=1

ei(
∑p

k=1
λj,k)xjE




m∏

j=1

p∏

k=1

e−iλj,kXtj,k




m∏

j=1

p∏

k=1

dtj,k

so that as before

E
(
‖L̄·1‖pmp,TM

)
= E



∫

TmM

m∏

j=1

(L̄
xj
t )p dxj


(6.19)

=M−m(p−1)
∑

λ·∈(
2π
M
Z1)m(p−1)

∫

[0,1]mp
E




m∏

j=1

p∏

k=1

e−iλj,kXtj,k




m∏

j=1

p∏

k=1

dtj,k

where in the last line λj,p = −
∑p−1
k=1 λj,k. Again as above this leads to

E
(
‖L̄·1‖pmp,TM

)
(6.20)

≤
∑

π∈C

∫

Dπ


M−m(p−1)

∑

λ·∈(
2π
M
Z1)m(p−1)

e
−
∑

n∈V cπ
|uπ,n|β(tπ(n)−tπ(n−1))




mp∏

n=1

dtπ(n)

≤ cmp
∑

π∈C

∫

Dπ


 ∏

n∈V c
π

{
1 +

1

|tπ(n) − tπ(n−1)|1/β
}


mp∏

n=1

dtπ(n)

and as before this leads to the analogue of (6.1) for the symmetric stable process in TM .
The analogues of (6.2)-(6.3) follows similarly. This completes the roof of Lemma 8.
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Consider the Young’s function ψ(x) = exp(x)−1, and let ‖·‖ψ denotes the Orlicz space
norm with respect to E. By (5.1.9) of [8] we have that for any finite set of non-negative
random variables Y1, . . . , Yn

‖ sup
k≤n

Yk ‖ψ ≤ cψ−1(n) sup
k≤n

‖Yk ‖ψ.(6.21)

Let D denote the set of dyadic numbers in [0, 1]. Thus D = ∪mDm where Dm is the
set of numbers in [0, 1] of the form i/2m for some integer i. The next Lemma follows from
a standard chaining argument, see e.g. [12], Chapter 11, which also contains historical
references.

Lemma 9 Let {Zt, t ∈ D ⊆ [0, 1]} be a Banach space valued stochastic process such that
for some finite constants c, ζ > 0

‖ |Zt − Zs|‖ψ ≤ c|t− s|ζ , ∀s, t ∈ D.(6.22)

Then for any ζ ′ < ζ that

‖ sup
s,t∈D

s6=t

|Zt − Zs|/|s− t|ζ′ ‖ψ ≤ 2
∞∑

m=0

C2ζ
′(m+1)2−mζ <∞.(6.23)

Lemma 10 Let p > 1. For the symmetric stable process in R1 of index β > 1, for some
ζ ′ > 0

∥∥∥ sup
x6=y

‖Ly+·1 − Lx+·1 ‖p,R1

|x− y|ζ′

∥∥∥
ψ
<∞.(6.24)

Furthermore, for any α > 0

lim
δ→0

sup
t≥1

1

t
logP

(
sup

|x−y|≤δ
‖Ly+·t − Lx+·t ‖p,R1 > αt

)
= −∞.(6.25)

Similar results hold for the symmetric stable process in TM of index β > 1 with ‖Ly+·t −
Lx+·t ‖p,R1 replaced by ‖L̄y+·t − L̄x+·t ‖p,TM .

Proof of Lemma 10: Using (6.3) we see that for some c <∞ and all x, y

‖ ‖Ly+·1 − Lx+·1 ‖p,R1 ‖ψ ≤ c|x− y|ζ .(6.26)

Using Lemma 9 we see that

∥∥∥ sup
x6=y

x,y∈D

‖Ly+·1 − Lx+·1 ‖p,R1

|x− y|ζ′

∥∥∥
ψ
<∞.(6.27)

But since, using Fatou’s Lemma and the continuity of local time

sup
x6=y

x,y∈[0,1]

‖Ly+·1 − Lx+·1 ‖p,R1

|x− y|ζ′ = sup
x6=y

x,y∈D

‖Ly+·1 − Lx+·1 ‖p,R1

|x− y|ζ′(6.28)
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we get
∥∥∥ sup

x6=y

x,y∈[0,1]

‖Ly+·1 − Lx+·1 ‖p,R1

|x− y|ζ′

∥∥∥
ψ
<∞.(6.29)

Note that for any z

‖Lz+y+·1 − Lz+x+·1 ‖p,R1 = ‖Ly+·1 − Lx+·1 ‖p,R1(6.30)

hence

sup
0<|x−y|≤1

‖Ly+·1 − Lx+·1 ‖p,R1

|x− y|ζ′ = sup
x6=y

x,y∈[0,1]

‖Ly+·1 − Lx+·1 ‖p,R1

|x− y|ζ′ .(6.31)

Using (6.1) for |x− y| ≥ 1, (6.24) then follows.
By the scaling (1.12), for any t > 0

sup
x6=y

||L·+xt − L·+yt ||p,R1

|x− y|ζ′

d
= t1+

1
pβ
− 1+ζ′

β sup
x6=y

||L·+x1 − L·+y1 ||p,R1

|x− y|ζ′ .

Hence by (6.24)

sup
1≤t≤2

∥∥∥ sup
x6=y

‖Ly+·t − Lx+·t ‖p,R1

|x− y|ζ′

∥∥∥
ψ
≤ K <∞,(6.32)

so that

sup
1≤t≤2

E

{
exp

(
sup
x6=y

‖Ly+·t − Lx+·t ‖p,R1

K|x− y|ζ′

)}
≤ 2.(6.33)

Using the additivity of local times and the Markov property we then have that for any
t ≥ 1

E

{
exp

(
sup
x6=y

‖Ly+·t − Lx+·t ‖p,R1

K|x− y|ζ′

)}
≤ 2t.(6.34)

Hence by Chebycheff

sup
t≥1

P

(
sup

|x−y|≤δ
‖Ly+·t − Lx+·t ‖p,R1 > αt

)
(6.35)

≤ sup
t≥1

P

(
sup

|x−y|≤δ

‖Ly+·t − Lx+·t ‖p,R1

K|x− y|ζ′ >
αt

Kδζ′

)
≤ e−αtK

−1δ−>ζ
′

2t.

Our lemma then follows.
For the next lemma let RaL

·
t denote the restriction of Lxt to x ∈ [−a, a].

Lemma 11 Let p > 1. For the symmetric stable process in R1 of index β > 1, for any
0 < a <∞ we can find a compact K ⊆ Lp([−a, a]) such that

lim
γ→∞

lim sup
t→∞

1

t
logP

(
t−1RaL

·
t /∈ γK

)
= −∞.(6.36)

For the symmetric stable process in TM of index β > 1, we can find a compact K ⊆
Lp(TM) such that

lim
γ→∞

lim sup
t→∞

1

t
logP

(
t−1L·t /∈ γK

)
= −∞.(6.37)
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Proof of Lemma 11: By (6.25), for any k ≥ 1, there is a δk > 0 such that

sup
t≥1

1

t
logP{ sup

|h|≤δk

||L·+ht − L·t||p,R1 ≥ 1

k
t} ≤ −k

Similarly we can take N > 0 such that

sup
t≥1

1

t
logP{||L·t||p,R1 ≥ Nt} ≤ −1.

If

AN,δk = {f | ‖f‖p,R1 ≤ N}
∞⋂

k=1

{
f | sup

|h|≤δk

‖f(x+ h)− f(x)‖p,R1 ≤ 1

k

}

we take to be the closure of RaAN,δk in Lp([−a, a]). By Lemma 15, K is a compact subset
of Lp([−a, a]) and we have for any γ ≥ 1

P{t−1RaL
·
t 6∈ γK}(6.38)

≤ P{||L·t||p,R1 ≥ Nγt}+
∞∑

k=1

P{ sup
|h|≤δk

||L·+ht − L·t||p,R1 ≥ 1

k
γt}

≤
[
1 + (1− e−γ)−1

]
e−tγ.

Lemma 11 follows immediately.

7 Random walks

We begin by studying exponential integrabilty for local times of random walks. We will
use the notation

l̃xn = b(n)1−1/pn−1 lxn.(7.1)

Lemma 12 Let p > 1. For any γ <∞

sup
n
E
(
exp

(
γ‖l̃·n‖p,Z1

))
<∞(7.2)

and
lim
γ→0

sup
n
E
(
exp

(
γ‖l̃·n‖p,Z1

))
= 1.(7.3)

For some ζ > 0

sup
n,y

E

(
exp

(
γ
‖l̃·n − l̃y+·n ‖p,R1

|y/b(n)|ζ
))

<∞(7.4)

and

lim
γ→0

sup
n,y

E

(
exp

(
γ
‖l̃·n − l̃y+·n ‖p,R1

|y/b(n)|ζ
))

= 1.(7.5)
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Proof of Lemma 12: Assume first that p > 1 is an integer. We have, using Fourier
inversion as before,

‖l̃·n‖pp,Z1 =
b(n)p−1

np(2π)p
∑

x

n∑

n1,...,np=0

[ ∫

[−π,π]p
ei
∑p

j=1
λj ·(Snj−x)

p∏

j=1

dλj

]
(7.6)

=
b(n)p−1

np(2π)p−1

n∑

n1,...,np=0

[ ∫

[−π,π](p−1)
ei
∑p

j=1
λj ·Snj

p−1∏

j=1

dλj

]

where from now on λp = −
∑p−1
j=1 λj and we work modulo ±π. Then by scaling we have

‖l̃·n‖pp,Z1(7.7)

=
1

np(2π)p−1

n∑

n1,...,np=0

[ ∫

b(n)[−π,π](p−1)
ei
∑p

j=1
λj ·Snj /b(n)

p−1∏

j=1

dλj

]
.

Let φ(u) = E(eiu·S1). We recall from ( 5.14) of [14] that for any ζ > 0 we can find a
c > 0 such that

|φ(u/b(n))| ≤ e−c|u|
β−ζ/n, 1 ≤ |u| ≤ πb(n).(7.8)

Hence for any s ≤ n

∫

R1
|φ(u/b(n))|s|u|a du(7.9)

≤ C +
∫

R1
e−c

s
n
|u|β−ζ |u|a du

≤ C + C
(
s

n

)−(1+a)/(β−ζ)
≤ C

(
s

n

)−(1+a)/(β−ζ)
.

The proof of (7.2) is then completed by following the proof of Lemma 8 and (7.3)
follows similarly.

For (7.4) we see as in the derivation of (7.7) that when p > 1 is an integer.

‖l̃·n − l̃·+yn ‖pp,Z1 =
1

np(2π)p−1

n∑

n1,...,np=0

(7.10)

[ ∫

b(n)[−π,π](p−1)
ei
∑p

j=1
λj ·Snj /b(n)

p∏

j=1

(1− eiλj ·y/b(n))
p−1∏

j=1

dλj

]
.

Using |1− eiλj ·y/b(n)| ≤ |λj · y/b(n)|ζ and (7.9) the proof of Lemma 12 is then completed
by following the proof of Lemma 8.

Set
l̂xn = b(n)n−1 l[b(n)x]n .(7.11)

Lemma 13 Let p > 1. For any γ <∞

sup
n
E
(
exp

(
γ‖l̂·n‖p,R1

))
<∞(7.12)
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and
lim
γ→0

sup
n
E
(
exp

(
γ‖l̂·n‖p,R1

))
= 1(7.13)

For any 0 < ζ ≤ 1/p

sup
n,y

E

(
exp

(
γ
‖l̂·n − l̂y+·n ‖p,R1

|y|ζ
))

<∞(7.14)

and

lim
γ→0

sup
n,y

E

(
exp

(
γ
‖l̂·n − l̂y+·n ‖p,R1

|y|ζ
))

= 1.(7.15)

Furthermore, for some ζ ′ > 0

sup
n

∥∥∥ sup
x6=y

‖l̂y+·n − l̂x+·n ‖p,R1

|x− y|ζ′

∥∥∥
ψ
<∞.(7.16)

Proof of Lemma 13: We have

‖l̂·n‖p,R1 =




∑

j∈Z1

∫

{x: [b(n)x]=j}
( l̂xn )

p dx





1/p

(7.17)

=




∑

j∈Z1

∫

{x: [b(n)x]=j}
( b(n)n−1 ljn )

p dx





1/p

= ‖l̃·n‖p,Z1

so that (7.12) is simply (7.2). (7.13) follows similarly. (7.14) and (7.15) are more subtle.
Without loss of generality we can assume that y > 0.

‖l̂·n − l̂y+·n ‖p,R1 =




∑

j∈Z1

∫

{x: [b(n)x]=j}
( l̂xn − l̂x+yn )p dx





1/p

(7.18)

and
∫

{x: [b(n)x]=j}
( l̂xn − l̂x+yn )p dx(7.19)

=
∫

{x: [b(n)x]=j}
( b(n)n−1 (ljn − l[b(n)(x+y)]n ) )p dx.

Let u = b(n)x − [b(n)x], v = b(n)y − [b(n)y]. Then 0 ≤ u, v ≤ 1 and [b(n)(x + y)] =
[b(n)x] + [b(n)y] if u < 1− v while [b(n)(x+ y)] = [b(n)x] + [b(n)y] + 1 if u ≥ 1− v. Thus

∫

{x: [b(n)x]=j}
( b(n)n−1 (ljn − l[b(n)(x+y)]n ) )p dx(7.20)

= ( b(n)n−1 (ljn − lj+[b(n)y]
n ) )p(1− v)/b(n)

+( b(n)n−1 (ljn − lj+[b(n)y]+1
n ) )pv/b(n)

= ( (l̃jn − l̃j+[b(n)y]
n ) )p(1− v) + ( (l̃jn − l̃j+[b(n)y]+1

n ) )pv.
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Thus by (7.18)-(7.20) for any ζ ≤ 1/p

‖l̂·n − l̂y+·n ‖p,R1(7.21)

≤ (1− v)1/p‖l̃·n − l̃[b(n)y]+·n ‖p,Z1 + v1/p‖l̃·n − l̃[b(n)y]+1+·
n ‖p,Z1

≤ (1− v)ζ‖l̃·n − l̃[b(n)y]+·n ‖p,Z1 + vζ‖l̃·n − l̃[b(n)y]+1+·
n ‖p,Z1 .

Note that if [b(n)y] = 0 then the first term on the right is 0 and v = b(n)y so that we
have the bound

‖l̂·n − l̂y+·n ‖p,R1 ≤ (b(n)y)ζ‖l̃·n − l̃1+·n ‖p,Z1 = yζ
‖l̃·n − l̃1+·n ‖p,Z1

(1/b(n))ζ
.(7.22)

If [b(n)y] ≥ 1 we obtain

‖l̂·n − l̂y+·n ‖p,R1(7.23)

≤ (1− v)ζ [b(n)y]ζ

b(n)ζ
‖l̃·n − l̃[b(n)y]+·n ‖p,Z1

([b(n)y]/b(n))ζ

+
vζ([b(n)y] + 1)ζ

b(n)ζ
‖l̃·n − l̃[b(n)y]+1+·

n ‖p,Z1

(([b(n)y] + 1)/b(n))ζ
.

Since
(1− v)[b(n)y] + v([b(n)y] + 1) = b(n)y

we see from (7.23) that

‖l̂·n − l̂y+·n ‖p,R1

yζ
(7.24)

≤ ‖l̃
·
n − l̃[b(n)y]+·n ‖p,Z1

([b(n)y]/b(n))ζ
+
‖l̃·n − l̃[b(n)y]+1+·

n ‖p,Z1

(([b(n)y] + 1)/b(n))ζ
.

Using (7.4) then completes the proof of (7.14). (7.15) follows similarly.
(7.16) follows from the proof of Lemma 10, using the fact that l̂xn is right continuous

in x.

Lemma 14 Let p > 1. Then

l̂·n
d−→ L·1(7.25)

as Lp(R1) valued random variables. In particular,

‖l̃·n‖p,Z1
d−→ ‖L·1‖p,R1 .(7.26)

Proof of Lemma 14: Let us first show that the measures induced by the sequence l̂·n
on Lp(R1) are tight. To do this, let K be the closure of the precompact set

A =
∞⋂

k=1

{
f ; f ≡ 0 outside [−a, a], ||f ||p ≤M and sup

|h|≤δk

||f(·+ h)− f(·)||p ≤
1

k

}
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with a, δ1, δ2, . . . to be chosen. Then for any ε > 0, using (1.18) with a < ∞ sufficiently
large and Lemma 13 as in the proof of Lemma 11 with δk → 0 sufficiently rapidly

P{l̂·n 6∈ K} ≤ P{||l̂·n||p ≥M}+ P{max
k≤n

|S(k)| ≥ ab(n)}(7.27)

+
∞∑

k=1

P{ sup
|h|≤δk

||l̂·+hn − l̂·n||k ≥
1

k
} ≤ ε

which establishes tightness. Hence by Prohorov’s criterion every subsequence l̂·nj has a
subsequence which converges in distribution. It only remains to identify the limit with
the measure induced by L·1 on Lp(R1). To this end it suffices to show that

∫ ∞

−∞
f(x)l̂xndx

d−→
∫ ∞

−∞
f(x)Lx1dx(7.28)

for each f ∈ S(R1). But for such f

∫ ∞

−∞
f(x)l̂xndx =

1

n

∫ ∞

−∞
f
( x

b(n)

)
l[x]n dx(7.29)

=
1

n

(
O(

n

b(n)
) +

∑

x∈Z1

f
( x

b(n)

)
lxn
)
= o(1) +

1

n

n∑

k=1

f
(S(k)
b(n)

)

d−→
∫ ∞

−∞
f(x)Lx1dx

by Skorohod’s generalization of Donsker’s invariance principle to random walks in the
domain of attraction of a stable process, [17]. Finally, (7.26) follows from (7.17) and
(7.25). This completes the proof of our lemma.

Proof of Theorem 4: Fix t large and let tn = [tn/νn] and γn = [n/tn]. Using the
additivity of local times and the Markov property as before,

E exp
{
λ
νnb(n/νn)

1−1/p

n

(∑

x

(lxn)
p
)1/p}

(7.30)

≤
(
E exp

{
λ
νnb(n/νn)

1−1/p

n

(∑

x

(lxtn)
p
)1/p})γn+1

=
(
E exp

{
λ
( tn
n/νn

)(b(n/νn)
b(tn)

)1−1/p‖l̃·tn‖p,Z1

})γn+1

Using (7.26), (7.2), and the regular variation of b(n),

lim sup
n→∞

1

νn
logE exp

{
λ
νnb(n/νn)

1−1/p

n

(∑

x

(lxn)
p
)1/p}

(7.31)

≤ 1

t
logE exp

{
t
βp−(p−1)

βp ||L·1||p
}

Letting t→∞ gives the upper bound.
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For the lower bound, as in [3] it suffices to show that for any bounded continuous
function f on R1 and positive sequence {νn} satisfying (1.20),

lim inf
n→∞

ν−1n logE exp
{
νn
n

n∑

k=1

f
(
Sk/b(n/νn)

)}
≥ sup

g∈Fβ

{
(g, fg)2 − Eβ(g, g)

}
.(7.32)

This follows along the lines of the proof of Theorem 4.1 in [3], noting that from [11], p.
661,

lim
n→∞

sup
x∈Z1

∣∣∣∣∣b(n)Pn(x)− p1

(
x

b(n)

) ∣∣∣∣∣ = 0(7.33)

where Pn(x) is the probability function for Sn, and, as before, p1(x) is the density for
X1. This completes the proof of Theorem 4. Theorem 5 then follows as in the continuous
case.

8 Appendix

Let Raf(x) denote the restriction of a function f(x) to x ∈ [−a, a].
Lemma 15 Let p > 1. For any N <∞, and δk → 0 let

AN,{δk} = {f ∈ Lp(R1) | ‖f‖p,R1 ≤ N}
⋂

(8.1)
∞⋂

k=1

{
f ∈ Lp(R1) | sup

|h|≤δk

‖f(x+ h)− f(x)‖p,R1 ≤ 1

k

}

Then for any a <∞, RaAN,{δk} is precompact in Lp([−a, a]).
Proof of Lemma 15: This follows easily from Theorem IV.8.21 of [6], but we provide a
short self-contained proof. Let h ∈ C∞0 (R1) be positive, symmetric, supported in [−1, 1]
with

∫
h(x) dx = 1. Set hε(x) = ε−1h(x/ε). Let f1, f2, . . . be a sequence in A. We must

show that some subsequence converges in Lp([−a, a]). For each k let

fj,k(x) = hδk ∗ fj(x) =
∫
h(y)fj(x− δky) dy.(8.2)

From the definition of A it follows that

‖fj,k‖p,R1 ≤ N and ‖fj,k − fj‖p,R1 ≤ 1

k
.(8.3)

On the other hand, it is easy to see that for each fixed k, the sequence f1,k, f2,k, . . . is
uniformly bounded and equicontinuous. Hence by Ascoli’s Lemma we can find a sub-
sequence fjn,k,k ; n = 1, 2, . . . which converges uniformly on [−a, a]. Hence they con-
verge in Lp([−a, a]). In particular we can assume that jn,k ≥ k and that ‖fjn,k,k −
fjm,k,k‖p,[−a,a] ≤ 1

k
for all m,n. By (8.3), ‖fjn,k − fjm,k

‖p,[−a,a] ≤ 3
k
for all m,n. We can

also assume that jn,k+1 ; n = 1, 2, . . . is a subsequence of jn,k ; n = 1, 2, . . .. Thus we have
‖fjn,n−fjm,m‖p,[−a,a] ≤ 3

m
for all n > m so that fjn,n ; n = 1, 2, . . . converges in Lp([−a, a]).
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