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Abstract

Let B be a Brownian motion in Rd, d = 2, 3. A time t ∈ [0, 1] is called a cut time for B[0, 1]
if B[0, t)∩B(t, 1] = ∅. We show that the Hausdorff dimension of the set of cut times equals 1−ζ,
where ζ = ζd is the intersection exponent. The theorem, combined with known estimates on ζ3,
shows that the percolation dimension of Brownian motion (the minimal Hausdorff dimension of
a subpath of a Brownian path) is strictly greater than one in R3.

1 Introduction

Let Bt = B(t) denote a Brownian moton taking values in Rd, (d = 2, 3). A time t ∈ [0, 1] is called
a cut time for B[0, 1] if

B[0, t) ∩B(t, 1] = ∅.

We call B(t) a cut point for B[0, 1] if t is a cut time. Let L denote the set of cut times for B[0, 1].
Dvoretkty, Erdős, and Kakutani [8] showed that for each t ∈ (0, 1),

P{t ∈ L} = 0.

However, Burdzy [1] has shown that nontrivial cut points exists, i.e., with probability oneL∩(0, 1) 6=
∅. In this paper we give another proof of the existence of cut points and compute the Hausdorff
dimension of L in terms of a particular exponent, called the intersection exponent.

The intersection exponent is defined as follows. Let B1, B2 be independent Brownian motions
in Rd (d < 4) starting at distinct points x, y with |x| = |y| = 1. For each n ≥ 1, let

T in = inf{t : |Bi(t)| = n}.

Then the intersection exponent is the number ζ = ζd such that as n→∞,

P{B1[0, T 1
n] ∩ B[0, T 2

n] = ∅} ≈ n−2ζ , (1)
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where ≈ denotes that the logarithms of the two sides are asymptotic as n→∞. It is not difficult
[12, Chapter 5] to show that such a ζ exists. This exponent is also the intersection exponent for
random walks with mean zero and finite variance [3, 6]. Sometimes the exponent ξ = 2ζ is called
the intersection exponent. The exact value of ζ is not known. The best rigorous bounds are [4]

1

2
+

1

8π
≤ ζ < 3

4
, d = 2,

1

4
≤ ζ < 1

2
, d = 3.

Duplantier and Kwon [7] have conjectured using nonrigorous conformal field theory that ζ = 5/8
in two dimensions. This is consistent with Monte Carlo simulations [5, 16] and simulations suggest
that .28 ≤ ζ ≤ .29 in three dimensions. The purpose of this paper is to prove the following theorem.
We let dimh denote Hausdorff dimension.

Theorem 1.1 If B is a Brownian motion in Rd, d = 2, 3 and L is the set of cut times of B[0, 1],
then with probability one,

dimh(L) = 1− ζ,

where ζ = ζd is the intersection exponent.

Although the theorem is stated for dimensions 2 and 3, it is actually true in all dimensions. If
d ≥ 4 [8] the probability on the left hand side of (1) equals 1 for all n. Hence we can say that the
intersection exponent ζd = 0 for d ≥ 4. But, with probability one, L = [0, 1] for d ≥ 4, and hence
dimh(L) = 1. If d = 1, cut times must be points of increase or points of decrease. It is known
[9] that with probability one, one dimensional Brownian motion has no points of increase. Hence
L = ∅. But, it is easy to check that the intersection exponent, as defined in (1) equals one for
d = 1.

Define the set of global cut times to be

LG = {t : B[0, t) ∩B(t,∞) = ∅}.

In two dimensions, with probability one, LG = {0}. In three dimensions, there are nontrivial global
cut times. As part of the proof of Theorem 1.1 we prove that with probability one

dimh(LG) = 1− ζ, d = 3.

The set of local cut times can be defined by

Lloc = {t ∈ [0, 1] : there exists ε > 0 with B[t− ε, t) ∩B(t, t+ ε] = ∅}.

Then

Lloc =
∞⋃
n=1

Ln,

where

Ln = {t ∈ [0, 1] : B[t− 1

n
, t) ∩B(t, t+

1

n
] = ∅}.
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It follows from Theorem 1.1 that dimh(Ln) = 1− ζ for each n. Hence, with probability one,

dimh(Lloc) = 1− ζ.

Let
B(L) = {B(t) : t ∈ L}

denote the set of cut points on B[0, 1]. It is well known [11, 17] that Brownian motion doubles the
Hausdorff dimension of sets in [0, 1]. Therefore, it follows from the theorem that with probability
one,

dimh[B(L)] = 2(1− ζ).
As in [2], we can define the percolation dimension of Brownian motion to be the infimum of all
numbers a such that there exists a continuous curve γ : [0, 1] → Rd with γ(0) = 0, γ(1) = B(1),
γ[0, 1]⊂ B[0, 1], and such that the Hausdorff dimension of γ[0, 1] equals a. It is easy to check that
for any such γ,

B(L) ⊂ γ[0, 1].

Using the fact that ζ3 < 1/2, we have the following corollary.

Corollary 1.2 The percolation dimension of Brownian motion is greater than or equal to 2(1−ζ).
In particular, the percolation dimension of three dimensional Brownian motion is strictly greater
than 1.

The main techinical tool in proving Theorem 1.1 is an improvement of the estimate (1). As
before, let B1, B2 be independent Brownian motions in Rd and let

T in = inf{t : |Bi(t)| = n}.

Let
an = sup

|x|,|y|=1
Px,y{B1[0, T 1

n] ∩B2[0, T 2
n] = ∅},

where Px,y denotes probabilities assuming B1(0) = x, B2(0) = y. Let

bn = P0,0{B1[1, n]∩ B2[0, n] = ∅}.

We prove in Section 3 that there exist constants 0 < c3 < c4 <∞ such that

c3n
−2ζ ≤ an ≤ c4n

−2ζ , (2)

c3n
−ζ ≤ bn ≤ c4n

−ζ (3)

A somewhat different proof of (2) for d = 2 can be found in [15]; this proof generalizes to the case of
multiple intersections. However, since we need (2) for d = 3 as well as d = 2, we include a complete
proof in this paper. A similar argument has been used in [14] to relate the Hausdorff dimension
of the frontier or outer boundary of planar Brownian motion to a “disconnection exponent.” The
analogous result for simple random walk can be found in [13].

For 1 ≤ k ≤ 2n, we let A(k, n) be the event

A(k, n) = {B[0,
k − 1

2n
] ∩B[

k

2n
, 1] = ∅, }
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and let

Jn = #{k :
1

4
2n ≤ k ≤ 3

4
2n, A(k, n) holds }.

It follows from (3) that
E(Jn) ≥ c1(2n)1−ζ.

(Here and throughout this paper we use c, c1, c2, . . . for arbitrary positive constants. The values of
c, c1, c2 may vary from place to place, but the values of c3, c4, . . . will not change.) We can also use
(3) to estimate higher moments. In particular,

E(J2
n) ≤ c2(2n)2(1−ζ).

Hence, by a standard argument, we get that Jn ≥ c(2n)1−ζ with some positive probability, inde-
pendent of n. This gives a good indication that the Hausdorff dimension of L should be 1− ζ, and
with this bound standard techniques can be applied to establish the result.

In the next section we will give the proof of Theorem 1.1, saving the proofs of the key estimates
for the final two sections. In Section 3, we prove the estimates (2) and (3) and in the final section
we establish the bound on E(J2

n).
This research was done while the author was visiting the University of British Columbia. I

would like to thank Ed Perkins for some useful remarks about Hausdorff dimension.

2 Proof of Main Theorem

In this section we prove Theorem 1.1, delaying the proofs of some of the estimates to the next
sections. We will not need to know the exact value of ζ, but we will use the fact that

ζ ∈ [
1

4
,
3

4
].

The upper bound on the Hausdorff dimension is fairly straightforward using (3). Let

Kn = #{k : 1 ≤ k ≤ 2n : A(k, n) holds },

where, as before,

A(k, n) = {B[0,
k − 1

2n
] ∩B[

k

2n
, 1] = ∅}.

By (3),
E(Kn) ≤ c5(2n)1−ζ .

If ε > 0, Markov’s inequality gives

P{Kn ≥ (2n)1−ζ+ε} ≤ c5(2n)−ε,

and hence by the Borel-Cantelli Lemma,

P{Kn ≥ (2n)1−ζ+ε i. o.} = 0.

But if Kn ≤ (2n)1−ζ+ε for all sufficiently large n, L can be covered by (2n)1−ζ+ε intervals of length
(2n)−1. By standard arguments, this implies dimh(L) ≤ 1− ζ+ ε. Since this holds with probability
one for all ε > 0,

P{dimh(L) ≤ 1− ζ} = 1.
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The lower bound is the difficult result. We will need the following standard criterion for es-
timating the Hausdorff dimension of a subset of [0, 1] (see [10] for relevant facts about Hausdorff
dimension).

Lemma 2.1 [10, Theorem 4.13] Suppose X ⊂ [0, 1] is a closed set and let µ be a positive measure
supported on X with µ(X) > 0. Let the β-energy, Iβ(µ), be defined by

Iβ(µ) =

∫ 1

0

∫ 1

0
|s− t|−β dµ(s) dµ(t).

If Iβ(µ) <∞, then
dimh(X) ≥ β.

We will start by showing that there is a positive probability that dimh(L) = 1 − ζ. More
precisely, we prove the following. Let B(x, r) denote the open ball of radius r in Rd.

Proposition 2.2 There exist a c6 > 0 such that

P{dimh(L∩ [
1

4
,
3

4
]) = 1− ζ;B[0,

1

4
] ⊂ B(0,

1

2
); |B(1)| ≥ 1} ≥ c6.

Consider Jn and A(k, n) as defined in the previous section. Then by (3), there exsits a c > 0
such that

E(Jn) ≥ c(2n)1−ζ.

If we let

Ã(k, n) = A(k, n) ∩ {B[0,
1

4
] ⊂ B(0,

1

2
); |B(1)| ≥ 1},

and

J̃n = #{k :
1

4
2n < k ≤ 3

4
2n, Ã(k, n) holds },

then a similar argument (see Lemma 3.17) shows that there is a constant c7 > 0 such that

E(J̃n) ≥ c7(2n)1−ζ. (4)

We will need estimates on higher moments of Jn. We prove the following in Section 4.

Lemma 2.3 There exists a c8 <∞ such that if 2n−2 ≤ j ≤ k ≤ 3 · 2n−2,

P[A(j, n)∩ A(k, n)] ≤ c8(2n)−ζ(k − j + 1)−ζ , (5)

and hence
E(J2

n) ≤ c(2n)2(1−ζ). (6)

Standard arguments now can be used to show that (4) and (6) imply that there exists a c9 > 0
such that for each n,

P{J̃n ≥ c9(2n)1−ζ} ≥ c9, (7)

and hence
P{J̃n ≥ c9(2n)1−ζ i.o.} ≥ c9. (8)
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Let µn be the (random) measure whose density, with respect to Lebesgue measure, is (2n)ζ

on each interval [(k − 1)2−n, k2−n] with 2n−2 < k ≤ 3 · 2n−2 such that Ã(k, n) holds and assigns
measure zero elsewhere. It is easy to check that supp(µn+1) ⊂ supp(µn) and, with probability one,

∞⋂
n=1

supp(µn) ⊂ L ∩ [
1

4
,
3

4
].

Also, µn is the zero measure on the complement of the event

{B[0,
1

4
] ⊂ B(0,

1

2
), |B(1)| ≥ 1}.

By (8), with probability at least c9, we can find a subsequence µni such that

µni([0, 1])≥ c9. (9)

This shows that L ∩ [ 1
4 ,

3
4 ] is nonempty with positive probability.

Let β = 1− ζ − ε with ε > 0 and let Iβ(µn) denote the β-energy of µn as described in Lemma
2.1. Then, by (5),

E[Iβ(µn)] =
∑

22ζn[
∫ j2−n

(j−1)2−n

∫ k2−n

(k−1)2−n
(s− t)−β ds dt]P[A(j, n)∩A(k, n)]

≤ uβ
∑

22ζn[2(β−2)n(|k − j|+ 1)−β]2−nζ(|k − j|+ 1)−ζ

≤ uβ
∑

2−n2−εn(|k − j|+ 1)ε−1

≤ uβ .

Here the sums are over all 2n−2 < j, k ≤ 3 · 2n−2 and uβ is a positive constant, depending on β,
whose value may change from line to line. In particular,

P{Iβ(µn) ≥ 2uβ/c9} ≤
1

2
c9.

Therefore, using (8),

P{µn([
1

4
,
3

4
]) ≥ c9; Iβ(µn) ≤ 2uβ/c9 i.o.} ≥ 1

2
c9.

On the event above, let µ be any weak limit of the µn. Then it is easy to verify that µ is supported
on L ∩ [1/4, 3/4]; µ(L) ≥ c9; and Iβ(µ) ≤ 2uβ/c9. By Lemma 2.1, we can conclude that

P{dimh(L∩ [
1

4
,
3

4
]) ≥ 1− ζ − ε;B[0,

1

4
] ⊂ B(0,

1

2
), |B(1)| ≥ 1} ≥ c9

2
.

Since this holds for every ε > 0,

P{dimh(L∩ [
1

4
,
3

4
]) ≥ 1− ζ;B[0,

1

4
] ⊂ B(0,

1

2
), |B(1)| ≥ 1} ≥ c9

2
.

This gives Proposition 2.2.
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If d = 3, let LG be the set of global cut times,

LG = {t : B[0, t) ∩B(t,∞) = ∅}.

It follows immediately from Proposition 2.2 and the transience of Brownian motion, that

P{dimh(LG ∩ [0, 1]) = 1− ζ} > 0.

However, scaling tells us that
P{dimh(LG ∩ [0, t]) = 1− ζ},

is independent of t. It is not difficult to see that the only way this happens is if

P{dimh(LG ∩ [0, 1]) = 1− ζ} = 1.

We now finish the proof of Theorem 1.1 for d = 2. Assume d = 2 and let Lt = L∩ [0, t] and for
t ≤ s ≤ 1,

Lt(s) = {r : B[0, r) ∩B(r, s] = ∅} ∩ [0, t].

Note that Lt = Lt(1). Let Wt(s) be the event

Wt(s) = {dimh(Lt(s)) = 1− ζ},

and Us the event

Us =
∞⋂
n=1

W1/n(s).

For any t < s < 1,
Wt(s) \Wt(1) ⊂ {B[0, t] ∩ B[s, 1] = ∅}.

For fixed s > 0, the probability of the event on the right goes to zero as t → 0. Hence for every
s > 0,

P(Us \ U1) = 0,

i.e., the sets agree up to an event of probability zero. If

U =
∞⋃
n=1

U1/n,

then it easy easy to see from the Blumenthal 0-1 Law that P(U) must be 0 or 1. Since P(U) =
P(U1), U1 satisfies a 0-1 Law, and hence it suffices to prove that P(U1) > 0.

Let

Vn = {dimh(L∩ [
1

4
2−n,

3

4
2−n]) = 1− ζ}.

By Proposition 2.2 and a standard estimate, there is a c10 > 0 such that

P(Vn) ≥ c10

n
.

However, the straightforward estimate

P{B[0, 1]∩B[3, n] = ∅} ≤ c

lnn
,
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allows us to conclude, for m < n− 3,

P(Vn ∩ Vm) ≤ P{B[0,
1

4
2−n] ∩ [

3

4
2−n,

1

8
2−m] = ∅,

B[
1

8
2−m,

1

4
2−m] ∩ B[

3

4
2−m, 1] = ∅}

≤ c

m(n−m)
.

Let

Zn =
n∑
j=1

I(Vj),

where again I denotes indicator function. The estimates above allow us to conclude that there are
constants c11 and c12 such that

E(Zn) ≥ c11 lnn, E(Z2
n) ≤ c12(lnn)2,

so we may conclude again using standard arguments that

P(U1) ≥ P{Vn i.o} > 0.

This finishes the proof of the theorem.

3 Estimate for Intersection Probabilities

The goal of this section is to proof the estimates (2) and (3). Let B1, B2 be independent Brownian
motions in Rd, d = 2, 3. Let

T in = inf{t : |Bi(t)| = n},

and let An be the event
An = {B1[0, T 1

n] ∩B2[0, T 2
n] = ∅}.

Let
an = sup

|x|,|y|=1
Px,y(An),

where Px,y denotes probabilities assuming B1(0) = x, B2(0) = y. If d = 2, it can be shown [6]
that the supremum is taken on when |x− y| = 2, but we will not use that fact here. Scaling and
rotational invariance imply that

anm ≤ anam,

and hence by standard arguments, using the subadditivity of log a2n, there exists a ζ > 0 such that

an ≈ n−2ζ ,

and, in fact, an ≥ n−2ζ for all n. The exact value of ζ is not known; for this section, it will suffice
to know the bounds

ζ2 ∈ (
1

2
,
3

4
), ζ3 ∈ [

1

4
,
1

2
).
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The lower bound in (2) follows from submultiplicativity. To get a bound in the other direction, it
suffices to show that there is a constant c > 0 such that for all n,m,

anm ≥ canam. (10)

(One can check this by noting that (10) implies that bn = loga2n + log c is superadditive.) As
before, we let B(x, r) denote the open ball of radius r about x in Rd.

Lemma 3.1 There exists a c13 > 0 such that for all n,

an+1 ≥ c13an.

Proof. Let Vn be the event

Vn = {B1[0, T 1
n] ∩ B(B2(T 2

n), 5) = ∅, B2[0, T 2
n] ∩ B(B1(T 1

n), 5) = ∅}.

¿From the Harnack principle and rotational symmetry of Brownian motion, we can see that for any
|x|, |y| ≤ n/2,

Px,y(V cn) ≤ cn1−d.

Hence, if |x|, |y| = 1,

Px,y(V c
n ∩ An) ≤ Px,y(An/2)Px,y(V cn | An/2) ≤ cn−2

(the last inequality follows for d = 2, since ζ2 > 1/2). Since ζ < 1, this implies for all n sufficiently
large,

sup
|x|,|y|=1

Px,y(An ∩ Vn) ≥ 1

2
an.

It is easy to see that a Brownian motion starting on the sphere of radius n has a positive probability
(independent of n) of reaching the sphere of radius n + 1 while remaining within distance 2 of its
starting point. Hence there is a constant c > 0 such that for all |x|, |y|= 1,

Px,y(An+1 | An ∩ Vn) ≥ c. 2

Lemma 3.2 There exists a c14 > 0 such that for all n and all |x|, |y|= 1,

Px,y(An) ≤ c14|x− y|1/8an.

Proof. For any x, y with |x| = 1, |x− y| ≤ 1, let

τ i = inf{t : |Bi(t)− x| = 1}.

Since ζ ≥ 1/4, there exists a c > 0 such that

Px,y{B1[0, τ1] ∩B2[0, τ2] = ∅} ≤ c|x− y|1/8.

Hence by the strong Markov property,

Px,y(An) ≤ Px,y{B1[0, τ1] ∩ B2[0, τ2] = ∅}
Px,y(B1[τ1, T 1

n] ∩ B2[τ2, T 2
n] = ∅ | B1[0, τ1] ∩B2[0, τ2] = ∅}

≤ c|x− y|1/8an−1.

The result then follows from Lemma 3.1. 2
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Lemma 3.3 For every ε > 0, let

U in = U in(ε) = {Bi[0, T in] ∩ B(0, 1) ⊂ B(Bi(0), ε)},

There exists a constant c15 > 0 such that for every ε > 0

sup
|x|,|y|=1

Px,y(An ∩ U1
n) ≥ c15εan.

Proof. Without loss of generality we assume ε ≤ 1/10, n ≥ 2. By the previous lemma, there
exists a δ > 0 such that if |x|, |y| ≤ 1, |x− y| ≤ δ,

Px,y(An) ≤ 1

2
an.

Fix such a δ > 0. Fix n and choose some |x|, |y| = 1 that maximize Px,y(An). (It is easy to see
that f(x, y) = Px,y(An) is continuous and hence the maximum is obtained.) For ε > 0 let

ρ = ρε = inf{t : B1(t) ∈ B(0, 1) \ B(B1(0), ε)},

σ = σε = inf{t ≥ ρ : |B1(t)| = 1− ε},
τ = τε = inf{t ≥ ρ : |B1(t)| = 1}.

Note that there is an r > 0 (independent of ε < 1/10) such that

Px,y{σ < τ | ρ < T 1
n} ≥ r.

(This can be verified by noting that

P{|B(ρ)| ≤ 1− ε

2
; ρ < T 1

n} ≥ c,

and
P{σ < τ | |B(ρ)| ≤ 1− ε

2
, ρ < T 1

n} ≥ c.)

If a Brownian motion is on the sphere of radius 1 − ε, there is a probability of at least cε that it
reaches the sphere of radius 1/2 before leaving the ball of radius 1. By the Harnack principle, a
Brownian motion starting on the sphere of radius 1/2 has a positive probabilty, independent of the
starting point, of hitting the unit sphere first within distance δ of y (the probability depends on δ,
but we have fixed δ). Hence

Px,y{|B(τ)− y| < δ | ρ < T 1
n} ≥ cε.

Using the strong Markov property, we conclude

Px,y(An | ρ < T 1
n, σ < τ) ≤ (1− cε)an + cε(an/2).

But,
Px,y(An | ρ < T 1

n , σ ≥ τ) ≤ an,
and hence

Px,y(An; ρ < T 1
n) ≤ Px,y(An | ρ < T 1

n) ≤ (1− c15ε)an,

11



for appropriately chosen c15 > 0. Therefore,

Px,y(An; ρ > T 1
n) ≥ c15εan. 2

For any n, ε, consider the x, y with |x| = |y| = 1 that maximize

Px,y(U1
n ∩An).

It is intuitively obvious that the x, y that maximize this quantity are not very close to each other.
However, it takes some effort to prove this. Let |x| = 1 and let

Yn = sup
|y|=1

Px,y{B1[0, T 1
n] ∩B2[0, T 2

n] = ∅ | B1[0, T 1
n]}.

Lemma 3.4 For every M <∞ there exists a δ > 0 and a constant k <∞ such that

P{Yn ≥ n−δ} ≤ kn−M .

Proof. We only sketch the proof. We will consider Y n = Y2n. For j ≤ n, let

Rj = inf
|z|≤2j−1

Pz{B2[0, T 1
2j] ∩B1[T 1

2j−1, T
1
2j ] 6= ∅},

where Pz indicates that B2(0) = z and Rj is considered as a function of B1[0, T 1
2n]. It is easy to

show that
P{Rj = 0} = 0,

and hence for any ε > 0 there is a γ > 0 with

P{Rj ≤ γ} < ε.

Since R2, . . . , Rn are independent, identically distributed, standard large deviation estimates for
binomial random variables allow us to choose γ and k so that

P{Rj ≤ γ for at least n/2 values of j ≤ n} ≤ k(2n+1)−M .

But if Rj ≥ γ for at least n/2 values, then

Y n ≤ (1− γ)n/2 ≤ (2n)−δ,

for appropriately chosen δ. 2

Lemma 3.5 There exist a c16 > 0 and a c17 <∞ such that if Un = U1
n(ε) is defined as in Lemma

3.3,
sup

|x|=1,|y−x|≤10ε
Px,y(An ∩ U1

n) ≤ c17ε
1+c16an.
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Proof. Let
τ i = inf{t : |Bi(t)−B1(0)| = 1},

and let Ũ = Ũ(ε) be the event

Ũ = {B1[0, τ1] ∩ B(0, 1)⊂ B(B1(0), ε)}.

A standard estimate gives for |x| = 1,

c1ε ≤ Px(Ũ) ≤ c2ε.

Lemma 3.4 can be used to see that there is a c16 > 0 and a c <∞ such that for |y − x| ≤ 10ε,

Px,y{B1[0, τ1] ∩B2[0, τ2] = ∅ | Ũ} ≤ cεc16 ,

and hence
Px,y(Ũ ;B1[0, τ1] ∩ B2[0, τ2] = ∅) ≤ cε1+c16 .

By using the strong Markov property as in Lemma 3.2, we get the result. 2

Lemma 3.6 Let U in be as defined in Lemma 3.3. Then there exist an ε > 0 and a c18 > 0 such
that

sup
|x|,|y|=1,|x−y|≥10ε

Px,y(An ∩ U1
n ∩ U2

n) ≥ c18an.

Proof. Fix n and choose |x|, |y|= 1 that maximize Px,y(An ∩U1
n). By Lemmas 3.3 and 3.5 we

can find an ε so that |x− y| ≥ 10ε for all n. The proof then proceeds as in Lemma 3.3. 2

Now fix ε, c18 as in Lemma 3.6. For any λ < ε, let

W i
λ = {Bi[0, T in] ∩ B(B3−i(0), λ) = ∅}.

By Lemma 3.2 and the strong Markov property,

sup
|x|,|y|=1

Px,y(An ∩ (W i
λ)c) ≤ sup

|x−y|≤λ
Px,y(An) ≤ cλ1/8an.

Hence we can choose λ > 0 so that

sup
|x|,|y|=1,|x−y|≥10ε

Px,y[An ∩ U1
n ∩ U2

n ∩W 1
λ ∩W 2

λ ] ≥ 1

2
c18an.

We have therefore proved the following lemma.

Lemma 3.7 There exist positive constants c20, c21, c22 < 1/10, such that the following is true. For
any |x| = 1, let

Γi(x) = Γin(x, c20) = {Bi[0, T in] ∩ B(x, c20) = ∅},
Λi(x) = Λin(x, c21) = {Bi[0, T in] ∩ B(0, 1) ⊂ B(x, c21)}.

Then for every n, there exist |x|, |y|= 1 with |x− y| ≥ 10c20 such that

Px,y[An ∩ Γ1(y) ∩ Γ2(x) ∩ Λ1(x) ∩ Λ2(y)] ≥ c22an.

13



It is easy to verify, using standard estimates for the Poisson kernel of the ball, that there is a
c23 > 0 such that for |w − x| ≤ c20/2, |z − y| ≤ c20/2,

Pw,z[An ∩ Γ1(y) ∩ Γ2(x) ∩ Λ1(x) ∩ Λ2(y)] ≥ c23an,

where x, y are chosen as in Lemma 3.7

Corollary 3.8 There is a constant c24 > 0 such that for all n,

a2n ≥ c24an.

Proof. Let c20, c21, c22 be as above. It is easy to verify that there is a p > 0 such that if
|x|, |y| = 1, |x− y| ≥ 10c20; e1 is the unit vector whose first component equals 1; and B1 and B2

are independent Brownian motions starting at e1/2 and −e1/2 respectively, then

P{B1[0, T 1
1 ] ∩B2[0, T 2

1 ] = ∅;B1[0, T 1
1 ] ∩ B(y, c21) = ∅;B2[0, T 2

1 ] ∩ B(x, c21) = ∅;

|B1(T 1
1 )− x| ≤ c20/2; |B2(T 2

1 )− y| ≤ c20/2} ≥ p.
Then by combining this path with the paths mentioned above and scaling by a factor of 2 we see
that

Pe1,−e1(A2n) ≥ pc23an. 2

The choice of e1,−e1 in the proof above was arbitrary. In fact, the same idea can be used to
prove the following.

Corollary 3.9 For every δ > 0 there is an ε > 0 such that if |x|, |y|= 1, |x− y| ≥ δ,

Px,y(An) ≥ Px,y(A2n) ≥ εan.

We omit the proof of the next easy lemma.

Lemma 3.10 For every δ > 0 there is an ε > 0 such that for |x|, |y|= 1,

Px,y{Bi[0, T i2] ∩ B(B(T 3−i
2 ), ε) = ∅, i = 1, 2} ≥ 1− δ.

Let

Jn = Jn(ε) = {B1[0, T 1
n] ∩ B(B(T 2

n), εn) 6= ∅ or B2[0, T 2
n] ∩ B(B(T 1

n), εn) 6= ∅}.

Then it follows from Corollary 3.8, Lemma 3.10, and the strong Markov property that for every
δ > 0, there is an ε > 0 such that

P(Jn ∩An) ≤ P(Jn ∩An/2) ≤ δan/2 ≤ cδan.

We have therefore proved the following.

Corollary 3.11 There exists a c25 > 0 and a c26 < ∞ such that if Jn = Jn(c25) is defined as
above,

P(An ∩ Jcn) ≥ c26an.
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This corollary tells us that Brownian paths that do not intersect have a good chance of being
reasonably far apart. Once we know that they can be reasonably far apart we can attach many
different configurations to the ends of the two walks and still get an event with probability greater
than a constant times an. As an example, we state the following corollary whose proof we omit.

Corollary 3.12 Let z1 denote the first coordinate of z ∈ Rd and divide the ball of radius n into
three sets:

B(0, n) = B+(n) ∪ B−(n) ∪ B0(n),

where
B+(n) = {z ∈ B(0, n) : z1 ≥ n

8
},

B−(n) = {z ∈ B(0, n) : z1 ≤ −n
8
},

B0(n) = B(0, n) \ (B+(n) ∪ B−(n)).

Let
V 1
n = {B1[0, T 1

n] ⊂ B−(n) ∪ B(0,
n

2
)},

V 2
n = {B2[0, T 2

n] ⊂ B+(n) ∪ B(0,
n

2
)}.

Then there is a c27 > 0 such that

sup
|x|,|y|=1

Px,y(An ∩ V 1
n ∩ V 2

n ) ≥ c27an.

Lemma 3.7, Corollary 3.9, and Corollary 3.12 can now be combined to give (2).

Corollary 3.13 There exists a c > 0 such that for all n,m,

anm ≥ c28anam,

and hence there is a constant c4 <∞ such that

n−2ζ ≤ an ≤ c4n
−2ζ .

Moreover, for every δ > 0 there is an ε > 0 such that if |x|, |y|= 1, |x− y| ≥ δ,

Px,y(An) ≥ εn−2ζ .

We will now prove the estimate for fixed times, (3). We note that there is a constant β > 0 and
a c28 <∞ such that for |x|, |y| ≤ n/2, k > 0,

Px,y{min(T 1
n, T

2
n) ≤ kn2} ≤ c28e

−β/k. (11)

Px,y{max(T 1
n, T

2
n) ≥ kn2} ≤ c28e

−βk, (12)

(By scaling, it suffices to show this for n = 1. The first inequality can be derived from

Px{T 1
1 ≤ k} ≤ P0{sup

t≤k
|B1(t)| ≥ 1

2
}

≤ 2P0{|B1(k)| ≥ 1

2
} = 2P0{|B1(1)| ≥ 1

2
√
k
},

and the second by iterating

Px{T 1
1 ≥ k + 1 | T 1

1 ≥ k} ≤ P0{|B(1)| ≤ 2} < 1. )
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Lemma 3.14 There exist constants c29, c30 such that for every n and every |x|, |y|= 1, a > 0,

Px,y(An; min(T 1
n, T

2
n) ≤ an2) ≤ c29e

−c30/an−2ζ .

Px,y(An; max(T 1
n, T

2
n) ≥ an2) ≤ c29e

−c30an−2ζ .

Proof. The first inequality is easy, since

Px,y(An; min(T 1
n, T

2
n) ≤ an2) ≤ Px,y(An/2)Px,y{min(T 1

n , T
2
n) ≤ an2 | An/2}

≤ cn−2ζ sup
|w|,|z|=n/2

Pw,z{min(T 1
n, T

2
n) ≤ an2},

and the second term can be estimated using (11).
We will prove the second inequality for m = 2n. Choose |x| = |y| = 1 and write P for Px,y.

Assume Tm = T 1
m ≥ a(2n)2. Then there must be at least one j = 1, . . . , n with

T2j − T2j−1 ≥ (
1

2
)n−j−1a(2n)2 =

a

2
(2j)22n−j .

By considering the three intervals [0, T2j−1], [T2j−1, T2j], [T2j, T2n] separately we see, using (12), that

P{T2j − T2j−1 ≥ (2j)2 a

2
2n−j;A2n} ≤

[ sup
|z|,|w|=1

Pz,w(A2j−1)][ sup
|z|=2j−1

Pz{T2j ≥ (2j)2a

2
2n−j}][ sup

|z|,|w|=2j
Pz,w(A2n)],

and hence,

P{T2j − T2j−1 ≥ (2j)2 a

2
2n−j ;A2n} ≤ c(2n)−2ζ sup

|z|=2j−1

Pz{T2j ≥
a

2
(2j)22n−j}

≤ c(2n)−2ζ exp{−ac302n−j},

for appropriately chosen c30. Hence if a ≥ 1 (it suffices to prove the lemma for a ≥ 1),

P{T2n ≥ a(2n)2;A2n} ≤
n∑
j=1

P{T2j − T2j−1 ≥ (2j)2a

2
2n−j ;A2n}

≤ c
n−1∑
j=1

(2n)−2ζ exp{−ac302n−j}

≤ c(2n)−2ζe−c30a.

A similar argument holds for T 2
2n. 2

Proposition 3.15 There exist constants c31, c32 such that, for all n ≥ 1,

c31n
−2ζ ≤ sup

|x|,|y|=1
Px,y{B1[0, n2] ∩ B2[0, n2] = ∅}

≤ sup
|x|,|y|=1

Px,y{B1[0,min(T 1
n , n

2)] ∩ B2[0,min(T 2
n , n

2)] = ∅}

≤ c32n
−2ζ
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Proof. The second inequality is trivial so we will only consider the first and third inequalities.
Let a > 0. By Corollary 3.13 and Lemma 3.14,

sup
|x|,|y|=1

Px,y{B1[0, n2] ∩B2[0, n2] = ∅}

≥ sup
|x|,|y|=1

[Px,y{B1[0, T 1
an] ∩ B2[0, T 2

an] = ∅}

−Px,y{B1[0, T 1an] ∩ B2[0, T 2an] = ∅; min(T 1
an, T

2
an) ≤ n2}]

≥ (an)−2ζ − c29(an)−2ζe−c30a
2
.

If a is chosen sufficiently large, the last expression is greater than (an)−2ζ/2. This gives the first
inequality.

It suffices to prove the third inequality for n = 2k. For any |x|, |y|= 1,

Px,y{B1[0,min(n2, T 1
n)] ∩ B2[0,min(n2, T 2

n)] = ∅} ≤

Px,y(An) +
k∑
j=1

Px,y(A2j−1; max(T 1
2j , T

2
2j) ≥ n2).

But, (12) and Lemma 3.14 allow us to conclude that there exist c and β such that

Px,y(A2j−1; max(T 1
2j , T

2
2j) ≥ n2} ≤

c(2j−1)−2ζ exp{−β2n−j} = c(2n)−2ζ(2n−j)2ζ exp{−2n−jβ}.
By summing over j, we get the lemma. 2.

The following can be proved similarly. We omit the proof.

Proposition 3.16 There exist constants c33, c34 such that if B1 and B2 are independent Brownian
motions starting at the origin, n ≥ 1,

c33n
−2ζ ≤ P{B1[1, n2] ∩B2[0, n2] = ∅}

≤ P{B1[1,min(n2, T 1
n)] ∩B2[0,min(n2, T 2

n)] = ∅}
≤ c34n

−2ζ .

Note that we have now proved the estimate (3). There is one slight improvement on this estimate
that we will need. Let a > 0 and consider the event Aan ∩ V 1

an ∩ V 2
an as descibed in Corollary 3.12.

By the corollary and Lemma 3.14, we can see that we can choose a sufficiently small so that there
is a λ = λ(a) > 0 such that for |x|, |y|= 1, |x− y| ≥ 1,

Px,y(Aan ∩ V 1
an ∩ V 2

an; max(T 1
an, T

2
an) ≥ n2/10) ≥ λn−2ζ.

By appropriately extending the paths we can conclude the following.

Lemma 3.17 . Let B1, B2 be independent Brownian motions starting at the origin. Define events
Q1
n, Q

2
n, Q

3
n by

Q1
n = {B1[0, 20n2] ⊂ B(0,

n2

10
)},
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Q2
n = {B2[

n2

4
, 20n2] ∩ B(0, n2) = ∅},

Q3
n = {B1[1, 20n2] ∩B2[0, 20n2] = ∅}.

Then there exists a constant c35 such that

P(Q1
n ∩Q2

n ∩Q3
n) ≥ c35n

−2ζ .

4 Moment Bound

In this section we prove Lemma 2.3. Let

D(k, n) = {B[0,
k − 1

n
] ∩B[

k

n
, 1] = ∅},

and

Gn =
n∑
k=1

I(D(k, n)).

Note that A(k, n) = D(k, 2n) and Jn ≤ G2n, where A(k, n) and Jn are as defined in Sections 1 and
2. We will prove the following lemma. If 0 ≤ i1 ≤ i2 ≤ · · · ≤ ir ≤ n, let

fr,n(i1, . . . , ir) = [(i1 + 1)(i2 − i1 + 1) · · · (ir − ir−1 + 1)(n− ir + 1)]−ζ .

Lemma 4.1 There exists a constant c <∞ such that for all 0 ≤ i ≤ j ≤ n,

P[D(i, n)∩D(j, n)]≤ cnζf2,n(i, j). (13)

It follows immediately from Lemma 4.1 that

E(G2
n) ≤ cnζ

∑
0≤i≤j≤n

f2,n(i, j).

But it is a straightforward exercise to show that the right hand side is bounded by

cn2(1−ζ).

Hence to prove Lemma 2.3 it suffices to prove Lemma 4.1.
To prove Lemma 4.1 we will assume for ease that j − i is even (a very easy modification is

needed for j − i odd) and we let k = (j − i)/2. Up to symmetry there are three cases to consider:
Case I, i ≤ n− j ≤ k; Case II, i ≤ k ≤ n− j; and Case III, k ≤ i ≤ n− j.

For Case I,
P[D(i, n)∩D(j, n)]≤

P{B[0,
i− 1

n
] ∩ B[

i

n
,
i+ k

n
] = ∅, B[

j − k
n

,
j

n
] ∩ B[

j + 1

n
, 1] = ∅}. (14)

By independence and Proposition 3.15, this probability is bounded by a constant times (i+1)−ζ(n−
j + 1)−ζ . Since k ≥ n/6, we easily get the result.
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Case II is similar except that we use Proposition 3.15 to conclude that the probability in (14)
is bounded by a constant times (i+ 1)−ζ(k + 1)−ζ . Since n− j ≥ n/6, we get the result.

To handle Case III, let

V = Vi,j,n = {B[
i− k
n

,
i

n
] ∩B[

i+ 1

n
,
i+ k

n
] = ∅, B[

j − k
n

,
j

n
] ∩B[

j + 1

n
,
j + k

n
] = ∅},

U = Ui,j,n = {B[0,
i− k
n

] ∩B[
j + k

n
, 1] = ∅}.

Then,
P[D(i, n)∩D(j, n)] ≤ P(V ∩ U).

For any integer a ≥ 0, let

V (a) = Vi,j,n(a) = V ∩ {
√
ak

n
≤ |B(

j + k

n
)−B(

i− k
n

)| <

√
(a+ 1)k

n
}.

By arguments similar to those in Lemma 3.14 one can see that there is a β <∞ such that

P[V (a)] ≤ ck−2ζe−aβ .

By Proposition 3.15 and Brownian scaling,

P[U | V (a)] ≤ c[ (a+ 1)(k + 1)

i+ 1
]ζ .

By summing over a and noting that n− j ≥ n/6, we get the result. This proves Lemma 4.1. We
comment that similar arguments can be used to prove estimates for higher moments.

Lemma 4.2 For every positive integer r there exists αr <∞ and such that if k > 0, and

1 ≤ i1 ≤ i2 ≤ · · · ≤ ir ≤ n,

then
P[D(i1, n) ∩ · · · ∩D(ir, n)] ≤ αrnζfr,n(i1, . . . , ir). (15)

By summing (15) we conclude
E(Jrn) ≤ αrnr(1−ζ),

for appropriately chosen αr.
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