
Elect. Comm. in Probab. 8 (2003)184–187

ELECTRONIC

COMMUNICATIONS

in PROBABILITY

INEQUALITY OF TWO CRITICAL PROBABILITIES
FOR PERCOLATION

JEFF KAHN1

Department of Mathematics, Rutgers University, Piscataway NJ 08854
email: jkahn@math.rutgers.edu

Submitted 5 September 2003, accepted in final form 5 September 2003

AMS 2000 Subject classification: 60CO5, 82B43
Keywords: percolation, critical probability

Abstract

For a locally finite, connected graph G with distinguished vertex 0, let pc(G) be the usual
critical probability for bond percolation on G, and

pcut(G) = sup{p : inf
Π

Ep|C(0) ∩Π| = 0} (≤ pc),

where Π ranges over cutsets (sets of vertices “separating 0 from ∞”), Ep refers to (Bernoulli
bond) percolation with p the probability that an edge is open, and C(0) is the open cluster
containing 0.(The definition is easily seen to be independent of the choice of distinguished
vertex.)
We disprove a conjecture of Russ Lyons stating that pcut(G) = pc(G) for every G, and propose
a possible alternative.

1 Introduction

We consider the usual (Bernoulli) bond percolation on a locally finite, connected graph G =
(V,E): each e ∈ E is “open” with probability p, these choices made independently. We
write H for the resulting random subgraph of G and Prp for the law of H. (For percolation
background, see e.g. [2] or [5].)
For X,Y ⊆ V we denote by {X ←→ Y } the event that some x ∈ X and y ∈ Y are in the same
component of H (of course {x ←→ y} means {{x} ←→ {y}}), and by {x ←→ ∞} the event
that the component of x in H—denoted C(x)—is infinite.
The standard critical probability for bond percolation is

pc = pc(G) = sup{p : Prp(H contains an infinite component) = 0}.

(For connected G this is easily seen to coincide with sup{p : Prp(|C(x)| = ∞) = 0} for any
x ∈ V .) Our focus here is on a second critical probability, introduced by Russ Lyons in [3].
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Given 0 ∈ V , say Π ⊆ V is a cutset for 0 if the component of 0 in G−Π is finite (“Π separates
0 from infinity”), and set

pcut(G) = sup{p : inf
Π

Ep|C(0) ∩Π| = 0}.

Again this is easily seen not to depend on our choice of the distinguished vertex. Here we will
keep 0 fixed throughout, and Π will always range over cutsets for 0.
Note pcut ≤ pc is trivial because of the “first moment method” bound

Pr(0←→∞) = inf
Π
Pr(0←→ Π) ≤ inf

Π
E|C(0) ∩Π|. (1)

Lyons proved pcut = pc for trees [3] and for certain “tree-like” graphs [4], and suggested ([3],
[4]) the possibility that pcut and pc coincide for every G. That equality also holds for the
Euclidean cubic lattices follows from [1], [6].
Here we give a simple family of graphs for which equality does not hold, and, in Section 3,
suggest a possible salvage.

2 Example

A graph G is said to be spherically symmetric about 0 ∈ V if (Aut(G))0 is transitive on

Πn := {v : d(0, v) = n}

for each n. For such G, dealing with pcut is simplified by the following observation.

Lemma 2.1 If G is spherically symmetric then (for any p)

inf
Π

Ep|C(0) ∩Π| = inf
n

Ep|C(0) ∩Πn|.

Proof. Fix a cutset Π, say with Π ⊆ Π0 ∪ · · · ∪Πm (of course it is enough to consider minimal
Π’s, which are necessarily finite).
Let P be chosen uniformly from the set of (0,Πm)-paths of length m. By spherical symmetry
we have Pr(v ∈ P ) = |Πk|

−1 for each k ≤ m and v ∈ Πk.
So setting αk = |Π ∩Πk|/|Πk|, we have

1 = Pr(P ∩Π 6= ∅) ≤
∑

k≤m

E|P ∩Π ∩Πk| =
∑

k≤m

αk,

and
E|C(0) ∩Π| =

∑

k

αkE|C(0) ∩Πk| ≥ inf
n

E|C(0) ∩Πn|.

Construction

Set n0 = 1 and let n1, n2, . . . be integers with ni ≥ 5ni−1 for i ≥ 1. Set mi = n1 + · · · + ni.
The mith levels play a special role, and we abbreviate Πmi

= Σi. The structure of G is as
follows.
For each i, Σi is a clique of size 2

ni , and G[∪{Πn : mi−1 ≤ n ≤ mi}] consists of the cliques at
levels mi−1 and mi together with, for each v ∈ Σi−1, 2

ni−ni−1 paths of length ni joining v to
Σi, the resulting 2ni paths being disjoint except where they share an end in Σi−1.
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Analysis

It is easy to see that pc(G) ≥ 1/2: with Bi = {Σi−1 ←→ Σi} we have

Prp(0←→∞) < Prp(Bi) < |Σi|p
ni = (2p)ni ,

which for p < 1/2 tends to zero as i→∞.
(Actually pc(G) = exp2[− lim inf ni/mi] ( = 1/2 if ni/mi → 1): as shown in [3], for spherically
symmetric trees T one has

pc(T ) = [lim inf
n
|Πn|

1/n]−1

(the expression in brackets is the growth number of T ); and in our case this gives (pc(G) ≤)
pc(T ) = exp2[− lim inf ni/mi] for T = (V (G), E′), where E′ consists of those edge of G not
lying in any Σi.)
We assert, on the other hand, that

pcut(G) ≤ .4. (2)

(The bound is by no means best possible, but there seems no point in trying to optimize either
the construction or the analysis, and we will always opt for crude but convenient estimates in
what follows.)
According to Lemma 2.1, (2) can be established by showing that for

p = (1− ε)/2 with ε ≤ 1/5 (3)

and any n,
Ep|C(0) ∩Πn| > 1. (4)

Proof. Fix ε, p as in (3), and write Pr and E for Prp and Ep. For Bi as above,

Pr(Bi) > |Σi|p
ni −

(

|Σi|

2

)

p2ni >
1

2
(1− ε)ni . (5)

Let Ci = {H[Σi] is connected} and ξi = 1− Pr(Ci). A routine calculation gives (say)

ξi < (1 + o(1))|Σi|((1 + ε)/2)|Σi|−1 < (3/4)2
ni

. (6)

Set Di = {0 ←→ x ∀x ∈ Σi}. Since Di ⊇ ∩
i
j=1(Bj ∩ Cj) and the Bj ’s and Cj ’s are

independent, (5) gives

Pr(Di) > 2−i(1− ε)mi

i
∏

j=1

(1− ξj).

Now let n = mi − k with 0 ≤ k < ni. For v ∈ Πn,

Pr(0←→ v) > Pr(Di−1)max{p
ni−k,Pr(Bi)(1− ξi)p

k} =: βn. (7)

The first expression in brackets is of course the probability that the “direct” (i.e. unique
shortest) path from Σi−1 to v is open. The second is a lower bound on Pr(Bi∩Ci∩Fv), where
Fv is the event that the direct path from Σi to v is open (note Pr(Fv|Bi ∩ Ci) ≥ Pr(Fv)).
Then (for instance) βn > (1/2)(1 − ε)4ni/32−ni/2 (since Pr(Di−1) > (1 − ε)ni/3 and the
maximum in (7) is at least (pni Pr(Bi)(1− ξi))

1/2 > (1/2)(1− ε)ni2−ni/2), yielding, finally,

E|C(0) ∩Πn| > |Πn|βn = 2niβn > (1/2)(1− ε)4ni/32ni/2 > 1.
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Remark. As Russ Lyons points out, our construction can easily be modified to have bounded
degree; roughly: replace the cliques by expanders and, for each v ∈ Σi−1, replace the paths
from v to Σi by a tree of the same depth and with the same leaves, having large (but constant)
degrees near the root and paths following this initial stage. We omit the details.

3 A possible substitute

Following [5], we regard equality of pcut(G) and pc(G) as saying that the first moment bound
(1) correctly identifies the critical probability for bond percolation on G. The construction of
Section 2 violates this in the natural way, by arranging that the events {0←→ v}, v in some
cutset Π, are heavily dependent, so that |C(0) ∩Π| =

∑

v∈Π 1{0←→v}, while usually zero, has
a large expectation. This is achieved by making connections within Π easy, so that once we
do reach at least one v ∈ Π (an unlikely event), we then typically reach the rest of Π via v.
So a natural way to try to salvage the conjecture is to disallow the effects of such “internal”
connections, as follows.
For Π a cutset and v ∈ Π, let A(v,Π) be the event that there is an open (0, v)-path disjoint
from Π \ {v}. Then we again have a first moment bound,

Pr(0←→∞) < Pr(0←→ Π) ≤
∑

v∈Π

Pr(A(v,Π))

for each Π, implying

pc ≥ p′cut := sup{p : inf
Π

∑

v∈Π

Pr(A(v,Π)) = 0}.

(Of course p′cut ≥ pcut.)

Question 3.1 Could it be that p′cut(G) = pc(G) for all G?
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