DOI: 10.1214/EJP.v10-256

n b
Electr?® 2biligy

Vol. 10 (2005), Paper no. 11, pages 371-419.

Journal URL
http://www.math.washington.edu/~ejpecp/

Perpetual Integral Functionals as Hitting and Occupation Times

Paavo Salminen
Abo Akademi, Mathematical Department
FIN-20500 Abo, Finland
Email: phsalmin@abo.fi
and
Marc Yor

Université Pierre et Marie Curie, Laboratoire de Probabilités
4, Place Jussieu, Case 188, F-75252 Paris Cedex 05, France

Abstract

Let X be a linear diffusion and f a non-negative, Borel measurable func-
tion. We are interested in finding conditions on X and f which imply that
the perpetual integral functional

1X(f) = / R de

is identical in law with the first hitting time of a point for some other diffu-
sion. This phenomenon may often be explained using random time change.
Because of some potential applications in mathematical finance, we are con-
sidering mainly the case when X is a Brownian motion with drift © > 0,
denoted {B") : ¢ > 0}, but it is obvious that the method presented is
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more general. We also review the known examples and give new ones. In
particular, results concerning one-sided functionals

/0 FBI) Ly gyt and /0 F(BI) 1yt

are presented.

This approach generalizes the proof, based on the random time change
techniques, of the fact that the Dufresne functional (this corresponds to
f(z) = exp(—2x)), playing quite an important réle in the study of geometric
Brownian motion, is identical in law with the first hitting time for a Bessel
process. Another functional arising naturally in this context is

/ (a + exp(BM)) 2 dt,
0

which is seen, in the case = 1/2, to be identical in law with the first hitting
time for a Brownian motion with drift u = a/2.

The paper is concluded by discussing how the Feynman-Kac formula can
be used to find the distribution of a perpetual integral functional.

Keywords : Time change, Lamperti transformation, Bessel processes, Ray—
Knight theorems, Feynman-Kac formula.
AMS 2000 subject classification : 60J65, 60J60, 60J70.
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1 Introduction and summary of the results

Let BW = {Bt(“) = By +ut : t > 0} be a Brownian motion with drift
i > 0 and, if nothing else is said, we assume that B is started from 0.
Encouraged by a number of examples listed below, we wish to gain better
understanding when an integral functional of the type

Io(f) = / " pBW)ds,

where f is a non-negative measurable function, is identical in law with the
first hitting time of a point for some other diffusion. Clearly, we can pose
an analogous question for an arbitrary diffusion instead of B*). In fact, the
results in Section 2 are fairly easily extended for arbitrary transient diffu-
sions determined by a stochastic differential equation. Our interest in the
particular case with B® is motivated by the numerous studies and results
associated to the functional

/00 exp(—2BW) ds. (1)
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This functional was first considered by Dufresne in [15] where it is seen,
among other things, how the functional (1) arises as a perpetuity after a
limiting procedure in a discrete model.

We now review some cases of perpetual integral functionals which are
identical in law with the first hitting time. Let

H,(Z):=inf{t: Z, =a}

denote the first hitting time of the point a for a diffusion ~Z.
1) In Yor [51] (see [53] for an English translation) it is shown that for the
Dufresne functional (1) we have

@

/ exp(—2BW) ds Hy(R®), (2)
0

d
where R is a Bessel process of dimension § = 2(1 — y) started at 1, and @
reads "is identical in law with". Recall also that

o 1
/ exp(—2BM) ds 9 —,
0 27;1

(3)
where v, is a gamma-distributed random variable with parameter pu. We
refer to Szabados and Székely [46] for a discussion of Dufresne’s functional
for random walks.

2) The Ciesielski-Taylor identity:

>~ (@
/ 1{R£6+2)<1} ds = Hl(R((s)), (4)
0

where R and R*? are Bessel processes of dimension 6 > 0 and 6 + 2,
respectively, started at 0. For a proof, see Williams [48| p. 159 and 211,
and Yor [49], [50] p. 50; in the case § = 1 there is a pathwise explanation
due to D. Williams. We refer also to Getoor and Sharpe [20]| p. 98, and to
Biane [3] for a generalization to a vast class of pairs of diffusions. See also
Donati-Martin and Yor [12] and Deheuvels and Martynov [7].

3) The identity due to Biane [3] and Imhof [23]:

> (d)
/0 g g ds = Hy(BW), (5)
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where ) is a random variable indegjendent of B®™ and exponentially dis-
= 0.

tributed with parameter 24 and B"

4) The identity due to Donati-Martin and Yor [13| p. 1044:

—
=

& ds
= H,,(R®). 6
/0 eXp(2R§3)) —1 2l ) ©)

where R® is a three-dimensional Bessel process started from 0. See [13] also
for a probabilistic explanation of (6).

In Section 2 of this paper we present a general method based on It6’s and
Tanaka’s formulae and random time change techniques which connects the
distribution of a perpetual integral functional to that of a first hitting time.
This method gives us the identity (2) and also the following (which might be
called the reflecting counterpart of (2)):

@

/ exp(—2a BM) Lipws gy ds Hyjo(R®), 6 =2pu/a. (7)
0

where the Bessel process R® is started at 0 and, in the case 0 < § < 2,
reflected at 0. However, the simplest case emerging from our approach leads
us to the identity

/0 (aexp(BY2) 4+ 1)2ds & H.(BY), (8)

where a > 0, r = log((1 + a)/a). The reflecting counterpart of (8) is

(1/2) - @ 3(1/2)
aexp(By/?) +1 1 par2 g, ds H,.(BY/?)), 9)
0

where a and 7 are as above, and B(/?) is a reflecting Brownian motion with
drift 1/2 started at 0. In Section 3.3, when analyzing the functional on the
left hand side of (8), we also find a diffusion with a first hitting time identical
in law with the functional

/oo(a exp(BW) 4 1)72 ds, (10)

where, now, p is arbitrary. The Laplace transform of the distribution of
the functional in (10) can be expressed in terms of Gauss’ hypergeometric
functions, for this we refer to Borodin and Salminen [5] where also (6) is
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derived as a special case of a more general identity in law between functionals.
In [5] and Vagurina [47] also the Laplace transform of the distribution of the

functional -
/ (cosh(Btg“)))_2 ds,
0

is computed. For many interesting results on functionals containing hyper-
bolic functions, see [54], in particular, Alili, Dufresne and Yor [2], and Gruet
[21].

We have not investigated or constructed a discrete model (as is done in [15]
for the functional in (1)) which would lead to the functional in (8). Notice,
however, that

|k exp(B) 2 ds = [ exp(-2 BI)(1 + exp(~B)  ds
0 0

and, hence, this functional can be considered as a modification of Dufresne’s
functional such that the discounting is bounded (we call this modified func-
tional a translated Dufresne’s functional). In fact, using the results in Salmi-
nen and Yor [45], where the integrability properties of perpetual functionals
are discussed, it is seen that while Dufresne’s functional does not have mo-
ments of order m > p (cf. (3)), which is perhaps unrealistic from an eco-
nomical point of view, the functional in (8) has some exponential moments -
being in this respect more appropriate.

For functionals restricted to the negative half line we cannot in general
have similar descriptions in terms of first hitting times. A typical example is
the identity (5) above. However, the Lamperti representation [29] allows us to
connect exponential functionals to the occupation times for Bessel processes.
Indeed, in [29|, Lamperti obtains the formula

eXp(gt) = Rfot ds exp(2¢s)? (11)

where, starting from a Lévy process {{;} with & = x, it is shown {R;} is
a Markov process started from exp(z) and possessing the Brownian scaling
property:
d
{R¢w, : u>0} @ {VcR, : u>0}

with appropriate initial conditions. In the particular case &, = x + B, + vu,
a Brownian motion with drift v, starting at =, then R is a Bessel process of
index v (or dimension 6 = 2(1 + v)), which for v < 0, is being considered in

376



(11) prior to its hitting time of 0. This particular case will play an important
role throughout the paper.
In Section 3.1 we show the identity

(0.9) ( o)
/ exp(—2a BM) L g0 gy ds = / 1{R252)>1/a} ds, (12)
0 0

where R(®) is a Bessel process of dimension 0, = 2(1 — £) started at 1/a.
Notice that R%2) hits 0 in finite time, and, in case 0 < 1 < a, we take 0 to be
a killing boundary point. Further, again by the Lamperti time change (11),
we have

=

> @ [
/0 exp(2a BW) 1{B§u><0}ds = /0 1{Rg53)<1/a}d37 (13)

where R(%) is a Bessel process of dimension d; = 2(1+£) started at 1/a. This
identity was first observed and proved in Yor [52] ([53] p. 133) by different
methods.

Finally, we recall the recent works by the second author, jointly with H.
Matsumoto, see [34], [35], [36], in which the variable

t
/ exp(—2BW)ds, >0, (14)
0

plays an essential role in obtaining a variant of Pitman’s theorem. Indeed, it
is proved that the process

t
ZM = exp(BM) / exp(—2B")ds, t> 0,
0

is a time homogeneous diffusion. Other properties of the functional in (14)
are studied in the papers [33], [8], [9], [10], [L1]. See also Dufresne [16] and
Matsumoto and Yor [37].

The paper is organized as follows: In the next section a general method
connecting the distribution of a perpetual integral functional to a hitting time
is presented. Examples of the method are given in Section 3. In particular,
we discuss the functionals (and their reflected counterparts) appearing in
(2) and (8). Further, using the Lamperti transformation (11) we derive the
identity (4) from (7) and give a new derivation (for another one, see [44]) for
the joint Laplace transform of the functionals

/°° Lipam.gy ds, L° (BY/?) /Oo Liparm g
(1/2) 2 o ’ (1/2) 2
0o (aexp(Bs'™)+1) 0 (aexp(Bs'™”)+1)
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where L2 (B(/?)) is the ultimate value of local time at 0 of B1/?). Especially,
this latter computation has interesting connections to some earlier works. We
also prove in Section 3 the identities (5), (52) and (53) (see the table below).
In Section 4, we modify the Feynman-Kac formula to be directly applicable
for computing the Laplace transform of a perpetual functional and discuss a
characterization due to Biane [3]| for one-sided functionals. We finish with a
short Appendix containing the Ray-Knight theorems used in the paper.

To summarize the discussion made throughout this work, we use system-
atically random time changes in a set-up which a priori encompasses the
scale and speed Feller type representations of one-dimensional diffusions (for
which, see, e.g. the recent paper by McKean [38]) as well as Lamperti’s
transformation (11) and Ray-Knight theorems. Of course, this stochastic
approach and the results it allows to derive agree with the more analytic
Feynman-Kac approach of solving ODE’s, and performing for them the cor-
responding (deterministic) changes of variables.

We conclude this introduction with a table containing the functionals
and the associated hitting times discussed in this paper (an exception is the
functional appearing in (6) which is not treated in the paper). We use the
notation B® for a Brownian motion with drift p, R for a Bessel process
of dimension §, and B® for a reflected Brownian motion with drift ;. The
processes in the table, if nothing else is said, are started from 0.

378



Ref. Functional (a > 0, u > 0) Hitting/occupation time
2), 21) | exp(-2aB8) ds Ho(RC-241%),
0
R82_2”/a) =1/a
(7),(22) / exp(—2a BM) 1 g0 gy ds Hyo(RPHD)
0
(23) /0 exp(—2a BW) 1 g0y ds /0 L pe-2u/o) ) )0y 05,
RE 1)
(12), (24) /0 exp(—2a Bg‘u)) 1{B§“)<O} ds /0 l{RgQ_Q“/a)>1/a} dS,
R(()2_2”/a) =1/a
(13), (25) /0 exp(2a BM) 1500 gy ds /0 L pet2n/e) 10 ds,
R(()2+2”/a) =1/a
©.65 | [ (aewBP) 11T | B0,
0

r=log((1+a)/a)
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Ref. Functional (@ > 0, u > 0) Hitting/occupation time
o Lipar g .
(9), (36) / o ds | H,(BY2),
0 (aexp(Bs'™)+1)2
r=log((1+a)/a)
e 1{3(1/2)<0}
(37) / 5(1/2) S H/\(B(a/z))a
0 (aexp(Bs'™)+1)?
A~ Exp(l+a)
(69) / (a + exp(BYM2)) "2 ds H,(B/2),
0
r = Llog(l+a)
(5), (49) /0 1y ds HA(BW), A~ Exp(2y1)
(4), (34) /0 1{R§5+2)<1/a} ds Hl/a(R(é)), 0>0
© | [ (eper®) -7 Hopa(R)
0
(52) / exp(—2RP) ds H,(R®)
0
® | [Tae RO T a>1 | Hy g Rere)
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2 Perpetual integral functionals as first hitting
times

Let {B" : t > 0} be a Brownian motion with drift > 0 and f a non-
negative locally integrable function. Then (see Engelbert and Senf [19] and
Salminen and Yor [45])

Io(f) == /000 f(BWYdu < 0o as. < /00 f(x)de <oo.  (15)

In our first proposition it is stated, under some additional assumptions on
f, that there exists a diffusion constructed in the same probability space as
B® such that the perpetual integral functional I.(f) is a.s. equal to the
first hitting time of a point for this diffusion.

Proposition 2.1 Let f : R — R be a monotone, twice continuously differ-
entiable function such that r := lim, .., f(z) exists. Introduce the additive
functional

L= [ ()
0
Assume further that f'(x) # 0 and

/ (F'(2))2dz < oo,
Let Z be a diffusion given by
ZL‘ = f(Bc(zl;L))7

for t > 0 such that
ap =1inf{s: Iy >t} < o0.

Then a.s. ~
/ (f'(BM))?ds = inf{t : Z, =r}. (16)
0
Moreover, Z is a solution of the SDE
dZy = dB, + Go [~ (Z)dt, Zy = [(0),

where [3 is a Brownian motion and

G(a) = s (570) + 1 /). (17)
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Proof To fix ideas, take f to be increasing. By Ito’s formula

FEp) =50 = [ reeyas g [
= [rwans [(seras

Replacing u by a; we obtain

{

W) ds.

Zy— Zy— /’fBﬂdB+/?waWGw@m&
0

Because

I = (F(B®) and af = — = (f(BW))

]/

Qg

it follows from Lévy’s theorem that

5 = /fB“ dB,, t >0,

is a Brownian motion, and we obtain the claimed SDE:

G-t = Gt [ B GBY) da,
0

t
= gt+/ Go f4(Z,)ds.
0
Because Bt(“ ) 5 00 as t — oo we have

lim f( M =r,  as.

t—o0

It follows now from
by letting t — oo that

completing the proof.
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Remark 2.2 Let f and Z be as in Proposition 2.1. Then, modifying the
proof above, it is seen for x > 0 that

H,(BW)
/o (f'(BM))?ds = inf{t: Z, = f(x)} aus. (18)

Next, we consider perpetual integral functionals restricted on R, . For
simplicity we take f to be decreasing, and leave the case “f increasing” to
the reader. Further, we use the notation

Mt(—u) =sup{B{™ : s <t} :=sup{B, —pus: s<t}, u>0.

Recall that
{pt" =M =B >0} (19)

is identical in law to a reflecting Brownian motion with drift pu, i.e., the
solution of Skorokhod’s reflection equation (see [41] Chapter VI Lemma 2.1)
driven by

—BM = (=B)) + put, t>0.

Proposition 2.3 Let f and G be as in Proposition 2.1. Assume moreover
that f is decreasing and let p* be as given in (19). Let

t
Af = / (f'(p")2ds, and a; :=inf{s: A} >t}.
0

for t > 0 such that o < co. Then
= @ . .
I = /0 (f/(BW))? 1 puog ds = mf{t: Z,=r"}, (20)
where r* := f(0) — r. The process Z is a solution of the reflected SDE

dZ;, = dB, — Go f(f(0) — Z,)dt + L)(Z), Zy=0,

where (3 is a Brownian motion, {L)(Z) : t > 0} is a non-decreasing process
which increases only on the zero set of Z, and G is as in Proposition 2.1.
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Remark 2.4 In comparison with the statement (16) in Proposition 2.1, no-
tice that the equality in (20) holds “only” in distribution.

Proof The starting point is the observation
d
IS AL,

and, hence, we find the law of A% . As in the proof of Proposition 2.1 we use
It6’s formula

£00) = £(p)
" ew o gmemy L[
| £y @i —apion - 5 [ as

= /Ot F(pM)dB, — f0)MT — /Ot <%f,,(pgu)) +Mf’(p§“))) ds.

Consequently, for t > 0 such that o;7 < oo

+

L dB.— s [ N G ds
Ze= [ ran = pOMG = [T Gl

- | Go fUF(0) = 2.) ds + LO(Z),
0

where LY(7) := —f'(0)M (7" determines a non-decreasing process which
Qy

increases only on the zero set of {Z, : ¢ > 0}. It holds also that
0<Z, <r*:=f(0)—r

for all t > 0 such that o, < oo. To conclude the proof, observe that

Zyg = lim (£(0) = ")) =1

t—o0

giving (20). O

Remark 2.5 The method of random time change is also used by Getoor
and Sharpe [20] Section 5 as a tool to compute the distributions of stopped
functionals of Brownian motion. Their idea is similar to the one in Propo-
sitions 2.1 and 2.3, that is, to identify the functional with the first hitting
time of a point for some other diffusion.
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3 Detailed studies of some perpetual function-
als

3.1 Dufresne’s functional

As a very particular case of our method, we study now the identity (2) (or
(21) below) and its various one-sided variants. For more details concerning
(2), we refer to [53| p. 16. For the joint distribution of the functionals in (23)
and (24), see Salminen and Yor [44]. In Section 4 Example 4.7 an additional
characterization is derived for the functionals in (24).

Proposition 3.1 Let B with u > 0 be started from 0. Then for a > 0
the following 5 identities hold
a:

@

/ exp(—2aBW) ds Ho(RZ /), (21)
0

where R*=2/%) js a Bessel process of dimension 2 — 241/a started at 1/a.

b:

> (@ a
/ exp(—2a BM) Ligug ds = Hyjo(RZH9), (22)
; ‘

where R/ js started at 0 and, in the case 0 < u < a, reflected at 0.
c:

~ @ [
/ exp(—2a BM) Ligwopds = / L pe—zu/a_y 40 S, (23)
0 0

where R?~24/) js started at 1/a and killed when it hits 0.
d: (cf. (76)),

/0 exp(—2a BY) 1 po g ds = /0 Ly pe2/0 ) gy 45, (24)

where R?=2% js started from 1/a and killed when it hits 0.
e:

—~
=

/ exp(2a BW) Ligoo gy ds = / L perana) gy S, (25)
0 0

where R =1 /q.

Remark 3.2 In fact, as is clear from the proofs below, the identities (21),
(23), (24), and (25) hold a.s., i.e., the Bessel processes appearing therein can
be constructed in the same probability space where B® is given.
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Proof

a: We let a = 1; the case with arbitrary a can be treated using the scal-
ing property (however, see the proof of (22) where we work with arbitrary
a). Apply Proposition 2.1 with f(z) = exp(—z). Now f is decreasing, and
straightforward computations show that

1

G(z) = (5 — ) exp(z).

The process Z is given by the SDE (cf. Lamperti’s transformation (11))

1-2
Rat, Zy= f(0) =1.

dZ, =d
t B + 57,

Consequently, Z is a Bessel process of dimension 6 = 2 — 2y, as claimed in
(21). Notice that we, hence, have also proved the Lamperti representation
(11) in the case £ is a Brownian motion with drift v = —u. Moreover, inves-
tigating the proof of Proposition 2.1 provides easily a proof of (11) when v
is an arbitrary positive number.

b: Here we use Proposition 2.3 with f(z) = a™! exp(—az) which leads us
to consider the additive functional

t
Af ::/ exp(—2a p*)) ds
0

where p*) is a reflecting Brownian motion with drift z > 0 (see (19)). By
Proposition 2.3 the process Z given by

1
Z; = 5(1 —exp(—a p(“)))

+
Qy

satisfies the SDE

Z, =B+ (E- 1)/t(1 ~Z) Nds+ L(Z), Zy =0,
0

a 2 a

Recall that o™ is the inverse of A", and L°(Z) is a non-decreasing process
which increases only on the zero set of Z. Proposition 2.3 yields now

—~
o,
=

/ exp(—2a p*)) ds
0

- Hl/a(Z)'

/ exp(—2a BW) 1 g0y ds
0

—
=
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It remains to show (cf. (22)) that H;,(Z) is identical in law with H ,(R®*/@).
One way to do this is to compute the Laplace transform of H,/,(Z) by using
the standard diffusion theory (see It6 and McKean [24] or [4] II.10 p. 18). A
slightly shorter way is to observe that {1/a — Z; : t > 0} is a Bessel process
of dimension 2 — 2p/a started at 1/a, reflected at 1/a and killed when it hits
0, denoted R22#/4) This gives us

(d) ~ (9 9,/a
H1/a(Z) = HO(R(2 2u/ )).

Finally, the claim

Ho(RE=200) @ H, ), (REW), (26)

where the Bessel process R(?*/% is started at 0, can be verified by straightfor-
ward but lenghty computations with Laplace transforms. (As seen in Section
3.2, the Ciesielski—Taylor identity follows easily from (26)).

c & d: To prove (23) and (24) we use the Lamperti transformation (11) in
the following form: let

t
AW = / exp(—2a BW) ds
0

and
alt = inf{s : AW > 1
then
1 )y .
{E exp(—a Ba§1>) : t >0} (27)

is a Bessel process of dimension 2 — 2y/a started at 1/a and killed when it
hits 0. Letting R(>~2#/9) denote this Bessel process we obtain

/ exp(—2a BM) 1 50050y ds
0

_ = _ (w) (1)

= /0 exp(—2a Bagl)) l{B:z)l) ~0) dag
HO(R(Q—Qu/a))

= /O 1{Rg272u/a)<1/a} dS (28)

= /0 1{R§272u/a)<1/a} ds.
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For (24) we have similarly

/ exp(—2a BM) 1 g0 gy ds
0

_ = _ (1) 1)

- /0 exp(—2a BagU) 1{3((1,8)<0} da
HO(R(Q—QH/@)

— \/(; 1{R22—2p,/a)>1/a} dS (29)

— /O ]_{Rg2—2‘u,/a)>1/a} dS

e: The identity (25) can be proved using the Lamperti transformation (27)
with negative p. This can also be formulated for ¢+ > 0 by defining

t
AP = / exp(2a BW) ds
0

and
al? i=inf{s: A® > ¢}.

Then ]
{a exp(a B(’g)) :t>0} (30)

ay

is a Bessel process of dimension 2 + 241/a, denoted R?**2#/%) started at 1/a.
Consequently, as in the proofs of ¢ and d above,

/0 exp(2a B{") g0 gy ds:/o Lip@iaera oy gy 8-

Remark 3.3 (1) Applying Remark 2.2 formula 18, we obtain from (21)

H,(BM)
/ exp(~2aBW)yds D Hiyp(ROH), (31)
0

where z > 0, and f(x) = exp(—ax)/a. The Laplace transforms of the first
hitting time distributions of Bessel processes are well known, see Kent [28|
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and [4] p. 133 and p. 18. In fact, the Laplace transform of the distribution
of the functional on the left hand side of (31) can also be found in [4] 2.2.10.3
p- 302, and 9.2.8.3 p. 624.

(2) Notice that in case a = 1 and p = 1/2 the identity (22) (see also (28))
takes the form

= (@)
/ exp(—2 B{/?) Lpam g ds = H (p) (32)
0

= / 1¢p,<1y ds
0

where p is a reflecting Brownian motion started at 0. Similarly, (29) can be
written as

—

00 Hy(B)
/ eXp(—2 B£1/2)) 1{B£1/2)<0} ds = / 1{B5>1} ds.
0 ) 0

From [4] formula 1.2.4.1 p. 200, for v > 0

Ho(B) 1
E(exp(—’y/ 1leds>>:—.
' 0 =1 14 /2y

By the well known formula (cf. [4] formula 1.2.0.1 p. 198)

Ew(exp(—fyHO(B))) =exp(—x+/2y), x>0, v>0,
and, therefore,

@

/ exp(—2 B/ 1 (B gy 45 H,\(B), (33)
0

where B is started at 0 and A is an exponentially (with parameter 1) dis-
tributed random variable independent of B. Notice that (32) and (33) can
also be obtained from (36) and (37) in Proposition 3.5 by multiplying these

identities with a2, letting a — oo, and using the scaling property of Brownian
motion.

(3) By the Lamperti time change (11), a general perpetual integral func-
tional of geometric Brownian motion can be expressed in terms of Bessel
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processes as follows:
/ flexp(a BM)) ds = / (a REF20/0)=2 f(q RE21/D) g
0 0

o 1
_ aRgQ—Qu/a) —2 f - dS,
f, wne ()

where R(2-2//9) ig killed when it hits 0.

3.2 Ciesielski—Taylor identity

The identity (22) (cf. also (26)) is now applied to deduce the well known
and puzzling Ciesielski-Taylor identity (4) (or (34) below), see Ciesielski and
Taylor [6], and also Yor [49] and [50], Chap. TV.

Proposition 3.4 The following identity in law holds:

> (
/0 1{Rg5+2)<1/a}d8 = Hiu(R%), V35>0 (34)

=

where the Bessel processes are started at 0.
Proof By Proposition 3.1 b and ¢

ay ¢ ~
Hyjo(RPHY) = / Lo pe-2u/o) y 0y dt,
0

=

where R(~21/%) is started from 1/a. Using the standard time reversal argu-
ment (see Pitman and Yor [39] p. 341) we obtain

oo (@) 0o
/0v 1{R§2—2,u,/a)<1/a} dt — /0 1{R§2+2p./a)<1/a} dt,

where R(*+24/9) is started at 0. Letting 0 = 2u/a gives now the claimed
identity (34). O

390



3.3 Translated Dufresne’s functional

An interesting case emerging from Proposition 2.1 is when the function G in
(17) is equal to a constant c, say. Straightforward computations show that
this yields us the functional

| E o+ Aepinn) s
o M

where A is a free constant. It is natural to assume that ¢ > 0 and A > 0. By
the scaling property of Brownian motion,

@ 1 [~

* c -2 C 1/2)\)—2
/O (;+Aexp(2u3§“))) ds—4—MQ 0 (;+Aexp(B§/))) ds

indicating that we are, in fact, obtaining information only about Brown-
ian motion with drift © = 1/2. Choosing the constants appropriately, this
functional, which in [44] is called Dufresne’s translated perpetuity, can be
expressed in the form

/ (a exp(BYY) +1)"2ds
0

where a > 0. In [44] we derive the joint Laplace transform for the one sided
variants of this functional, that is, for the functionals in (36) and (37) be-
low. Here we give a new derivation of this Laplace transform based on the
Ray-Knight theorem for Brownian motion stopped at the first hitting time.
However, before this, we characterize the functional and its one-sided variants
via hitting times.

Proposition 3.5 Suppose that Bélm = 0. Then the following 3 identities
hold

a:

0 d
/ (aexp(B§1/2))+1)_2ds @ HT(BO/Q)), (35)
0

where a > 0, r = log((1 + a)/a), and 3*/? is a Brownian motion with drift
1/2 started at 0.
b:

—~

[e ] —2 ) ~
/ (a exp(B{?) + 1) Ligum pds = H,(3%%), (36)
0
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where a and r are as above, and 31/? is reflecting Brownian motion with
drift 1/2 started at 0.
c:

e -2 ()
/ (a exp(B{?) 4 1) 1{B£1/2><0}d5 = Hy(p"?), (37)
0

where a > —1, \ is exponentially distributed with parameter (1 + a), and
B2 is as in (35).

Proof

a: Instead of simply refering to Proposition 2.1, it is perhaps more instruc-
tive to go through the computation; in this way we also gain better under-
standing why the case u = 1/2 is a special one. Define

f(@) =1og (- ),

a + exp(—x)

and observe that
f'(x) = (aexp(x) + 1)1

By It6’s formula

t dB
log (a + exp(—B"™)) — log(a + 1 :—/ -
o) ( ) o aexp(BY) +1
1 ! ds 1/t ds
G / 1 / | 38
2 o aexp(B)+1  2Jo (aexp(BH) +1)2 (38)
Introduce . g
s
Avi= / ) >’
o (aexp(Bs"”’)+1)
and

a
Zy = f(BY) = log ( )
" a -+ exp(—BL)

where « is the inverse of A. We have Z;, = log(a/(1+a)) < 0, and Z, < 0 for
all v such that «, < co. Moreover, from (38) it is seen that Z is a solution
of the SDE

I ds
Zy =7, (1/2) - - / S —
0B+ n 2> o 1—exp(Z,)’
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where 31/2) is a Brownian motion with drift 1/2 starting from 0. Conse-
quently, because Z, — 0 as u — oo we obtain, as explained in the proof of
Proposition 2.1,

o ds
/ ) = Ho(2),

0 (aexp(Bs")+1)?
and, in particular, for u = 1/2 we have (35).
b: The identity (36) can be proved by directly applying Proposition 2.3,
and we leave the details to the reader.
c: Consider now the identity (37). Our proof of this relies on the Ray—
Knight Theorem 5.2 given in Appendix at the end of the paper. Firstly, for
arbitrary o > 0 we have by the occupation time formula

0

00 —2
/ (a eXp(Bg“)) + 1) 1{B§“)<0}d8 = /
0 -

where LY_(BW) is the total local time of B at level y. By Theorem 5.2,

-2
(aexp(y) +1) " LL(B®)dy,

o0

/0 (aexply) + 1>_2 LB dy /0°° (aexp(~y) + 1)_2 Z, dy,

—0o0

where Z satisfies the SDE

dZ, = 2\/Z, dB, — 2uZ, dy.

The distribution of Z, is the distribution of L% (B®), i.e., the exponential
distribution with parameter ;. Consider

(a exp(—y) + 1)*1 Zy, — (a+ 1)’1 70
—2 / (a exp(—u) + 1) \/Z, dB,

[V 2+ (20— 1) a exp(—u)
L ety

(39)

Define for y > 0
Yy
Cy, = / (a exp(—u) +1)7% Z, du,
0
and let ¢ denote the inverse of C. Obviously, C, is a constant for y > Hy(Z)

(recall that Hy(Z) < oo a.s.). From (39) we obtain for u = 1/2 and y <

Cho(2)
(aexp(—c,) + 1) Z,, — (a+ 1) Zy =28, — v,
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where 3 is a Brownian motion. Since Z., > 0 for y < Cp,(z) it follows that

(1/2) - @
(a exp(Bg /7)) + 1) 1{B£1/2><0}ds Cho(2)
0

= inf{y: B =¢},  (40)
where £ = Zy/2(a + 1) is exponentially distributed with parameter (a + 1).
U

Remark 3.6 The formula (18) in Remark 2.2 gives

HP(B(I/Z)) ds
/ = HQ(/B(I/Z))7
0 (a exp(B§1/2)) +1)2

where p > 0, and ¢ = log ((a +1)/(a+ exp(—p))).

We proceed by computing the joint Laplace transform of the functionals
appearing in (36) and (37), and, thus, characterize their joint distribution.
This Laplace transform is also given in [44] but here we give a new derivation
which from our point of view has some independent interest. Define

A& — /OO 1{B§1/2)6Ri} ds.
¢ o (a exp(BY?) + 1)2

Proposition 3.7 For non-negative k, K and c
Flk,e,K) = E0<exp ( “EAWD L0 (BO/2) - KAfﬂ)) (41)

V8k + 1 exp(3)
V8k + 1cosh(% v/8k + 1) + (2c(a + 1) + v/8K + 1) sinh(% v/8k + 1)’

where v = log((a + 1)/a). In particular, with the notation as in Proposition
3.5,

F(k,0,k) = Eqo( exp

—k /Ooo(a exp(BY/?) +1)72 ds))
— kHr(ﬁ(l/Q))>)

/N /N
/N N



el 1, a2
F(0,0,K) = Eo(exp ( K / (=<0 ds))
0 (aexp(Bs'™)+1)2

- Eo(exp ( _ KHA(ﬁ(I/Z))»
- 14+a

a+i4+2K+1

and

00 1, a2
(BP0}
F(k,0,0) = Eo exp —k/ ds
( ) 0< ( o (a exp(B§1/2)) +1)2 )>

= E0<exp < - kHT(B(l/Q)))>

V8k + 1 exp(3)
V8k + 1cosh(% v/8k + 1) + sinh(% v/8k + 1)

Moreover, ASY and AL are conditionally independent given L2 (B1/2),

Proof ~ We begin as in [44] and express the functionals A® in terms of a
Brownian motion without drift. Firstly, notice that

—1/2
A @ / g /)>1{B§—1/2)<0}
) 0 (a+exp(BSYY))? ’
and 1/2)
NG / PR B ) )
) 0 (a+exp(BSY))?

We apply the Lamperti transformation (30) with x = —1/2 and a = 1 on the
left hand sides of these identities. Recalling that R(") is, in fact, a Brownian
motion killed when it hits 0 we obtain

A @ P Ly L @ ) Ay
a - Nz 4% a o e 45
0 (a+BS) 0 (a+Bs)

—

where B’ is a Brownian motion started at 1. Instead of working with a
Brownian motion B’ starting at 1 we introduce a “new” Brownian motion
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B =1— B’ starting at 0. Using spatial homogeneity of Brownian motion we
obtain

/HO(B/) 1{B’<1} s (:) /'Hl(B) 1{B5>0} ds — A+
0 ( o ’

a+ B)? a+1— By)?
and
Ho(B') 1{B’>1} () H,(B) 1{BS<O} B
— == ds = —— —ds=:A".
0 (a+ B)? 0 (a+1— By)?

By the occupation time formula

(AL, Lo, (BY?), A)

(@ B
= (A", Ly, (B), A7)

_ (/OlL}fL(BQ)dy, LY, (B), /OOL}{L(BQ)@),

(a+y) 1 (a+y)

where Lllq_ly(B) is the local time of B at 1 — y up to H;(B). Consequently,

Eo(exp ( . KA—) | L9, (B) = u>
= E0<exp < - KA((;)> | L2 (BY/?) = u)
= Eo (exp (— K Hujaas1)(BY?)))

(VBE +1— 1)),

:eXp(_ 4<1u+a)

where we applied (37) (see also (40)) and the well known formula for the
Laplace transform of the first hitting time for Brownian motion with drift.
From the Ray—Knight Theorem 5.1 it now follows

E0<exp< — kAN — L0 (BY/2)) _KAfz_))>

X2 X(z)
— —k _ex®@_ 2 (\RK 1-1))
(o0~ [ rmds —eXP - P (AR 1)
X(2
_ k/ = s —y X ’)) (42)
o (a+s)?
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where X ) denotes the 2-dimensional squared Bessel process started at 0 and

1
T=et VBRI D: (43)

Next, recall from Pitman and Yor [40] or Revuz and Yor [41] Exercise 1.34
p. 453 that for a general squared Bessel process X, § > 2, and for any
positive Radon measure m on [0, 00), we have for x > 0 and ¢t > 0

B (o (5 &{wﬁmw@)):¢@“%n(§¢%m)

where v — ¢(v) is a unique positive, continuous and non-increasing function

satisfying for 0 <u <wv <t

¢'(v) — ¢'(u) = ¢(s)m(ds), — ¢(0) =1, (44)

(u,]

and which is a constant for v > ¢. By ¢’ we mean the right hand side
derivative of ¢. Notice from (44) that ¢ is convex in (0, c0). Choosing

kds
m(A) = /A(a2—|—75)2 + 2veqy(4),

where A is a Borel set in (0,00) and €y is the Dirac measure at 1, yields

Eo(exp ( — % o X m(ds) ))

- Eo(exp ( —k /01 (a)jf(jﬁ ds — ”YXP)))
= ¢(1). (45)

To find the function ¢, we proceed in a similar manner as in [40] Example 1
p. 432. It follows from (44) that ¢(v) for v < ¢ is the (continuous) solution
of

w2k
') = 1 o), (46)
satisfying the conditions (notice that ¢'(1) = 0)
$(0) =1, ¢'(1-)=—-27v9(1). (47)
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It is elementary to check that y(v) = (a+v)* is a solution of (46) if and only
if a(ov — 1) = 2k, that is

1
a= 5(1:i:\/8k+ 1) =:ax.

Introducing

Yo (v) = (1+§)a+ and  y_(v) == (1+§)a—,

our task is to find constants A and B such that

¢(v) = Ay (v) + By-(v),
fullfills (47). We skip the detailed computations and state only the result
needed in (45):

61 = w (420 + 29, (1) — (5() + 299 (1))

where w = v/8k + 1/a is the Wronskian. The desired formula (41) in Propo-
sition 3.7 results now from (42) and (45) by recalling the definition of 7 in
(43) and substituting r = log((a + 1)/a). O

Remark 3.8 It is seen from the proof above (take v = 0) that for a > 0

Lox® NI ES b2
E, (exp (—k: /0 CEWSE ds)) = (T) (yi(1) =y’ (1)) :

This formula is valid also for 0 < § < 2 when the boundary point 0 is taken
to be reflecting. In particular, X(!) is a Brownian motion squared. Similarly,

fora>1
1 X§5)
E —k —d
O(exp< /o (a— ) s

5/2
() - atw) L

where for v < a
v v
=(1——-) d z_(v):=(1—--)*.
z4(v) = (1 =) and z_(v):=(1--)
The formula (48) is derived in Mansuy [32] for squared Brownian motion
using different techniques (but it is also indicated therein that the result can
be obtained in the way presented above). See also Mansuy [31] for closely

related results.
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3.4 An identity due to Biane and Imhof

Next we consider the identity (5) (renumbered (49) below) found by Biane
[3] and Imhof [23]. This identity is also observed in [43| in connection with
a storage process. The distribution of the random variable H, featuring on
the right hand side of (49) is in this context called the RBrownian motion-
equilibrium-time-to-emptiness distribution, see Abate and Whitt [1].

We give two proofs of the Biane-Imhof identity (49). The first one is based
on the Ray-Knight Theorem 5.2 and the random time change techniques.
Given these tools the proof itself is very short. In fact, we repeat the idea
of the proof of (37) in Proposition 3.5. The second proof is also based on
random time changes but now we work via Tanaka’s formula. This latter
presentation is close to the one in [14]| (see also Biane [3]), but we wish
to give it anyway to demonstrate the connections between occupation and
hitting times.

Proposition 3.9 For ;i > 0
> (d)

where B is started at 0 and ) is an exponentially (with parameter 2y
distributed random variable independent of B

Proof'1 (based on the Ray—Knight Theorem 5.2.) We use the notation and
the structure of the proof of (37) in Proposition 3.5. Firstly, by the occupa-
tion time formula and Theorem 5.2

00 0 00
(d)
/0 1{B§“)<0}d5 - /_ Lgo(B(”)) dy = /0 Zy dy,
where 7 satisfies

dZ, =2+/Z,dB, —2uZ, dy. (50)
The distribution of Z; is the distribution of L% (B®), i.e., the exponential
distribution with parameter y. For the random time change, introduce

Yy
c, ;—/ Z, du
0

and let ¢ denote the inverse of C. It follows from (50)
Zey — Zo =20y =2y,
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where (3 is a Brownian motion. Consequently, because Z, — 0 as y — oo we
obtain (49). O
Proof 2 (based on the Tanaka formula). Consider

t
_ 1
(Bigu)) = _/ 1{B£”)<0} ngﬂ) + 5 L?(B(M))7
0 <

where L°(BW) is the local time of B at 0 (with respect to the Lebesgue
measure). Introduce

t
A; ::/ 1 peocgy ds, and oy = inf{s: A; >t}.
O S —

Then letting ") = 1 LY(BW), and applying the Tanaka formula

oy
BYW = —(BW)~ = / 1y <gy dBY) — €2
; <

ay ay
_ (1)
- /0 Lipe <oy dBs + p /0 L5 <oy ds — ga:
Y dB, + ut — (W
T ), TPy O TRET

It is a straightforward application of the result due to Dambis, and Dubins
and Schwarz (see Revuz and Yor [41] p. 181) that the process given by

oy

(w)

Qy

is an F,-~Brownian motion. Notice that because B/~ < 0 we have for all

t>0
(" > B, + pt. (51)

Clearly, A, = Ay fort > Ay := Ao(BW) = sup{t : Bt(“) = 0}. Conse-
quently, {Bi“_) : t > 0} is defined only for t < A} and

lim B = BY) =0.

t—>AX0 a
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Because o~ is the inverse of A~ and (¥ does not increase after A, we obtain
0= —0u; = 1Ay, + 00 = =By = nAy, + (&),
From (51) it now follows that
AL = Ay, =inf{t: B +put = (W},

Because (3 is a Brownian motion and the Py—distribution of 09 is exponential
with parameter 2u it remains to prove that 5 and fg..’f) are independent. To
do this, let

t
Af ::/0 1 sy ds, and af :==inf{s: A >t},

and proceed as above to obtain

+

Ay
0 s = t

t t

= 'Yt"‘ﬂt‘i“g((:i),

where {7 : t > 0} is a Brownian motion. Because B") is well defined and

[0}

non-negative for all ¢ > 0 we deduce from Skorokhod’s reflection equation
that

(") = sup {—, — ps},
t 0<s<t

and letting t — oo gives

(4 = sup{—, — ps}.
s>0

From the extended form of Knight’s theorem (see [41] p. 183) we know that
[ and v are independent and, therefore, also 7% and (3 are independent. []

3.5 LeGall’s identity

From a representation formula in LeGall [30] we can deduce the result in
(52) below, see Donati-Martin and Yor [13] p. 1044 and 1052. In this section
we prove (52) using time reversal argument and time changes. This nice
application of the classical time reversal result was pointed out to us by Y.
Hariya (in the context of (53)).
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Proposition 3.10 The following formula holds:
/ exp(—2R®)ds < H,(R®), (52)
0

where the Bessel processes are started from 0.

Proof For z > 0let A,(R®) := sup{t : R = z}. Then by Williams’
time reversal result, see [41] p. 317 and [4] p. 35 (also for further references),

Az (R®) () Ho(B)
/ exp(—2R®)ds = / exp (— 2 By) ds,
0 0

where B is a standard Brownian motion started from z. Let for ¢t > 0

¢
Ay ::/ exp (— 2 Bg)ds
0

and, as usual, «; is its inverse. By the Lamperti transformation (27), the
process {Z; : t > 0} where Z; := exp(—B,,) is a 2-dimensional Bessel
process. Clearly,

Zo=exp(—z) and 0< Z; <1 Vit<Apg,.

Consequently,

(d)
AHO - HI(Z),

and letting © — oo proves (52). O

3.6 Hariya’s identity

We learned the identity in the next proposition from Y. Hariya [22] and offer
here a proof which differs from Hariya’s proof and is in the spirit of the
present paper.

Proposition 3.11 The following identity holds:
- 327 gy @ )
(1+R7)"7ds = Hyjy—1)(R'), (53)
0
where v > 1,9 = (2y—1)/(y—1) and the Bessel processes are started from 0.
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Proof By the scaling property of Bessel processes and the occupation time
formula the right hand side of (53) can be written as

( )
Hijy-1y(R?) = (v = 1)2H,(RY)

1 1

Consequently, by Theorem 5.3 in Appendix (with the notations as therein),
(53) is now equivalent with

7(2)
> ZZSZ) @ ! Zy5*2
/0 7(1 ) dy = (§ —2) /o = dy. (54)

=

c

In particular, when v = 2 (and 0 = 3) the identity (54) takes the simple form

oo 252) (d) 1 g
/0 i) dy = /0 ZP dy. (55)

To prove (53) via (54) we use the well known fact that

d A~
(28 5201 2 {(1+9)220).,) s> 0} (56)

Notice that (55) follows directly from (56). However, to obtain (54) we have
to work little more. Substituting z = 3°~2 on the right hand side of (54)
shows that (54) is equivalent with

oo Z(Q) 1 .

/ ————dy < / AN (57)
o (L+y)* 0

By the representation (56) the left hand side of (57) takes the form

oo o 72
/ 49 [,
o (I+y)» o (I+y»=2""
and substituting here x = 1/(1 + y) leads to the right hand side of (57),
completing the proof. O
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Remark 3.12 (1) It can be proved, as pointed out to us by Y. Hariya,
that the identity (53) is equivalent with

/ exp(—2RBW) s L H (RO, (58)
0

where R (") is a three-dimensional Bessel process with drift 1 > 0, i.e., the
diffusion associated to the generator

2

d
3722 + pucoth(px) o T 0.

Both processes in (58) are started from 0. Notice that the identity (52) is
obtained from (58) informally by letting © — 0.

(2) Consider the Ciesielski-Taylor identity (4):

> (d)
/ L pen gy ds = H{(RY), (59)
0

where R is a Bessel process of dimension § > 0 started at 0. It is possible
to express (59) in alternative forms using Hariya’s identity and some simple
transformations. Indeed, by Theorem 5.2 (b) we rewrite (59) first in the form
(see Yor [50] p. 52)

7(2) (2
1 ! Zys—z @ 1 [t Zya
5_2/0 = dy = 5/0 1 dy. (60)
Applying (54) on the left hand side of (60) yields
@)
1 o 72 1 [/ Z
/ v gy 9 —/ "y, (61)
(0=2)*Jo (1+y)* 6 Jo y!

Making the change of variables z = y° on the right hand side of (61) and
recalling that v = (0 — 1)/(0 — 2) leads to

6-22 ), Q+yrev/e=2™Y " 5 | a6t
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Further, substituting on the right hand side of (62) y = 1/x and using the
time inversion property of Bessel processes we obtain

1 00 Z(2) (d) 1 00 )
T /5
(6 —2)? /0 (14 y)20-1/0-2) dy = 52 /1 Y Zl/y dy

1 [~ z9
o st
1

2(6-1)/5

@ 1 [ v, p
T2 )y (Ttuwens

where Y(? denotes the process Z® started with an exponential distribution
with parameter 1/2 (which is the distribution of Z\” when started from 0).

—~

4 Feynman-Kac approach to perpetual integral
functionals

In this section we show how the Feynman-Kac formula can be used to find the
Laplace transform of a perpetual integral functional I (f) where f satisfies
the integrability condition (15):

/ fly)dy < oc.

We remark also that in special cases one can find the law of a perpetual func-
tional by limiting procedures but for a general characterization the problem
has to be analyzed more carefully.

For treatments of Feynman-Kac formula, we refer to Durrett [17] and
Karatzas and Shreve [27]. See also Jeanblanc, Pitman and Yor [25] for con-
nections with excursion theory.

Consider for v > 0 (and g > 0) the function

x— U (2) :E$<exp(—]oo('yf))> = exp / f(BWyd )

By the simple Markov property it is seen that the process

{0,B) e (= [ 580 5) 2 0)

is a bounded martingale.
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Proposition 4.1 The function V., is non-decreasing and satisfies for all x
andt >0

U, (z) = E, (\117(3;‘ exp / f(BW) (63)
Moreover,
lim ¥, (z) = 1. (64)

Proof  The formula (63) is immediate from the martingale property. Let
x < y and apply the optional stopping theorem to obtain

o) = E (0B ew (- [ 1BMa)) @)

< U(y),

which shows that W, is non-decreasing. Next notice that

0

v, (B! eXp /fB(“ ds - eXp / F(BW) ds |]—"t)
Consequently, by the martingale convergence theorem,

U, (o0 exp / f(BM) ds —eXp —fy/ f(Bg“))ds>
0

showing (64). O

Remark 4.2 Notice from (65) that for z <y

" 1B ds) ) = i:—g;

In many cases the function ¥, can be found by solving a second order
ODE. This is formulated in the following

Ew(exp<_7
0

Proposition 4.3 Assume that f is piecewise continuous and satisfies the
integrability condition (15). Then x +— V. (x) is the unique positive, non-
decreasing and continuously differentiable solution of the problem

5 V(@) + po'(w) = f(z) v(z) =0, (66)
30113)10 v(z) = 1.
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Proof Notice that B®™ killed according to the additive functional

It(vf)zv/o f(BM)ds

is a linear diffusion B* (in the sense of Ito and McKean [24]), and its basic
characteristics (speed measure, scale function and killing measure) can be
determined explicitly (see [4] No. IL.9 p. 17). From (63) it follows that
V., is an invariant function for B°®. It is well known that invariant functions
of a linear diffusion are continuous (see Dynkin [18] Vol. II p. 7), and
differentiable when the scale function is differentiable (see Salminen [42] p.
93). From the representation theory of excessive functions we know that
for B*® there exist two invariant functions, denoted ¢, and 1, and called
fundamental solutions or extreme invariant functions, such that if h is an
arbitrary invariant function then there exists constants ¢; > 0 and c; > 0
such that h = ¢; ¥ + c2 . Moreover, we have

307(37) T >z
. _ 90’7(2)7 -
P,(H,(B*) < ) = (o)

From this representation it follows that ¢ and v solve (66) on the intervals
of continuity of f. Next notice that, because p > 0,

lim P,(H,(B*) < o0)=0

Z——00

giving ¢, (z) — +00 as z — —oo. Consequently, all invariant non-decreasing
functions are multiples of ¢,. In particular, ¥, is a multiple of ¢, and, hence,
the condition (64) determines V. uniquely. O

Remark 4.4 At the points of discontinuity of f the function ¥, usually fails
to be two times differentiable.

Example 4.5 We compute the Laplace transform of the functional

/ (a + exp(B{?)) 2 ds
0
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appearing in (8). Consider, for a moment, the case with general u > 0.
Taking

f(a) = (a+exp(x))~*
n (66) gives us the equation

5 V(@) + pv'(z) = 7 (a + exp(x)) *v(z) = 0.

Putting here z = Iny and ¢(y) = v(Iny) yields

12// 1 2

v g+ (w+35)yg'(y) —v (a+y)”

9 9 g(y) =0, (67)

which is, of course, the corresponding equation for geometric Brownian mo-
tion. By Kamke [26] 2.394 p. 497 this equation can be solved for ;1 = 1/2 by
making the substitution

VI (Y,

nE) =gly), &= - ——

which transforms (67) to the following

V2y ' +an =2y, (68)

Letting (3 := a/2+/27 the general solution of (68) can be written as

n(€) = Aexp (— (VI+F+8)¢) + B exp (VI+ 5 = 9)¢).

Consequently, the increasing solution of (67) is

v = eo((VIFP - g)5;m2)
.

a—+y

Notice that 1)(c0) = 1, and it follows

Ex<exp< - ’Y/OOO (a + exp(B(/2))~2 ds))
_ (ﬂ)@a)l(m_a)
— ) |

a+ exp(z (69)
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For a geometric Brownian motion X with Xy, = x > 0 defined via
X, =exp(BM), B =,

the formula (69) takes the form

Ex<exp<—7/0m7( ! )st))z( L )(2“)_1(‘/m“). (70)

a+ X a+z

The identity in law in (8) can be deduced from (69) (or (70)). Notice also
that substituting in (69) = 0 and letting @ — 0 we obtain a special case of

the identity (2):
Eo(exp<—7/ ¢2Bss ds)) = e V2,
0

9 d 1
/ 623578 dS (:) <2 Zl/2) s
0

where Z,, is a I'-distributed r.v. with parameter 1/2.

ie.,

Using Propositions 4.1 and 4.3 we derive an interesting result due to Biane
[3] which characterizes the law of a perpetual integral functional of B, 1 >
0, restricted on R_ in terms of the same but unrestricted functional of another
diffusion stopped at the first hitting time. We remark that in [3] a more
general situation (not only B") is considered. However, the main interest in
[3] is focused on occupation times, the aim being to generalize the Ciesielski—
Taylor identity (4). The result in our Proposition 4.6 is extracted from
Remarque p. 295 in [3] and formulated for B®).

Proposition 4.6 Let f be a positive C'-function such that

/ fly)e ¥ dy = oo, (71)
and X a diffusion with the generator

2
Lo

f’(x)> d

1
2 f(z)/ da’
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Then Hy(X) < o0 a.s. if Xy < 0, and, moreover,

_ R @ [0
= [ gy is © [T s as
0

where X is taken to be exponentially distributed on (—oo,0) with parameter
2/t.

Proof Notice that the condition (71) means that the scale function S¥ of
X given by (cf. [4] I1.9 p. 17)

5% (x) = / " Fly) e dy

satisfies
lim S¥(z) = —oo0.

r——00

This implies Hy(X) < 400 a.s. when X, < 0. From Proposition 4.3 we know

W) = B (exp (= 15(0))

is the unique, non-decreasing function such that

% \I///(ZE) + 1 \Il’(;p) = 71(—00,()) (:p) f(;p) \If(l‘) (72)

and lim,_, ., ¥(z) = 1. For x > 0 we clearly have
U, () = Po(Ho(B") = 400) + P,(Ho(B") < 400) ¥, (0),

and, hence, it is enough to compute V. (z) for + < 0. For this, consider the
equation

S(w) + el () = 7 (&) uz). (73)

Let v, and ¢, denote the fundamental non-decreasing and non-increasing,

respectively, solutions of (72), and, similarly, 127 and @, are the fundamen-
tal non-decreasing and non-increasing, respectively, solutions of (73). Notice
that f does not have to satisfy the integrability condition (15). However,
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for (73), we can still argue as in the proof of Proposition 4.3 that all in-
variant non-decreasing functions are multiples of v,. Using continuity and
differentiability requirements, 1, can be expressed in terms of 1), as follows

¢W<x)7 € S 07
G =y o) 5(0) 41(0)
v o _ v >

S(x) S/0) +1,(0) S0) x>0,
where S(z) = —exp(—2u ) is the scale function of B*). Consequently, for
<0 R

2
by ) i)

by (+00) 2001, (0) + 2(0)

and, in particular, for x =0

eXP / f(BIN1 L oy d8>> = AQ'MDV(O)A . (74)

To proceed, define for y <0

D (y) = 200, (y) + D2(y),

and notice that QZ,;/ exists and is continuous because f € C'. Using the fact
that 1;7 solves (73) it is straightforward to verify that 1)/ > 0, i.e., ¥, is
increasing, and that v, is a solution of the ODE

f'(z)
f(z)

S @)+ (0= 5 EE) ) =y f@yut), <0

By Ito’s formula, the process

B tAHo(X)
{5 Sumon) ool [ (X)) 12 0)

is a martingale and, further, because it is bounded, we obtain for X =z < 0
by the dominated convergence theorem

E, (exp (-7 /O ) ds)) = g—igi (75)
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Observe that

0 . 0 . R R
/ T () 2067 di = 2y / (Quid () + B! (1)) 2 dic = 2 (0).

Consequently, if X is exponentially distributed on (—oo,0) with parameter
2u, (74) and (75) lead to

/0 241 €21 Ex(exp< V/HO(X) f(Xs) ds)) dz

= eXp / f(BM)1 {B(u)<0}d >)

as claimed. O

Example 4.7 Consider the functional

I ::/0 exp(—2 Bgu))l{Bg“ko} ds.

Recall from (24), that there exists a Bessel process R(~2%) started from 1

such that -
[:/0 1{R2272m>1}d8 a.s.

As an application of Proposition 4.6 we derive a new charaterization of the
distribution of I. Taking f(r) = e ** it is seen that the diffusion X in
Proposition 4.6 is a Brownian motion with drift 4 + 1. Consequently,

() HO(B(“'H))
I = / exp (—2 Bg“ﬂ)) ds,
0

where B ™) is exponentially distributed on (—oc, 0) with parameter 2. To
develop this further, let x > 0 and assume that B(“ ) — 2 < 0. We have

Ho(B#+1))
/ exp( 23““)(13
0
(d) H (B ) R
= / exp (—2 (B — x)) ds
0

H, (B#+1)
e / exp < 2 Bt ) ds
0

2 inf{t : RV =),

—
=
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where B®+1 is a Brownian motion with drift ;4 + 1 started from 0 and in
the last step Remark 2.2 is applied. Using the scaling property of Bessel
processes we obtain

inf{t : RV =e ™} =inf{t : e* R =1}
—inf{e ¢ : " R =1}

—~
=

S e inf{t : R =1},

where the Bessel process R(~2% is started from e. Consequently,

—
=

/0 exp(—2BW)1 (B <y A5 = Hi(R21), (76)
where R(()_Q“ ) is distributed as e with ¢ exponentially distributed with pa-
rameter 2u. Elementary computations show that

P(R(()_2“) >2) =z z>1 (77)

It is interesting to notice that the right hand side of (77) when extended to
a measure on the whole of R can be viewed as the speed measure of R(~2%)
(see, e.g., [4] A1.21 p. 133).

5 Appendix on Ray—Knight theorems

For an easy reference, we recall here the Ray-Knight theorems used in this
paper (see Yor [50] and [4] for more complete statements).

Theorem 5.1 Let B be a standard Brownian motion started from 0 and
Ly, 3)(B) its local time (with respect to the Lebesgue measure) at level

y < 1 up to Hy(B). Then the local time process {L}{_ly(B) : y>0}isa
solution of the SDE

Yy
Xy:2/ VX, dBs+2(y A1),
0

in other words,

(i) {L}{:?(’B)(B) : 0 <y < 1} is a 2-dimensional squared Bessel process
starting from 0,
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(ii) {L}JZZ(’B)(B) : y > 1} is a 0-dimensional squared Bessel process with
the starting value L} (B) obtained from (i).
Theorem 5.2 Assume that Bé“) = 0 and let L}(BW) be the local time of

BW at level y (with respect to the Lebesgue measure) up to time t. Define
the total local time of B™ at level y via

LY (BW) .= Jim LY(BW).

Then

(LZ(BW): y >0} < {202 >0, (78)

and
d
{L(BW) >0} € {702 y >0}, (79)
where Z(%2) § = 0,2, are solutions of the SDE
dXt = 2\/ Xt dBt ‘I— ((5 — 2/,LXt) dt,

respectively, with the initial value X, exponentially distributed with param-
eter . In fact, the identities (78) and (79) hold jointly, with Z\"* = Z{**"
but otherwise Z(0?") and Z*?") are independent.

Our final Ray-Knight theorem is for Bessel processes. The first part is
formulated only for 3-dimensional Bessel process, and in the second part we
take the dimension parameter § > 2. Let LY (R)) denote the total local time
at y of the Bessel process R(%) (taken with respect to the Lebesgue measure).

Theorem 5.3 a: Assume that R is started at 0. Then
{LL(RD): y= 0} @ {2 y >0,

where Z® denotes the squared Bessel process of dimension 2, started from
0, i.e., Z? satisfies the SDE

dX, = 2v/X, dB, + 2 dy.

b: Assume that 0 > 2 and R(()‘S) = 0. Then

(d) 1 =02
{Lzllil(R(a)): 0<y< 1} = {W Zl(la)_zi 0<y< 1}

where Z® denotes the 2-dimensional squared Bessel bridge (from 0 to 0 and
of length 1).
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