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Abstract: It is well known, that under certain conditions, gradual thinning of a point
process on Rd

+, accompanied by a contraction of space to compensate for the thinning,
leads in the weak limit to a Cox process. In this article, we apply discretization and
a result based on Stein’s method to give estimates of the Barbour-Brown distance d2
between the distribution of a thinned point process and an approximating Poisson
process, and evaluate the estimates in concrete examples. We work in terms of two,
somewhat different, thinning models. The main model is based on the usual thinning
notion of deleting points independently according to probabilities supplied by a random
field. In Section 4, however, we use an alternative thinning model, which can be more
straightforward to apply if the thinning is determined by point interactions.
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1 Introduction

Thinning is one of the fundamental operations to construct a new point process from
a given one. Consider a point process ξ on Rd

+, and a [0, 1]-valued measurable random
field π on Rd

+. A π-thinning ξπ of ξ can then be obtained in the following way: for
any realizations ξ(ω) (point measure on Rd

+) and π(ω, ·) (function Rd
+ → [0, 1]), look

at each point si of ξ(ω) in turn, and retain it with probability π(ω, si), or delete it
with probability 1−π(ω, si), independently of any retention/deletion decisions of other
points. Note that multiple points si1 = . . . = sik at the same location are retained
independently of one another with equal probabilities. Regard the points left over
by this procedure as a realization of the thinned point process ξπ (for a more formal
definition see Section 2). We will usually refer to ξ as “the original process”, and to π
as “the retention field”.

Consider now a sequence (πn)n∈N of retention fields, such that sups∈Rd+ πn(s)
D−→ 0,

corresponding to the idea of ξ being gradually thinned away. To compensate for this
effect, we contract the Euclidean space by κn : Rd

+ → Rd
+, x 7→ (1/n)x. Then, Theo-

rem 1.A is a standard result (see e.g. Daley and Vere-Jones (1988), Theorem 9.3.III).
Convergence in distribution of random measures, and in particular, of point processes, is
defined via the convergence of expectations of bounded continuous functions, where con-
tinuity is in terms of the vague topology on the corresponding space of (all respectively
only Z+ ∪ {∞}-valued) boundedly finite measures (for details see Kallenberg (1986),
Section 4.1).

Theorem 1.A. We obtain convergence in distribution of the thinned and contracted
process ξπκ

−1
n to a point process η if and only if, with Λn(A) :=

∫
κ−1n (A) πn(s) ξ(ds) for

every measurable set A ⊂ Rd
+, we have

Λn
D−→ Λ for n→∞ (1.1)

for some random measure Λ on Rd
+. In this case η ∼ Cox(Λ), i.e. η is a Cox process

with directing measure Λ.

The main goal of the present article is to examine the rate of convergence in the
above theorem. For that purpose, we use the Barbour-Brown distance d2 between the
distributions of point processes, which is a very natural choice (see Section 2 for the
definition and some elementary properties). Due to the method of proof that we use,
we will always assume that a mixing condition holds for the random measures Λn (see
Assumption 2 in Section 3). Since Condition (1.1) can be interpreted as the statement
of a weak ergodic theorem, it is natural, in view of the usual chain “mixing implies
ergodic implies constant limit in the ergodic theorem”, that we get a deterministic
limiting measure Λ = λ, and hence even a Poisson process as the limiting process η of
the contracted thinning. These heuristics can easily be made rigorous if ξ is stationary,
and πn = (1/nd)π̃ for a stationary random field π̃.

The method of our proof is a combination of discretization and an application of
the Barbour-Brown theorem for distance estimates for discrete Poisson process approx-
imations where the approximated process has a local dependence property. The same

166



method has been successfully used in Schuhmacher (2005), and in fact, by applying
Theorem 2.A. from that paper to a suitable randomization of ξ, we obtain directly up-
per bounds for the distance we seek here. While these bounds are quite good in special
cases (e.g. if our retention field is deterministic, and even more so if it is constant), a
direct application of the above method yields considerably better and more intuitive
results in the general case.

The thinning of point processes was first studied in Rényi (1957): a renewal process
on R+ was subjected to an independent thinning with constant retention probability p,
and a Poisson limit theorem was obtained for p → 0 upon a change of time scale by a
factor 1/p. There have been many generalizations within the theory of point processes
on the real line since then, with some of the most comprehensive found in Jagers and
Lindvall (1974), Serfozo (1977), and Böker and Serfozo (1983).

Also in Kallenberg (1975) (alternatively, see Kallenberg (1986), Section 8.3), inde-
pendent thinnings with constant retention probability p were considered, but this time
the processes to be thinned were arbitrary point processes on general locally compact,
second countable, Hausdorff spaces. Necessary and sufficent conditions were derived
for the convergence of thinnings of increasingly “dense” point processes to a Cox limit.
This result was generalized in Brown (1979) to position dependent, random retention
probabilities, which yielded, up to some negligible details in the setting, exactly the
statement of Theorem 9.3.III in Daley and Vere-Jones (1988), from which Theorem 1.A
is a direct consequence.

A result regarding distance estimates in thinning theorems may also be found in
Daley and Vere-Jones (1988). In Proposition 9.3.IV, the authors give a quite abstract
upper bound for the total variation distance between the distributions of the point
counts ξπnκ

−1
n (A) and η(A) for any bounded Borel set A. By a rather similar argument,

it is possible to obtain a corresponding upper bound for the d2-distance between the
distributions of the restricted point processes ξπnκ

−1
n |K and η|K , where K ⊂ Rd

+ is an
arbitrary compact set. Write dW for the Wasserstein distance on Rd

+ with respect to
the Euclidean distance truncated at one (which is denoted by d0 in this paper), that is

dW (P,Q) = sup
f

∣∣∣
∫

f dP −
∫

f dQ
∣∣∣

for probability measures P and Q on Rd
+, where the supremum ranges over all functions

f : Rd
+ → R with |f(s1) − f(s2)| ≤ |s1 − s2| ∧ 1 (see e.g. Barbour, Holst and Janson

(1992), Appendix A.1 for the general definition and results). The proof of the following
proposition can be found in Appendix A.2.

Proposition 1.B. In the notation of Theorem 1.A we have for compact K ⊂ Rd
+

d2
(
L(ξπnκ−1n |K),Cox(Λ|K)

)

≤ E
(
8.45 · sup

s∈κ−1n (K)

πn(s) + min
(
1,Λn(K),Λ(K)

)
dW

(Λn|K(·)
Λn(K) ,

Λ|K(·)
Λ(K)

)

+ 1 ∧
(
min

(
1, 1.65√

Λn(K)
, 1.65√

Λ(K)

) ∣∣Λn(K)− Λ(K)
∣∣
))

, (1.2)
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where the second summand is defined to be zero if either Λn(K) or Λ(K) is zero.

While such an upper bound is very nice from a theoretical point of view, because
it is of a comparatively simple form, and because it can be shown that it goes to zero
under the general Condition (1.1) if K satisfies P[Λ(∂K) > 0] = 0, it is usually not so
easy to calculate. In what follows, we are interested in more explicit upper bounds for
the thinning approximation, i.e. upper bounds that can be calculated directly in terms
of certain characteristic quantities of the point process ξ and the retention field π.
Since, in the (still quite general) case where ξ and π satisfy mixing conditions, and
the approximating process is Poisson, we have available well-developed tools from the
field of Stein’s method for point process approximation, we prefer to make use of these,
rather than trying to reduce the right hand side of Inequality (1.2) to more fundamental
characteristics of ξ and π.

We start out in Section 2, by providing the necessary definitions and notation along
with some technical background. Section 3 contains the main results, namely upper
bounds for the d2-distance between L(ξπnκ−1n |K) and a Poisson process law under dif-
ferent conditions, as well as an application of these results. Finally, in Section 4, a
slightly different notion of a thinning, called Q-thinning, is introduced. A correspond-
ing upper bound is given, and the benefit of the new definition is demonstrated in
another application.

The difference between the two thinning models in Section 1–3 and in Section 4, is
conceptual rather than a difference in terms of the modeled objects (see Remarks 4.B
and 4.E for details on how the resulting thinnings differ). Under π-thinning, points are
more or less likely to be deleted according to the conditions they encounter in a random
environment (which itself may respond to the point configuration); under Q-thinning,
points are more or less likely to be deleted according directly to the interactions among
themselves. This difference is nicely illustrated by the two applications in Subsection 3.3
and Subsection 4.2. In both situations, we start with a point process ξ on Rd

+ having
“reasonable” first and second factorial moment measures, and obeying an appropriate
mixing condition. We have a “basic” thinning effect given by the constant retention

probability q
(n)
0 , and an additional “characteristic” thinning effect for each of the two

examples. The basic and the characteristic effect are combined, and Rd
+ is contracted

by a factor 1/n to obtain a point process that is compared to a Poisson process.
In the first example (Subsection 3.3), we consider a random environment given

by a union Ξ of balls whose centers form a stationary Poisson process on Rd, and
whose radii are i.i.d. and bounded with Ld-norm rn. The characteristic thinning effect
is then provided by deleting all the points that are covered by Ξ (we illustrate this
situation with the image of stars that are covered by clouds). In the second example
(Subsection 4.2), we give point interactions by assigning i.i.d. real-valued marks to the
points. The characteristic thinning effect is then provided by deleting all the points
whose distance to some other point having a larger mark is at most rn (we illustrate
this situation with the scenario of competition within a plant population).

Roughly speaking, Poisson approximation is good in both examples if the retention

probabilities q
(n)
0 become appropriately small, or the ranges rn become appropriately
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large.
It should be noted, that the illustrations of the examples as “visibility of stars” and

“plant competition”, respectively, may well provide inspiration for modeling similar
situations, but are not meant to be serious modeling attempts in themselves.

We end this section by giving an indication of the type of results that are obtained
in Section 3. The following proposition covers the important special case when πn = pn
is non-random, which follows directly from either Theorem 3.C or Theorem 3.F. The
situation corresponds to an independent thinning of the points of ξ with deterministic
retention probabilities, each of which may depend on the location of the point it is
attached to.

Proposition 1.C (Non-random retention field). Let ξ be a point process on Rd
+

which has an expectation measure µ1 that has a bounded density with respect to
Lebesgue measure, and a second factorial moment measure µ2 that is bounded on
the set of all unit cubes in R2d

+ . Let (pn)n∈N be a sequence of functions Rd
+ → [0, 1],

and let p̄n := sups∈Rd+ pn(s). Suppose that “long range” covariances in ξ are controlled

by a decreasing function β̆ : R+ → R+, such that for every open cube Aint = (a, a+h1)
of side length h ∈ (0, 1] and with minimal corner in a ∈ Rd

+, and every surrounding set

A
(t)
ext := Rd

+ \ [a− t1, a+ (t+ h)1] with t ∈ R+, we have

sup
D,Z

∣∣cov(Z, 1D)
∣∣ ≤ β̆(t),

where the supremum ranges over all D ∈ σ(ξ|
A
(t)
ext

) and Z ∈ L2(σ(ξ|Aint)) with 0 ≤
Z ≤ ξ(Aint)/|Aint|. Set furthermore J := [0, 1]d. Then we obtain for arbitrarily chosen
m := m(n) ∈ N

d2
(
L(ξpnκ−1n |J),Po(νnκ−1n |J)

)
= O

(
ndp̄n

(
mdp̄n ∨ β̆(m)

))
for n→∞

with νn(·) :=
∫
· pn(s) µ1(ds). In the most natural case, where p̄n = O(1/nd), this

implies
d2
(
L(ξpnκ−1n |J),Po(νnκ−1n |J)

)
= O

(
n−sd/(s+1)

)

if β̆(t) = O(t−sd) as t→∞ for some fixed s > 0.

Note that we maintain a great deal of flexibility, and avoid evaluating awkward
distances between general probability measures, by approximating the thinning with
a Poisson process whose intensity measure depends on n. If we must have a fixed
approximating Poisson process, we get by Inequality (A.3) from Appendix A.2 the
additional term of

d2
(
Po(νnκ

−1
n |J),Po(λ|J)

)
≤ min

(
1, νnκ

−1
n (J), λ(J)

)
dW

(νnκ
−1
n |J (·)

νnκ
−1
n (J)

, λ|J (·)
λ(J)

)

+min
(
1, 1.65√

νnκ
−1
n (J)

, 1.65√
λ(J)

)
|νnκ−1n (J)− λ(J)|, (1.3)

which is, in most cases, still much more convenient to estimate than the two corre-
sponding terms in (1.2), inasmuch as the quantities appearing in (1.3) are no longer
random.
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2 Preliminaries

Assume that the underlying probability space (Ω,F ,P) is complete in order to avoid
measurability problems. Denote by Bd

+ the Borel σ-field on Rd
+, and by BA for any set

A ⊂ Rd
+ the trace σ-field Bd

+|A. Furthermore, writeM for the space of boundedly finite
measures on Rd

+, that is measures µ with µ(B) <∞ for any bounded B ∈ Bd
+, and equip

it with the usual topology (i.e. the vague one, see Kallenberg (1986), Section 15.7) and
the smallest σ-field M that renders the masses of bounded Borel sets measurable (see
Kallenberg (1986), Section 1.1). Do the same for the subspace N ⊂ M of boundedly
finite point measures, and denote the corresponding σ-field by N. A random measure
is a random element ofM, and a point process a random element of N . By Po(λ) we
denote the distribution of the Poisson process with intensity measure λ if λ ∈ M, and
the Poisson distribution with parameter λ if λ is a positive real number.

In view of the Barbour-Brown distance d2 that we use, we always restrict our point
processes to the unit cube J = [0, 1]d. Write furthermore Jn := κ−1n (J) = [0, n]d,
J̃n := [0, n)d, and Ck :=

∏d
i=1[ki − 1, ki) for all k = (k1, . . . , kd) ∈ {1, 2, . . . , n}d

for the unit hypercubes that make up J̃n. We make use of a simplified multi-index
notation by denoting properties of all the individual components as though they were
properties of the whole multi-index, for example writing J̃n =

⋃n
k=1 Ck instead of

J̃n =
⋃n

k:k1,...kd=1 Ck. Furthermore, we use the distance between multi-indices that is

defined by |l−k| := max1≤i≤d|li−ki|. As a last convention, all equations and inequalities
between random variables in this article hold almost surely, if it is not explicitly stated
that they hold pointwise.

In what follows, let ξ always be a point process on Rd
+, and π := (π(·, s); s ∈ Rd

+)
a [0, 1]-valued random field on Rd

+ that satisfies the following measurability condition:
for any bounded rectangle R that is open in Rd

+, the mapping π∗R : Ω × R → [0, 1],
(ω, s) 7→ π(ω, s) is σ(π|R)⊗ BR-measurable (we say in this case that π is locally evalu-
able). Assuming this technical condition simplifies part of the notation and the argu-
ments in Section 3 considerably. However, if one accepts a more involved presentation,
in particular larger and more complicated σ-fields in Assumption 2, and a stronger
independence property for Theorem 3.F, all that is needed to prove the corresponding
theorems is the measurability of π as a mapping Ω×Rd

+ → [0, 1]. The latter is necessary
to ensure that for any random point S in Rd

+, π(S) is a random variable. Note that local
evaluability is satisfied for many desirable random fields, as for example, for random
fields which are pathwise continuous or for indicators of (fully) separable random closed
sets (see Appendix A.3 for a more detailed discussion of locally evaluable random fields
with proofs).

The π-thinning of ξ can now be defined as follows.

Definition (Thinning). First, assume that ξ = σ =
∑v

i=1 δsi and π = p are non-
random, where v ∈ Z+ := {0, 1, 2, . . .} ∪ {∞}, si ∈ Rd

+, and p is a function Rd
+ → [0, 1].

Then, a π-thinning of ξ is defined as ξπ =
∑v

i=1 Xiδsi , where the Xi are independent
indicator random variables with expectations p(si), respectively. Under these circum-
stances, ξπ has a distribution P(σ, p) that does not depend on the chosen enumeration
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of σ. We obtain the general π-thinning from this by randomization, that is by the con-
dition P[ξπ ∈ · | ξ, π] = P(ξ,π) (under our conditions on π it is straightforward to see that
P(ξ,π) is a σ(ξ, π)-measurable family in the sense that P(ξ,π)(D) is σ(ξ, π)-measurable
for every D ∈ N). Note that the distribution of ξπ is uniquely determined by this
procedure.

This definition of thinning can be found in Kallenberg (1986) for non-random π,
and was generalized in Serfozo (1984) to random π. The definition of Brown (1979),
and the less formal definitions of Stoyan, Kendall and Mecke (1987) and Daley and
Vere-Jones (1988) also yield the same distribution for ξπ.

The following remark simplifies the presentation of the proofs.

Remark 2.A (Numberings of points / definition of retention decisions). Given
a countable partition (Bj)j∈N of Rd

+ into bounded measurable sets, there is always a

representation of ξ as
∑ξ(Rd+)

i=1 δSi with Rd
+-valued, σ(ξ)-measurable random elements

Si, such that S1, . . . , Sξ(B1) ∈ B1, Sξ(B1)+1, . . . , Sξ(B1)+ξ(B2) ∈ B2, and so on (see e.g.

the proof of Lemma 2.3 in Kallenberg (1986)). We will make tacit use of this fact in
connection with the thinning definition on various occasions. For example, for a point

process ξ and a bounded Borel set A, we may write ξπ(A) =
∑ξ(A)

i=1 Xi, and hereby
imply that we define σ(ξ)-measurable “point random elements” Si for ξ in such a way
that the first ξ(A) points S1, . . . , Sξ(A) always lie in A, and all other points in Ac, and
define “retention decisions” Xi which, conditional on ξ and πn, are independent with
expectations πn(Si), respectively.

We measure distances between distributions of point processes on a compact subset
K ⊂ Rd by means of the Barbour-Brown distance d2, a variant of a Wasserstein distance,
which has proved to be a useful metric between distributions of point processes in many
examples. It can be defined in the following way: Let d0 be the minimum of the usual
Euclidean distance on Rd and 1. Denote by N (K) the set of all finite point measures
on K, set F1 := {k : K → R ; |k(s1) − k(s2)| ≤ d0(s1, s2)}, and define the d1-distance
(w.r.t. d0) between %1, %2 ∈ N (K) as

d1(%1, %2) :=





1 if |%1| 6= |%2|,
1
|%1| supk∈F1

∣∣∫ k d%1 −
∫
k d%2

∣∣ if |%1| = |%2| > 0,

0 if |%1| = |%2| = 0,

(2.1)

where |%i| := %i(K) <∞. It can be seen that (N (K), d1) is a complete, separable metric
space and that d1 is bounded by 1. Furthermore, for %1 =

∑v
i=1 δs1,i , %2 =

∑v
i=1 δs2,i

with v ≥ 1, the Kantorovich-Rubinstein theorem (see Dudley (1989), Section 11.8)
yields that

d1(%1, %2) = min
τ∈Σv

[
1

v

v∑

i=1

d0(s1,i, s2,τ(i))

]
, (2.2)

where Σv is the set of permutations of {1, 2, . . . , v}. Now let F2 := {f : N (K) →
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R; |f(%1)− f(%2)| ≤ d1(%1, %2)}, and define the d2-distance (w.r.t. d0) between proba-
bility measures P and Q on N (K) (distributions of point processes on K) as

d2(P,Q) := sup
f∈F2

∣∣∣∣
∫

f dP −
∫

f dQ

∣∣∣∣ .

By the Kantorovich-Rubinstein theorem, one obtains that

d2(P,Q) = min
ξ1∼P
ξ2∼Q

Ed1(ξ1, ξ2). (2.3)

Furthermore, because of the bound on the d1-distance, the d2-distance can also be in-
terpreted as a variant of a bounded Wasserstein distance. Hence Theorem 11.3.3 in
Dudley (1989) yields that d2 metrizes the weak convergence of point process distribu-
tions. In other words, for point processes ξ, ξ1, ξ2, . . . on K, we have

ξn
D−→ ξ iff d2

(
L(ξn),L(ξ)

)
−→ 0, (2.4)

where the convergence in distribution for point processes is defined in terms of the vague
topology (see also the explanation before Theorem 1.A), which, since K is compact, is
the same as the weak topology. The fact that is crucial here is that, for d0 as defined,
the topology generated by the metric d1 on N (K) is equal to the weak topology.

For further information on the d2-distance see Barbour, Holst and Janson (1992),
Section 10.2. For applications of d2 upper bounds see also Schuhmacher (2005), Sec-
tion 3.

3 The main results

For this whole section, let ξ be a point process on Rd
+, and, for each n ∈ N, let πn :=

(πn(s) ; s ∈ Rd
+) := (πn(·, s) ; s ∈ Rd

+) be a [0, 1]-valued, locally evaluable random field
on Rd

+.

3.1 Results

Recall that the expectation measure µ1 of ξ is given by µ1(B) := E
(
ξ(B)

)
for any

B ∈ Bd
+, and that the second factorial moment measure of ξ is the measure on (Bd

+)
2

defined by µ2(B
2
1) := E

(
ξ(B1)(ξ(B1)− 1)

)
and µ2(B1 ×B2) := E

(
ξ(B1)ξ(B2)

)
for any

B1, B2 ∈ Bd
+ that are disjoint. The following two assumptions, in one or the other form,

are used several times in this article.

Assumption 1 (Control of moment measures).

a) ξ has an expectation measure µ1 ¿ Lebd with bounded density h1 : Rd
+ → R+,

and h̄1 := ‖h1‖∞;

b) ξ has a second factorial moment measure µ2 which is bounded on the set of unit
cubes in R2d

+ , i.e. there is h̄2 ≥ 0 such that µ2(C) ≤ h̄2 for any unit cube C ⊂ R2d
+ .
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Assumption 2 (Mixing property). For each n ∈ N, let β̆n : R+ → R+ be a decreas-
ing function such that for every cube Aint = (a, a+h1) of side length h ∈ (0, 1] and with

minimal corner in a ∈ Rd
+, and every surrounding set A

(t)
ext := Rd

+ \ [a− t1, a+ (t+ h)1]
with t ∈ R+ we have that

sup
D∈F(n,t)ext

Z∈L2(F(n)int ), 0≤Z≤Π

∣∣cov
(
Z, 1D

)∣∣ ≤ β̆n(t),

where
F (n)
int := σ

(
ξ|Aint , πn|Aint

)
, F (n,t)

ext := σ
(
ξ|

A
(t)
ext

, πn|A(t)ext
)
,

and
Π :=

(
ξ(Aint) sup

s∈Aint
πn(s)

)/
E
(
ξ(Aint) sup

s∈Aint
πn(s)

)

if E
(
ξ(Aint) sups∈Aint πn(s)

)
> 0, and Π :≡ 0 otherwise.

Remark 3.A. Since πn is a measurable random field and F is complete, it can be
shown by a standard argument involving analytic sets (using the Lusin-Choquet-Meyer
theorem from Kallenberg (2002), Appendix A1) that sups∈A πn(s) is a random variable
for any A ∈ Bd

+.

We now state the main theorem, first in its most general form, and then in weaker
but less involved versions. In all the results, we use the notation O

(
f1(n), . . . , fj(n)

)
as

short hand for O
(
max{f1(n), . . . , fj(n)}

)
. Quantitative versions of the upper bounds

can be found in the proofs in Subsection 3.2.

Theorem 3.B. Suppose that the point process ξ and the sequence (πn)n∈N of retention
fields satisfy Assumptions 1 and 2 above. Set

w1 := sup
1≤k≤n

E
(
ξ(Ck) sup

s∈Ck

πn(s)
)
,

w[2] := sup
1≤k,l≤n

E
(
ξ(Ck)

(
ξ(Cl)− δkl

)
sup
s∈Ck

πn(s) sup
s∈Cl

πn(s)
)
,

w1 := inf
1≤k≤n

E
(
1{ξ(Ck)≥1} inf

s∈Ck

πn(s)
)
,

and let νn(·) := E
(∫
· πn(s) ξ(ds)

)
, which is the expectation measure of ξπn .

Then we obtain for arbitrary m := m(n) ∈ N

d2
(
L(ξπnκ−1n |J),Po(νnκ−1n |J)

)

= O
(
ndw[2] , md

(
nd ∧ log↑(ndw1)

w1

)
(w2

1 ∨ w[2]) ,
√
nd
(√

nd ∧ 1√
w1

)
w1β̆n(m)

)

for n→∞
with log↑(x) := 1 +

(
log(x) ∨ 0

)
for x ≥ 0.
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The next few results represent different attempts to simplify the above theorem by
separating ξ from πn in the various terms involved. For the first result only a slight
modification in the proof of Theorem 3.B is necessary.

Theorem 3.C (L∞-version: upper bound and convergence). Suppose that the
prerequisites of Theorem 3.B hold, but now replace Π in the mixing condition 2 by Π̃ :=
ξ(Aint)

/
|Aint|, and write β̆(∞)n , instead of β̆n, for the function bounding the covariances.

Furthermore set
p(∞)n :=

∥∥ sup
s∈Jn

πn(s)
∥∥
L∞

.

Then we obtain for arbitrary m := m(n) ∈ N

d2
(
L(ξπnκ−1n |J),Po(νnκ−1n |J)

)

= O
(
nd(p(∞)n )2 , md

(
nd ∧ log↑(ndp

(∞)
n )

w1

)
(p(∞)n )2 ,

√
nd
(√

nd ∧ 1√
w1

)
p(∞)n β̆(∞)n (m)

)

for n→∞.

Convergence Condition: The right hand side goes to 0 if, for example, p(∞)n = O
(
1/nd

)

and there is a sequence (m(n))n with m(n) = o(n) such that β̆(∞)n (m(n)) = o(1) for
n→∞.

Remark 3.D (Convergence towards a fixed Poisson process). If in fact ξ and
πn are such that

ξπnκ
−1
n |J

D−→ Po(λ) (n→∞)

for some finite measure λ on J , then we obtain by Theorem 1.A that, on J ,

∫

κ−1n (·)
πn(s) ξ(ds)

D−→ λ(·) (n→∞),

which implies under the convergence condition in Theorem 3.C that also

νnκ
−1
n (A) −→ λ(A) (n→∞)

for any Borel set A ⊂ J with λ(∂A) = 0. Thus, by Inequality (1.3) and Theorem 3.C, we
get an upper bound for d2

(
L(ξπnκ−1n |J),Po(λ)

)
that goes to zero under the convergence

condition. Of course, the conditions are stronger than the ones for Proposition 1.B, but
in return the upper bound is much more explicit and easier to apply.

The next result is a direct consequence of Theorem 3.B. This time, we try to gain
a convergence rate that goes to zero under the weaker assumption on the sequence

(πn) that was used for Theorem 1.A, namely that sups∈Rd+ πn(s)
D−→ 0. It should be

noted, that the simple but rather crude estimates we are using here, are based on the
assumption that the ξ(Ck) have a generous number of moments. It is obviously by no
means the best result attainable based on Theorem 3.B.
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Corollary 3.E (L1-version: upper bound and convergence). Suppose that the
prerequisites of Theorem 3.B hold, and set

p(1)n := sup
1≤k≤n

E
(
sup
s∈Ck

πn(s)
)
, p(2)n := sup

1≤k≤n
E
(
sup
s∈Ck

πn(s)
2
)
.

Then we obtain for arbitrary m := m(n) ∈ N, and Q1 := Q1(n), Q2 := Q2(n) ∈ Z+:

d2
(
L(ξπnκ−1n |J),Po(νnκ−1n |J)

)

= O
(
nd
(
Q2p

(2)
n + sup

1≤k≤n
E
(
ξ(Ck)

21{ξ(Ck)2>Q2}
))

,

md
(
nd ∧ log↑(ndw1)

w1

)(
Q2p

(2)
n + sup

1≤k≤n
E
(
ξ(Ck)

21{ξ(Ck)2>Q2}
))

,

md
(
nd ∧ log↑(ndw1)

w1

)(
Q1p

(1)
n + sup

1≤k≤n
E
(
ξ(Ck)1{ξ(Ck)>Q1}

))2
,

√
nd
(√

nd ∧ 1√
w1

)(
Q1p

(1)
n + sup

1≤k≤n
E
(
ξ(Ck)1{ξ(Ck)>Q1}

))
β̆n(m)

)

for n→∞.

Convergence Condition: Provided that ξ(Ck) has sufficiently many moments that are
bounded uniformly in k, we can choose m := m(n), Q1 := Q1(n), and Q2 := Q2(n) in
such a way that the right hand side goes to 0. For example, under the assumptions that
p(1)n = O

(
1/nd

)
, p(2)n = O

(
1/n(1+x)d

)
(n → ∞) for some x ∈ (0, 1], and β̆n(t) = β̆(t) =

O(1/tsd) (t→∞) for some s > 0, we get convergence to zero of the upper bound if

sup
k∈Nd

E
(
ξ(Ck)

r
)
<∞ for some r > 2 +

2s+ 1

sx
.

We now examine how certain independence properties can be exploited. The main
benefit of this is a more convenient mixing condition, that takes only the point process
into account, allowing the retention field to be dealt with separately.

Assumption 2′ (Mixing property). Let β̆(ind) : R+ → R+ be a decreasing function
such that for every open cube Aint = (a, a + h1) of side length h ∈ (0, 1], and with

minimal corner in a ∈ Rd
+, and every surrounding set A

(t)
ext := Rd

+ \ [a− t1, a+ (t+ h)1]
with t ∈ R+ we have that

sup
D∈F(t)ext

Z∈L2(Fint), 0≤Z≤Π̃

∣∣cov
(
Z, 1D

)∣∣ ≤ β̆(ind)(t),

where Fint = σ(ξ|Aint), F
(t)
ext = σ(ξ|

A
(t)
ext

), and Π̃ := ξ(Aint)
/
|Aint|.

Theorem 3.F (Independent thinning: upper bound and convergence). Sup-
pose that the prerequisites of Theorem 3.B hold with Assumption 2′, instead of As-
sumption 2. Let ξ and πn be independent for any n ∈ N. Note that we now have

νn(·) = E
(∫

·
πn(s) ξ(ds)

)
=

∫

·
Eπn(s) µ1(ds).
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Choose m := m(n) ∈ N in such a way that πn|Ãint and πn|Ã(m)ext
are independent for every

unit cube Ãint = (a, a+1) and every surrounding set Ã
(m)
ext := Rd

+\[a−m1, a+(m+1)1],
a ∈ Rd

+. Then

d2
(
L(ξπnκ−1n |J),Po(νnκ−1n |J)

)

= O
(
ndp(2)n , md

(
nd ∧ log↑(ndp

(1)
n )

w1

)
p(2)n ,

√
nd
(√

nd ∧ 1√
w1

)
p(1)n β̆(ind)(m)

)
for n→∞.

Convergence Condition: The right hand side goes to 0 if, for example, p(1)n = O
(
1/nd),

p(2)n = o
(
1/nd) for n→∞, β̆(ind)(t) = o(1) for t→∞, and there is a sequence (m(n))n

with m(n) = o
(
1
/(

n(p(2)n )1/d
))

such that πn|Ãint and πn|Ã(m(n))ext
are independent for all

sets Ãint and Ã
(m(n))
ext of the above form.

3.2 Proofs

A complete proof is presented only for Theorem 3.B. For the other statements the
corresponding modifications are given.

Proof of Theorem 3.B. Let ηn ∼ Po(νn). Our processes ξπnκ
−1
n |J and ηnκ

−1
n |J are dis-

cretized in the following way. By Assumption 1 we may suppose that ξ(ω)(Jn \ J̃n) =
η(ω)(Jn \ J̃n) = 0 for every ω ∈ Ω, without changing the distributions of the point pro-
cesses. Then, subdivide J̃n in the domain of the contraction κn into the hypercubes Ck,
which were introduced in Section 2. Choose an arbitrary ñ ∈ N, and further subdivide
every Ck into cubes Ckr :=

∏d
i=1[ki − 1 + (ri − 1)/ñ, ki − 1 + ri/ñ) of side length 1/ñ

for r = (r1, . . . , rd) ∈ {1, 2, . . . , ñ}d. The concrete “inner” and “outer” sets used for
Assumption 2 are given by

Aint(k, r) := C̊kr , A
(t)
ext(k) :=

(⋃n

j=1
|j−k|>t

Cj

)◦

for t ∈ Z+, k ∈ {1, 2, . . . , n}d, and r ∈ {1, 2, . . . , ñ}d, where C̊ denotes the interior of
C ⊂ Rd. We denote by αkr the center of Ckr, and by θkr := κn(αkr) the center of the
contracted hypercube κn(Ckr). Set furthermore

Ikr := 1{ξπn (Ckr)≥1}, qkr := EIkr, and let

Ykr ∼ Po(qkr),k ∈ {1, 2, . . . , n}d, r ∈ {1, 2, . . . , ñ}d, independent.

Construct the discretized processes (note that for the Poisson process our discretization
is only one “in distribution”) as

Ξn :=
n∑

k=1

ñ∑

r=1

Ikrδαkr
, Hn :=

n∑

k=1

ñ∑

r=1

Ykrδαkr
.
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Note that the r-sum over qkr can be estimated from above as

ñ∑

r=1

qkr ≤ Eξπn(Ck) = E
(
E
(
ξπn(Ck)

∣∣ ξ, πn

))

= E
(

E
(ξ(Ck)∑

i=1

Xi

∣∣∣ ξ, πn

))

= E
(ξ(Ck)∑

i=1

πn(Si)

)
≤ w1, (3.1)

where we used the “tacit numbering of points” and the “tacit definition of the retention
decisions Xi” as announced in Remark 2.A. In the analogous way, the same sum can
be estimated from below as

ñ∑

r=1

qkr ≥ E
(

P
[ξ(Ck)∑

i=1

Xi ≥ 1

∣∣∣∣ ξ, πn

])

≥ E
(
1{ξ(Ck)≥1} sup

1≤i≤ξ(Ck)
πn(Si)

)
≥ w1.

The initial distance is split up as follows:

d2
(
L(ξπnκ−1n |J),L(ηnκ−1n |J)

)
≤ d2

(
L(ξπnκ−1n |J),L(Ξnκ

−1
n )

)

+ d2
(
L(Ξnκ

−1
n ),L(Hnκ

−1
n )

)

+ d2
(
L(Hnκ

−1
n ),L(ηnκ−1n |J)

)
. (3.2)

We first attend to the discretization errors, which are represented by the first and third
terms on the right hand side. We have by Equations (2.3) and (2.2)

d2
(
L(ξπnκ−1n |J),L(Ξnκ

−1
n )

)

≤ E
(
d1(ξπnκ

−1
n |J ,Ξnκ

−1
n )1{ξπn (Jn)=Ξn(Jn)}

)
+ P

[
ξπn(Jn) 6= Ξn(Jn)

]

= E
(
d1(ξπnκ

−1
n |J ,Ξnκ

−1
n )1{ξπn (Ckr)=Ξn(Ckr) ∀k,r}

)
+ P

[⋃
k,r{ξπn(Ckr) ≥ 2}

]

≤
√
d/(2nñ) +

n∑

k=1

ñ∑

r=1

P[ξπn(Ckr) ≥ 2].

The first summand in the last line is obtained because, for estimating the d1-distance
on {ξπn(Ckr) = Ξn(Ckr) ∀k, r}, we can pair every point of ξπnκ

−1
n |J with the center

of that cube κn(Ckr) in which it lies; this center is at most
√
d/(2nñ) (half a body

diagonal of κn(Ckr)) apart, and a point of Ξnκ
−1
n . A similar argument is used to obtain√

d/(2nñ) in the fourth line of the next formula, with the difference that now there
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might be more than one point pairing in each κn(Ckr). Thus

d2
(
L(ηnκ−1n |J),L(Hnκ

−1
n )

)

≤ d2

(
L
(
ηnκ

−1
n |J

)
,L

(∑

k,r

ηn(Ckr)δθkr

))

+ d2

(
L
(∑

k,r

ηn(Ckr)δθkr

)
,L

(∑

k,r

Ykrδθkr

))

≤
√
d
/
(2nñ) + dTV

(
L
(∑

k,r

ηn(Ckr)δθkr

)
,L

(∑

k,r

Ykrδθkr

))

≤
√
d
/
(2nñ) +

∑

k,r

dTV

(
L(ηn(Ckr)),L(Ykr)

)

≤
√
d
/
(2nñ) +

∑

k,r

∣∣Eξπn(Ckr)− P[ξπn(Ckr) ≥ 1]
∣∣

=
√
d
/
(2nñ) +

∑

k,r

E
(
ξπn(Ckr)1{ξπn (Ckr)≥2}

)
−
∑

k,r

P
[
ξπn(Ckr) ≥ 2

]
,

where dTV denotes the total variation distance between probability distributions (see
e.g. Barbour, Holst and Janson (1992), Appendix A.1 for definition and results). Since
the sum over r in the second term can be estimated as

ñ∑

r=1

E
(
ξπn(Ckr)1{ξπn (Ckr)≥2}

)
≤ E

(
ξπn(Ck)1{ξπn (Ck)≥2}

)

≤ E
(
ξπn(Ck)(ξπn(Ck)− 1)

)

= E
(

E
(ξ(Ck)∑

i=1

ξ(Ck)∑

j=1
j 6=i

XiXj

∣∣∣ ξ, πn

))

= E
(ξ(Ck)∑

i=1

ξ(Ck)∑

j=1
j 6=i

πn(Si)πn(Sj)

)

≤ E
(
ξ(Ck)

(
ξ(Ck)− 1

)(
sup

1≤i≤ξ(Ck)
πn(Si, ·)

)2)

≤ w[2], (3.3)

we obtain, as an overall bound for the discretization error terms,

√
d
/
(nñ) + ndw[2]. (3.4)

Next we consider the left over term in (3.2), which is estimated by application of
the Barbour-Brown theorem A.A (see Appendix A.1). We choose m := m(n) ∈ N
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arbitrarily, and set in the notation of the appendix

Θ = {1, 2, . . . , n}d × {1, 2, . . . , ñ}d
Θkr = Θ \ {(k, r)}
Θs

kr = {(l, s) ∈ Θkr ; |l− k| ≤ m}
Θw

kr = {(l, s) ∈ Θkr ; |l− k| > m}.

Since
EΞn({αkr}) = qkr = EHn({αkr}),

we can apply Theorem A.A and obtain (once more in the notation of the appendix):

d2
(
L(Ξnκ

−1
n ),L(Hnκ

−1
n )

)
≤M1(λ)

∑

k,r

(
qkrEZ̃kr + E(IkrZkr)

)
+M2(λ)

∑

k,r

ekr.

Further estimation of the various terms yields

M1(λ) ≤ 1 ∧
[

2
ndw1

(
1 + 2 log+

(
ndw1
2

))]
; (3.5)

M2(λ) ≤ 1 ∧
[
1.65

/
(ndw1)

1/2
]
; (3.6)

∑

k,r

qkrEZ̃kr =

n∑

k=1

n∑

l=1
|l−k|≤m

( ñ∑

r=1

qkr

)( ñ∑

s=1

qls

)
≤ (2m+ 1)dndw2

1; (3.7)

and, using part of Inequality (3.3) for the second line,

∑

k,r

E(IkrZkr) ≤
n∑

k=1

( n∑

l=1
1≤|l−k|≤m

E
(
ξπn(Ck) ξπn(Cl)

)
+ E

(
ξπn(Ck)(ξπn(Ck)− 1)

))

≤
n∑

k,l=1
1≤|l−k|≤m

E
(

E
(ξ(Ck)∑

i=1

ξ(Ck)+ξ(Cl)∑

j=ξ(Ck)+1

XiXj

∣∣∣∣ ξ, πn

))
+ ndw[2]

=
n∑

k,l=1
1≤|l−k|≤m

E
(ξ(Ck)∑

i=1

ξ(Ck)+ξ(Cl)∑

j=ξ(Ck)+1

πn(Si)πn(Sj)

)
+ ndw[2]

≤ (2m+ 1)dndw[2],

(3.8)

where our numbering in Inequality (3.8) is such that S1, . . . , Sξ(Ck) lie in Ck, and
Sξ(Ck)+1, . . . , Sξ(Ck)+ξ(Cl) in Cl.

A little more work is needed to estimate ekr. First, note that by Assumption 1, the
probability that any points of ξ lie on the grid G :=

⋃
kr ∂Ckr is zero. Since we are
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only interested in distributional properties of ξπ, we may therefore assume w.l.o.g. that
ξ(ω)(G) = 0 for all ω ∈ Ω. For any set U , denote its power set by P(U), and write

Fw
k := P

(
{0, 1}Θw

kr

)
, and Wk := (Ils)(l,s)∈Θw

kr

(note that Θw
kr does not depend on r). If E

(
ξ(Ckr) sups∈Ckr

πn(s)
)
is zero, it is evident

that ekr = 0, so assume that the expectation is non-zero. We use the “formula of total
covariance”, that is, the relation

cov(X,Y ) = E(cov(X,Y |Z)) + cov(E(X |Z),E(Y |Z))

for random variables X,Y ∈ L2 and an arbitrary random variable Z, along with the
conditional independence of the retention decisions, to obtain

ekr/2 = max
B∈Fw

k

∣∣∣cov
(
1{ξπn (Ckr)≥1} , 1{Wk∈B}

)∣∣∣

= max
B∈Fw

k

∣∣∣cov
(
P
[
ξπn(Ckr) ≥ 1

∣∣ ξ, πn

]
, P

[
Wk ∈ B

∣∣ ξ, πn

])∣∣∣. (3.9)

Since no realization of ξ has any points in G, the arguments of the covariance are condi-
tional probabilities of the form P[ξπn ∈ D | ξ, πn] with D ∈ N(A) := σ

({
{% ∈ N ; %(B) =

l} ; B ∈ BA, l ∈ Z+

})
⊂ N, where A = Aint(k, r) and A = A

(m)
ext (k), respectively. We

then may condition as well only on ξ and πn restricted to the corresponding set A (the
proof of this is rather technical and has therefore been placed in Appendix A.4). Hence

1

2

ñ∑

r=1

ekr =
ñ∑

r=1

max
B∈Fw

k

∣∣∣cov
(
P
[
ξπn(Ckr) ≥ 1

∣∣ ξ|Aint(k,r), πn|Aint(k,r)
]
,

P
[
Wk ∈ B

∣∣ ξ|
A
(m)
ext (k)

, πn|A(m)ext (k)

])∣∣∣

≤ w1 β̆n(m), (3.10)

where for the inequality, the factor E
(
ξ(Ckr) sups∈Ckr

πn(s)
)
was extracted from the

first argument of the covariance. Note that in the second argument we do not have an
indicator as required, but a general [0, 1]-valued random variable. The upper bound
from Assumption 2 still holds, as can be seen from the proof of Equation (1′) in
Doukhan (1994), Section 1.1.

We assemble the different parts from Result (3.4), Inequalities (3.5) to (3.8), and
Inequality (3.10), and let ñ go to infinity to obtain the overall estimate

d2
(
L(ξπnκ−1n |J),L(ηnκ−1n |J)

)

≤ ndw[2] +
(
1 ∧

[
2

ndw1

(
1 + 2 log+

(
ndw1
2

))])
(2m+ 1)dnd(w2

1 + w[2])

+
(
1 ∧ 1.65√

ndw1

)
2ndw1β̆n(m),

which is of the required order for n→∞.
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Proof of Theorem 3.C. Use, in the upper bound of Theorem 3.B, the estimates w1 ≤
h̄1p

(∞)
n and w[2] ≤ h̄2(p

(∞)
n )2, and modify the estimation of the ekr by extracting

p(∞)n |Ckr| instead of E
(
ξ(Ckr) sups∈Ckr

πn(s)
)
in Inequality (3.10), such that we get

1

2

ñ∑

r=1

ekr ≤ p(∞)n β̆(∞)n (m).

Proof of Corollary 3.E. In the upper bound of Theorem 3.B, use the estimates

w1 ≤ Q1p
(1)
n + sup

1≤k≤n
E
(
ξ(Ck)1{ξ(Ck)>Q1}

)
, w[2] ≤ Q2p

(2)
n + sup

1≤k≤n
E
(
ξ(Ck)

21{ξ(Ck)2>Q2}
)
,

from which we obtain the required order. For the convergence condition, setm(n) := ny,

Q
(ε)
1 (n) := n(sy−ε)d and Q

(ε)
2 (n) := n(2s(x+1)y−ε)d, where y := x

/(
2s(x + 1) + 1

)
and

ε > 0 is arbitrary. Use that E(Y 1{Y >Q}) = o
(
(1/Q)r−1

)
for any non-negative random

variable Y with finite r-th moment, in order to show that for any r > 2+(2s+1)/(sx),
there is still a choice of ε > 0, such that the upper bound in Corollary 3.E goes to
zero.

Proof of Theorem 3.F. Use in the upper bound of Theorem 3.B the estimates w1 ≤
h̄1p

(1)
n and w[2] ≤ h̄2p

(2)
n , and modify the estimation of the ekr in the following way:

for better readability, suppress k and r in the expressions Aint(k, r), A
(m)
ext (k), and

write f(ξ|Aint , πn|Aint) and g(ξ|
A
(m)
ext

, πn|A(m)ext
) = gB(ξ|A(m)ext

, πn|A(m)ext
) for the conditional

probabilities in (3.10), such that

ekr/2 = max
B∈Fw

k

∣∣cov
(
f(ξ|Aint , πn|Aint) , gB(ξ|A(m)ext

, πn|A(m)ext
)
)∣∣.

Then, because of the independence of (ξ, πn|Aint , πn|A(m)ext
),

∣∣cov
(
f(ξ|Aint , πn|Aint) , g(ξ|

A
(m)
ext

, πn|A(m)ext
)
)∣∣

≤ E
∣∣∣cov

(
f(ξ|Aint , πn|Aint) , g(ξ|

A
(m)
ext

, πn|A(m)ext
)
∣∣ πn|Aint , πn|A(m)ext

)∣∣∣

≤ |Aint|E
(
sup
s∈Ck

πn(s)
∣∣∣cov

(
f(ξ|Aint , πn|Aint )

|Aint| sups∈Aint πn(s)
, g(ξ|

A
(m)
ext

, πn|A(m)ext
)
∣∣∣ πn|Aint , πn|A(m)ext

)∣∣∣
)

≤ |Aint| p(1)n β̆(ind)(m),

hence

1

2

ñ∑

r=1

ekr ≤ p(1)n β̆(ind)(m),

which yields the desired result.
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3.3 Example of thinning according to a random environment (clouds
in the starry sky)

Suppose that the stars within a certain distance r̄ to earth, and lying in a large window
Jn ⊂ R2

+ of the night sky, are part of a point process ξ on R2
+ that fulfills Assumptions 1

and 2′. Whether you can actually see a particular star in this window depends, among
other things, upon the distance and the brightness of the star, and upon whether any
other object (here, a cloud) covers the star. Suppose, for the sake of simplicity, that
the distributions of distance and brightness of stars do not depend on their position in

the window, so that there is a basic probability q0 = q
(n)
0 that you can see any fixed

star in that part of the window that is not covered by clouds. Suppose furthermore,
that the clouds in the sky as seen from earth in the upper right area of some reference
point, form a separable RACS (random closed set) Ξ ⊂ R2

+ that is independent of ξ.
By Remark A.E from the appendix, Theorem 3.F may then be applied for the retention
field given by πn(ω, s) = q0(1−1Ξ(ω)(s)). In the following, we admit a general dimension
d ∈ N for the sky.

In order to make things more concrete, let us consider a toy example. Suppose the
cloud RACS Ξ := Ξn is a very simple Boolean model consisting only of discs of positive
i.i.d. radii whose centers form a homogeneous Poisson process on Rd: Denote by ⊕ the
(Minkowski-)addition of subsets of Rd, i.e. A⊕B = {a+ b; a ∈ A, b ∈ B}, and set

Ξ :=

∞⋃

i=1

(
Yi ⊕ B(0, R(n)

i )
)
∩ Rd

+, (3.11)

where (Yi)i∈N are the points of a Po(λLebd)-process on Rd, λ > 0, and B(0, R(n)
i ) is

the closed Euclidean ball with center at 0 and radius R
(n)
i . Here R

(n)
i ∈ L∞ are i.i.d.

(0,∞)-valued random variables that are independent also of the Poisson process with∥∥R(n)
i

∥∥
Ld

=: rn,
(
E
(
(R

(n)
i −

√
d)d1{R(n)i >

√
d}
))1/d

=: řn, and
∥∥R(n)

i

∥∥
L∞

=: r(∞)n . Note

that Ξ is a separable RACS. Its capacity functional is given by

TΞ(K) := P[Ξ ∩K 6= ∅] = 1− exp
(
−λE

(
Lebd(B(0, R(n)

1 )⊕K)
))

(3.12)

for any compact subset K ⊂ Rd; see e.g. Stoyan, Kendall and Mecke (1987), Section 3.1.

Let Ξ̃ be the RACS that is obtained from Ξ by decreasing the radii R
(n)
i by

√
d of those

balls which have R
(n)
i >

√
d, and deleting those centers whose balls have R

(n)
i ≤

√
d.

Then, applying (3.12) on Ck (by continuity of the measure from below),

P
[
sup
s∈Ck

πn(s) = q0
]
= P

[
Ck 6⊂ Ξ

]
≤ 1− P

[
Ξ̃ ∩ Ck 6= ∅

]

≤ exp
(
−λE

(
Lebd(B(0, R(n)

1 −
√
d)⊕ Ck)1{R(n)i >

√
d}
))

≤ exp(−λαdř
d
n),

where αd := πd/2
/
Γ(d/2 + 1) is the volume of the d-dimensional unit ball. Therefore

E
(
sup
s∈Ck

πn(s)
)
= q0P

[
sup
s∈Ck

πn(s) = q0
]
≤ q0 exp(−λαdř

d
n),
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and
E
(
sup
s∈Ck

πn(s)
2
)
= q20P

[
sup
s∈Ck

πn(s) = q0
]
≤ q20 exp(−λαdř

d
n).

Furthermore, we obtain for the approximating expectation measure in Theorem 3.F

νnκ
−1
n =

(∫

·
Eπn(s) µ1(ds)

)
κ−1n = q0 exp(−λαdr

d
n)µ1κ

−1
n

= q0 exp(−λαdr
d
n)n

d

∫

·
(
h1 ◦ κ−1n

)
(s) Lebd(ds),

where the second equality is obtained by Equation (3.12) with K = {s}, yielding in
total the following result.

Proposition 3.G. Let ξ be a point process on Rd
+ that satisfies Assumptions 1

and 2′. Furthermore, let πn(ω, s) = q0(1 − 1Ξn(ω)(s)) for all s ∈ Rd
+, ω ∈ Ω, where

q0 = q
(n)
0 ∈ [0, 1] and Ξn is the Boolean model given by Equation (3.11), i.e. the Rd

+-

part of a union of balls in Rd whose centers form a Po(λLebd)-process and whose radii

R
(n)
i are positive-valued L∞ random variables with r(∞)n =

∥∥R(n)
i

∥∥
L∞

, rn =
∥∥R(n)

i

∥∥
Ld
,

and řn =
(
E
(
(R

(n)
i −

√
d)d1{R(n)i >

√
d}
))1/d

.

We then obtain, for m = m(n) ∈ N with m(n) ≥ 2r(∞)n , that

d2
(
L(ξπnκ−1n |J),Po(νnκ−1n |J)

)

= O
(
mdndq20 exp(−λαdř

d
n) , ndq0 exp(−λαdř

d
n)β̆

(ind)(m)
)

for n→∞,

where νn = q0 exp(−λαdr
d
n)µ1, and αd is the volume of the d-dimensional unit ball.

From an asymptotical point of view, clearly the interesting cases are those in which
νnκ

−1
n |J does not fade away to the zero measure as n tends to infinity, giving us an

artificial benefit for our distance estimate. In order to prevent this behavior, we must
avoid choosing rn of a higher than logarithmic order. To get a quick idea, consider

the special case in which there is a n0 ∈ N such that R
(n)
1 >

√
d for n ≥ n0, and

E(R(n)
1 )d−1 = o

(
E(R(n)

1 )d
)
. This situation allows us to choose an arbitrary ζ > 0, and

we still find n1 ∈ N such that řdn ≥ (1− ζ)rdn for all n ≥ n1. Let us furthermore arrange
for a constant non-zero νnκ

−1
n : let µ1 := µ0Lebd with µ0 > 0, choose q0 ≥ 1/nd and set

rn :=
( 1

λαd
log(q0n

d)
)1/d

,

such that νnκ
−1
n = µ0Lebd for every n ∈ N. The result is as follows.

Corollary 3.H. Under the conditions of Proposition 3.G, as well as the additional
conditions above, we have for any ζ > 0

d2
(
L(ξπnκ−1n |J),Po(µ0Lebd|J)

)
= O

(
mdq0(n

dq0)
ζ , (ndq0)

ζ β̆(ind)(m)
)

for n→∞.
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The upper bound in the above proposition goes to zero under an appropriate choice
of m ≥ 2r(∞)n and ζ > 0 if q0 = O(n−ε1d) as n→∞ and β̆(ind)(t) = O(t−ε2d) as t→∞
for some ε1, ε2 > 0. Note that it is always possible to choose m appropriately, provided
that r(∞)n = O(nε3) for some ε3 ≤ ε1. In the case of convergence of the above bound to
zero we obtain furthermore by Result (2.4) that

ξπnκ
−1
n |J

D−→ Po(µ0Lebd|J) for n→∞.

4 An alternative thinning definition

In this section, we consider a different thinning concept, where in place of a random
retention field, we have deterministic retention kernels by which we directly model
dependences between retention decisions. This will lead us, by means of the same
method of proof as before, to a theorem that is similar to Theorem 3.B, less appealing
from a theoretical and a typographical point of view, but sometimes more intuitively
applied, because it permits us to look at the situation from a different angle: rather
than thinking of a thinning as the result of point deletions according to a (potentially
inscrutable) random environment, we now understand it as the result of point deletions
according to (potentially more transparent) point interactions.

4.1 Definition, requirements and results

We first present the new thinning definition. Let ξ be a point process on Rd
+. To

simplify the presentation we assume, for this whole section, that all realizations of ξ
have infinitely many points in Rd

+.

Definition (“Q-Thinning”). For any u ∈ N let Du := {(s1, s2, . . . , su;σ) ∈ (Rd
+)

u ×
N ;

∑u
i=1 δsi ≤ σ}, equipped with the trace σ-field of (Bd

+)
u ⊗N, and denote by

Du(σ) := {s ∈ (Rd
+)

u; (s;σ) ∈ Du} the section of Du at σ ∈ N . Let Qu be a probability
kernel from Du to {0, 1}u. We call (Qu)u∈N an admissible sequence of retention kernels
if

(a) the Qu are “simultaneously symmetrical” in the sense that for any permuta-
tion τ on {1, . . . , u} and its corresponding linear transformations T1 :

(
Rd
+

)u →(
Rd
+

)u
, (s1, . . . , su) 7→ (sτ(1), . . . , sτ(u)) and T2 : {0, 1}u → {0, 1}u, (e1, . . . , eu) 7→

(eτ(1), . . . , eτ(u)) we have

Qu

(
(T1s;σ), T2(A)

)
= Qu

(
(s;σ), A

)

for every (s, σ) ∈ Du and every A ⊂ {0, 1}u;

(b) the following compatibility condition holds between theQu: let u ≥ 2 be arbitrary;
then we have

Qu

(
(s1, . . . , su−1, su;σ), A× {0, 1}

)
= Qu−1

(
(s1, . . . , su−1;σ), A

)

for every (s1, . . . , su−1, su;σ) ∈ Du and every A ⊂ {0, 1}u−1.
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Assume now that Q = (Qu)u∈N is an admissible sequence of retention kernels. In
analogy with Section 2, the Q-thinning of ξ can now be defined as follows. First,
assume that ξ = σ =

∑∞
i=1 δsi is non-random, and define a Q-thinning of ξ in this

case as ξQ :=
∑∞

i=1 Xiδsi , where the Xi are indicator random variables whose joint
distribution is given by the fidi-distributions

L(X1, . . . , Xu) = Qu

(
(s1, . . . , su;σ), ·

)

for every u ∈ N. It is easy to see that, due to Properties (a) and (b) from above, ξQ
has a distribution Pσ that is well-defined and does not depend on the enumeration of σ.
We obtain the general Q-thinning from this by randomization, as in Section 2.

Remark 4.A. Let f1, f2, . . . be N-Bd
+-measurable functions such that σ =

∑σ(Rd+)
i=1 δfi(σ)

for every σ ∈ N . Such functions exist by Remark 2.A. With any such sequence of
functions it is enough to define Qu

(
(f1(σ), . . . , fu(σ);σ), A

)
for every σ ∈ N , every

A ⊂ {0, 1}u, and every u ∈ N, in such a way that Properties (a) and (b) from the
thinning definition are satisfied, and the above term is a N-measurable mapping in σ
and a probability measure in A. There is then a unique admissible sequence (Q̃u)u∈N
of retention kernels such that Q̃u extends Qu to the whole of Du for every u ∈ N. A
short proof of this statement is the topic of Appendix A.5.

Remark 4.B. The new Q-thinning concept generalizes the thinning concept from
Section 2. That is to say, for any combination of a point process ξ and a locally
evaluable random field π, the thinning ξπ can be modeled as a Q-thinning ξQ. As in
Remark 4.A, let f1, f2, . . . be N-Bd

+-measurable functions with σ =
∑

i δfi(σ) for every
σ ∈ N . Define then for any u ∈ N, and for e1, . . . , eu ∈ {0, 1},

Qu

(
(f1(σ), . . . , fu(σ);σ), {(e1, . . . , eu)}

)
:= E

( u∏

i=1

(
π(fi(ξ))

)ei(1−π(fi(ξ))
)1−ei

∣∣∣ ξ = σ
)

(4.1)
for almost every σ, which, upon adaptation on a Pξ−1-null set, yields by Remark 4.A,
a well-defined sequence of retention kernels. It follows then from (4.1) that for every
D ∈ N

P[ξQ ∈ D | ξ] = E
(
P[ξπ ∈ D | ξ, π]

∣∣ ξ
)
= P[ξπ ∈ D | ξ] a.s.,

and hence that ξQ has the same distribution as ξπ.

One can prove a theorem corresponding to Theorem 3.B, which now relies on sep-
arate control of a mixing coefficient with respect to ξ alone and of the conditional
covariances between functions of retention decisions. This seems intuitively more ap-
pealing, but is also quite a bit more inconvenient to formulate than the more abstract

way via the σ-fields F (n)
int and F (n,t)

ext used for Theorem 3.B. To keep things reasonably
neat, we only state a special case here, which is basically the analogue of Theorem 3.C,
the L∞-version.
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We first present the additional assumptions we need. Let Q(n) := (Q
(n)
u )u∈N for each

n ∈ N be an admissible sequence of retention kernels, and set

p̄n := ess sup
(

sup
s∈D1(ξ)∩Jn

Q
(n)
1

(
(s; ξ), {1}

))
∈ [0, 1],

p
n
:= ess inf

(
inf

s∈D1(ξ)∩Jn
Q

(n)
1

(
(s; ξ), {1}

))
∈ [0, 1],

where we define the supremum over the empty set as 0, and the infimum as 1. Note

that the role of πn(ω, s) is now always taken by Q
(n)
1

(
(s; ξ(ω)), {1}

)
, and that D1(σ) is

just the set of all points of σ. The additional assumptions are as follows.

Assumption 2′′ (Mixing property of ξ). Let β̆(∞) : R+ → R+ be a decreasing

function such that for any cubes Aint = (a, a + h1), A
(t̃)
int = (a − t̃1, a + (t̃ + h)1) and

surrounding sets A
(t̃,t)
ext := Rd

+ \ [a − (t̃ + t)1, a + (t̃ + t + h)1] with h ∈ (0, 1], a ∈ Rd
+,

and t̃, t ∈ R+ we have that

sup
D∈F(t̃,t)ext

Z∈L2(F(t̃)int ), 0≤Z≤Π̃

∣∣cov
(
Z, 1D

)∣∣ ≤ β̆(∞)(t),

where F (t̃)
int := σ

(
ξ|

A
(t̃)
int

)
, F (t̃,t)

ext := σ
(
ξ|

A
(t̃,t)
ext

)
, and Π̃ := ξ(Aint)/|Aint|.

Assumption 3 (Local functional dependence of Q(n)
u (·, A) on σ). For each n ∈ N

there is a t̃n ∈ R+, such that Q
(n)
u (·, A) is only a function of

(
s1, . . . , su;σ|⋃u

i=1 B(si,t̃n)
)
for

A ⊂ {0, 1}u. That is, more exactly, Q
(n)
u

(
(s1, . . . , su;σ

′), A
)
= Q

(n)
u

(
(s1, . . . , su;σ

′′), A
)

for (s1, . . . , su;σ
′), (s1, . . . , su;σ′′) ∈ Du and A ⊂ {0, 1}u whenever σ′|⋃u

i=1 B(si,t̃n) =

σ′′|⋃u
i=1 B(si,t̃n).

Assumption 4 (Control of the short range positive covariances between the
retention decisions given ξ). For each n ∈ N, let δ̆n : R+ → R+ be an increasing
function such that for every t ∈ R+ and for (s1, s2;σ) ∈ D2 with |s1 − s2| <

√
d(t+ 1),

we have
Q

(n)
2

(
(s1, s2;σ), {(1, 1)}

)
≤ p̄nδ̆n(t).

Assumption 5 (Control of the long range dependence between the retention
decisions given ξ). For each n ∈ N, let γ̆n : R+ → R+ be a decreasing function
such that the following property holds: for every cube Aint = (a, a + h1) with a ∈
Rd
+, h ∈ (0, 1], for t ∈ R+, for every (s1, . . . , sl, sl+1, . . . , su;σ) ∈ Du with l ≥ 1, u > l,∑l
i=1 δsi = σ|Aint and |si − sj | > t for i ∈ {1, . . . , l}, j ∈ {l + 1, . . . , u}, and for any set

B ⊂ {0, 1}{l+1,...,u}, we have
∣∣∣∣Q

(n)
u

(
(s1, . . . , sl, sl+1, . . . , su;σ), {(0, . . . , 0)} ×B

)

−Q
(n)
l

(
(s1, . . . , sl;σ), {(0, . . . , 0)}

)
Q

(n)
u−l

(
(sl+1, . . . , su;σ), B

)∣∣∣∣ ≤ l p̄nγ̆n(t).

186



Remark 4.C. Assumptions 4 and 5 amount to the statement that, for any t ∈ R+

and for any set Aint of the above form, given a representation
∑∞

i=1 δfi(ξ) of ξ with
measurable functions f1, f2, . . . which first enumerate all the points in Aint and have
images si := fi(σ), and given an associated sequence (Xi) of retention decisions with
respect to Q(n), we have with i 6= j

E(XiXj | ξ = σ) ≤ p̄nδ̆n(t)

whenever |si − sj | <
√
d(t+ 1), and with B ⊂ {0, 1}{l+1,...,u}

∣∣cov
(
1{∑l

i=1Xi≥1}, 1{(Xl+1,...,Xu)∈B} | ξ = σ
)∣∣ ≤ l p̄nγ̆n(t)

whenever |si−sj | > t for all i ∈ {1, . . . , l} and j ∈ {l+1, . . . , u}, where l = σ(Aint) ≥ 0.

We are now in the position to formulate the theorem. Again, the corresponding
quantitative upper bound can be found in the proof.

Theorem 4.D (L∞-version: upper bound and convergence). Let ξ be a point
process on Rd

+ that satisfies Assumptions 1 and 2′′ above, and for each n ∈ N, let

Q(n) := (Q
(n)
u ) be an admissible sequence of retention kernels that satisfies Assumptions

3, 4, and 5.

Set ϕ := infk∈Nd P[ξ(Ck) ≥ 1] ∈ [0, 1], and let ν̃n(·) := E
(∫
·Q

(n)
1

(
(s; ξ), {1}

)
ξ(ds)

)
,

which is the expectation measure of ξQ(n) .

Then we obtain for any m := m(n) ∈ N with m ≥ 2t̃n

d2
(
L(ξQ(n)κ−1n |J),Po(ν̃nκ−1n |J)

)

= O
(
ndp̄nδ̆n(0) , md

(
nd ∧ log↑(ndp̄n)

ϕp
n

)
p̄n(p̄n ∨ δ̆n(m)) ,

√
nd
(√

nd ∧ 1√
ϕp

n

)
p̄n
(
β̆(∞)(m− 2t̃n) ∨ γ̆n(m)

))
for n→∞.

The right hand side goes to 0 if, for example, p̄n = O(1/nd), δ̆n(0) = o(1), and there

is a sequence (m(n))n with m(n) ≥ 2t̃n, m(n) = o
(
1
/
p̄
1/d
n

)
, such that δ̆n(m(n)) =

o
(
1
/
m(n)d

)
, γ̆n(m(n)) = o(1), and β̆(∞)(m(n)− 2t̃n) = o(1) for n→∞.

Remark 4.E. The main ideas of Theorem 4.D and Theorem 3.C are closely related.
For example we have formulated in two different ways — once in Assumption 2 and
once in Assumptions 2′′, 3, and 5 — what is essentially the decreasing dependence

between (ξ|Aint , X
(n)
1 , . . . , X

(n)
ξ(Aint)

) and (ξ|Aext , X(n)
ξ(Aint)+1, . . . , X

(n)
ξ(Aint)+ξ(Aext)

) with in-

creasing distance between an inner set Aint and an outer set Aext and increasing n (where

X
(n)
1 , . . . , X

(n)
ξ(Aint)

and X
(n)
ξ(Aint)+1, . . . , X

(n)
ξ(Aint)+ξ(Aext)

denote the retention decisions for

the points in Aint and in Aext, respectively).
Nevertheless, there are also substantial differences between the two theorems. We

mention briefly two of the more important ones, leaving the confirmation of the formal
details for the reader. First, in Theorem 3.C the thinning is location-based (i.e. the
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location in the state space), whereas in Theorem 4.D the thinning is point-based (i.e. the
point of the original process ξ), that is to say that two or more points of ξ which occupy
the same location in the state space must be thinned with the same dependence of other
retention decisions and with equal probabilities if we want to apply Theorem 3.B, but
they can be thinned much more generally if we want to apply Theorem 4.D.

Secondly, in Theorem 4.D the conditional distribution L(X1, . . . , Xu | ξ = σ) is only
allowed to be a function of σ|⋃u

i=1 B(si,t̃n), whereas in Theorem 3.C it may be a function

of all of σ. As an example, consider the π-thinning of a homogenous Poisson process
on the real half line with points S1 < S2 < . . ., using a retention field of the form

πn(ω, t) := h1(n) exp
(
−h2(n)

/
min
i∈N

Si(ω)>t

(
Si(ω)− t

))

with functions h1 : N → [0, 1] and h2 : N → R+, where the idea is that h1(n) → 0
and/or h2(n) → ∞ as n → ∞. Since πn is only via ξ a function of ω, this situation
is easily translated into a Q-thinning model. Obviously, Condition 3 is not satisfied
by this model, because the retention probabilities may depend on arbitrarily distant
regions. On the other hand, this long range dependence is very weak, and it can in fact
be shown that the conditions for Theorem 3.C are met with a mixing coefficient β̆(∞)(t)
that does not depend on n and that goes to zero exponentially fast as t→∞.

Proof of Theorem 4.D. Let ηn ∼ Po(ν̃n), and choose an arbitrary ñ ∈ N. We use the
notation and the conventions from Subsection 3.2, replacing only ξπn by ξQ(n) , and
define the concrete “inner” and “outer” sets needed by

Aint(k, r) := C̊kr , A
(t̃)
int(k) :=

(⋃n
j=1

|j−k|≤t̃

Cj

)◦

, A
(t̃,t)
ext (k) :=

(⋃n
j=1

|j−k|>t̃+t

Cj

)◦

for t̃, t ∈ Z+, k ∈ {1, 2, . . . , n}d, and r ∈ {1, 2, . . . , ñ}d. Most of the estimates from
the proof of Theorem 3.B are still valid for the new thinning ξQ(n) if we condition on ξ

alone instead of ξ and πn together and replace in the bounds w1 by h̄1p̄n and w1 by
ϕp

n
. Thus, e.g.

ϕp
n
≤

ñ∑

r=1

qkr ≤ h̄1p̄n,

d2
(
L(ξQ(n)κ−1n |J),L(Ξnκ

−1
n )

)
+ d2

(
L(Hnκ

−1
n ),L(ηnκ−1n |J)

)

≤
√
d/(nñ) +

n∑

k=1

ñ∑

r=1

E
(
ξQ(n)(Ckr)1{ξ

Q(n)
(Ckr)≥2}

)
,

and also M1(λ), M2(λ) and
∑

k,r qkrEZ̃kr from the Barbour-Brown theorem follow
exactly this pattern.
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The remaining terms can be estimated in a very similar fashion as in the proof of
Theorem 3.B, namely

ñ∑

r=1

E
(
ξQ(n)(Ckr)1{ξ

Q(n)
(Ckr)≥2}

)
≤ E

(
ξQ(n)(Ck)(ξQ(n)(Ck)− 1)

)

≤ E
(ξ(Ck)∑

i=1

ξ(Ck)∑

j=1
j 6=i

E
(
XiXj | ξ

))

≤ h̄2p̄nδ̆n(0),

and in the Barbour-Brown theorem

∑

k,r

E(IkrZkr) ≤
n∑

k=1

( n∑

l=1
1≤|l−k|≤m

E
(
ξQ(n)(Ck) ξQ(n)(Cl)

)
+ E

(
ξQ(n)(Ck)(ξQ(n)(Ck)− 1)

))

≤
n∑

k,l=1
1≤|l−k|≤m

E
(ξ(Ck)∑

i=1

ξ(Ck)+ξ(Cl)∑

j=ξ(Ck)+1

E
(
XiXj

∣∣ ξ
))

+ h̄2n
dp̄nδ̆n(0)

≤ h̄2(2m+ 1)dndp̄nδ̆n(m),

using the same partition of the index set Θ as in Subsection 3.2.
Again we have to argue a bit more carefully for the estimation of the ekr. If we

again set Fw
k := P

(
{0, 1}Θw

kr

)
and Wk := (Ils)(l,s)∈Θw

kr
, we obtain, in a similar fashion

as in the proof of Theorem 3.B,

ekr/2 = max
B∈Fw

k

∣∣∣cov
(
1{ξ

Q(n)
(Ckr)≥1} , 1{Wk∈B}

)∣∣∣

≤ max
B∈Fw

k

∣∣∣cov
(
P
[
ξQ(n)(Ckr) ≥ 1

∣∣ ξ
]
, P

[
Wk ∈ B

∣∣ ξ
])∣∣∣

+ max
B∈Fw

k

∣∣∣E
(
cov

(
1{ξ

Q(n)
(Ckr)≥1} , 1{Wk∈B}

∣∣ ξ
))∣∣∣

= max
B∈Fw

k

∣∣∣cov
(
P
[
ξQ(n)(Ckr) ≥ 1

∣∣ ξ|
A
(t̃n)
int (k)

]
, P

[
Wk ∈ B

∣∣ ξ|
A
(t̃n,m−2t̃n)
ext (k)

])∣∣∣

+ max
B∈Fw

k

E
∣∣∣cov

(
1{

∑ξ(Ckr)

i=1 Xi≥1}
, 1{Wk∈B}

∣∣ ξ
)∣∣∣, (4.2)

where this time Lemma A.F(ii) from Appendix A.4 was used. Compared with the
earlier proofs, we now have a second term that is in general not zero, because this time
the retention decisions need not be independent under the conditioning we have. In the
first summand, we extract p̄n|Ckr| from the first argument of the covariance, and use
Assumption 2′′, in the second summand we use Assumption 5, and obtain altogether

1

2

ñ∑

r=1

ekr ≤ p̄n
(
β̆(∞)(m− 2t̃n) + h̄1γ̆n(m)

)
. (4.3)
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Assembling once more the different parts, and letting ñ go to infinity, gives the
overall estimate

d2
(
L(ξQ(n)κ−1n |J),L(ηnκ−1n |J)

)

≤ h̄2n
dp̄nδ̆n(0)

+
(
1 ∧

[
2

ϕndp
n

(
1 + 2 log+

(
h̄1
2 ndp̄n

))])
(2m+ 1)dnd

(
h̄21p̄n + h̄2δ̆n(m)

)
p̄n

+
(
1 ∧ 1.65√

ϕndp
n

)
2ndp̄n

(
β̆(∞)(m− 2t̃n) + h̄1γ̆n(m)

)
,

which is of the required order for n→∞.

4.2 Example of thinning according to point interactions (competition
in a plant population)

Suppose that the individuals of a certain kind of plant that grow in a large piece Jn ⊂ R2
+

of soil are part of a point process ξ =
∑∞

i=1 δSi on R2
+ which has σ(ξ)-measurable points

Si with realizations si, and fulfills the Assumptions 1 and 2′′ above. As before we will
do our analysis for a general dimension d ∈ N. Assume that the plants have certain
“fitness parameters” Ψi, one per plant, which are i.i.d. (0, 1]-valued random variables,
independent also of everything else and following a continuous distribution function.

Whether a given plant survives until some time t0, depends firstly on the overall
environmental conditions, which we require to be the same for all plants (say, each plant

has a basic survival probability q0 = q
(n)
0 ), and secondly on the influence of other plants

in its immediate surroundings. Suppose that the competition is such, that an individual
plant survives it, independently of whether it survives the environmental effect, if there
are no plants with a higher degree of fitness within a radius of rn > 0. We model this
situation by assuming that we have for each Si a retention decision

Xi := X
(n)
i := Y

(n)
i Z

(n)
i ,

where the Y
(n)
i are i.i.d. Be(q0)-random variables that are independent of everything

else and determine survival due to the environmental effect, and the Z
(n)
i are defined

by

Z
(n)
i :=

∞∏

j=1
|Sj−Si|≤rn

1{Ψi≥Ψj}

and determine survival due to the competition effect. This second thinning effect is
the same one used for the construction of the Matern hard core process (see Stoyan,
Kendall and Mecke (1987), Section 5.4). We obtain from symmetry considerations

E(Xi | ξ = σ) = q0
/
σ
(
B(si, rn)

)
, (4.4)

190



and for i 6= j,

E(XiXj | ξ = σ) =




0 if |si − sj | ≤ rn,(
1 +

σ(B(si,rn)∩B(sj ,rn))
σ(B(si,rn)∪B(sj ,rn)

)
q20

1
σ(B(si,rn))

1
σ(B(sj ,rn))

if |si − sj | > rn.

(4.5)
For the second result a bit of computation is necessary, which basically consists of count-
ing the number of orderings of the fitness values of the individuals in B(si, rn)∪B(sj , rn)
that leave the values of si and sj as highest in their respective “competition ball”. Note
that for |si − sj | > 2rn the retention decisions Xi and Xj are independent given ξ,
because the “competition balls” B(si, rn) and B(sj , rn) are disjoint. By Remark 4.A we
can define probability kernels by

Q(n)
u

(
(s1, . . . , su;σ), {(e1, . . . , eu)}

)
:= P[X1 = e1, . . .Xu = eu | ξ = σ]

for almost every σ, in such a way that (Q
(n)
u )u∈N is an admissible family of retention

kernels for the sequence (Xi)i∈N.
In view of Theorem 4.D, Condition 3 is satisfied with t̃n = rn, and for m(n) ≥ 2rn we

can always set γ̆n(m(n)) to zero in Condition 5. Furthermore, we have by Equation (4.4)

p̄n = q0

∥∥∥ sup
s∈D1(ξ)∩Jn

1
/
ξ(B(s, rn))

∥∥∥
L∞

,

and obtain, by (4.5) for δ̆n in Assumption 4, the possible choice of

δ̆n :≡ 2q0

∥∥∥ sup
s∈D1(ξ)∩Jn

1
/
ξ(B(s, rn))

∥∥∥
L∞

.

Obviously, for most point processes ξ, the norms on the right hand side of the
above equations are one, and we then do not get very interesting upper bounds for
the d2-distance between the law of the thinned process and a Poisson process law,
because the bounds take into account only the environmental thinning effect and not
the competition effect.

There are two ways in which this can be rescued. First, we could use the L1-version
of Theorem 4.D (i.e. the Q-thinning analogue of Corollary 3.E), which in this case is
much more promising, because we have expectations instead of the L∞-norms above.
However, as we have not formulated this more involved version, we do not pursue this
idea here any further. Secondly, we can look at a specific ξ-process where we can be
sure of having a certain number of competitors in every competition ball: let ξ be the
point process on all of Rd (in order to avoid edge effects) that has in every unit square
[k,k+1), k ∈ Zd, exactly one point, which is uniformly distributed over the square and
independent of the locations of all the other points. We might think of a gardener who
sows seeds, exactly one per square, by just throwing each carelessly over its square; the
fact that the distribution over each square is the uniform is by no means crucial to the
essence of the following explanations.
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We then have, for all s ∈ Jn,

ξ
(
B(s, rn)

)
≥
(
(rn − 1)/

√
2
)d ≥ (rn/2)

d

for rn ≥ 4, and

ξ
(
B(s, rn)

)
≤
(
2(rn + 1)

)d ≤ (3rn)
d

for rn ≥ 2. Therefore, in the notation of Theorem 4.D,

p̄n ≤ 2d
(
q0/r

d
n

)
, p

n
≥ (1/3)d

(
q0/r

d
n

)
, and δ̆n :≡ 2p̄n ≤ 2d+1q0/r

d
n.

Furthermore, we obviously have
Eξ = Lebd,

and we can calculate for the second factorial moment measure

µ2(A×B) ≤ Leb2d(A×B) for all A,B ∈ Bd,

such that µ2(C) ≤ 1 for every unit cube C ⊂ R2d. Finally, the mixing property 2′′ is
also met with β̆(∞)(t) = 0 for t ≥ 1. With m(n) := d2rne+ 1, this yields the following
result.

Proposition 4.F. Let Uk, k ∈ Zd, be independent random variables that are uni-
formly distributed on [0, 1)d, and ξ :=

∑
k∈Zd δk+Uk

. Furthermore let (Si)i∈N be a
σ(ξ)-measurable enumeration of the points of ξ, and (Ψi)i∈N an i.i.d. sequence of con-
tinuous, (0, 1]-valued random variables independent of ξ. Define retention decisions

Xi := X
(n)
i := Y

(n)
i Z

(n)
i , where Y

(n)
i , i ∈ N, are i.i.d. Bernoulli random variables with

parameter q0 = q
(n)
0 ∈ [0, 1] that are independent of everything else, and Z

(n)
i , i ∈ N,

are given by

Z
(n)
i :=

∞∏

j=1
|Sj−Si|≤rn

1{Ψi≥Ψj}

for some rn > 0.
We then have that the point process

∑∞
i=1 XiδSi can be constructed as a Q-thinning

ξQ(n) of ξ for an appropriate sequence Q = Q(n), and obtain

d2
(
L(ξQ(n)κ−1n |J),Po(ν̃nκ−1n |J)

)
= O

(
nd
(
q0/r

d
n

)2
, q0

(
nd
(
q0/r

d
n

)
∧ log↑

(
nd
(
q0/r

d
n

))))

for n→∞

with

ν̃n(·) = E
(∫

·
Q

(n)
1

(
(s, ξ), {1}

)
ξ(ds)

)
= q0E

(∫

·
ξ(ds)

ξ(B(s, rn))

)
.
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Note that

ν̃nκ
−1
n (J) = q0E

(∫

Jn

ξ(ds)

ξ(B(s, rn))

)
³ nd

(
q0/r

d
n

)
for n→∞,

and therefore, in view of obtaining a stable Poisson process, rn ³ nq
1/d
0 is a natural

choice, with q0 not going faster to zero than 1/nd. Then

d2
(
L(ξQ(n)κ−1n |J),Po(ν̃nκ−1n |J)

)
= O

(
q0
)
.

Suppose that we would like to compare the distribution of ξQ(n)κ
−1
n |J to the fixed

Po(Lebd|J)-distribution (any stationary intensity measure µ0Lebd can be used as long
as rn is adapted accordingly). This requires a more precise calculation of ν̃κ−1n . For
any set A ∈ BJ , we obtain

ν̃nκ
−1
n (A) = q0E

(∫

nA

ξ(ds)

ξ(B(s, rn))

)
= q0E

(∫

nA

ξ(ds)

αdrdn + εd,n(s, ξ)

)
,

where αd = πd/2
/
Γ(d/2 + 1) is the volume of the d-dimensional unit ball and εd,n(s, ξ)

is the error we make by just setting ξ(B(s, rn)) = Lebd(B(s, rn)). Note that
∣∣εd,n(s, ξ)

∣∣ ≤ 3dωdr
d−1
n a.s.

with ωd = 2πd/2
/
Γ(d/2), the surface of the d-dimensional unit ball. Hence

|A|
αd

nd q0
rdn

( αdr
d
n

αdrdn + 3dωdr
d−1
n

)
≤ ν̃nκ

−1
n (A)

≤ |A|
αd

nd q0
rdn

( αdr
d
n

(αdrdn − 3dωdr
d−1
n ) ∨ 0

)
.

Thus, if q0 = ω(1/nd) (i.e. ndq0 → ∞) for n → ∞, and if we set rn := n
(
(1/αd)q0

)1/d
for all n ∈ N, we obtain

ν̃nκ
−1
n (A) −→ Lebd(A) for n→∞

for all A ∈ BJ . Hence

Po(ν̃nκ
−1
n |J)

D−→ Po(Lebd|J),
and more exactly, by an application of Inequality (A.3) from Appendix A.2 (using
dW ≤ dTV , which follows from Formula (1.2) in Appendix A.1 of Barbour, Holst and
Janson (1992)),

d2
(
Po(ν̃nκ

−1
n |J),Po(Lebd|J)

)
≤

∣∣ν̃nκ−1n (J)− 1
∣∣+ sup

A∈BJ

∣∣∣
ν̃nκ

−1
n (A)

ν̃nκ
−1
n (J)

− Lebd(A)
∣∣∣

≤ 3dωdr
d−1
n

(αdrdn − 3dωdr
d−1
n ) ∨ 0

+
2 · 3dωdr

d−1
n

(αdrdn − 3dωdr
d−1
n ) ∨ 0

= O
(
1
/
rn
)

for n→∞.

Thus we have proved the following result.
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Corollary 4.G. Under the conditions of Proposition 4.F, with q0 = ω(1/nd) for n→∞
and rn := n

(
(1/αd)q0

)1/d
for every n ∈ N, we have that

d2
(
L(ξQ(n)κ−1n |J),Po(Lebd|J)

)
= O

(
1
/(

nq
1/d
0

)
, q0

)
for n→∞.

Appendix

We give here an overview of some auxiliary results needed in this article. The Barbour-
Brown theorem, which we make vital use of in our main proofs, is stated in Section A.1,
along with a slight improvement for a special case, needed for Proposition 1.B. Sec-
tions A.2 to A.5 deal with additional proofs and technical details that were left out in
the main text for better readability.

A.1 Theorems obtained by Stein’s method

Let Θ be any finite non-empty index set, and (Ik)k∈Θ a sequence of indicator random
variables with a local dependence property, that is for every k ∈ Θ the set Θk :=
Θ \ {k} can be partitioned as Θk = Θs

k

.∪ Θw
k into a set Θs

k of indices l, for which Il
depends “strongly” on Ik, and a set Θw

k of indices l, for which Il depends “weakly”
on Ik. Herein, the terms “strongly” and “weakly” are not meant as a restriction to
the partition of Θk, but serve only illustrative purposes. The same holds true for
the term “local dependence”, which does not have to possess any representation in
the spatial structure of Θ (though it always does in our applications). We now write
Zk :=

∑
l∈Θs

k
Il, Z̃k := Zk + Ik, qk := EIk for every k ∈ Θ, and set W :=

∑
k∈Θ Ik and

λ := EW =
∑

k∈Θ qk. To exclude a trivial case, assume that λ > 0. Furthermore, we
choose arbitrary points (αk)k∈Θ in any desired complete, separable metric space (X , d0)
with d0 ≤ 1 and set Ξ :=

∑
k∈Θ Ikδαk , λ :=

∑
k∈Θ qkδαk .

By applying a natural generalization of the Stein-Chen method, the following result
is obtained (cf. Barbour, Holst and Janson (1992), Theorem 10.F).

Theorem A.A (Barbour and Brown (1992)). With the above definitions, we have

d2
(
L(Ξ),Po(λ)

)
≤M1(λ)

∑

k∈Θ

(
qkEZ̃k + E(IkZk)

)
+M2(λ)

∑

k∈Θ
ek,

where

M1(λ) = 1 ∧
[ 2
λ

(
1 + 2 log+

(λ

2

))]
, M2(λ) = 1 ∧

[
1.65

1√
λ

]
,

and
ek = E

∣∣E
(
Ik

∣∣ (Il ; l ∈ Θw
k )
)
− qk

∣∣ = 2 max
B∈σ(Il ; l∈Θ

w
k
)

∣∣cov(Ik, 1B)
∣∣.

Remark A.B. Note that the upper bound in Theorem A.A depends neither on the
points αk, k ∈ Θ, nor on the specific choice of the metric d0, as long as it is bounded
by 1.
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In Brown, Weinberg and Xia (2000), a method was proposed to dispose of the factor
log+(λ/2) at some cost (compare also Brown and Xia (2001), Section 5, where the
estimates needed were considerably simplified). Since this requires a more specialized
treatment of the terms obtained in the upper bound, and since the logarithm above is
negligible for almost all practical purposes, we do not pursue this method here much
further. We only give an adaptation of Proposition 4.1 from Brown, Weinberg and
Xia (2000), which is needed for the proof of Proposition 1.B, where a logarithmic term
would be slightly annoying.

Proposition A.C. Suppose that (Ik)k∈Θ is an independent sequence of indicators, and
set qk := EIk, Ξ :=

∑
k Ikδαk , λ :=

∑
k qkδαk , and λ :=

∑
k qk > 0 as above. Then

d2
(
L(Ξ),Po(λ)

)
≤ 8.45

λ

∑

k∈Θ
q2k ≤ 8.45max

k∈Θ
qk.

Proof. Suppose that λ > 10. By applying Theorem 3.1 from Brown, Weinberg and
Xia (2000) in the same way as the authors did to obtain the first inequality of Propo-
sition 4.1, we get

d2(L(Ξ),Po(λ)) ≤
∑

k∈Θ
q2k

(5.65
λ

+
1.65

λ1.5
+

0.5

λ2
+

2

λ− qk

)
.

Note that this estimate does not need any requirements on the underlying space (i.e.
the positions of the points αk and the metric d0), or on the individual qk, and the only
requirement on λ is that λ > qk for every k. Using qk ≤ 1 < λ/10 for the last term, we
thus obtain

d2(L(Ξ),Po(λ)) ≤
8.45

λ

∑

k∈Θ
q2k.

For λ ≤ 10 we simply use Theorem A.A with Θs
k = ∅ and Θw

k = Θk to obtain

d2(L(Ξ),Po(λ)) ≤M1(λ)
∑

k∈Θ
q2k ≤

8.45

λ

∑

k∈Θ
q2k.

A.2 Proof of Proposition 1.B

We use the notation and some results from Section 2. Let n ∈ N be fixed, and let
∑ξ(Rd+)

i=1 δSi be a representation of ξ with σ(ξ)-measurable random elements S1, S2, . . .
numbered in such a way that all the points in κ−1n (K) come first. Let (Xi)i∈N, (Yi)i∈N be
sequences of random variables such that, given ξ and πn, the Xi are independent indi-
cators with expectations πn(Si), and the Yi are independent and Po(πn(Si))-distributed
(i.e. the Xi are retention decisions as usual, and the Yi are “Poissonized” variants of
retention decisions). We have

d2
(
L(ξπnκ−1n |K),Cox(Λ|K)

)

≤ d2
(
L(ξπnκ−1n |K),Cox(Λn|K)

)
+ d2

(
Cox(Λn|K),Cox(Λ|K)

)
.
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Choosing an arbitrary Cox(Λn)-distributed point process ηn, the first term is esti-
mated as

d2
(
L(ξπnκ−1n |K),Cox(Λn|K)

)

≤ E
(
sup
f∈F2

∣∣E
(
f(ξπnκ

−1
n |K)− f(ηn|K)

∣∣ ξ, πn

)∣∣
)

= E
(
d2

(
L
(∑ξκ−1n (K)

i=1 Xiδκn(Si)
∣∣ ξ, πn

)
,L

(∑ξκ−1n (K)
i=1 Yiδκn(Si)

∣∣ ξ, πn

)))

≤ 8.45E
(

sup
s∈κ−1n (K)

πn(s)
)
,

(A.1)

where for the last line we used the fact that, given ξ and πn, each of the sequences (Xi)
and (Yi) is independent, so that we can apply Proposition A.C.

For the second term, we just use an upper bound for the d2-distance between two
general Cox processes. Let Λ and M be arbitrary finite random measures on K, and
write Φ(λ, µ) := d2

(
Po(λ),Po(µ)

)
for finite measures λ, µ on K. Then, by conditioning

on Λ and M,
d2
(
Cox(Λ),Cox(M)

)
≤ E

(
Φ(Λ,M)

)
. (A.2)

Inequality (2.8) in Brown and Xia (1995) tells us that

Φ(λ, µ) ≤ (1− e−min(λ(K),µ(K)))dW
(

λ
λ(K) ,

µ
µ(K)

)
+min

(
1, 1.65√

λ(K)
, 1.65√

µ(K)

)
|λ(K)−µ(K)|

(A.3)
(note that the first d1 in Inequality (2.8) should be d2; also, there is no formal difference
between the two measures in Inequality (2.8), so they can be exchanged in the upper
bound). Combining of the estimates (A.1), (A.2), and (A.3) yields the desired result.

A.3 Locally evaluable random fields

In Section 2, the notion of a locally evaluable random field was introduced. Essentially,
any measurable random field which owes its measurability to some local feature (such
as continuity of paths) has this property. In what follows we show local evaluability for
two important classes of random fields. We first give the corresponding definitions.

Definition. Let f : Rd
+ → [0, 1] be a function, and π := (π(·, s); s ∈ Rd

+) a [0, 1]-valued
random fields on Rd

+.

(a) Let A ⊂ Rd
+ be a closed convex cone, that is a closed convex set for which v ∈ A

implies αv ∈ A for every α ∈ R+. We call f continuous from A at a point s ∈ Rd
+

if limn→∞ f(sn) = f(s) for any sequence (sn) in s+A with sn → s (n→∞). We
call f continuous from A if it is continuous from A at every point.

(b) We say f is lower semicontinuous at a point s ∈ Rd
+ if lim infn→∞ f(sn) ≥ f(s)

for every sequence (sn) in Rd
+ with sn → s (n → ∞). We say f is upper semi-

continuous at s if −f is lower semicontinuous at s. Furthermore f is called lower
[resp. upper] semicontinuous if it is lower [resp. upper] semicontinuous at every
point.
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(c) Let C be a class of subsets of R. We call π separable for C if there exists a countable
set Σ ⊂ Rd

+, and a fixed set N ∈ F with P(N) = 0, such that for any set C ∈ C
and for any rectangle R that is open in Rd

+, we have

{
ω ∈ Ω; π(ω, s) ∈ C, s ∈ R

}
∆
{
ω ∈ Ω; π(ω, s) ∈ C, s ∈ R ∩ Σ

}
⊂ N.

In this case we call Σ a separant for π. We call π fully separable for C and accord-
ingly Σ a full separant for π if the above property holds with N = ∅. Accordingly,
every separable random field π can be made fully separable by adjustment on
a set of probability zero. Note that such an adjustment does not change the
distribution of the thinning ξπ.

Proposition A.D. The random field π := (π(·, s); s ∈ Rd
+) is locally evaluable under

each of the following conditions:

(a) There is a closed convex cone A ⊂ Rd
+ of positive volume, such that the paths

π(ω, ·) are all continuous from A;

(b) the paths π(ω, ·) are all lower semicontinuous, and π is fully separable with respect
to the class {(y,∞); y ∈ R};

(c) the paths π(ω, ·) are all upper semicontinuous, and π is fully separable with respect
to the class {(−∞, y); y ∈ R}.

Remark A.E. A special case of a random field with all upper semicontinuous paths is
the indicator of a random closed set (RACS) F . It is straightforward to see that such
an indicator is separable with respect to the class {(−∞, y); y ∈ R}, if and only if F
is a separable RACS, meaning that there is a countable, dense subset Σ of Rd

+ such
that F = F ∩ Σ a.s. Hence Proposition A.D guarantees us, if π(ω, s) := 1F (ω)(s) for
a separable RACS F , that by adjusting π on a null set, we obtain a locally evaluable
random field. For more details on the relationship between indicator random fields and
RACS see Matheron (1975), Section 2-4.

Proof of Proposition A.D. (a) Take d linearly independent vectors v1, v2, . . . , vd ∈ A
of unit length, and let E := {∑d

i=1 αivi; αi ∈ (0, 1]} be the half-open paral-

lelepiped spanned by these vectors. Define the lattice L(N) := {2−N
∑d

i=1 kivi ;

ki ∈ Z}, and denote by E
(N)
v the shifted copy of 2−NE with the maximal corner

in v ∈ L(N) (i.e. of all the corners 2−N
∑d

i=1 kivi of E
(N)
v the corner v maximizes

the coefficients k1, . . . , kd). Note that {E(N)
v ; v ∈ L(N)} is, for any N , a partition

of Rd. We may now, for any open set R ⊂ Rd
+, approximate π∗R by the random

fields πN given as

πN (ω, s) :=
∑

v∈L(N)∩R
π(ω, v)1

E
(N)
v

(s)

for every ω ∈ Ω and every s ∈ R. It is easy to see that πN is (σ(π|R) ⊗ BR)-
measurable. Furthermore, πN converges pointwise to π∗R for N →∞, because for
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any (ω, s), the sequence (πN (ω, s))N has (with the possible exception of the first
finitely many elements) the same values as (π(ω, sN ))N , where sN are defined via

the condition s ∈ E
(N)
sN for every N ∈ N, such that sN → s from the cone A.

Hence, π∗R is (σ(π|R)⊗ BR)-measurable, which completes the proof of part (a).

(b) We show that (π∗R)
−1((y,∞)) ∈ σ(π|R)⊗ BR for any rectangle R that is open in

Rd
+ and for any y ∈ [0, 1). Since π is pathwise lower continuous, we get for all

ω ∈ Ω that (π(ω, ·))−1((y,∞)) ∩ R is open. Let Σ be a full separant for π, and
set G := {(a, b) ⊂ R; a, b ∈ Qd, a < b}. We then can write

(π∗R)
−1((y,∞)) =

⋃

G∈G

⋂

s∈G∩Σ
(π(·, s))−1((y,∞))×G

for any y ∈ [0, 1), which lies in σ(π|R)⊗BR, because the union and the intersection
are countable.

(c) Apply (b) to 1− π.

A.4 Thinnings are determined locally

We show here that “local conditioning” is enough to determine the “local distribution”
of the thinnings, a result which is required for the estimation of the ekr-terms in both
Section 3 and Section 4. For any set A ⊂ Rd

+ write

N(A) := σ
({
{% ∈ N ; %(B) = l} ; B ∈ BA, l ∈ Z+

})
.

We then obtain

Lemma A.F. Suppose that ξ is a point process on Rd
+.

(i) For the π-thinning:
Let π be a locally evaluable [0, 1]-valued random field on Rd

+. Then we have for
any bounded open set A ⊂ Rd

+, and for any D ∈ N(A), that

P
[
ξπ ∈ D

∣∣ ξ, π
]
= P

[
ξπ ∈ D

∣∣ ξ|A, π|A
]

a.s.

(ii) For the Q-thinning:
Let (Qu)u∈N be an admissible sequence of retention kernels which satisfy Assump-
tion 3 from Section 4. Then we have for any bounded measurable set A ⊂ Rd

+,
and for any D ∈ N(A), that

P
[
ξQ ∈ D

∣∣ ξ
]
= P

[
ξQ ∈ D

∣∣ ξ|H(t̃n)(A)

]
a.s.,

where H(t̃n)(A) := {s ∈ Rd
+; ∃s′ ∈ A s.t. |s′ − s| ≤ t̃n} denotes the t̃n-halo set

for A.
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Proof. We only prove (i), since the proof of (ii) is very similar, requiring only a few and
very obvious changes in notation. Let A ⊂ Rd

+ be bounded and open, and let D ∈ N(A).
We show that P(ξ,π)(D), the version of P

[
ξπ ∈ D

∣∣ ξ, π
]
used for the π-thinning definition

in Section 2, is σ(ξ|A, π|A)-measurable, whence the statement follows.
Let k ∈ N, B1, . . . Bk ∈ BA be pairwise disjoint, and l1, . . . , lk ∈ Z+. Choose

a representation
∑ξ(A)

i=1 δS′i of ξ|A with σ(ξ|A)-measurable random elements S ′1, S
′
2, . . .,

numbered “Bi-wise” (first all points in B1, then all points in B2, a.s.o., until Bk). Any

such representation can easily be extended to a representation
∑ξ(Rd+)

i=1 δSi of ξ with
σ(ξ)-measurable random elements S1, S2, . . ., numbered “Bi-wise”. We then have for
D = {σ ∈ N ;σ(B1) = l1, . . . , σ(Bk) = lk}, setting Vj :=

∑j
i=1 ξ(Bi) for j ∈ {0, 1, . . . , k}

and t0 := 0,

P(ξ,π)(D) =
∞∑

t1,...,tk=0
t1≤...≤tk

I
[
Vj = tj ; 1 ≤ j ≤ k

]
·

∑

e1,...,etk∈{0,1}
I
[∑tj

i=tj−1+1ei = lj ; 1 ≤ j ≤ k
] tk∏

i=1

π(Si)
ei
(
1− π(Si)

)1−ei ,

which by π(Si) ≡ π|A(S′i), and the local evaluability of π, is obviously σ(ξ|A, π|A)-
measurable (note that the measurability property required for local evaluability ex-
tends easily to arbitrary bounded open sets, instead of only bounded open rectan-
gles). Since any set of the form D = {σ ∈ N ;σ(B̃1) = l1, . . . , σ(B̃k) = lk} with
arbitrary B̃1, . . . B̃k ∈ BA can be written as a finite disjoint union of sets of the form
{σ ∈ N ;σ(B1) = l1, . . . , σ(Bk) = lk} with pairwise disjoint B1, . . . Bk ∈ BA, we obtain
immediately the σ(ξ|A, π|A)-measurability of P(ξ,π)(D) for sets D of this new form. The
measurability for general D is now obtained by a standard extension argument.

A.5 Simplification for the retention kernels in the Q-thinning (Proof
of Remark 4.A)

We use the notation from Section 4. Let (fi)i∈N be a sequence of N-Bd
+-measurable

functions, and suppose that Qu

(
(f1(σ), . . . , fu(σ);σ), A

)
is defined for every σ ∈ N ,

every A ⊂ {0, 1}u, and every u ∈ N, subject to the same conditions as in Remark 4.A.
For u ∈ N and (s1, s2, . . . , su;σ) ∈ Du, choose pairwise different i1, i2, . . . , iu ∈ N with
fij (σ) = sj , 1 ≤ j ≤ u, and let ū := max{ij ; 1 ≤ j ≤ n}. By Properties (a) and (b)

it is clear that if an extension Q̃u of Qu with the required features exists, it must have
the form

Q̃u

(
(s1, . . . , su;σ), A

)
= Qū

(
(f1(σ), . . . , fū(σ);σ), T2(A× {0, 1}ū−u)

)
,

where A ⊂ {0, 1}u and T2 : {0, 1}ū → {0, 1}ū is the transformation that belongs (in
the sense of Property (a) from the Q-thinning definition) to an arbitrary permutation
τ on {1, 2, . . . , ū} with τ(ij) := j for 1 ≤ j ≤ u. It is easy to see, that the Q̃u are
well-defined, extend the Qu, and satisfy Properties (a) and (b) from the Q-thinning

199



definition. In order to obtain the measurability in the first argument, note that for any
A ⊂ {0, 1}u and any measurable B ⊂ [0, 1],

(
Q̃u(·, A)

)−1
(B) =

⋃

i1,...,iu∈N
ij 6=ik for j 6=k

{(
fi1(σ), . . . , fiu(σ);σ

)
; σ ∈ ϕ−1i1,...,iu

(B)
}
,

where ϕi1,...,iu(σ) := Q̃u

(
(fi1(σ), . . . , fiu(σ);σ), A

)
for every σ ∈ N . By the definition of

the Q̃u, and the measurability requirement on the Qu, it follows that ϕ−1i1,...,iu
(B) ∈ N.

Hence the above set is a countable union of graphs of N-(Bd
+)

u-measurable functions
each of which is intersected by a (Bd

+)
u ⊗N-measurable set. Thus

(
Q̃u(·, A)

)−1
(B) ∈

(Bd
+)

u ⊗N, which completes the proof.
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