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1. Introduction.
We consider the Skorokhod equation in a domain D C ]Rd, d>2:

1
(1.1) dXt = th + §V(Xt)st, Xo = Xy,

where W; is d-dimensional Brownian motion, L; is the local time of X; on the boundary
of D, and v is the inward pointing unit normal vector. It is well-known that in smooth
domains X} is reflecting Brownian motion with normal reflection.

There are various types of solutions to (1.1). Pathwise existence and uniqueness
holds for (1.1) when the domain D is a C? domain. This was proved by Lions and Sznitman
[LS]. In fact they considered domains slightly more general than C?, but the class of
domains they considered does not contain the class of C'™® domains for any a € (0,1).
They also considered more general diffusion coeflicients and considered oblique reflection
as well as normal reflection. Their work was generalized by Dupuis and Ishii [DI], who
considered C'! domains, but required the angle of reflection to vary in almost a C?> manner.
For normal reflection, this implies the domains must be nearly C?.

Another type of uniqueness is weak uniqueness. That means that there exist pro-
cesses X; and W, satisfying (1.1) where W; is a Brownian motion, but that X need not be
measurable with respect to the o-fields generated by W. In [BH1| reflecting Brownian mo-
tion in bounded Lipschitz domains with normal reflection was constructed using Dirichlet
forms, and in [BH2] and [FOT], Ex. 5.2.2, it was shown that this process provides a weak
solution to the Skorokhod equation. These results were extended in [FT].

Closely related to weak uniqueness is the submartingale problem of Stroock and
Varadhan [SV1]. They proved existence and uniqueness of the submartingale problem
corresponding to (1.1) with more general diffusion coefficients and with oblique reflection
for C? domains.

Using Dirichlet forms techniques, Williams and Zheng [WZ] constructed reflect-
ing Brownian motion that provides a weak solution to (1.1) for domains more irregular
than Lipschitz domains. Further research along these lines was done by [CFW]| and [C].
Uniqueness of reflecting Brownian motion corresponding to the Dirichlet form for Brownian
motion can be proved for quite general domains by the techniques of [F].

In this paper we prove weak uniqueness of (1.1) for Lipschitz domains. We prove
that there is only one probability measure P under which W; is a d-dimensional Brownian
motion, X; spends 0 time on the boundary, L; is the local time of X; on the boundary
(defined as a limit of occupation times), and (1.1) holds. See Theorem 2.2 for a precise
statement.

The question of weak uniqueness is a natural one. In problems of weak convergence,
(e.g., in proving convergence of penalty methods as in [LS]) one is led to solutions to the
Skorokhod equation. If one knew a priori that the solution was associated to a Dirichlet
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form, the uniqueness would be easy, but in general one does not know in advance that
the solution corresponds to a Dirichlet form or even that the solution is strong Markov.
Submartingale problems are also a natural class to consider, but in Lipschitz domains
there is considerable difficulty in formulating them; typically, the class of test functions
one would want to consider is empty.

In Section 2 we give definitions and recall a few facts about the reflecting Brownian
motion constructed in [BH1]. We also prove a few preliminary propositions.

The reason problems of weak uniqueness tend to be hard is the paucity of the right
type of functions; this is also the reason problems involving Lipschitz domains are typically
much harder than those involving smoother domains. Section 3 is devoted to constructing
a sequence of functions satisfying certain conditions. An estimate of Dahlberg on harmonic
measure and one of Jerison and Kenig for solutions to the Neumann problem play key roles.

Section 4 contains the proof of weak uniqueness for (1.1) for Lipschitz domains.
The main idea is to show that any two solutions must have the same potentials.

In Section 5 we pose a question about the existence of strong solutions. An affir-
mative answer would imply that in fact pathwise uniqueness holds for (1.1) in Lipschitz
domains. At the present time pathwise uniqueness is not known even for C'** domains
in the plane.

2. Preliminaries.
Notation. We let B(z,r) denote the open ball of radius r centered at . The letter ¢ with
subscripts will denote constants; we begin renumbering anew at each proposition or theo-
rem. Points z = (x1,...,24) will sometimes be written (Z,y), where T = (x1,...,24-1) €
RI~! and y = x4. We will also use polar coordinates: = = (r,6), where r = |z| and
0 = x/|x| € 0B(0,1). The inner product in R% of z and y is written z - y.

For a domain D with x € D, the boundary of D, we let v(x) be the inward pointing
normal vector and v,(z) = —v(z) the outward pointing normal vector. We write o(dz) for
surface measure on 0D.

Lipschitz domains. A function f : R?"! — R or f : dB(0,1) — R is Lipschitz if there
exists M such that |f(z) — f(y)| < M|z — y| for all z,y in the domain of f. The smallest
such M is the Lipschitz constant of f. A domain D is a Lipschitz domain if for all z € 0D
there exists a coordinate system C'S,, an r, > 0, and a Lipschitz function I', such that

DNB(z,r,)={x=(z,y) in CS, :y >T,(x)} N B(z,1;),

i.e., locally D looks like the region above the graph of a Lipschitz function. A Lipschitz
domain is star-like (relative to 0) if there exists a Lipschitz function ¢ : 9B(0,1) — (0, c0)
such that D = {(r,0) : 0 <r < ¢(0)}.



For each z € 0D, where D is a star-like Lipschitz domain, we let V3(z) denote the
interior of the convex hull of {2z} U B(0, 3). We fix 8 small enough so that Va5(z) C D for
all z € 0D. When we need to emphasize the domain we write VﬂD (z). Let

(2.1) Ur ={z € D :dist(z,0D) < r}.
If u is a function on D, we let

N(u)(2) = NP (u)(z) = sup |u(z)|
x€V3(z)

and
N, (u)(2) = N7 (u)(2) = sup{|u(z)| : z € V3(2) N U, }.

L? norms with respect to surface measure on 9D will be denoted || f|2,6p. Thus

11200 = /a 1P olda).

We will first prove our results for star-like Lipschitz domains, and then extend them
to general Lipschitz domains. Let us describe the special set-up that we first consider.

(2.2) Let D be a star-like Lipschitz domain, let p < (inf ¢)/4, and let K = B(0,p). We
will consider open subsets G of B(0,1) and we consider the corresponding open
subsets A = ¢(G) of 0D:

A=p(G)={(r0) :r=¢(0),0 € G}.

Reflecting Brownian motion. In this subsection let us suppose the dimension d is
greater than or equal to 3. Let D be a Lipschitz domain with K a compact set contained
in D such that K has smooth boundary. In [BH1] a strong Markov process (Q%, X}),
x € D, was constructed that represents reflecting Brownian motion in D with absorption
at K. We recall a few properties and derive some others. See [BH1] for details. Let

Ty =T(A) =inf{t >0: X; € A}

Reflecting Brownian motion in D has a Green function g(z,y) that is symmetric in
xz and y for z,y € D — K, harmonic in y in D — K — {z}, harmonic in z in D — K — {y},
vanishes as x or y tends to the boundary of K, and there exists ¢; depending only on D
and K such that

(2.3) 9(z,y) < erlz —y|* %
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If D is star-like, the constant ¢; depends only on p, ||V¢||eo, inf ¢, and sup ¢. In particular,
for each p’ > 0, g(x,-) is bounded in D — K — B(z, p').
A consequence of (2.3) is that

(2.4) E*Tk = / g9(z,y)dy < ca,, r € D.
D-K

Another consequence of (2.3) is that

Tk
Ew/ Iz (Xs)ds = /_ 9(z,y)dy =0
0 U’l"

as r — 0, so X; spends zero time in D, and hence starting at x € 9D, the process leaves
0D immediately.

In [BHI] it is proved that there exists a continuous additive functional L; corre-
sponding to the measure o(dy):

E*Lrp, = /aD g9(z,y) o(dy), xz €D,

and L; increases only when X is in the support of o, namely 0D. It follows from (2.3)
that E*Lt, < c3, * € D, where c3 depends on the domain D. When D is star-like, c3
depends on p, [|[V¢|~, inf ¢, and sup¢. Suppose f,, are nonnegative bounded functions
supported in D — K such that f,,(y)dy converges weakly to o(dy) (this is the usual weak
convergence of measures in probability theory, except that we do not assume the total
mass is one) and also that there exist ¢4 > 0 and 7 € [0,1) such that

(2.5) / fm(y)dy < ca(s A1) x € D,s>0.
B(z,s)ND

An example of f,, satisfying (2.5) is fi(y) = a,'1y, /m (Y), Where a,, is the Lebesgue
measure of Uy p,. If the f,, satisfy (2.5), we have by the proof of [BK], Section 2, that

[ 9(z,y)fm(y)dy — [ g(z,y) o(dy) uniformly in z. Let

(2.6) A (t) = /0 Fn(X.) ds.

By [BK], Section 2,

sup |Ap(t) — L] — 0
t<Tr

in probability as m — oo.

Suppose D is star-like, ¢ is smooth, 2o € D, and B = (D — K) N B(xg,r) for some
r > 0. Then h(z) = E* f(Xp(pe)) is harmonic in D N B and has normal derivative 0 on
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(0D) N B. There exist ¢5 and a depending only on p, the Lipschitz constant of ¢, the
supremum and infimum of ¢, and r such that

(2.7) h(z) = h(y)] < csle = y[*[| flloo, 2,y € (D = K) N B(zo,7/2).

Reflecting Brownian motion satisfies a tightness estimate similar to that of ordinary
Brownian motion. By [BH1]| there exist ¢g and c7 such that if z € D and r > 0,

(2.8) P*(sup | Xs —z| > A) < cge TN/t
s<t

Lemma 2.1. Suppose D is star-like and €, > 0. There exists 0 depending only on
e, 1, ||[Ve|lso, sup ¢, and inf ¢ such that if dist (z,0D) < §, then

Qx(TaB(xm) < TaD) <e.

Proof. Let r = dist (x,0D). Since D is Lipschitz, there exists ¢; > 0 depending only on
the Lipschitz constant of ¢ such that if s > r, then the surface measure of 0B(x,2s) N D¢
is greater than ¢y times the surface measure of 0B(x, 2s). Since the law of X; up until time
Tsp is the same as that of standard d-dimensional Brownian motion and the distribution
of Brownian motion on exiting a ball is uniform on the surface of the ball,

Q" (ToB(x,2r) < Top) <1 —c1.

Any point y in 0B(x, 2r) is a distance 2r from = and hence no more than 3r from D°. So
if y € DN OB(x,2r), the same reasoning tells us

QY(Top(y,6r) < Top) <1 —c1.
By the strong Markov property and the fact that B(y, 6r) C B(z,8r) if |y — | = 2r,
Q*(Top(asr) < Top) < (1 —c1)*.

We repeat the argument. A point in 0B(z,8r) is a distance no more than 9r from
D¢, and a ball of radius 18r about such a point is contained in B(z,26r), so using the
strong Markov property,

Q*(Top(x26r) < Top) < (1 —c1)*.
We continue by induction and obtain
Q" (ToB(z,(3m—1)r) < Top) < (1 —c1)™.
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Now choose m so that (1 — ¢1)™ < e and then choose § so that (3™ — 1) < n. O

Skorokhod equation. We now suppose that d > 2. In [BH2] and [FOT], Ex. 5.2.2, it
was shown that the (Q”, X;) constructed in [BH1]| satisfy the Skorokhod equation: there
exists a d-dimensional Brownian motion W; such that

1
(29) dXt = th + iy(Xt) st
We want to show that the solution to (2.9) is unique in law. To be precise, let D
be an arbitrary Lipschitz domain. We say that
(2.10) a probability measure IP is a solution to the Skorokhod equation (2.9) starting from
To € D if

(a) ]P(Xo = :ZI()) = 1,

(b) /O T op(X,)ds =0,

(c) there exist nonnegative functions f,, with support in D such that f.,(y)dy
converges weakly to o(dy), the f,, satisfy (2.5), and for each t, we have

sup | Ay () — Ly)| = 0
t<to

in P-probability as m — oo, where the A,, are defined by (2.6), and
(d) there exists a continuous process Wy which under P is a d-dimensional Brownian
motion with respect to the filtration of X such that for all t, X; € D and

1 t
Xt—XOZWt+§/ V(XS)dLS.
0

By our discussion above there exists at least one solution to (2.10), namely Q*°.
Saying that W, is a Brownian motion with respect to the filtration generated by X; means
that W; — W, has the same distribution as that of a normal random variable with mean 0
and variance t — s and W; — Wy is independent of o(X,;r < s) whenever s < t.

Our main result is the following.



Theorem 2.2. If D is a Lipschitz domain in R?, d > 2, then there is exactly one solution
to (2.10).

The proof of Theorem 2.2 will take up Sections 3 and 4.

The condition (2.10)(c) is slightly stronger than the one sometimes seen in the
literature, namely, that L; be a nondecreasing continuous process that increases only when
X; € 0D. Here we are essentially requiring the local time L; to be an additive functional
corresponding to surface measure on the boundary.

We will need the following proposition. Let 6; be shift operators so that X, 06, =
Xsi+t¢. By [B], Section 1.2, we may always suppose such 6; exist.

Proposition 2.3. Let P be a solution to (2.10) started at xo € D, let S be a finite
stopping time, and let Ps(w, dw’) be a regular conditional probability for the law of X. ofg
under P[- | Fs]. Then P-almost surely, Ps is a solution to (2.10) started at Xgs(w).

Proof. The proof is standard. Let A(w) = {w' : Xo(w') = Xs(w)}. Then
Aw)obs ={w': Xpolg(w') = Xg(w)} = {w': Xg(w') = Xg(w)}.

So
P(A(w) o bs | Fs) = lixgwpy(Xs) =1,  as.

If B = {L; is the uniform limit of the A4,,(¢)}, then
Bofs ={Liys — Lg is the uniform limit of A,,(t + S) — A (5)},

and so P(Bo#fgs | Fs) = 1, a.s. The proof that the process spends 0 time on the boundary
under Pg is similar.

Finally, the law of [Xt—Xo—% fot v(Xs)dLs]ofs given Fg is the law of [ X1 9—Xg—

i 5 + v(Xs)dLs] given Fg. This is a Brownian motion by the strong Markov property of
Brownian motion. O

3. Some analytic estimates.

We suppose throughout this section that the dimension d is greater than or equal to
3. We start with an estimate on the normal derivative for a mixed boundary problem. We
consider standard reflecting Brownian motion (Q”, X;) in D, and we kill this process on
hitting K. Fix a point o € D— K and choose p’ small enough so that dist (zg,d(D—K)) >

/

4p'.



Proposition 3.1. Suppose D satisfies (2.2) and in addition ¢ is C*°. Suppose G consists
of m components such that if A = ¢(G), then 0(A— A) = 0. Let g(-) be the Green function
for X, killed on hitting K U A with pole at xy. Then (0g/0v)(y) exists at almost every
point of 0D (with respect to o) and there exists c¢; such that

[ (G2w) otan) <

c1 depends on p, p',sup ¢, inf ¢, and the Lipschitz constant of ¢ but does not otherwise
depend on A. In particular, ¢; does not depend on m.

Proof. The function g is harmonic in D — K — {z¢}. By standard results from PDE on
the solution to the Dirichlet problem (see [GT], Sections 6.3 and 6.4), g can be extended
to be C'* at every point of A; this means that every point in A has a neighborhood in
whose intersection with D the function g is C*°. By standard results on the solution to the
Neumann problem (see [GT], Section 6.7), g has a smooth extension up to the boundary
in a neighborhood of each point in D — A. We make no claims at points in A — A, but
this set has surface measure 0.

Let us make the following assumptions about G and D. We will show they can be
removed at the end of the proof. First we assume that each of the components of GG has a
piecewise smooth boundary (considered as a subset of the sphere 0B(0,1)).

Let M be the Lipschitz constant of ¢. Let 6, = (0,...,0,—1). Choose r small
(depending only on M, sup ¢, and inf¢) such that there exists a Lipschitz function
I' : R 1 — R whose Lipschitz constant is less than 2M and with the property that the in-
tersection of B(p(61),r) with the region above the graph of I is the same as DNB(¢(61), 7).
Our second assumption is that G C 0B(0,1) N B(#:, 7).

If H is a (d—1)-dimensional hyperplane, let H* be the half space that contains (0, y)
for all y sufficiently large. We want to be able to apply Green’s identities in D— K — B(zo, p)
with the function g, so to do so, we make the following assumption on D for now:

(3.1) For each component E; of G, there exists €; > 0 and a hyperplane H; such that
{0(0) € 8D : dist(0,E;) € (0,e;)} is contained in H; and ¢(0) lies in H; if
dist (6, EY) € (0,¢&;).

Consider the domain C; = {(r,0) € D — K : dist (9, 0E;) < &;/2}. If we let C¥ be
the reflection of C; N Hf across H; and let C be the interior of C; N Hf U C—iR, then C7
has Lipschitz boundaries. By the reflection principle, ¢ may be extended across H;. By
Dahlberg’s theorem ([B], Section IIL.5), dg/0v is in L? with respect to surface measure
on AC}, from which is follows that dg/dv is in L? with respect to surface measure on
0D N{p(0) : dist (8, EF) € (0,¢;/2)}.
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We do this for each component, and conclude that we may apply Green’s identities
to the function g in D — K — B(x0,2p’). We can therefore conclude that dg/0v is the
density of harmonic measure on D — K started at x¢; this may be proved exactly as in [B],
pp. 217-218.

Let S = 0D N B(go(&l),r)c. Let FF = D — B(0,2p) — B(x0,2p") and let yo €
B(zg,4p") — B(zo,2p"). Since g is bounded and harmonic in F, then |Vg| is bounded
on 0B(0,2p) and on 0B(xp,2p"). By the PDE results mentioned in the first paragraph,
|Vg| is also bounded in a neighborhood of points of S. Let (Q%, X;) be the reflecting
Brownian motion constructed in [BH1] and discussed in Section 2. Since dg/0y is a
harmonic function, we have by Doob’s optional stopping theorem

dg , 99
8_y(y0) = EY = (Xror))-

(3.2) 5

By the fact that I' is a Lipschitz curve (with Lipschitz constant 2M) there exists ca
depending only on M such that the ratio of dg/0v to dg/0y is bounded above by co for
y € A. We have by the definition of harmonic measure that

99 . \\? _ e [99 _
(3.3) /A (E(z)) o(dz) = E [ 2 (Xr(om )i Xr(or) € A]
Since g > 0 in D and g = 0 in A, then dg/0y > 0 in A. The function

z = E* [(@ 1A) (X7(or) )}

ov
is harmonic, so by Harnack’s inequality, there exists a c3 such that
v [ 09 v [99
(3.4) E [E(XT(GF));XT(GF) € A} < c3E [E(XT(GF));XT(GF) €Al

Combining (3.2)-(3.4),
/A (%(2)) 2CT(dZ) < c3EY° [%(XT(GF));XT(GF) € A}
< cac3EY° [g_z(XT(aF));XT(aF) € A}
- c4(g—z(yo) R [Z—Z(XT@F)); Xror) € 0B(w0,2p') UOB(0,2p) U S
_Ev [g—z(XT(aF);XT(aF) coD -5 - 4)).

As we argued above, 9g/0y > 0 a.e. in 0D — S, while the first two terms on the right are
bounded by constants depending only on p, p’, and M. Therefore

(3.5) /A (%(2))2 o(dz) < cs.

11



We now show how to eliminate the assumptions made near the beginning of the
proof. Suppose that we no longer assume G C B(p(61),7). Let Ag = ¢(G N B(61,r)), let
g be the Green function for reflecting Brownian motion killed on hitting K U A with pole
at xp, and let go be the Green function for reflecting Brownian motion killed on hitting
K U Ay with pole at xg. Clearly

Q™ (X7(kua) € dy) < Q™ (Xr(KUuA,y) € dY)

for y € Ap, so on the set Ay the density of harmonic measure for reflecting Brownian motion
killed on hitting K U A, which is dg/dv, is less than or equal to the density of harmonic
measure for reflecting Brownian motion killed on hitting K U Ay, which is dgo/dv. By this
fact and (3.5) applied to go,

(3.6) /A o (%(2))2 o(dz) < co.

By a rotation of the coordinate system, (3.6) holds when 6; is replaced by any other
point of 9B(0,1). Since dD can be covered by finitely many balls of the form B(y(6),r)
with 6 € 0B(0,1), summing gives

(3.7) /A (%(2))2 o(dz) < cs.

Recall the ¢ is C*°. If the components E; of G are each of the form @ N 9B(0,1),
where @) is a cube of side length less than h, we can achieve (3.1) by modifying ¢ (and
hence D) slightly. The smaller h is, the less we need to modify ¢. Furthermore, we can
approximate GG as closely as we like by the union of such components. We can thus find a
sequence of star-like domains D,,, given by functions ¢,, converging to D such that (3.7)
holds when A is replaced by A, = ¢n(G) and g is replaced by the Green function for
reflecting Brownian motion on D,, and cg is independent of m. By the limit argument of
[B], pp. 217-218, we thus get (3.7) without any additional assumptions on G. O

Corollary 3.2. Let D,G and A be as in Proposition 3.1. Let H be C'*° with support in
D — K and let

TaNTk
u(z) =E* / H(X;)ds.
0

Then Ou/0v exists a.e. on 0D and there exists ¢c; depending only on p, p’,sup ¢, inf ¢, and
the Lipschitz constant of ¢ such that

/A (%(y))QU(dQ) < c.
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Proof. The almost everywhere existence of du/0v follows by the same PDE results as
were used in the first paragraph of the proof of Proposition 3.1. If g(z,y) is the Green
function for reflecting Brownian motion in D killed on hitting A U K with pole at z, then
u(y) = [ g(x,y)H(z)dz. Since the support of H is a positive distance from 9(D — K), the
result now follows from Proposition 3.1, Fubini’s theorem, and Fatou’s lemma. 0

We next need an estimate that is essentially that of [JK], Section 4. Suppose D
is a star-like Lipschitz domain: D = {(r,0) : r < ¢(0)}, where ¢ is a positive Lipschitz
function. Let us suppose ¢ is also C*°. Let 1(0) be another C'* positive function that is
strictly less than ¢ for all § and let £ = {(r,0) : r < 1(0)}. Let § < dist (0D,0F)/4 and
let F° = {z : dist (z,0E) < 6}. Recall that v, is the outward pointing unit normal vector

and v, = —v.

Proposition 3.3. Let D and E be as above, suppose f € L?(dD), and suppose u is
harmonic in (D — E) U E® with du/0v, = f on dD and [, u(z)o(dz) = [, u(z)o(dz).
There exists ¢ depending only on §,sup ¢, inf ¢, and the Lipschitz constants of ¢ and
such that

IN(Vu)ll2.0p < cillfllzop + c1suplul.
E

Proof. The proof follows [JK], Section 4, closely. First let us suppose f is smooth. Let
h = 0u/dv, on OF, where by v, on OE we mean the outward normal vector with respect
to the domain D — E. Then clearly w is the solution to the Neumann problem in D — F
with boundary functions f on D and h on JE; by Green’s identity, |, apf = J o h- Hence
by [GT], Chapter 6, u is smooth on D — E. Let = be the vector from the point 0 to the
point x. If

R(z) = |Vu(z)|*z — 2(z - Vu(z)) Vu(z) — (d — 2)u(z)Vu(z),

a calculation shows that divR(z) = 0 in D — E since u is harmonic there. So by the

divergence theorem,

(3.8) /aD(R Vo) (2)o(dz) = /aE(R Vo) (2) o(dz).

Let us let K = sup,ps |u(z)|. Since u is harmonic in E?, then Vu is bounded by c2 K
there, and so the right hand side of (3.8) is bounded by c3K?.
Let a(x) =z — (- vo(x))vo(x), so that

ou

(x-Vu) = (a(z) - Vu) + (z - Vo)a—yo.
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Let Viu denote the tangential component of Vu, that is,
Viu(z) = (Vu(z) - vi(x),...,Vu(z) - vg—1(x)),

where (v1(x),...,v4—1(x),Vo(z)) forms an orthonormal set of vectors at z € (D — E).
Then

yvmﬁqvmﬁ+(21f.

Since Ou/dv, = f on 0D, we have

/a V(e wofa))o(ds) < /a 1P )l +2 /a lla-Vul+(@d-2) / uf| + s K.

oD

The domain is bounded, so x - v, and a are bounded, and because D is star-like, there
exists ¢4 such that x - v, > ¢4 on 0D. Hence

3.9 [t <al [ pe [ valine [ uine?)

We said that [, u = [, v and [u| < K on OE. By the Poincaré inequality [M],

051 o = 5050 oo (000 L) Giomy )

S%LADWWF+Kﬂ.

If we write F for [, f* and I for [, |V,ul?, then by the Cauchy-Schwarz inequality we
have

/ luf| < er(I+ K2)Y2FY2,
oD

Substituting in (3.9),
I<cs [F L IV2EY2 g EY? 4 2]

This implies there exists cy depending only on cg such that I < cg[K? + F]. Since
Jop IVul? =TI+ F, we get |[Vull2,0p < c10[K? + F]. The result now follows for smooth f
since the nontangential maximal function is bounded in L? norm by the L? norm of the
function on the boundary (see [B], Section IIL.4, or [JK]). Finally we remove the restriction
that f be smooth exactly as in [JK], pp. 39-42. O

Suppose D is a domain satisfying the hypotheses of Proposition 3.1, except that
now we only assume ¢ is Lipschitz, not necessarily C'*°. Let K be as above. Let H be a
nonnegative C'*° function with support in D — K; let E be a smooth domain whose closure
is contained in D, which contains the support of H, and which is star-like with respect to
0. Let G be an open subset of 0B(0,1) consisting of finitely many components such that
if A= ¢(G), then (4 — A) = 0.

14



Proposition 3.4. Let D, K, FE,G, A, and H be as above. There exists a function u that
is nonnegative and bounded, —(1/2)Au = H in D — K, 0u/0v, exists a.e., u =0 a.e. on
A, Ou/0v, =0 a.e. on 0D — A, and ||N(Vu)l|l2,6p < 0.

Proof. Let D, = {(r,0) : » < ¢,(0)} be domains that are star-like with respect to 0,
where the ¢, are C°° and that decrease to D; we suppose also that sup,, || V¢n || is finite.

Let A, = ¢n(G). Let (QF, X;) be standard reflecting Brownian motion in D,,, let
expectation with respect to Q% be written E7, and let

TAn/\TK
up(z) = Eﬁ/o H(X;)ds.

Since the support of H is a compact subset of D and D is open, u,, is harmonic in
a neighborhood of dD,,. By the discussion in Section 2, du,,/0v = 0 a.e. on (0D,,) — A,.
By Corollary 3.2, Qu,, /0v exists a.e. on dD,, with L?(0D,,) norm not depending on n. So
by Proposition 3.3, N(Vu,,) is in L?(0D,,) with a norm not depending on n.

We will show that a subsequence of the u,, converges to a function u that satisfies
—(1/2)Au = H in D, u is nonnegative and bounded, u = 0 a.e. on A, du/dv, = 0 a.e. on
0D — A, and ||[N(Vu)l||2,6p < 0.

Note each u,,(z) is nonnegative and

[unloo < [[H oo sup B T .
n,y

By (2.4), the right hand side is finite. By the strong Markov property,

T(OE)ATk
up(z) = Eﬁ/o H(X;)ds + Equn(X108)ATK)-

The second term is harmonic inside £ — K and the first is uniformly smooth inside £ — K
by standard results from PDE (see [GT], Section 6.4), since E is smooth. So the u,, are
equicontinuous inside £ — K. On the other hand, each u,, is harmonic outside the support
of H. Therefore the u,, are equicontinuous on compact subsets of D and are uniformly
bounded; hence there exists a subsequence which converges uniformly on compact subsets
of D, say to u. By relabeling the D,,, let us suppose that the original sequence u,, converges.

Observe that if 6 € B(0,1), then V,?((6)) C VﬂD”(gon(G)), so NP(Vu,)(¢(0)) <
NP»(Vu,)(pn(#)). Since Vu, converges uniformly to Vu in compact subsets of D — E,
it follows easily by Fatou’s lemma (cf. [JK], Section 4) that for § < dist (0D, dF), we have
|NP(Vu)||2,0p < c1, where ¢; depends only on § and the Lipschitz constant of ¢ but not
on G. It is easy to see that Vu is bounded in D — Us since H is smooth and u is the
uniform limit of the u,, there, so we have

(3.10) IND (V) |20 < co.
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Since u is bounded, it has nontangential limits a.e. We show the nontangential
limit is 0 a.e. on A. Let v,(x) = QF(X; hits E before A, ). This is a harmonic function
in D,, — F which equals 1 on F and has nontangential limits 0 on A,. Let ¢ > 0 and
0 € G. Since vy, is bounded by 1 and is 0 on A,,, by Lemma 2.1 there exists § such that if
x € VﬂD”(gon(G)) and |x — ¢n(0)| < §, then v,(z) <e. Soif z € VﬂD(go(G)) - VﬂD”(gon(G))
and |z — ¢(0)| < §/2, then for n large, |z — ¢, ()] < §. Since u,, has nontangential limits
0 on A,, and is harmonic in D,, — E,

0 < up(r) < sup HunHoonL(TE <Ta,) < vn(z)sup [[unco-

Hence u(z) < esup,, ||tn||co. This shows u(z) — 0 as z — ¢(#) nontangentially.

Since ||[Np(Vu)|l2,00 < c2, then Vu converges nontangentially a.e. and so du/0v,
exists a.e. It remains to show that du/0v, = 0 a.e. on 9D — A. Let h(f) be a smooth
function with support in G¢. Let f,(z) = Exh(X7sp,,)), f(x) = E*h(X71@sp)), Where
(Q*, X;) is reflecting Brownian motion on D. Note the restriction of f,, to dD,, is supported
on AS and the restriction of f to 0D is supported on A°.

Let (P®,W;) be standard Brownian motion on R%. Up until times T(8D,,) and
T(0D), (Qf, X;) and (Q7, X;), respectively, have the same law as (P*,W}). So f,(z) =
Ep: h(Wrsp,)) and f(x) = Ep=h(Wr(sp)). Since Tpp, | Top and h is smooth, it follows
that f, converges to f on D. Since f,, and f are harmonic, the convergence is uniform on
compact subsets of D.

By Green’s first identity, since f, and f are harmonic in D, — F and D — FE,
respectively, and Ou,,/0v, = 0 on (0D,,) — An,

/D VRV [ 5, Qun o fn o fn o

of
v,

(Recall v, is the outward normal vector for the domains Dn —FEorD—-E.)
We will show

(3.11) / Vf-Vu, — Vf-Vu.
D,.—E D-E

and

Vf-Vu= f
D—FE 87/0

f

Since f,, — f and wu,, is harmonic on JF and uniformly bounded in n in a neighborhood
of E, Ouy/0v, — 0u/0v, on E. So if (3.11) holds, [, f(du/0v,) = 0. If this holds for all
such h, then Ju/0v, = 0 a.e. on A°. So it remains to show (3.11).

Recall the definition of U, from (2.1). We have V f,, — V f uniformly on D — U,
and Vu, — Vu uniformly on D — U,, so

(3.12) / Vo Vu, — Vf-Vu.
D-U, D-U,
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Since h is smooth, by [JK], Theorem 4.13, there exists c3 independent of n such that

/ap (N (V) (y)* o(dy) < cs

and

/a (N(VH@)? oldy) < o

Let € > 0. If r < ¢, (0), then |V f,(r,0)] < N(Vf.)(en()). So f(Dn—D)uUT |V fn|? can be
made less than € if r is small enough and n is large enough, and similarly |, v IVf 2 < g if
r is small enough. We have

1/2 1/2
/ ViVl < val) (| Vi)
(D, —D)UU., (D, —D)UU., (D, —D)UU,

< cgsupe||N(Vuy)l2,0p
n

and

/UT IVf-Vu| < (/U IVfIQ)l/Q(/UT |Vu|)1/2 < cq¢||N(Vu)||2.00-

Combining with (3.12) and using the fact that ¢ is arbitrary gives (3.11). O

Proposition 3.5. Let D, K, E, and H be as in Proposition 3.4. Let G be an arbitrary
open set in 0B(0,1) and A = ¢(G). Then there exists a function u(x) satisfying the
conclusions of Proposition 3.4.

Proof. Let G,, be open sets satisfying the hypotheses of Proposition 3.1 and increasing
to an open set G and let A,, = ¢p(G,,) and A = ¢(G). Let up,(x) be the corresponding
functions given by Proposition 3.4. The u,, are uniformly bounded, harmonic in D — F,
and satisfy —(1/2)Au,, = H in E — K. As m increases, A, T A. Using the nota-
tion of the proof of Proposition 3.4, observe that as m increases, T4, decreases, and so
E? OTA"‘ Mg (Xs)ds decreases. It follows that u,,(z) decreases as m increases for each
z. Let u(z) = limy,— 00 Um (). By the harmonicity and boundedness of the w,,, the con-
vergence is uniform on compact subsets of D — E. Therefore u is harmonic in D — F|
bounded in D, 0 on K, and —(1/2)Au=H in £ — K.

Suppose x € Vg(z) for some z € A. Then z € A, for some m and given ¢, there
exists ¢ such that if |x — 2| < §, then 0 < u,,(x) < e. Therefore u(z) < u,,(x) < e. This
shows that u has nontangential limits 0 a.e. on A.

By Fatou’s lemma and the corresponding result for the uy,, | N(Vu)|2,0p0 < c¢1. So
Ou/0v, exists a.e., and we must show that it is 0 a.e. on A°. Suppose there exists a set
B of positive surface measure contained in A° on which 0u/0v, > r for some r > 0. (The
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case where Ju/0v, is negative is treated similarly.) Pick f smooth on 0D such that f =1
on B and [, f(du/dv,) > ro(B)/2. We also require

1/2 ro(B)
2
< .
(/aDB r) 4sup,, [N(Vum) 2,00

We can find such a f by taking smooth f decreasing to 1. Extend f to D be defining
f(z) = E* f(Xr@p)), where (Q7, X;) is reflecting Brownian motion on D. Since B C A° C

AS . Oup,/O0v, =0 on B and
m m / m
e l=1, = ) el

Now by Green’s identity on D and the fact that f is harmonic in D,

)1/2 < ro(B)/4.

8um

8V0

/ Vf-Vun,

and similarly to Proposition 3.4 but easier, this converges to [, V.f-Vu = [, f(du/0vs).
This implies that

ro(B) Oum, ro(B)
> 1 = —
4 171ran f vy fﬁyo 2
a contradiction. Therefore there exists no such subset B. OJ

Corollary 3.6. Let D,K,E,H,G, and A be as in Proposition 3.5. There exist reals
rn, T 1 and functions F,, : D — R that are C*°, the F,, are nonnegative and uniformly
bounded, —(1/2)AF,, — H uniformly in E — K, F,, =0 on B(0,p/ry,), F,, — 0 a.e. on A,
O0F,/0v, — 0 a.e. on A, and sup,, ||[N(VE},)| 2,00 < 0.

Proof. Let u be the function constructed in Proposition 3.5, let r,, T 1 and let

F,(z) = u(rpz), z € D. O

4. Uniqueness.

For now we suppose D satisfies (2.2) and the dimension d > 3. Let (Q*, X;) denote
a standard reflecting Brownian motion, let xy € D, and let P be a probability measure
that is a solution to (2.10). Without loss of generality we may suppose zg # 0. Our main
goal is to show P = Q%°. Let p < min(|zol|,dist (0,0D))/4 and define K = B(0, p). Let 6,
be the usual shift operators.
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The process L; is a continuous process, so if M > 0 and & (M) = inf{t : Ly > M},
then {1(M) > 0. Since Lipg,(ar) is the uniform limit of A, (¢t A §1(M)), where A, is
defined by (2.6), it follows that £2(M) = inf{t : sup,,, A (t A& (M)) > 2M} is also strictly
positive, a.s. We let {5 = &3(M) = & (M) A &(M) A M, and observe that 0 < &3(M) and
&3(M) — oo as M — oo.

We define a new probability measure I’ that agrees with P up to time £3 and agrees
with Q®0 after time &3 as follows. If A € F¢, and B € F, let

P'(B o, N A) = Ep(QX()(B); A).

This determines the probability measure P’ on F, ([SV2], Chapter 6). P’ is a solution to
(2.10) up to time &3 since it agrees with P on F¢,. P’ solves (2.10) shifted by an amount
&3 by the fact that for each z, Q7 is a solution to (2.10) starting at z. If we show that
P’ = Q%°, then P = Q" on F¢, (), and letting M — oo, we obtain P = Q®°.

The reason we work with P’ is the following.

Proposition 4.1. (a) Ep L7, < occ.
(b) Ep/ sup,,, Am(Tk) < 0.
(C) Ep Tk < co.

Proof. We have A,,(Tx) = An(&3) + An(Tk) o B¢, and letting m — oo we obtain
Lr, = L§3 + L7, o 953 . So by the definition of ]P/,

Epr Ly, = BpLe, 4 B (Lry © O, )
— EpLe, + EBp(BEXE) Ly ).

By the definition of &3, the first term is bounded by M, while the second term is finite by
the discussion following (2.4). The proof of assertion (c) is essentially the same.

Since
sup A, (TK) <supAn, (€3) + (sup A, (TK)) © 0537

the proof of (b) is similar. O

We now drop the primes from P, and without loss of generality we may suppose
that EpL7, < 0o, Epsup,, Am(Tk) < 0o, and EpTk < oo.

Define a measure p on D — K by

Tk
w(B) = EIP’/ 1p(X;)ds,
0
the amount of time spent in B before hitting K.
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Proposition 4.2. p is absolutely continuous with respect to Lebesgue measure. If we let
h denote the Radon-Nikodym derivative, we may choose h to be finite, nonnegative, and
harmonic in D — K — {z¢}.

Proof. The nonnegativity is clear. Let By C B; C Bs be any three concentric balls
contained in D — K — {zo} such that By C By, B; C B, and B C D — K — {z0}. If we
prove that u restricted to By has a Radon-Nikodym derivative with respect to Lebesgue
measure that may be chosen to be harmonic in By, then since By is arbitrary we will
obtain our result.

Let S1 = inf{t : Xy € B1}, Th = inf{t > S1 : Xy ¢ By}, and for i > 1 let
Sit1 =1inf{t > T; : Xy € B1} and T;41 = inf{t > S; 11 : X} ¢ Ba}. If B C By, then

TK o0 Ti
(4.1) Ep/ 1B(X5)dS:ZEp[/ 1B(X5)dS;Si <Tgl.
0 i=1 Si

Note that under P, the process fot 15(X5)ds cannot increase before time S; because zy ¢
Bs; since KN By =0, if S; < Tk, then T; < Tk.

The law of X o fs, under a regular conditional probability for E[- | Fg,]| is by
Proposition 2.3 a solution to (2.10) started at Xg,. Started at z € D — K, the law of
X; is the same as that of a standard d-dimensional Brownian motion up to time Typ.
Therefore Ep| [ g "15(Xs)ds | Fg,] is the same as the amount of time Brownian motion
started at Xg, spends in B up until leaving By. If gp,(z,y) is the Green function for
standard d-dimensional Brownian motion killed on exiting B2, we have then

(4.2) Er /S T 15(X.)ds | s, | = /B 98, (Xs.,1) dy.

The law of X 067, under a regular conditional probability for Ep[- | Fr,] is a solution
to (2.10) started at X7,. A solution started at X7, is a standard Brownian motion up until
hitting 0D. By the support theorem for Brownian motion ([B], p. 59), there exists p < 1
such that

Qy(TB1 < TK) < p, Y € 0B;.

Hence
Q¥ T)(Tp, < Tk) < p,

or
P(Siv1 < Tk | Fr,) <p, as.

From this we deduce
]P’(Si+1 < TK) = ]P’(Si+1 < TK, Sz < TK) = EP[P(SZ'+1 < Ty | FTZ-); Sz < TK]
< p]P’(SZ < TK).
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By induction, P(S; < Tx) < p.
Combining with (4.1) and (4.2) and using Fubini’s theorem,

TK oo
Ep/ 1B(X5)d82/ ZEP[QBQ(XSi7y);Si <TK] dy.
0 Bi=1

9B, (z,y) is harmonic in y € By when x € 0Bj; therefore Eplgp,(Xs;,y); S < Tk] is
harmonic. Since gp,(z,y) is bounded over = € 0B1,y € By, then

(4.3) Z Ep[gBQ (Xsi,y); S; < TK] < Z Cl]P)(Si < TK) < Z Clpi < 0.
=10 =10 =10

Let -

i=1
In view of (4.3) the sum converges uniformly over y € By and hence h is finite and harmonic
in Bo. O

Since h is nonnegative and harmonic in D — K — {z¢}, the nontangential maximal
function of h is finite a.e. in a neighborhood of 9D, i.e., for € less than p/,

N:(h)(z) < o0, for almost every z € 9D.

By (2.3), the Green function for D — K with pole at x is bounded in D — B(z, p’), say
by R. We construct a sawtooth domain

Dy = | J{Vs(2) : 2 € 9D, N.(h)(2) < 3R}.

Dy is a Lipschitz domain, and since it is contained in D, still star-like with respect to 0.
Let A = 8D0 — 0D.

Lemma 4.3. There exists c; depending only on € and R such that

T ANT A
Ep / o(X)|dL; < er / o(y)] o(dy).
0 o0D—A

Proof. First suppose ¢ is nonnegative and continuous on 9D and extend ¢ to be non-
negative and continuous in D as well. Since L; is the uniform limit of the A,,(t),

TrNTaNt T ATaNt
[ epdane - [ exdr.
0 0
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By Proposition 4.1(b) and dominated convergence,

TrANTaNt T ATaNt
(4.4) Ep/ ©(Xs)dLs = lim E]p/ o(Xs) dAn(s).
0 0

m— o0

h is bounded by 3R in a neighborhood of 0Dy. Recall the definition of U, from (2.1).
Because h is harmonic in D — K — B(zo, p') — U,, it is bounded by a constant cy there.
Since dA,,(s) = fm(Xs) ds, the right hand side in (4.4) is bounded by

Ee / (X (X4 ds < / Loy (4)2 () fon (0)(y) dy
< s /D o) fn(y) dy,

where c3 = co V R. Since f,,(y)dy converges weakly to o(dy) and ¢ is continuous,

TANTg Nt
E[P’/ SO(Xs)dLs < C3/ @(y) J(dy)
0 o

D
Now let ¢t — oco. By linearity and a limit argument,

TaNTk
Ep / o(X)|dLs < c5 / o) o (dy)
0 oD

for all ¢ bounded and measurable on dD. Finally, since L; grows only when X; € 0D,

T ANT A TaNT g
Be [ leldL =Be [ (elian-)(X.)ldL.
0 0
<ex [ Ie1an-2)w)] o(d).
This completes the proof. 0]

Let H be a C* function with support in D — K — {zo}. The key proposition is the
following.

Proposition 4.4. Let u(z) = E* [, *""* H(X,)ds. Then ifzy € D — K,

TaNTk
E[p/ H(X;)ds = u(zo).
0

Proof. Let E be star-like, contained in D, and containing the support of H. Construct
the F, as in Corollary 3.6. For r > 1 let K,, = B(0,7p). F, is C? on D — K,., so by Ito’s

formula,

TKT/\TA/\t
(4.5) Fo(X(Tk, NTaNt)) — F,(Xo) = martingale + 5/ AF,(X;)ds
0

Tr, NTaNt 8F
n X,)dLs.
4 / 2 (x,)
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Take expectations with respect to P. By Lemma 4.3, the expectation of the local time
term in (4.5) (i.e., the last term on the right) is bounded by

o [ |G| o)

F,, is bounded and AF;, is bounded in D, so letting ¢ — 0o, we obtain

1 TKr AT 4
EpF,(X(Tx, ATa)) — Fa(zo) = 5Ep/ AF,(X,)ds + R,
0

where

Ri<a [ 52| o).

Next let n — co. By Corollary 3.6 dF,,/dv is in L?(o) with a bound independent
of n and 0F,, /0v — 0 a.e. on 0D — A. We also have that (1/2)AF,, — —H uniformly on
D — K, and F,, — u uniformly. So we obtain

TKT/\TA
Epu(X(Tk, NTa)) —u(zo) = —E]p/ H(X;)ds.
0

The function u is 0 on A and on K and H is bounded. So by dominated convergence on
the left and monotone convergence on the right, letting r | 1,

T ANT A
—u(zp) = —Ep/ H(X;)ds. O
0
Corollary 4.5. Ifzg € D — K,
TaNT g TaNTk
E[P’/ H(Xs)ds:ExO/ H(X;)ds
0 0
for all bounded functions H.
Proof. This follows from Proposition 4.4 by a limit argument and the fact that the
quantity Ep fOTKATA {203 (Xs) ds is 0 since X; behaves like a Brownian motion in a neigh-

borhood of xg. O

Corollary 4.6. Ifzg € D — K,

TK TK
B [ H(X,)ds = B / H(X,)ds
0 0
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for all bounded functions H.

Proof. Recall the definition of R following the proof of Proposition 4.2. If H has support
in D — K — B(zg,p'), then by the definition of R,

Tk
B [ H(X,)1p(X,)ds < R|H|w|B]
0
for B C D. This and Corollary 4.5 imply that h < R, a.e., on D — B(xq,p’). Since h is
harmonic, it is continuous, or h < R on D — B(xg,p’). This implies N.(h)(z) < R, so
Dy = D and hence A = 0. O

We would like the conclusion of Corollary 4.6 to hold for all xg, even for xy € dD.
Proposition 4.7. If xq € 0D,

TK TK
Ep H(X,)ds = E® H(X,)ds.
0 0

Proof. Let zyp € 0D. Let {4(n) = inf{t : |X; — zo| > 1/n} and &(m) = inf{t :
dist (X;,0D) > 1/m}. Choose m,, such that P(&5(my,) > £4(n)) < 1/n; this is possible
since starting at zo the process under P leaves 0D immediately. Let &(n) = &4(n) A
&5(mp) A 1/n. As in Corollary 4.5 it suffices to prove the proposition for H in C'*° with
support in D — K. So for n sufficiently large, X; will not be in the support of H when
t < &(n) and

TK TK
Ep [ H(X,)ds=Ep H(X,)ds.
0 &6(n)
The law of the process X o 6¢, () under a regular conditional probability for Ep[- | F¢,n)]
is a solution to (2.10) started at X¢ (). On the set where X¢ () ¢ D, by Corollary 4.6

we have E[p[fOTK H(X)ds | Feon)] = w(Xeg(n)), where

(4.6) u(z) =E - H(X;)ds.

So

Tk
6(n

< cy/n.
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By (2.7), u is continuous in B(zg,1/n) N D, so letting n — oo, we have u(X¢, (n)) — u(zo),

and hence
Tk

E[p H(XS) ds = Epu(fco) = u(:co) O

Proposition 4.8. Let S H = Ep fo ¥ e MH(X;)dt. Then for all zo € D — K and for all
A< 1/(2sup, E¥Tk),

Tk
S\H = E*° / eiAtH(Xt) dt.
0

Proof. It is enough to consider H that are C°° with support in D — K. Let us kill the
process on hitting K. Since H is 0 there, we can let the integrals run from 0 to co. Let u
be defined by (4.6). Under a regular conditional probability for F;, the law of the process
X 06, is a solution to (2.10) started at X;. Therefore by Proposition 4.7

Ep[/ H(Xs00;)ds | Ft} = EXt/ H(X;)ds = u(Xy).
0 0
We then have

(4.7) qu:Ep/ e Mu(X,) dt
0
E/ AtEp/ H(X,y1)ds | Fi| d

= / At/ H(X,)dsdt
:Ep/ H(XS)/ e Mdtds

1_ As
_EP/ H(X i —ds

= XU(ZIIQ) — XS)\H

or SyH = u(xzg) — ASxu. Define the operator Ry by

(4.8) Ryf(z) =E” /0 Y f(Xy)dt

We thus have u = RogH and so

(4.9) S\H = RoH (z9) — ASxRoH
Let

© = sup |S\H — RxH(xo)l|.
1H oo <1
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Note |RxH oo < A7 Hl|oo and [|[RoH oo < c1||H||oo, where ¢1 = sup, E¥Tk. From the
semigroup property of Q” (cf. [B], p. 19),

(4.10) RxH(zo) = RoH(x0) — AR\RoH (x0).
Subtracting (4.10) from (4.9),

|SxH — RyH(x0)| = |[AN(SAxRoH — RARoH (x0))| < AO||RoH||s0 < AOc1||H| -
Taking the supremum over H with ||H||c <1, if A < 1/2¢4,

0 < \O¢; < 0/2.

Since
© < sup (|[S\H|+ [|[RaH|x) <2/ < o0,
(1 H oo <1
we have © =0 or SxH = R H(xy). O

Proof of Theorem 2.2. First suppose that d > 3 and D satisfies (2.2). Recall the nota-
tion of Proposition 4.8 and that SxH = RyH(zo). By the uniqueness of the Laplace trans-
form and the continuity of H(X;) when H is continuous, EpH(Xia7, ) = E*OH(XiaTy )-
As p — 0, then Tx — Ty,,;. Since X; behaves like a Brownian motion up until time
T(0D), then T(,,, is identically infinite. So EpH(X;) = E**H(X;). By standard argu-
ments (see [SV2], Chapter 6), this implies that the finite dimensional distributions of X}
under P and under Q*° agree. Therefore P = Q0.

Now let D be an arbitrary Lipschitz domain. By standard piecing-together argu-
ments (see [SV2]) and (2.8), it suffices to show that for each xo € D, any two solutions
P; and Py agree in a neighborhood of xy. That is, if g € D, there exists r > 0 such
that Py and P> agree on Fr(9B(x,,r))- Inside D, X; under both P; and P2 behaves like
ordinary Brownian motion, so we need only consider xy € 0D. Let a coordinate system
and a domain D’ satisfying (2.2) be chosen so that D’ agrees with D in a neighborhood
B(zg,7) N D of zp. Define P} for i = 1,2 by

]P’;(B o 9T(8B(:c0,r)) N A) = Epi( g/(T(aB(xO’r)))(B); A), Ae FT(@B(:Cg,?")); B e F,

where here (Q%,,, X;) is the law of reflecting Brownian motion in D’ started at x. As in
the discussion preceding Proposition 4.1, IP; is a solution to (2.10) in D’ for ¢ = 1,2. By
the uniqueness result for domains satisfying (2.2), P} = P, = Q7). So if A € Fr(ze,r))
then P;(A) = P} (A) = PL(A) =Py (A).
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Finally we consider the case of d = 2. Let W; be a one-dimensional Brownian
motion reflecting at —1 and 1 and independent of X;. Then the law of (X;,W;) is a
solution to (2.10) for the Lipschitz domain D x (—1,1), and so is unique. The uniqueness
of the law of X; follows easily. OJ

5. Strong solutions.

A strong solution to (2.9) exists if there exists a process X; satisfying (2.9) such
that X is measurable with respect to the o-fields of W. An interesting open problem is
the following.

Problem 5.1. Does there exist a strong solution to (2.9)7

The reason for our interest is that if a strong solution exists, then in fact pathwise
uniqueness holds for (2.9). That is, any two solutions to (2.9) must be identical. The proof
of this is simple; cf. [K]|, Lemma 2.1.

Proposition 5.2. Suppose a strong solution to (2.9) exists satisfying (2.10)(a)-(c). Then
any two solutions to (2.9) that satisfy (2.10)(a)-(c) agree pathwise, a.s.

Proof. Suppose dY; = dW;+ (1/2)v(Y;) dL; and Y; is a strong solution. Then there exists
a measurable map F' from C|0,00) to C|0,00) such that Y = F(W). Let X; be another
solution. We have

1 [t 1 [t
(5.1) Wt:Yt—i/ v(Ys)dLs, Wt:Xt—i/ v(Xs)dLs.
0 0

The uniqueness in law (Theorem 2.2) says that the law of Y is equal to the law of X,
so using (5.1) the law of the pair (Y, W) is equal to the law of the pair (X,W). Since
Y = F(W), then X = F(W), a.s., and we then conclude that X = F(W) =Y, a.s. O

Remark. We do not know the answer to Problem 5.1 even when D is a C''T® domain
and even when the dimension d is 2. (The obvious conformal mapping argument does
not appear to help). A C1T® domain is defined analogously to a Lipschitz domain, where
we replace Lipschitz functions in the definition by functions whose gradient is Holder

continuous of order a.
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