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1. Introduction.

We consider the Skorokhod equation in a domain D ⊆ Rd, d ≥ 2:

(1.1) dXt = dWt +
1

2
ν(Xt)dLt, X0 = x0,

where Wt is d-dimensional Brownian motion, Lt is the local time of Xt on the boundary

of D, and ν is the inward pointing unit normal vector. It is well-known that in smooth

domains Xt is reflecting Brownian motion with normal reflection.

There are various types of solutions to (1.1). Pathwise existence and uniqueness

holds for (1.1) when the domainD is a C2 domain. This was proved by Lions and Sznitman

[LS]. In fact they considered domains slightly more general than C2, but the class of

domains they considered does not contain the class of C1+α domains for any α ∈ (0, 1).

They also considered more general diffusion coefficients and considered oblique reflection

as well as normal reflection. Their work was generalized by Dupuis and Ishii [DI], who

considered C1 domains, but required the angle of reflection to vary in almost a C2 manner.

For normal reflection, this implies the domains must be nearly C2.

Another type of uniqueness is weak uniqueness. That means that there exist pro-

cesses Xt and Wt satisfying (1.1) where Wt is a Brownian motion, but that X need not be

measurable with respect to the σ-fields generated by W . In [BH1] reflecting Brownian mo-

tion in bounded Lipschitz domains with normal reflection was constructed using Dirichlet

forms, and in [BH2] and [FOT], Ex. 5.2.2, it was shown that this process provides a weak

solution to the Skorokhod equation. These results were extended in [FT].

Closely related to weak uniqueness is the submartingale problem of Stroock and

Varadhan [SV1]. They proved existence and uniqueness of the submartingale problem

corresponding to (1.1) with more general diffusion coefficients and with oblique reflection

for C2 domains.

Using Dirichlet forms techniques, Williams and Zheng [WZ] constructed reflect-

ing Brownian motion that provides a weak solution to (1.1) for domains more irregular

than Lipschitz domains. Further research along these lines was done by [CFW] and [C].

Uniqueness of reflecting Brownian motion corresponding to the Dirichlet form for Brownian

motion can be proved for quite general domains by the techniques of [F].

In this paper we prove weak uniqueness of (1.1) for Lipschitz domains. We prove

that there is only one probability measure P under which Wt is a d-dimensional Brownian

motion, Xt spends 0 time on the boundary, Lt is the local time of Xt on the boundary

(defined as a limit of occupation times), and (1.1) holds. See Theorem 2.2 for a precise

statement.

The question of weak uniqueness is a natural one. In problems of weak convergence,

(e.g., in proving convergence of penalty methods as in [LS]) one is led to solutions to the

Skorokhod equation. If one knew a priori that the solution was associated to a Dirichlet
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form, the uniqueness would be easy, but in general one does not know in advance that

the solution corresponds to a Dirichlet form or even that the solution is strong Markov.

Submartingale problems are also a natural class to consider, but in Lipschitz domains

there is considerable difficulty in formulating them; typically, the class of test functions

one would want to consider is empty.

In Section 2 we give definitions and recall a few facts about the reflecting Brownian

motion constructed in [BH1]. We also prove a few preliminary propositions.

The reason problems of weak uniqueness tend to be hard is the paucity of the right

type of functions; this is also the reason problems involving Lipschitz domains are typically

much harder than those involving smoother domains. Section 3 is devoted to constructing

a sequence of functions satisfying certain conditions. An estimate of Dahlberg on harmonic

measure and one of Jerison and Kenig for solutions to the Neumann problem play key roles.

Section 4 contains the proof of weak uniqueness for (1.1) for Lipschitz domains.

The main idea is to show that any two solutions must have the same potentials.

In Section 5 we pose a question about the existence of strong solutions. An affir-

mative answer would imply that in fact pathwise uniqueness holds for (1.1) in Lipschitz

domains. At the present time pathwise uniqueness is not known even for C1+α domains

in the plane.

2. Preliminaries.

Notation. We let B(x, r) denote the open ball of radius r centered at x. The letter c with

subscripts will denote constants; we begin renumbering anew at each proposition or theo-

rem. Points x = (x1, . . . , xd) will sometimes be written (x̃, y), where x̃ = (x1, . . . , xd−1) ∈
Rd−1 and y = xd. We will also use polar coordinates: x = (r, θ), where r = |x| and

θ = x/|x| ∈ ∂B(0, 1). The inner product in Rd of x and y is written x · y.
For a domainD with x ∈ ∂D, the boundary of D, we let ν(x) be the inward pointing

normal vector and νo(x) = −ν(x) the outward pointing normal vector. We write σ(dx) for

surface measure on ∂D.

Lipschitz domains. A function f : Rd−1 → R or f : ∂B(0, 1) → R is Lipschitz if there

exists M such that |f(x)− f(y)| ≤M |x− y| for all x, y in the domain of f . The smallest

such M is the Lipschitz constant of f . A domain D is a Lipschitz domain if for all z ∈ ∂D
there exists a coordinate system CSz, an rz > 0, and a Lipschitz function Γz such that

D ∩ B(z, rz) = {x = (x̃, y) in CSz : y > Γz(x̃)} ∩B(z, rz ),

i.e., locally D looks like the region above the graph of a Lipschitz function. A Lipschitz

domain is star-like (relative to 0) if there exists a Lipschitz function ϕ : ∂B(0, 1)→ (0,∞)

such that D = {(r, θ) : 0 ≤ r < ϕ(θ)}.

4



For each z ∈ ∂D, where D is a star-like Lipschitz domain, we let Vβ(z) denote the

interior of the convex hull of {z} ∪B(0, β). We fix β small enough so that V2β(z) ⊆ D for

all z ∈ ∂D. When we need to emphasize the domain we write V Dβ (z). Let

(2.1) Ur = {x ∈ D : dist (x, ∂D) < r}.

If u is a function on D, we let

N(u)(z) = ND(u)(z) = sup
x∈Vβ(z)

|u(x)|

and

Nr(u)(z) = ND
r (u)(z) = sup{|u(x)| : x ∈ Vβ(z) ∩ Ur}.

L2 norms with respect to surface measure on ∂D will be denoted ‖f‖2,∂D . Thus

‖f‖22,∂D =

∫
∂D

|f(z)|2 σ(dz).

We will first prove our results for star-like Lipschitz domains, and then extend them

to general Lipschitz domains. Let us describe the special set-up that we first consider.

(2.2) Let D be a star-like Lipschitz domain, let ρ < (inf ϕ)/4, and let K = B(0, ρ). We

will consider open subsets G of ∂B(0, 1) and we consider the corresponding open

subsets A = ϕ(G) of ∂D:

A = ϕ(G) = {(r, θ) : r = ϕ(θ), θ ∈ G}.

Reflecting Brownian motion. In this subsection let us suppose the dimension d is

greater than or equal to 3. Let D be a Lipschitz domain with K a compact set contained

in D such that K has smooth boundary. In [BH1] a strong Markov process (Qx,Xt),
x ∈ D, was constructed that represents reflecting Brownian motion in D with absorption

at K. We recall a few properties and derive some others. See [BH1] for details. Let

TA = T (A) = inf{t > 0 : Xt ∈ A}.

Reflecting Brownian motion in D has a Green function g(x, y) that is symmetric in

x and y for x, y ∈ D−K, harmonic in y in D −K − {x}, harmonic in x in D −K − {y},
vanishes as x or y tends to the boundary of K, and there exists c1 depending only on D

and K such that

(2.3) g(x, y) ≤ c1|x− y|2−d.
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If D is star-like, the constant c1 depends only on ρ, ‖∇ϕ‖∞, inf ϕ, and supϕ. In particular,

for each ρ′ > 0, g(x, ·) is bounded in D−K −B(x, ρ′).

A consequence of (2.3) is that

(2.4) ExTK =

∫
D−K

g(x, y)dy ≤ c2, , x ∈ D.

Another consequence of (2.3) is that

Ex
∫ TK

0

1Ur(Xs)ds =

∫
Ur

g(x, y)dy → 0

as r → 0, so Xt spends zero time in ∂D, and hence starting at x ∈ ∂D, the process leaves

∂D immediately.

In [BH1] it is proved that there exists a continuous additive functional Lt corre-

sponding to the measure σ(dy):

ExLTK =

∫
∂D

g(x, y)σ(dy), x ∈ D,

and Lt increases only when Xt is in the support of σ, namely ∂D. It follows from (2.3)

that ExLTK ≤ c3, x ∈ D, where c3 depends on the domain D. When D is star-like, c3

depends on ρ, ‖∇ϕ‖∞, inf ϕ, and supϕ. Suppose fm are nonnegative bounded functions

supported in D−K such that fm(y)dy converges weakly to σ(dy) (this is the usual weak

convergence of measures in probability theory, except that we do not assume the total

mass is one) and also that there exist c4 > 0 and γ ∈ [0, 1) such that

(2.5)

∫
B(x,s)∩D

fm(y)dy ≤ c4(s ∧ 1)d−1−γ , x ∈ D, s > 0.

An example of fm satisfying (2.5) is fm(y) = a−1
m 1U1/m

(y), where am is the Lebesgue

measure of U1/m. If the fm satisfy (2.5), we have by the proof of [BK], Section 2, that∫
g(x, y)fm(y)dy →

∫
g(x, y)σ(dy) uniformly in x. Let

(2.6) Am(t) =

∫ t

0

fm(Xs)ds.

By [BK], Section 2,

sup
t≤TK

|Am(t)− Lt| → 0

in probability as m→∞.

Suppose D is star-like, ϕ is smooth, x0 ∈ D, and B = (D −K) ∩B(x0, r) for some

r > 0. Then h(x) = Exf(XT (Bc)) is harmonic in D ∩ B and has normal derivative 0 on
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(∂D) ∩ B. There exist c5 and α depending only on ρ, the Lipschitz constant of ϕ, the

supremum and infimum of ϕ, and r such that

(2.7) |h(x)− h(y)| ≤ c5|x− y|α‖f‖∞, x, y ∈ (D −K) ∩ B(x0, r/2).

Reflecting Brownian motion satisfies a tightness estimate similar to that of ordinary

Brownian motion. By [BH1] there exist c6 and c7 such that if x ∈ D and r > 0,

(2.8) Px(sup
s≤t
|Xs − x| ≥ λ) ≤ c6e−c7λ

2/t.

Lemma 2.1. Suppose D is star-like and ε, η > 0. There exists δ depending only on

ε, η, ‖∇ϕ‖∞, supϕ, and inf ϕ such that if dist (x, ∂D) < δ, then

Qx(T∂B(x,η) < T∂D) < ε.

Proof. Let r = dist (x, ∂D). Since D is Lipschitz, there exists c1 > 0 depending only on

the Lipschitz constant of ϕ such that if s ≥ r, then the surface measure of ∂B(x, 2s) ∩Dc

is greater than c1 times the surface measure of ∂B(x, 2s). Since the law of Xt up until time

T∂D is the same as that of standard d-dimensional Brownian motion and the distribution

of Brownian motion on exiting a ball is uniform on the surface of the ball,

Qx(T∂B(x,2r) < T∂D) ≤ 1− c1.

Any point y in ∂B(x, 2r) is a distance 2r from x and hence no more than 3r from Dc. So

if y ∈ D ∩ ∂B(x, 2r), the same reasoning tells us

Qy(T∂B(y,6r) < T∂D) ≤ 1− c1.

By the strong Markov property and the fact that B(y, 6r) ⊆ B(x, 8r) if |y − x| = 2r,

Qx(T∂B(x,8r) < T∂D) ≤ (1− c1)2.

We repeat the argument. A point in ∂B(x, 8r) is a distance no more than 9r from

Dc, and a ball of radius 18r about such a point is contained in B(x, 26r), so using the

strong Markov property,

Qx(T∂B(x,26r) < T∂D) ≤ (1− c1)3.

We continue by induction and obtain

Qx(T∂B(x,(3m−1)r) < T∂D) ≤ (1 − c1)m.
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Now choose m so that (1− c1)m < ε and then choose δ so that (3m − 1)δ < η. �

Skorokhod equation. We now suppose that d ≥ 2. In [BH2] and [FOT], Ex. 5.2.2, it

was shown that the (Qx,Xt) constructed in [BH1] satisfy the Skorokhod equation: there

exists a d-dimensional Brownian motion Wt such that

(2.9) dXt = dWt +
1

2
ν(Xt)dLt.

We want to show that the solution to (2.9) is unique in law. To be precise, let D

be an arbitrary Lipschitz domain. We say that

(2.10) a probability measure P is a solution to the Skorokhod equation (2.9) starting from

x0 ∈ D if

(a) P(X0 = x0) = 1,

(b)

∫ ∞
0

1∂D(Xs)ds = 0,

(c) there exist nonnegative functions fm with support in D such that fm(y)dy

converges weakly to σ(dy), the fm satisfy (2.5), and for each t0 we have

sup
t≤t0
|Am(t)− Lt)| → 0

in P-probability as m→∞, where the Am are defined by (2.6), and

(d) there exists a continuous process Wt which under P is a d-dimensional Brownian

motion with respect to the filtration of X such that for all t, Xt ∈ D and

Xt −X0 = Wt +
1

2

∫ t

0

ν(Xs)dLs.

By our discussion above there exists at least one solution to (2.10), namely Qx0 .

Saying that Wt is a Brownian motion with respect to the filtration generated by Xt means

that Wt −Ws has the same distribution as that of a normal random variable with mean 0

and variance t− s and Wt −Ws is independent of σ(Xr ; r ≤ s) whenever s < t.

Our main result is the following.
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Theorem 2.2. If D is a Lipschitz domain in Rd, d ≥ 2, then there is exactly one solution

to (2.10).

The proof of Theorem 2.2 will take up Sections 3 and 4.

The condition (2.10)(c) is slightly stronger than the one sometimes seen in the

literature, namely, that Lt be a nondecreasing continuous process that increases only when

Xt ∈ ∂D. Here we are essentially requiring the local time Lt to be an additive functional

corresponding to surface measure on the boundary.

We will need the following proposition. Let θt be shift operators so that Xs ◦ θt =

Xs+t. By [B], Section I.2, we may always suppose such θt exist.

Proposition 2.3. Let P be a solution to (2.10) started at x0 ∈ D, let S be a finite

stopping time, and let PS(ω, dω′) be a regular conditional probability for the law of X· ◦θS
under P[· | FS ]. Then P-almost surely, PS is a solution to (2.10) started at XS(ω).

Proof. The proof is standard. Let A(ω) = {ω′ : X0(ω′) = XS(ω)}. Then

A(ω) ◦ θS = {ω′ : X0 ◦ θS(ω′) = XS(ω)} = {ω′ : XS(ω′) = XS(ω)}.

So

P(A(ω) ◦ θS | FS) = 1{XS(ω)}(XS) = 1, a.s.

If B = {Lt is the uniform limit of the Am(t)}, then

B ◦ θS = {Lt+S − LS is the uniform limit of Am(t+ S)−Am(S)},

and so P(B ◦ θS | FS) = 1, a.s. The proof that the process spends 0 time on the boundary

under PS is similar.

Finally, the law of [Xt−X0− 1
2

∫ t
0
ν(Xs)dLs]◦θS given FS is the law of [Xt+S−XS−

1
2

∫ S+t

S
ν(Xs)dLs] given FS . This is a Brownian motion by the strong Markov property of

Brownian motion. �

3. Some analytic estimates.

We suppose throughout this section that the dimension d is greater than or equal to

3. We start with an estimate on the normal derivative for a mixed boundary problem. We

consider standard reflecting Brownian motion (Qx,Xt) in D, and we kill this process on

hittingK. Fix a point x0 ∈ D−K and choose ρ′ small enough so that dist (x0, ∂(D−K)) >

4ρ′.
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Proposition 3.1. Suppose D satisfies (2.2) and in addition ϕ is C∞. Suppose G consists

of m components such that if A = ϕ(G), then σ(A−A) = 0. Let g(·) be the Green function

for Xt killed on hitting K ∪ A with pole at x0. Then (∂g/∂ν)(y) exists at almost every

point of ∂D (with respect to σ) and there exists c1 such that∫
A

(∂g
∂ν

(y)
)2

σ(dy) ≤ c1.

c1 depends on ρ, ρ′, supϕ, inf ϕ, and the Lipschitz constant of ϕ but does not otherwise

depend on A. In particular, c1 does not depend on m.

Proof. The function g is harmonic in D −K − {x0}. By standard results from PDE on

the solution to the Dirichlet problem (see [GT], Sections 6.3 and 6.4), g can be extended

to be C∞ at every point of A; this means that every point in A has a neighborhood in

whose intersection with D the function g is C∞. By standard results on the solution to the

Neumann problem (see [GT], Section 6.7), g has a smooth extension up to the boundary

in a neighborhood of each point in ∂D − A. We make no claims at points in A− A, but

this set has surface measure 0.

Let us make the following assumptions about G and D. We will show they can be

removed at the end of the proof. First we assume that each of the components of G has a

piecewise smooth boundary (considered as a subset of the sphere ∂B(0, 1)).

Let M be the Lipschitz constant of ϕ. Let θ1 = (0, . . . , 0,−1). Choose r small

(depending only on M , supϕ, and inf ϕ) such that there exists a Lipschitz function

Γ : Rd−1 → R whose Lipschitz constant is less than 2M and with the property that the in-

tersection of B(ϕ(θ1), r) with the region above the graph of Γ is the same asD∩B(ϕ(θ1), r).

Our second assumption is that G ⊆ ∂B(0, 1) ∩B(θ1, r).

If H is a (d−1)-dimensional hyperplane, let H+ be the half space that contains (0̃, y)

for all y sufficiently large. We want to be able to apply Green’s identities inD−K−B(x0, ρ)

with the function g, so to do so, we make the following assumption on D for now:

(3.1) For each component Ei of G, there exists εi > 0 and a hyperplane Hi such that

{ϕ(θ) ∈ ∂D : dist (θ,Ei) ∈ (0, εi)} is contained in Hi and ϕ(θ) lies in H+
i if

dist (θ,Eci ) ∈ (0, εi).

Consider the domain Ci = {(r, θ) ∈ D −K : dist (θ, ∂Ei) < εi/2}. If we let CRi be

the reflection of Ci ∩H+
i across Hi and let C∗i be the interior of Ci ∩H+

i ∪CRi , then C∗i
has Lipschitz boundaries. By the reflection principle, g may be extended across Hi. By

Dahlberg’s theorem ([B], Section III.5), ∂g/∂ν is in L2 with respect to surface measure

on ∂C∗i , from which is follows that ∂g/∂ν is in L2 with respect to surface measure on

∂D ∩ {ϕ(θ) : dist (θ,Eci ) ∈ (0, εi/2)}.
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We do this for each component, and conclude that we may apply Green’s identities

to the function g in D − K − B(x0, 2ρ
′). We can therefore conclude that ∂g/∂ν is the

density of harmonic measure on D−K started at x0; this may be proved exactly as in [B],

pp. 217-218.

Let S = ∂D ∩ B(ϕ(θ1), r)
c
. Let F = D − B(0, 2ρ) − B(x0, 2ρ′) and let y0 ∈

B(x0, 4ρ
′) − B(x0, 2ρ

′). Since g is bounded and harmonic in F , then |∇g| is bounded

on ∂B(0, 2ρ) and on ∂B(x0, 2ρ′). By the PDE results mentioned in the first paragraph,

|∇g| is also bounded in a neighborhood of points of S. Let (Qx,Xt) be the reflecting

Brownian motion constructed in [BH1] and discussed in Section 2. Since ∂g/∂y is a

harmonic function, we have by Doob’s optional stopping theorem

(3.2)
∂g

∂y
(y0) = Ey0

∂g

∂y
(XT (∂F)).

By the fact that Γ is a Lipschitz curve (with Lipschitz constant 2M) there exists c2
depending only on M such that the ratio of ∂g/∂ν to ∂g/∂y is bounded above by c2 for

y ∈ A. We have by the definition of harmonic measure that

(3.3)

∫
A

(∂g
∂ν

(z)
)2

σ(dz) = Ex0

[∂g
∂ν

(XT (∂F));XT (∂F) ∈ A
]
.

Since g ≥ 0 in D and g = 0 in A, then ∂g/∂y ≥ 0 in A. The function

z 7→ Ez
[(∂g
∂ν

1A
)
(XT (∂F))

]
is harmonic, so by Harnack’s inequality, there exists a c3 such that

(3.4) Ex0

[∂g
∂ν

(XT (∂F));XT (∂F) ∈ A
]
≤ c3Ey0

[∂g
∂ν

(XT (∂F));XT (∂F) ∈ A
]
.

Combining (3.2)-(3.4),∫
A

(∂g
∂ν

(z)
)2

σ(dz) ≤ c3Ey0

[∂g
∂ν

(XT (∂F));XT (∂F) ∈ A
]

≤ c2c3Ey0

[∂g
∂y

(XT (∂F));XT (∂F) ∈ A
]

= c4

(∂g
∂y

(y0)− Ey0

[∂g
∂y

(XT (∂F));XT (∂F) ∈ ∂B(x0, 2ρ
′) ∪ ∂B(0, 2ρ) ∪ S

]
− Ey0

[∂g
∂y

(XT (∂F);XT (∂F) ∈ ∂D − S −A
])
.

As we argued above, ∂g/∂y ≥ 0 a.e. in ∂D − S, while the first two terms on the right are

bounded by constants depending only on ρ, ρ′, and M . Therefore

(3.5)

∫
A

(∂g
∂ν

(z)
)2

σ(dz) ≤ c5.
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We now show how to eliminate the assumptions made near the beginning of the

proof. Suppose that we no longer assume G ⊆ B(ϕ(θ1), r). Let A0 = ϕ(G ∩B(θ1, r)), let

g be the Green function for reflecting Brownian motion killed on hitting K ∪ A with pole

at x0, and let g0 be the Green function for reflecting Brownian motion killed on hitting

K ∪A0 with pole at x0. Clearly

Qx0(XT (K∪A) ∈ dy) ≤ Qx0(XT (K∪A0) ∈ dy)

for y ∈ A0, so on the set A0 the density of harmonic measure for reflecting Brownian motion

killed on hitting K ∪ A, which is ∂g/∂ν, is less than or equal to the density of harmonic

measure for reflecting Brownian motion killed on hitting K ∪A0, which is ∂g0/∂ν. By this

fact and (3.5) applied to g0,

(3.6)

∫
A∩B(ϕ(θ1),r)

(∂g
∂ν

(z)
)2

σ(dz) ≤ c6.

By a rotation of the coordinate system, (3.6) holds when θ1 is replaced by any other

point of ∂B(0, 1). Since ∂D can be covered by finitely many balls of the form B(ϕ(θ), r)

with θ ∈ ∂B(0, 1), summing gives

(3.7)

∫
A

(∂g
∂ν

(z)
)2

σ(dz) ≤ c6.

Recall the ϕ is C∞. If the components Ei of G are each of the form Q ∩ ∂B(0, 1),

where Q is a cube of side length less than h, we can achieve (3.1) by modifying ϕ (and

hence D) slightly. The smaller h is, the less we need to modify ϕ. Furthermore, we can

approximate G as closely as we like by the union of such components. We can thus find a

sequence of star-like domains Dm given by functions ϕm converging to D such that (3.7)

holds when A is replaced by Am = ϕm(G) and g is replaced by the Green function for

reflecting Brownian motion on Dm and c6 is independent of m. By the limit argument of

[B], pp. 217-218, we thus get (3.7) without any additional assumptions on G. �

Corollary 3.2. Let D,G and A be as in Proposition 3.1. Let H be C∞ with support in

D −K and let

u(x) = Ex
∫ TA∧TK

0

H(Xs)ds.

Then ∂u/∂ν exists a.e. on ∂D and there exists c1 depending only on ρ, ρ′, supϕ, inf ϕ, and

the Lipschitz constant of ϕ such that∫
A

(∂u
∂ν

(y)
)2

σ(dy) ≤ c1.
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Proof. The almost everywhere existence of ∂u/∂ν follows by the same PDE results as

were used in the first paragraph of the proof of Proposition 3.1. If g(x, y) is the Green

function for reflecting Brownian motion in D killed on hitting A ∪K with pole at x, then

u(y) =
∫
g(x, y)H(x)dx. Since the support of H is a positive distance from ∂(D−K), the

result now follows from Proposition 3.1, Fubini’s theorem, and Fatou’s lemma. �

We next need an estimate that is essentially that of [JK], Section 4. Suppose D

is a star-like Lipschitz domain: D = {(r, θ) : r < ϕ(θ)}, where ϕ is a positive Lipschitz

function. Let us suppose ϕ is also C∞. Let ψ(θ) be another C∞ positive function that is

strictly less than ϕ for all θ and let E = {(r, θ) : r < ψ(θ)}. Let δ < dist (∂D, ∂E)/4 and

let Eδ = {x : dist (x, ∂E) < δ}. Recall that νo is the outward pointing unit normal vector

and νo = −ν.

Proposition 3.3. Let D and E be as above, suppose f ∈ L2(∂D), and suppose u is

harmonic in (D − E) ∪ Eδ with ∂u/∂νo = f on ∂D and
∫
∂D

u(z)σ(dz) =
∫
∂E
u(z)σ(dz).

There exists c1 depending only on δ, supϕ, inf ϕ, and the Lipschitz constants of ϕ and ψ

such that

‖N(∇u)‖2,∂D ≤ c1‖f‖2,∂D + c1 sup
Eδ
|u|.

Proof. The proof follows [JK], Section 4, closely. First let us suppose f is smooth. Let

h = ∂u/∂νo on ∂E, where by νo on ∂E we mean the outward normal vector with respect

to the domain D − E. Then clearly u is the solution to the Neumann problem in D − E
with boundary functions f on ∂D and h on ∂E; by Green’s identity,

∫
∂D

f =
∫
∂E

h. Hence

by [GT], Chapter 6, u is smooth on D − E. Let x be the vector from the point 0 to the

point x. If

R(x) = |∇u(x)|2x− 2
(
x · ∇u(x)

)
∇u(x)− (d− 2)u(x)∇u(x),

a calculation shows that divR(x) = 0 in D − E since u is harmonic there. So by the

divergence theorem,

(3.8)

∫
∂D

(R · νo)(z)σ(dz) =

∫
∂E

(R · νo)(z)σ(dz).

Let us let K = supx∈Eδ |u(x)|. Since u is harmonic in Eδ, then ∇u is bounded by c2K

there, and so the right hand side of (3.8) is bounded by c3K2.

Let a(x) = x− (x · νo(x))νo(x), so that

(x · ∇u) = (a(x) · ∇u) + (x · νo)
∂u

∂νo
.

13



Let ∇tu denote the tangential component of ∇u, that is,

∇tu(x) = (∇u(x) · v1(x), . . . ,∇u(x) · vd−1(x)),

where (v1(x), . . . , vd−1(x), νo(x)) forms an orthonormal set of vectors at x ∈ ∂(D − E).

Then

|∇u|2 = |∇tu|2 +
( ∂u
∂νo

)2

.

Since ∂u/∂νo = f on ∂D, we have∫
∂D

|∇tu|2(x · νo(x))σ(dx) ≤
∫
∂D

|f2(x · νo)|+ 2

∫
∂D

|(a · ∇u)f |+ (d− 2)

∫
∂D

|uf |+ c3K
2.

The domain is bounded, so x · νo and a are bounded, and because D is star-like, there

exists c4 such that x · νo ≥ c4 on ∂D. Hence

(3.9)

∫
∂D

|∇tu|2 ≤ c5
[ ∫

∂D

f2 +

∫
∂D

|∇tu| |f |+
∫
∂D

|u| |f |+K2
]
.

We said that
∫
∂D

u =
∫
∂E
u and |u| ≤ K on ∂E. By the Poincaré inequality [M],

1

σ(∂D)

∫
∂D

u2 =
1

σ(∂D)

∫
∂D

(
u− 1

σ(∂D)

∫
∂D

u
)2

+
( 1

σ(∂D)

∫
∂D

u
)2

≤ c6
[ ∫

∂D

|∇tu|2 +K2
]
.

If we write F for
∫
∂D

f2 and I for
∫
∂D
|∇tu|2, then by the Cauchy-Schwarz inequality we

have ∫
∂D

|uf | ≤ c7(I +K2)1/2F 1/2.

Substituting in (3.9),

I ≤ c8
[
F + I1/2F 1/2 +KF 1/2 +K2

]
.

This implies there exists c9 depending only on c8 such that I ≤ c9[K2 + F ]. Since∫
∂D
|∇u|2 = I + F , we get ‖∇u‖2,∂D ≤ c10[K2 + F ]. The result now follows for smooth f

since the nontangential maximal function is bounded in L2 norm by the L2 norm of the

function on the boundary (see [B], Section III.4, or [JK]). Finally we remove the restriction

that f be smooth exactly as in [JK], pp. 39-42. �

Suppose D is a domain satisfying the hypotheses of Proposition 3.1, except that

now we only assume ϕ is Lipschitz, not necessarily C∞. Let K be as above. Let H be a

nonnegative C∞ function with support in D−K; let E be a smooth domain whose closure

is contained in D, which contains the support of H, and which is star-like with respect to

0. Let G be an open subset of ∂B(0, 1) consisting of finitely many components such that

if A = ϕ(G), then σ(A−A) = 0.
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Proposition 3.4. Let D,K,E,G,A, and H be as above. There exists a function u that

is nonnegative and bounded, −(1/2)∆u = H in D −K, ∂u/∂νo exists a.e., u = 0 a.e. on

A, ∂u/∂νo = 0 a.e. on ∂D −A, and ‖N(∇u)‖2,∂D <∞.

Proof. Let Dn = {(r, θ) : r < ϕn(θ)} be domains that are star-like with respect to 0,

where the ϕn are C∞ and that decrease to D; we suppose also that supn ‖∇ϕn‖∞ is finite.

Let An = ϕn(G). Let (Qxn,Xt) be standard reflecting Brownian motion in Dn, let

expectation with respect to Qxn be written Exn, and let

un(x) = Exn
∫ TAn∧TK

0

H(Xs)ds.

Since the support of H is a compact subset of D and D is open, un is harmonic in

a neighborhood of ∂Dn. By the discussion in Section 2, ∂un/∂ν = 0 a.e. on (∂Dn)−An.
By Corollary 3.2, ∂un/∂ν exists a.e. on ∂Dn with L2(∂Dn) norm not depending on n. So

by Proposition 3.3, N(∇un) is in L2(∂Dn) with a norm not depending on n.

We will show that a subsequence of the un converges to a function u that satisfies

−(1/2)∆u = H in D, u is nonnegative and bounded, u = 0 a.e. on A, ∂u/∂νo = 0 a.e. on

∂D −A, and ‖N(∇u)‖2,∂D <∞.

Note each un(x) is nonnegative and

‖un‖∞ ≤ ‖H‖∞ sup
n,y
EynTK .

By (2.4), the right hand side is finite. By the strong Markov property,

un(x) = Exn
∫ T (∂E)∧TK

0

H(Xs)ds+ Exnun(XT (∂E)∧TK).

The second term is harmonic inside E−K and the first is uniformly smooth inside E−K
by standard results from PDE (see [GT], Section 6.4), since E is smooth. So the un are

equicontinuous inside E−K. On the other hand, each un is harmonic outside the support

of H. Therefore the un are equicontinuous on compact subsets of D and are uniformly

bounded; hence there exists a subsequence which converges uniformly on compact subsets

ofD, say to u. By relabeling theDn, let us suppose that the original sequence un converges.

Observe that if θ ∈ ∂B(0, 1), then V Dβ (ϕ(θ)) ⊆ V Dnβ (ϕn(θ)), so ND(∇un)(ϕ(θ)) ≤
NDn(∇un)(ϕn(θ)). Since ∇un converges uniformly to ∇u in compact subsets of D − E,

it follows easily by Fatou’s lemma (cf. [JK], Section 4) that for δ < dist (∂D, ∂E), we have

‖ND
δ (∇u)‖2,∂D ≤ c1, where c1 depends only on δ and the Lipschitz constant of ϕ but not

on G. It is easy to see that ∇u is bounded in D − Uδ since H is smooth and u is the

uniform limit of the un there, so we have

(3.10) ‖ND(∇u)‖2,∂D ≤ c2.
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Since u is bounded, it has nontangential limits a.e. We show the nontangential

limit is 0 a.e. on A. Let vn(x) = Qxn(Xt hits E before An). This is a harmonic function

in Dn − E which equals 1 on E and has nontangential limits 0 on An. Let ε > 0 and

θ ∈ G. Since vn is bounded by 1 and is 0 on An, by Lemma 2.1 there exists δ such that if

x ∈ V Dnβ (ϕn(θ)) and |x− ϕn(θ)| < δ, then vn(x) < ε. So if x ∈ V Dβ (ϕ(θ)) ⊆ V Dnβ (ϕn(θ))

and |x− ϕ(θ)| < δ/2, then for n large, |x− ϕn(θ)| < δ. Since un has nontangential limits

0 on An and is harmonic in Dn − E,

0 ≤ un(x) ≤ sup
n
‖un‖∞Qxn(TE < TAn) ≤ vn(x) sup

n
‖un‖∞.

Hence u(x) ≤ ε supn ‖un‖∞. This shows u(x)→ 0 as x→ ϕ(θ) nontangentially.

Since ‖ND(∇u)‖2,∂D ≤ c2, then ∇u converges nontangentially a.e. and so ∂u/∂νo

exists a.e. It remains to show that ∂u/∂νo = 0 a.e. on ∂D − A. Let h(θ) be a smooth

function with support in Gc. Let fn(x) = Exnh(XT (∂Dn)), f(x) = Exh(XT (∂D)), where

(Qx,Xt) is reflecting Brownian motion onD. Note the restriction of fn to ∂Dn is supported

on Acn and the restriction of f to ∂D is supported on Ac.

Let (Px,Wt) be standard Brownian motion on Rd. Up until times T (∂Dn) and

T (∂D), (Qxn,Xt) and (Qx,Xt), respectively, have the same law as (Px,Wt). So fn(x) =

EPxh(WT (∂Dn)) and f(x) = EPxh(WT (∂D)). Since T∂Dn ↓ T∂D and h is smooth, it follows

that fn converges to f on D. Since fn and f are harmonic, the convergence is uniform on

compact subsets of D.

By Green’s first identity, since fn and f are harmonic in Dn − E and D − E,

respectively, and ∂un/∂νo = 0 on (∂Dn)−An,∫
Dn−E

∇fn · ∇un =

∫
∂Dn

fn
∂un

∂νo
+

∫
∂E

fn
∂un

∂νo
=

∫
∂E

fn
∂un

∂νo

and ∫
D−E

∇f · ∇u =

∫
∂D

f
∂u

∂νo
+

∫
∂E

f
∂f

∂νo
.

(Recall νo is the outward normal vector for the domains Dn − E or D − E.)

We will show

(3.11)

∫
Dn−E

∇f · ∇un →
∫
D−E

∇f · ∇u.

Since fn → f and un is harmonic on ∂E and uniformly bounded in n in a neighborhood

of E, ∂un/∂νo → ∂u/∂νo on E. So if (3.11) holds,
∫
∂D

f(∂u/∂νo) = 0. If this holds for all

such h, then ∂u/∂νo = 0 a.e. on Ac. So it remains to show (3.11).

Recall the definition of Ur from (2.1). We have ∇fn → ∇f uniformly on D − Ur
and ∇un →∇u uniformly on D − Ur, so

(3.12)

∫
D−Ur

∇fn · ∇un →
∫
D−Ur

∇f · ∇u.
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Since h is smooth, by [JK], Theorem 4.13, there exists c3 independent of n such that∫
∂Dn

(N(∇fn)(y))2 σ(dy) ≤ c3

and ∫
∂D

(N(∇f)(y))2 σ(dy) ≤ c3.

Let ε > 0. If r < ϕn(θ), then |∇fn(r, θ)| ≤ N(∇fn)(ϕn(θ)). So
∫

(Dn−D)∪Ur |∇fn|
2 can be

made less than ε if r is small enough and n is large enough, and similarly
∫
Ur
|∇f |2 < ε if

r is small enough. We have∫
(Dn−D)∪Ur

|∇fn · ∇un| ≤
(∫

(Dn−D)∪Ur
|∇fn|2

)1/2(∫
(Dn−D)∪Ur

|∇un|2
)1/2

≤ c4 sup
n
ε‖N(∇un)‖2,∂D

and ∫
Ur

|∇f · ∇u| ≤
(∫

Ur

|∇f |2
)1/2(∫

Ur

|∇u|
)1/2

≤ c4ε‖N(∇u)‖2,∂D .

Combining with (3.12) and using the fact that ε is arbitrary gives (3.11). �

Proposition 3.5. Let D,K,E, and H be as in Proposition 3.4. Let G be an arbitrary

open set in ∂B(0, 1) and A = ϕ(G). Then there exists a function u(x) satisfying the

conclusions of Proposition 3.4.

Proof. Let Gm be open sets satisfying the hypotheses of Proposition 3.1 and increasing

to an open set G and let Am = ϕ(Gm) and A = ϕ(G). Let um(x) be the corresponding

functions given by Proposition 3.4. The um are uniformly bounded, harmonic in D − E,

and satisfy −(1/2)∆um = H in E − K. As m increases, Am ↑ A. Using the nota-

tion of the proof of Proposition 3.4, observe that as m increases, TAm decreases, and so

Exn
∫ TAm∧TK

0
H(Xs)ds decreases. It follows that um(x) decreases as m increases for each

x. Let u(x) = limm→∞ um(x). By the harmonicity and boundedness of the um, the con-

vergence is uniform on compact subsets of D − E. Therefore u is harmonic in D − E,

bounded in D, 0 on K, and −(1/2)∆u = H in E −K.

Suppose x ∈ Vβ(z) for some z ∈ A. Then z ∈ Am for some m and given ε, there

exists δ such that if |x − z| < δ, then 0 ≤ um(x) < ε. Therefore u(x) ≤ um(x) < ε. This

shows that u has nontangential limits 0 a.e. on A.

By Fatou’s lemma and the corresponding result for the um, ‖N(∇u)‖2,∂D ≤ c1. So

∂u/∂νo exists a.e., and we must show that it is 0 a.e. on Ac. Suppose there exists a set

B of positive surface measure contained in Ac on which ∂u/∂νo > r for some r > 0. (The
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case where ∂u/∂νo is negative is treated similarly.) Pick f smooth on ∂D such that f = 1

on B and
∫
∂D

f(∂u/∂νo) > rσ(B)/2. We also require

(∫
∂D−B

f2
)1/2

<
rσ(B)

4 supm ‖N(∇um)‖2,∂D
.

We can find such a f by taking smooth f decreasing to 1B. Extend f to D be defining

f(x) = Exf(XT (∂D)), where (Qx,Xt) is reflecting Brownian motion on D. Since B ⊆ Ac ⊆
Acm, ∂um/∂νo = 0 on B and∣∣∣∫

∂D

f
∂um
∂νo

∣∣∣ =
∣∣∣∫
∂D−B

f
∂um
∂νo

∣∣∣ ≤ (∫
∂D−B

f2
)1/2(∫

∂D

∣∣∣∂um
∂νo

∣∣∣2)1/2

< rσ(B)/4.

Now by Green’s identity on D and the fact that f is harmonic in D,∫
∂D

f
∂um

∂νo
=

∫
D

∇f · ∇um,

and similarly to Proposition 3.4 but easier, this converges to
∫
D
∇f ·∇u =

∫
∂D

f(∂u/∂νo).

This implies that

rσ(B)

4
≥ lim

m

∫
∂D

f
∂um
∂νo

=

∫
∂D

f
∂u

∂νo
>
rσ(B)

2
,

a contradiction. Therefore there exists no such subset B. �

Corollary 3.6. Let D,K,E,H,G, and A be as in Proposition 3.5. There exist reals

rn ↑ 1 and functions Fn : D → R that are C∞, the Fn are nonnegative and uniformly

bounded, −(1/2)∆Fn → H uniformly in E −K, Fn = 0 on B(0, ρ/rn), Fn → 0 a.e. on A,

∂Fn/∂νo → 0 a.e. on Ac, and supn ‖N(∇Fn)‖2,∂D <∞.

Proof. Let u be the function constructed in Proposition 3.5, let rn ↑ 1 and let

Fn(x) = u(rnx), x ∈ D. �

4. Uniqueness.

For now we suppose D satisfies (2.2) and the dimension d ≥ 3. Let (Qx,Xt) denote

a standard reflecting Brownian motion, let x0 ∈ D, and let P be a probability measure

that is a solution to (2.10). Without loss of generality we may suppose x0 6= 0. Our main

goal is to show P = Qx0 . Let ρ < min(|x0|,dist (0, ∂D))/4 and define K = B(0, ρ). Let θt

be the usual shift operators.
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The process Lt is a continuous process, so if M > 0 and ξ1(M) = inf{t : Lt ≥M},
then ξ1(M) > 0. Since Lt∧ξ1(M) is the uniform limit of Am(t ∧ ξ1(M)), where Am is

defined by (2.6), it follows that ξ2(M) = inf{t : supmAm(t∧ ξ1(M)) ≥ 2M} is also strictly

positive, a.s. We let ξ3 = ξ3(M) = ξ1(M) ∧ ξ2(M) ∧M , and observe that 0 < ξ3(M) and

ξ3(M)→∞ as M →∞.

We define a new probability measure P′ that agrees with P up to time ξ3 and agrees

with Qx0 after time ξ3 as follows. If A ∈ Fξ3 and B ∈ F∞, let

P′(B ◦ θξ3 ∩ A) = EP(QX(ξ3)(B);A).

This determines the probability measure P′ on F∞ ([SV2], Chapter 6). P′ is a solution to

(2.10) up to time ξ3 since it agrees with P on Fξ3. P′ solves (2.10) shifted by an amount

ξ3 by the fact that for each x, Qx is a solution to (2.10) starting at x. If we show that

P′ = Qx0, then P = Qx0 on Fξ3(M), and letting M →∞, we obtain P = Qx0 .

The reason we work with P′ is the following.

Proposition 4.1. (a) EP′LTK <∞.

(b) EP′ supmAm(Tk) <∞.

(c) EP′TK <∞.

Proof. We have Am(TK) = Am(ξ3) + Am(TK) ◦ θξ3 and letting m → ∞ we obtain

LTK = Lξ3 + LTK ◦ θξ3 . So by the definition of P′,

EP′LTK = EPLξ3 + EP′(LTK ◦ θξ3 )
= EPLξ3 + EP(EX(ξ3)LTK).

By the definition of ξ3, the first term is bounded by M , while the second term is finite by

the discussion following (2.4). The proof of assertion (c) is essentially the same.

Since

sup
m
Am(TK) ≤ sup

m
Am(ξ3) + (sup

m
Am(TK)) ◦ θξ3 ,

the proof of (b) is similar. �

We now drop the primes from P′, and without loss of generality we may suppose

that EPLTK <∞, EP supm Am(TK) <∞, and EPTK <∞.

Define a measure µ on D −K by

µ(B) = EP
∫ TK

0

1B(Xs)ds,

the amount of time spent in B before hitting K.
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Proposition 4.2. µ is absolutely continuous with respect to Lebesgue measure. If we let

h denote the Radon-Nikodym derivative, we may choose h to be finite, nonnegative, and

harmonic in D −K − {x0}.

Proof. The nonnegativity is clear. Let B0 ⊆ B1 ⊆ B2 be any three concentric balls

contained in D−K − {x0} such that B0 ⊆ B1, B1 ⊆ B2, and B2 ⊆ D−K − {x0}. If we

prove that µ restricted to B0 has a Radon-Nikodym derivative with respect to Lebesgue

measure that may be chosen to be harmonic in B0, then since B0 is arbitrary we will

obtain our result.

Let S1 = inf{t : Xt ∈ B1}, T1 = inf{t > S1 : Xt /∈ B2}, and for i ≥ 1 let

Si+1 = inf{t > Ti : Xt ∈ B1} and Ti+1 = inf{t > Si+1 : Xt /∈ B2}. If B ⊆ B0, then

(4.1) EP
∫ TK

0

1B(Xs)ds =
∞∑
i=1

EP
[ ∫ Ti

Si

1B(Xs)ds;Si < TK

]
.

Note that under P, the process
∫ t

0
1B(Xs)ds cannot increase before time S1 because x0 /∈

B2; since K ∩B2 = ∅, if Si < TK , then Ti < TK .

The law of Xs ◦ θSi under a regular conditional probability for E[· | FSi ] is by

Proposition 2.3 a solution to (2.10) started at XSi . Started at x ∈ D − K, the law of

Xt is the same as that of a standard d-dimensional Brownian motion up to time T∂D .

Therefore EP[
∫ Ti
Si

1B(Xs)ds | FSi ] is the same as the amount of time Brownian motion

started at XSi spends in B up until leaving B2. If gB2(x, y) is the Green function for

standard d-dimensional Brownian motion killed on exiting B2, we have then

(4.2) EP
[ ∫ Ti

Si

1B(Xs)ds | FSi
]

=

∫
B

gB2(XSi , y)dy.

The law of X ◦θTi under a regular conditional probability for EP[· | FTi ] is a solution

to (2.10) started at XTi . A solution started at XTi is a standard Brownian motion up until

hitting ∂D. By the support theorem for Brownian motion ([B], p. 59), there exists ρ < 1

such that

Qy(TB1 < TK) ≤ ρ, y ∈ ∂B2.

Hence

QX(Ti)(TB1 < TK) ≤ ρ,

or

P(Si+1 < TK | FTi) ≤ ρ, a.s.

From this we deduce

P(Si+1 < TK) = P(Si+1 < TK , Si < TK) = EP[P(Si+1 < TK | FTi);Si < TK ]

≤ ρP(Si < TK).
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By induction, P(Si < TK) ≤ ρi.
Combining with (4.1) and (4.2) and using Fubini’s theorem,

EP
∫ TK

0

1B(Xs)ds =

∫
B

∞∑
i=1

EP[gB2(XSi , y);Si < TK ] dy.

gB2(x, y) is harmonic in y ∈ B0 when x ∈ ∂B1; therefore EP[gB2(XSi , y);Si < TK ] is

harmonic. Since gB2(x, y) is bounded over x ∈ ∂B1, y ∈ B0, then

(4.3)

∞∑
i=i0

EP[gB2(XSi , y);Si < TK ] ≤
∞∑
i=i0

c1P(Si < TK) ≤
∞∑
i=i0

c1ρ
i <∞.

Let

h(y) =

∞∑
i=1

EP[gB2(XSi , y);Si < TK ].

In view of (4.3) the sum converges uniformly over y ∈ B0 and hence h is finite and harmonic

in B0. �

Since h is nonnegative and harmonic in D−K − {x0}, the nontangential maximal

function of h is finite a.e. in a neighborhood of ∂D, i.e., for ε less than ρ′,

Nε(h)(z) <∞, for almost every z ∈ ∂D.

By (2.3), the Green function for D −K with pole at x0 is bounded in D −B(x0, ρ
′), say

by R. We construct a sawtooth domain

D0 =
⋃
{Vβ(z) : z ∈ ∂D,Nε(h)(z) ≤ 3R}.

D0 is a Lipschitz domain, and since it is contained in D, still star-like with respect to 0.

Let A = ∂D0 − ∂D.

Lemma 4.3. There exists c1 depending only on ε and R such that

EP
∫ TK∧TA

0

|ϕ(Xt)| dLt ≤ c1
∫
∂D−A

|ϕ(y)|σ(dy).

Proof. First suppose ϕ is nonnegative and continuous on ∂D and extend ϕ to be non-

negative and continuous in D as well. Since Lt is the uniform limit of the Am(t),∫ TK∧TA∧t

0

ϕ(Xs)dAm(s)→
∫ TK∧TA∧t

0

ϕ(Xs)dLs.
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By Proposition 4.1(b) and dominated convergence,

(4.4) EP
∫ TK∧TA∧t

0

ϕ(Xs)dLs = lim
m→∞

EP
∫ TK∧TA∧t

0

ϕ(Xs)dAm(s).

h is bounded by 3R in a neighborhood of ∂D0. Recall the definition of Ur from (2.1).

Because h is harmonic in D −K − B(x0, ρ
′) − Ur, it is bounded by a constant c2 there.

Since dAm(s) = fm(Xs)ds, the right hand side in (4.4) is bounded by

EP
∫ TA∧TK∧t

0

ϕ(Xs)fm(Xs)ds ≤
∫

1D0(y)ϕ(y)fm(y)h(y)dy

≤ c3
∫
D

ϕ(y)fm(y)dy,

where c3 = c2 ∨ R. Since fm(y)dy converges weakly to σ(dy) and ϕ is continuous,

EP
∫ TA∧TK∧t

0

ϕ(Xs)dLs ≤ c3
∫
∂D

ϕ(y)σ(dy).

Now let t→∞. By linearity and a limit argument,

EP
∫ TA∧TK

0

|ϕ(Xs)| dLs ≤ c3
∫
∂D

|ϕ(y)|σ(dy)

for all ϕ bounded and measurable on ∂D. Finally, since Lt grows only when Xt ∈ ∂D,

EP
∫ TK∧TA

0

|ϕ(Xs)| dLs = EP
∫ TA∧TK

0

|(ϕ1(∂D−A))(Xs)| dLs

≤ c3
∫
|(ϕ1(∂D−A))(y)|σ(dy).

This completes the proof. �

Let H be a C∞ function with support in D−K−{x0}. The key proposition is the

following.

Proposition 4.4. Let u(x) = Ex
∫ TA∧TK

0 H(Xs)ds. Then if x0 ∈ D −K,

EP
∫ TA∧TK

0

H(Xs)ds = u(x0).

Proof. Let E be star-like, contained in D, and containing the support of H. Construct

the Fn as in Corollary 3.6. For r > 1 let Kr = B(0, rρ). Fn is C2 on D −Kr , so by Ito’s

formula,

Fn(X(TKr ∧ TA ∧ t))− Fn(X0) = martingale +
1

2

∫ TKr∧TA∧t

0

∆Fn(Xs)ds(4.5)

+

∫ TKr∧TA∧t

0

∂Fn

∂ν
(Xs)dLs.
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Take expectations with respect to P. By Lemma 4.3, the expectation of the local time

term in (4.5) (i.e., the last term on the right) is bounded by

c1

∫
∂D−A

∣∣∣∂Fn
∂ν

(y)
∣∣∣ σ(dy).

Fn is bounded and ∆Fn is bounded in D, so letting t→∞, we obtain

EPFn(X(TKr ∧ TA))− Fn(x0) =
1

2
EP
∫ TKr∧TA

0

∆Fn(Xs)ds+R,

where

|R| ≤ c1
∫
∂D−A

∣∣∣∂Fn
∂ν

(y)
∣∣∣ σ(dy).

Next let n →∞. By Corollary 3.6 ∂Fn/∂ν is in L2(σ) with a bound independent

of n and ∂Fn/∂ν → 0 a.e. on ∂D −A. We also have that (1/2)∆Fn → −H uniformly on

D −Kr and Fn → u uniformly. So we obtain

EPu(X(TKr ∧ TA))− u(x0) = −EP
∫ TKr∧TA

0

H(Xs)ds.

The function u is 0 on A and on K and H is bounded. So by dominated convergence on

the left and monotone convergence on the right, letting r ↓ 1,

−u(x0) = −EP
∫ TK∧TA

0

H(Xs)ds. �

Corollary 4.5. If x0 ∈ D −K,

EP
∫ TA∧TK

0

H(Xs)ds = Ex0

∫ TA∧TK

0

H(Xs)ds

for all bounded functions H.

Proof. This follows from Proposition 4.4 by a limit argument and the fact that the

quantity EP
∫ TK∧TA

0 1{x0}(Xs)ds is 0 since Xt behaves like a Brownian motion in a neigh-

borhood of x0. �

Corollary 4.6. If x0 ∈ D −K,

EP
∫ TK

0

H(Xs)ds = Ex0

∫ TK

0

H(Xs)ds
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for all bounded functions H.

Proof. Recall the definition of R following the proof of Proposition 4.2. If H has support

in D −K −B(x0, ρ
′), then by the definition of R,

Ex0

∫ TK

0

H(Xs)1B(Xs)ds ≤ R‖H‖∞|B|

for B ⊆ D. This and Corollary 4.5 imply that h ≤ R, a.e., on D − B(x0, ρ
′). Since h is

harmonic, it is continuous, or h ≤ R on D − B(x0, ρ
′). This implies Nε(h)(z) ≤ R, so

D0 = D and hence A = ∅. �

We would like the conclusion of Corollary 4.6 to hold for all x0, even for x0 ∈ ∂D.

Proposition 4.7. If x0 ∈ ∂D,

EP
∫ TK

0

H(Xs)ds = Ex0

∫ TK

0

H(Xs)ds.

Proof. Let x0 ∈ ∂D. Let ξ4(n) = inf{t : |Xt − x0| ≥ 1/n} and ξ5(m) = inf{t :

dist (Xt, ∂D) ≥ 1/m}. Choose mn such that P(ξ5(mn) > ξ4(n)) < 1/n; this is possible

since starting at x0 the process under P leaves ∂D immediately. Let ξ6(n) = ξ4(n) ∧
ξ5(mn) ∧ 1/n. As in Corollary 4.5 it suffices to prove the proposition for H in C∞ with

support in D − K. So for n sufficiently large, Xt will not be in the support of H when

t ≤ ξ6(n) and

EP
∫ TK

0

H(Xs)ds = EP
∫ TK

ξ6(n)

H(Xs)ds.

The law of the process Xs ◦ θξ6(n) under a regular conditional probability for EP[· | Fξ6(n)]

is a solution to (2.10) started at Xξ6(n). On the set where Xξ6(n) /∈ ∂D, by Corollary 4.6

we have EP[
∫ TK

0
H(Xs)ds | Fξ6(n)] = u(Xξ6(n)), where

(4.6) u(x) = Ex
∫ TK

0

H(Xs)ds.

So ∣∣∣EP ∫ TK

ξ6(n)

H(Xs)ds− EPu(Xξ6(n))
∣∣∣ ≤ (‖H‖∞EPTK + ‖u‖∞)P(Xξ6(n) ∈ ∂D)

≤ c1/n.
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By (2.7), u is continuous in B(x0, 1/n)∩D, so letting n→∞, we have u(Xξ6(n))→ u(x0),

and hence

EP
∫ TK

0

H(Xs)ds = EPu(x0) = u(x0). �

Proposition 4.8. Let SλH = EP
∫ TK

0 e−λtH(Xt)dt. Then for all x0 ∈ D−K and for all

λ < 1/(2 supy EyTK),

SλH = Ex0

∫ TK

0

e−λtH(Xt)dt.

Proof. It is enough to consider H that are C∞ with support in D −K. Let us kill the

process on hitting K. Since H is 0 there, we can let the integrals run from 0 to ∞. Let u

be defined by (4.6). Under a regular conditional probability for Ft, the law of the process

Xs ◦ θt is a solution to (2.10) started at Xt. Therefore by Proposition 4.7

EP
[ ∫ ∞

0

H(Xs ◦ θt)ds | Ft
]

= EXt
∫ ∞

0

H(Xs)ds = u(Xt).

We then have

Sλu = EP
∫ ∞

0

e−λtu(Xt)dt(4.7)

= EP
∫ ∞

0

e−λtEP
[∫ ∞

0

H(Xs+t)ds | Ft
]
dt

= EP
∫ ∞

0

e−λt
∫ ∞
t

H(Xs)dsdt

= EP
∫ ∞

0

H(Xs)

∫ s

0

e−λt dt ds

= EP
∫ ∞

0

H(Xs)
1 − e−λs

λ
ds

=
1

λ
u(x0)−

1

λ
SλH,

or SλH = u(x0)− λSλu. Define the operator Rλ by

(4.8) Rλf(x) = Ex
∫ ∞

0

e−λtf(Xt)dt.

We thus have u = R0H and so

(4.9) SλH = R0H(x0)− λSλR0H.

Let

Θ = sup
‖H‖∞≤1

|SλH −RλH(x0)|.
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Note ‖RλH‖∞ ≤ λ−1‖H‖∞ and ‖R0H‖∞ ≤ c1‖H‖∞, where c1 = supy EyTK . From the

semigroup property of Qx (cf. [B], p. 19),

(4.10) RλH(x0) = R0H(x0)− λRλR0H(x0).

Subtracting (4.10) from (4.9),

|SλH −RλH(x0)| = |λ(SλR0H −RλR0H(x0))| ≤ λΘ‖R0H‖∞ ≤ λΘc1‖H‖∞.

Taking the supremum over H with ‖H‖∞ ≤ 1, if λ ≤ 1/2c1,

Θ ≤ λΘc1 ≤ Θ/2.

Since

Θ ≤ sup
‖H‖∞≤1

(|SλH|+ ‖RλH‖∞) ≤ 2/λ <∞,

we have Θ = 0 or SλH = RλH(x0). �

Proof of Theorem 2.2. First suppose that d ≥ 3 and D satisfies (2.2). Recall the nota-

tion of Proposition 4.8 and that SλH = RλH(x0). By the uniqueness of the Laplace trans-

form and the continuity of H(Xt) when H is continuous, EPH(Xt∧TK ) = Ex0H(Xt∧TK ).

As ρ → 0, then TK → T{x0}. Since Xt behaves like a Brownian motion up until time

T (∂D), then T{x0} is identically infinite. So EPH(Xt) = Ex0H(Xt). By standard argu-

ments (see [SV2], Chapter 6), this implies that the finite dimensional distributions of Xt
under P and under Qx0 agree. Therefore P = Qx0.

Now let D be an arbitrary Lipschitz domain. By standard piecing-together argu-

ments (see [SV2]) and (2.8), it suffices to show that for each x0 ∈ D, any two solutions

P1 and P2 agree in a neighborhood of x0. That is, if x0 ∈ D, there exists r > 0 such

that P1 and P2 agree on FT (∂B(x0,r)). Inside D, Xt under both P1 and P2 behaves like

ordinary Brownian motion, so we need only consider x0 ∈ ∂D. Let a coordinate system

and a domain D′ satisfying (2.2) be chosen so that D′ agrees with D in a neighborhood

B(x0, r) ∩D of x0. Define P′i for i = 1, 2 by

P′i(B ◦ θT (∂B(x0,r)) ∩A) = EPi(Q
X(T (∂B(x0,r)))
D′ (B);A), A ∈ FT (∂B(x0,r)), B ∈ F∞,

where here (QxD′,Xt) is the law of reflecting Brownian motion in D′ started at x. As in

the discussion preceding Proposition 4.1, P′i is a solution to (2.10) in D′ for i = 1, 2. By

the uniqueness result for domains satisfying (2.2), P′1 = P′2 = Qx0

D′. So if A ∈ FT (∂B(x0,r)),

then P1(A) = P′1(A) = P′2(A) = P2(A).
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Finally we consider the case of d = 2. Let Wt be a one-dimensional Brownian

motion reflecting at −1 and 1 and independent of Xt. Then the law of (Xt,Wt) is a

solution to (2.10) for the Lipschitz domain D× (−1, 1), and so is unique. The uniqueness

of the law of Xt follows easily. �

5. Strong solutions.

A strong solution to (2.9) exists if there exists a process Xt satisfying (2.9) such

that X is measurable with respect to the σ-fields of W . An interesting open problem is

the following.

Problem 5.1. Does there exist a strong solution to (2.9)?

The reason for our interest is that if a strong solution exists, then in fact pathwise

uniqueness holds for (2.9). That is, any two solutions to (2.9) must be identical. The proof

of this is simple; cf. [K], Lemma 2.1.

Proposition 5.2. Suppose a strong solution to (2.9) exists satisfying (2.10)(a)-(c). Then

any two solutions to (2.9) that satisfy (2.10)(a)-(c) agree pathwise, a.s.

Proof. Suppose dYt = dWt+(1/2)ν(Yt)dLt and Yt is a strong solution. Then there exists

a measurable map F from C [0,∞) to C [0,∞) such that Y = F (W ). Let Xt be another

solution. We have

(5.1) Wt = Yt −
1

2

∫ t

0

ν(Ys)dLs, Wt = Xt −
1

2

∫ t

0

ν(Xs)dLs.

The uniqueness in law (Theorem 2.2) says that the law of Y is equal to the law of X,

so using (5.1) the law of the pair (Y,W ) is equal to the law of the pair (X,W ). Since

Y = F (W ), then X = F (W ), a.s., and we then conclude that X = F (W ) = Y , a.s. �

Remark. We do not know the answer to Problem 5.1 even when D is a C1+α domain

and even when the dimension d is 2. (The obvious conformal mapping argument does

not appear to help). A C1+α domain is defined analogously to a Lipschitz domain, where

we replace Lipschitz functions in the definition by functions whose gradient is Hölder

continuous of order α.
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