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Abstract

In this note we prove strong invariance principles between ranked excursion lengths and heights
of a simple random walk and those of a standard Brownian motion. Some consequences
concerning limiting distributions and strong limit theorems will also be presented.

1 Introduction

Let X1, X2, . . . be independent random variables with distribution

P (Xi = +1) = P (Xi = −1) =
1

2
.

Put S0 = 0, Si = X1 + . . . Xi, i = 1, 2, . . . . Then the sequence {Si}∞i=0 is called a simple
symmetric random walk on the line. Consider the return times defined by ρ0 = 0,

ρi = min{k > ρi−1 : Sk = 0}, i = 1, 2, . . .

Further, let
ξ(n) = #{k : 0 < k ≤ n, Sk = 0}

be the local time of the random walk at zero, i.e. the number of returns to the origin up to
time n.
The parts

(Sρi−1
, . . . , Sρi−1), i = 1, 2, . . .
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between consecutive returns are called excursions. Consider the lengths

τi = ρi − ρi−1,

and heights
µi = max

ρi−1≤k≤ρi−1
|Sk|,

µ+
i = max

ρi−1≤k≤ρi−1
Sk

of i-th excursion.
Clearly, the random walk does not change sign within an excursion. We may call the excursion
positive (negative) if the random walk assumes positive (negative) values within this excursion.
If the i-th excursion is negative, then µ+

i = 0.
In this paper we consider the ranked lengths and heights of excursions up to time n. In general,
however the (fixed) time n need not be an excursion endpoint, and we include the length and
height of this last, possibly incomplete, excursion as well. Consider the sequences

L(1)(n) ≥ L(2)(n) ≥ . . . ,

M (1)(n) ≥M (2)(n) ≥ . . . ,

and
M

(1)
+ (n) ≥M

(2)
+ (n) ≥ . . . ,

where L(j)(n) is the j-th largest in the sequence

(τ1, τ2, . . . , τξ(n), n− ρξ(n)),

M (j)(n) is the j-th largest in the sequence

(µ1, µ2, . . . , µξ(n), max
ρξ(n)≤k≤n

|Sk|),

while M
(j)
+ (n) is the j-th largest in the sequence

(µ+
1 , µ

+
2 , . . . , µ

+
ξ(n), max

ρξ(n)≤k≤n
Sk).

We define M
(j)
+ (n) = M (j)(n) = L(j)(n) = 0 if j > ξ(n) + 1.

Let {W (t), t ≥ 0} be a standard one-dimensional Brownian motion starting from 0. For t > 0
denote by

V (1)(t) ≥ V (2)(t) ≥ · · · ≥ V (n)(t) ≥ · · · > 0,

the ranked lengths of the countable excursions of W over [0, t]. We mention that this sequence
includes the length t − g(t) of the incomplete excursion (W (s), g(t) ≤ s ≤ t), where g(t) :=
sup{s ≤ t : W (s) = 0}.
Let furthermore

H
(1)
+ (t) ≥ H

(2)
+ (t) ≥ . . . H

(n)
+ (t) ≥ · · · > 0

and
H(1)(t) ≥ H(2)(t) ≥ ...H(n)(t) ≥ ... > 0
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denote the ranked heights of countable positive and all excursions, resp. of W over [0, t].
These sequences include the heights supg(t)≤s≤tW (s) and supg(t)≤s≤t |W (s)| of the incomplete
excursion (W (s), g(t) ≤ s ≤ t).

The properties of these quantities for Brownian motion were investigated by Wendel [15],
Knight [11], Pitman and Yor [13, 14] and their strong limit properties were studied in [8, 9],
[3, 4, 5]. In [2] the properties of L(1) were investigated. For random walk excursions exact and
limiting distributions were studied in [6].

In this paper we prove strong invariance principles for ranked lengths and heights and discuss
certain consequences for limit theorems.

2 Invariance principle

We shall approximate the heights and lengths of random walk excursion by those of Brownian
motion, using Skorokhod embedding.

Define σ(0) = 0 and

σ(n) = inf{t > σ(n− 1) : |W (t)−W (σ(n− 1))| = 1}, n ≥ 1.

Take Si := W (σ(i)). Then {Si}∞i=0 is a simple random walk obtained by Skorokhod embedding

and we make use of the notations (ξ(n),M
(j)
+ (n),M (j)(n), L(j)(n)) introduced in Section 1.

Theorem 2.1 Almost surely, we have

lim sup
n→∞

1

(log n)1/2 (log log n)1/4
max

1≤j≤ξ(n)
|M (j)

+ (n)−H
(j)
+ (n)| ≤ 3, (2.1)

lim sup
n→∞

1

(log n)1/2 (log log n)1/4
max

1≤j≤ξ(n)
|M (j)(n)−H(j)(n)| ≤ 3, (2.2)

lim sup
n→∞

1√
n log log n

max
1≤j≤ξ(n)

|L(j)(n)− V (j)(n)| ≤ 6. (2.3)

We state below some known results as facts:

Fact 2.2 Csörgő and Révész ([7], Theorem 1.2.1) Let at be a non-decreasing function
of t such that 0 < at ≤ t and t/at is non-decreasing. Then

lim sup
t→∞

1
√

2at(log(t/at) + log log t)
sup

0≤u≤t−at

sup
0≤s≤at

|W (u+ s)−W (u)| = 1, a.s.

Fact 2.3 We have

P (σ(1) ≥ x) =
4

π

∞
∑

k=0

(−1)k
2k + 1

exp

(

−π
2

8
(2k + 1)2x

)

, x ≥ 0, (2.4)

lim sup
n→∞

1√
n log log n

max
1≤j≤n

|σ(j)− j| =
√

2 Var(σ(1)) =
2√
3
, a.s., (2.5)

lim
n→∞

1

log n
max

1≤j≤n
(σ(j)− σ(j − 1)) =

8

π2
, a.s. (2.6)
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W (t)

tσ(ρ(i))

g(σ(ρ(i) + 1))

σ(ρ(i) + 1)

σ(n)

σ(ρ(i+ 1))

Figure 1: The Skorokhod embedding Sn = W (σ(n))

For (2.4) see e.g. Knight [10], Theorem 4.1.1, while the two estimates (2.5) and (2.6) follow
from the usual law of the iterated logarithm and the standard extreme value theory, resp.

Proof of Theorem 2.1: Let us firstly prove the invariance on the heights (2.2).
The two intervals [ρ(i), ρ(i+1)∧n] and [g(σ(ρ(i)+1)), σ(ρ(i+1)∧n)] are respectively excursion
interval of S and of W . Observe that

∣

∣ max
ρ(i)∧n≤k<ρ(i+1)∧n

|Sk| − sup
σ(ρ(i)∧n)≤s<σ(ρ(i+1)∧n)

|W (s)|
∣

∣ ≤ 1,

where we adopt the convention max∅ = sup∅ = 0. Let j ≥ 1 and x > 1. The event {1 ≤
M (j)(n) < x} yields that there are at most j − 1 index i ≥ 0 such that

max
ρ(i)∧n≤k<ρ(i+1)∧n

|Sk| ≥ x,

which implies that there are at most j − 1 index i such that

sup
σ(ρ(i)∧n)≤s<σ(ρ(i+1)∧n)

|W (s)| ≥ x+ 1.

In other words,
{1 ≤M (j)(n) < x} ⊂ {Hj(σ(n)) < x+ 1}.

Similarly,
{M (j)(n) > x} ⊂ {Hj(σ(n)) > x− 1}.
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Hence
max

1≤j≤ξ(n)

∣

∣

∣
M (j)(n)−Hj(σ(n))

∣

∣

∣
≤ 1.

Now, we observe that for any 0 ≤ s < t

|Hj(t)−Hj(s)| ≤ sup
s≤u≤v≤t

|W (v)−W (u)|

which in view of Fact 2.2 and (2.5) imply (2.2).
The proof of (2.1) is similar.
To compare the lengths, we adopt the similar ω-by-ω argument: Roughly saying, the longest
lengths of the excursions of W till σ(n) are {σ(n ∧ ρ(i+ 1))− σ(n ∧ ρ(i)), i ≥ 1} = {n ∧ ρ(i+
1)− n ∧ ρ(i)} with error term bounded by max1≤j≤n(σ(j)− σ(j − 1)) = O(

√
n log log n).

In fact, let x > 4
√
n log log n. It follows from (2.5) that

lim sup
n→∞

1√
n log log n

max
0≤i≤j≤n

∣

∣σ(j)− σ(i)− (j − i)
∣

∣ ≤ 4√
3
. (2.7)

Consider a typical ω and n ≥ n0(ω) sufficiently large such that (2.6) and (2.7) hold. For any 1 ≤
j ≤ ξ(n), L(j)(n) > x yields that there are at least j index i ≥ 0 such that n∧ρ(i+1)−ρ(i) > x,
hence σ(n∧ρ(i+1))−σ(ρ(i)) > x−3

√
n log log n and therefore σ(n∧ρ(i+1))−σ(ρ(i)+1) >

x− 4
√
n log log n. We have obtained

{L(j)(n) > x} ⊂ {Vj(σ(n)) > x− 4
√

n log log n},
and in a similar way,

{2 ≤ L(j)(n) ≤ x} ⊂ {Vj(σ(n)) ≤ x+ 4
√

n log log n}.

Hence almost surely for all large n ≥ n0(ω), we have

max
1≤j≤ξ(n)

∣

∣L(j)(n)− Vj(σ(n))
∣

∣ ≤ 4
√

n log log n.

Note that Vj(t)− Vj(s) ≤ t− s for any s ≤ t. This together with (2.5) yield (2.3), completing
the whole proof of Theorem 2.1. 2

3 Limit theorems

It follows from our Theorem 2.1 that the limit results proved for heights and (or) lengths
of excursions for the case of Brownian motion remain valid for similar quantities of simple
symmetric random walk and vice versa. So the limiting distributions derived in [6] in random
walk case are equivalent with the corresponding distributions in Brownian motion case.

Fact 3.1 [6]

lim
n→∞

P (M
(j)
+ (n) ≥ y

√
n) = 2(1− Φ((2j − 1)y)) (3.1)

lim
n→∞

P (M (j)(n) ≥ y
√
n) = 2j+1

∞
∑

k=0

(−1)k
(

k + j − 1

k

)

(1− Φ((2k + 2j − 1)y)) (3.2)

Hence it follows from Theorem 2.1 and scaling
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Corollary 3.2

P (H
(j)
+ (t) ≥ y

√
t) = 2(1− Φ((2j − 1)y)) (3.3)

P (H(j)(t) ≥ y
√
t) = 2j+1

∞
∑

k=0

(−1)k
(

k + j − 1

k

)

(1− Φ((2k + 2j − 1)y)). (3.4)

Another form of the above distributions and further distributional results can be found in
Pitman and Yor [12, 13, 14], and Wendel [15].
Furthermore, we mention some almost sure results proved for Brownian motion case, remaining
valid also for random walk case.

Fact 3.3 [3] Let f > 0 be a nondecreasing function. For k ≥ 2, we have

P (H(k)(t) >
√
tf(t), i.o.) = 0 or 1

according as
∫ ∞

1

f(t)

t
exp

(

− (2k − 1)2f2(t)

2

)

dt <∞ or =∞.

Here i.o. means that there is a sequence {ti}∞i=1 such that limi→∞ ti = ∞ and H(k)(ti) >√
tif(ti).

Theorem 2.1 and Fact 3.3 clearly imply

Corollary 3.4 Let f > 0 be a nondecreasing function. For k ≥ 2, we have

P (M (k)(n) >
√
nf(n), i.o.) = 0 or 1

according as
∞
∑

n=1

f(n)

n
exp

(

− (2k − 1)2f2(n)

2

)

<∞ or =∞.

We note that Fact 3.3 and Corollary 3.4 remain true if H (k)(t) and M (k)(n) are replaced by

H
(k)
+ (t) and M

(k)
+ (n), resp.

Fact 3.5 [8] For any fixed integer k ≥ 2 and nondecreasing function φ > 0,

P

(

V (k)(t) >
t

k

(

1− 1

φ(t)

)

, i.o.

)

= 0 or 1

according as
∫ ∞

1

dt

t(φ(t))3k/2−2
dt <∞ or =∞.

Theorem 2.1 and Fact 3.5 imply

Corollary 3.6 For any fixed integer k ≥ 2 and nondecreasing function φ > 0,

P

(

L(k)(n) >
n

k

(

1− 1

φ(n)

)

, i.o.

)

= 0 or 1

according as
∞
∑

n=1

1

n(φ(n))3k/2−2
<∞ or =∞.
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This Corollary solves Problem 1 in [2] for random walk. For further strong limit theorems
concerning excursion heights and lengths, we refer to [1], [2], [3], [4], [5], [8], [9].
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