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Abstract
We introduce the concept of a mild solution for the right Hudson-Parthasarathy quantum
stochastic differential equation, prove existence and uniqueness results, and show the corre-
spondence between our definition and similar ideas in the theory of classical stochastic differ-
ential equations. The conditions that a process must satisfy in order for it to be a mild solution
are shown to be strictly weaker than those for it to be a strong solution by exhibiting a class
of coefficient matrices for which a mild unitary solution can be found, but for which no strong
solution exists.

1 Introduction

One of the main analytical difficulties in the theory of stochastic differential equations (both
classical and quantum) arises whenever the coefficients driving the equation consist of un-
bounded operators — a requirement that is largely unavoidable in the pursuit of interesting
models. For example consider the linear SDE ([DIT],[DaZ]):

dXt = AXt dt+BXt dWt, X0 = ξ (1.1)

where A is the generator of a strongly continuous semigroup (St)t≥0 on some Hilbert space H,
W is a Wiener process taking values in R (respectively some Hilbert space K, with covariance
operator Q), and B is a linear map from DomB ⊂ H into H (resp. the Hilbert-Schmidt
operators Q1/2(K) → H). An obvious definition of solution for (1.1) is any process (Xt)t≥0

that satisfies the corresponding integral equation:

Xt = ξ +
∫ t

0

AXs ds+
∫ t

0

BXs dWs,
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in particular the two integrals on the right hand side must be well-defined, and for this to be
true we must have Xt ∈ DomA ∩ DomB almost surely. So if both A and B are unbounded
then any study of (1.1) must incorporate an investigation of how well their domains match up.
An alternative route (considered in Chapter 6 of [DaZ]) is to introduce the following weaker
notion of solution: a process X is a mild solution of (1.1) if it satisfies the following integral
equation:

Xt = Stξ +
∫ t

0

St−sBXs dWs. (1.2)

Note that for the above to make sense we no longer require that Xt lie in DomA a.s., only
that Xt ∈ DomB a.s..
The purpose of this paper is to show that such ideas also have a role to play in the theory
of quantum stochastic differential equations, in particular when considering the right Hudson-
Parthasarathy (HP) equation:

dUt =
d∑

α,β=0

Fα
β Ut dΛβ

α(t), U0 = 1. (R)

Here [Λα
β ]dα,β=0 is the matrix of fundamental noise processes of HP quantum stochastic cal-

culus ([Mey],[Par]). Each component is a time-indexed family of operators acting on F , the
symmetric Fock space over L2(R+ ; C d ), and they divide into four distinct groups:

Time: Λ0
0(t) = t1, Annihilation: Λi

0(t) = Ai(t)

Creation: Λ0
j(t) = A†

j(t), Conservation: Λi
j(t) = N i

j(t)

(i, j = 1, . . . , d). Linear combinations of the creation and annihilation operators give re-
alisations of Brownian motion; including the conservation processes leads to realisations of
(compensated) Poisson processes. The coefficient matrix [Fα

β ] is made up of (unbounded)
operators acting on another Hilbert space h, and the solution process U = (Ut)t≥0 consists
of contraction operators on the tensor product Hilbert space h ⊗ F . In this paper we use
the HP version of quantum stochastic calculus, and an essential part of the definition of
the integral of an operator-valued process X against each of these noise processes (denoted∫ t

0 Xs dΛα
β(s)) is that

⋂
t>0 DomXt should contain a subspace of the form D�E , the algebraic

tensor product of a dense subspace D ⊂ h, and E ⊂ F , the linear span of the exponential
vectors {ε(f) : f ∈ L2(R+ ; C d )}. Thus the first step in giving rigorous meaning to (R) must
be to view each Fα

β as an operator on h⊗F , thereby giving meaning to the term Fα
β U . This

can be done by first taking Fα
β � 1, the algebraic ampliation of Fα

β with the identity operator
on F , and then, making the further assumption that each Fα

β is closable, taking the closure of
the resulting operator which throughout we will denote by Fα

β ⊗ 1. Then, as defined in [FW],
a strong solution of (R) on D, a given dense subspace of h, is any process U such that the
integral identity

Ut = 1 +
d∑

α,β≥0

∫ t

0

(Fα
β ⊗ 1)Us dΛβ

α(s)

holds on D � E , in particular for each integral to be well-defined we must have⋃
t>0

Ut(D � E) ⊂
⋂

α,β≥0

DomFα
β ⊗ 1. (1.3)
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Clearly this corresponds to the notion of strong solution given above for the equation (1.1).
In this paper we introduce a weaker notion of solution which, as in the classical case above,
removes the restriction that Ut should map D � E into DomF 0

0 ⊗ 1, the domain of the time
coefficient. Instead we demand this behaviour from the smeared operator

∫ t

0
Us ds, so that a

mild solution is a process U such that

⋃
t>0

Ut(D � E) ⊂
⋂

α+β>0

DomFα
β ⊗ 1, (1.4)

⋃
t>0

∫ t

0

Us ds(D � E) ⊂ DomF 0
0 ⊗ 1,

and

Ut = 1 + (F 0
0 ⊗ 1)

∫ t

0

Us ds+
d∑

α+β>0

∫ t

0

(Fα
β ⊗ 1)Us dΛβ

α(s).

We show how this relates to the classical notion of mild solution in Proposition 2.1. Moreover
in Section 3 we show that this distinction between strong and mild solutions is nontrivial by
exhibiting a class of matrices F for which it is possible to construct a mild unitary solution
of (R), but for which no strong solution can exist.
The other main result of this paper (Theorem 2.3) is a general method for constructing mild
solutions of (R). This is a modification of the method developed in [FW] for obtaining strong
solutions, and both rely on the introduction of a positive self-adjoint operator C that behaves
well with respect to the Fα

β . In particular in [FW] it was necessary to assume that DomC1/2

is contained in
⋂

α,β≥0 DomFα
β in order to prove that (1.3) holds for D = DomC1/2. Here,

since we need only prove that (1.4) holds, it suffices to assume that DomC1/2 is contained in⋂
α+β>0 DomFα

β . That this is a significant weakening of the conditions imposed on C can be
deduced (at least formally) by an application of the quantum Itô formula: for U to be a solution
consisting of contractions it is necessary that F 0

0 have the same order of unboundedness as
(F i

0)∗F i
0 and F 0

j (F 0
j )∗ for i, j = 1, . . . d, and that the conservation coefficients F i

j be bounded
(compare this with the classical equation (1.1), where again the Itô formula can be used to
deduce that that time coefficient A is of the same order as B∗B.) For example, when realising
diffusion processes in the quantum setting F 0

0 is taken to be a second-order differential operator
and F i

0 , F
0
j first-order. Thus a natural candidate for C when constructing a strong solution

turns out to be ∂4 + 1 (where ∂ denotes the differentiation operator on L2(R)), but if we
only require a mild solution then we may replace this by ∂2 + 1, which is the same reference
operator used to study the conservativity of the quantum Markov semigroup associated to the
process U ([F1],[ChF],[F2]).
As a final remark it should be noted that we have chosen to work with the HP calculus, in part
because the majority of results on QSDEs have been obtained in this setting. Other calculi
have been developed, for example in the boson Fock space case the recent reformulation by
Attal and Lindsay ([AtL]) identifies maximal domains for quantum stochastic integrals of any
densely defined process, so in particular if the domain of the process contains the exponential
vectors then its AL integral is an extension of the HP one. However the idea of mild solutions
should also play a role in the future study of QSDEs using these alternative calculi.
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1.1 Tensor product conventions

We maintain the conventions concerning tensor products used in [FW], namely that the symbol
� is used to denote algebraic tensor products, whereas ⊗ is reserved for the Hilbert space tensor
product of Hilbert spaces and their vectors. Moreover, if S and T are closable operators on
Hilbert spaces H and K respectively then S ⊗ T will denote the closure of the operator S � T
whose domain is the inner product space DomS � DomT . So in particular if S ∈ B(H) and
T ∈ B(K), then S ⊗ T is the unique continuous extension of S � T from H � K to the Hilbert
space H⊗K. At times we will follow the trends prevelant in the literature and identify bounded
operators with their ampliations whenever this causes no confusion.

2 Mild solutions of the right HP equation

2.1 Quantum stochastic calculus

Fix a Hilbert space h, called the initial space, and a number d ≥ 1, the number of dimensions
of quantum noise. Let H = h ⊗ F , the Hilbert space tensor product of the initial space and
F = Γ(L2(R+ ; C d )), the symmetric Fock space over L2(R+ ; C d ). Put

M = L2(R+ ; C d) ∩ L∞
loc(R+ ; C d ) and E = Lin {ε(f) : f ∈ M },

where ε(f) = ((n!)−1/2f⊗n) is the exponential vector associated to the test function f . Since
the subspace M is dense in L2(R+ ; C d ), it follows that E is a dense subspace of F . The
elementary tensor u⊗ ε(f) will (usually) be abbreviated to uε(f) below.
A crucial ingredient of the HP quantum stochastic calculus is that all of the processes consid-
ered are adapted, a property that is defined through the continuous tensor product factorisation
property of Fock space: for each t > 0 let

Ft = Γ(L2([0, t[; C d )), F t = Γ(L2([t,∞[; C d )).

Then F = Ft ⊗ F t via continuous linear extension of the isometric map ε(f) 7→ ε(f |[0,t[) ⊗
ε(f |[t,∞[); the spaces Ft and F t are viewed as subspaces of F by tensoring with the appropriate
vacuum vector ε(0).
Let D be a dense subspace of h. An operator process on D is a family X = (Xt)t≥0 of operators
on H satisfying:

(i) D � E ⊂ ⋂
t≥0 DomXt,

(ii) t 7→ 〈uε(f), Xtvε(g)〉 is measurable,

(iii) Xtvε(g|[0,t[) ∈ h⊗Ft, and Xtvε(g) = [Xtvε(g|[0,t[)] ⊗ ε(g|[t,∞[),

for all u ∈ h, v ∈ D, f, g ∈ M and t > 0 — condition (iii) is the adaptedness condition. Any
process that satisfies the further condition

(iv) t 7→ Xtvε(g) is strongly measurable and
∫ t

0
‖Xsvε(g)‖2 ds <∞ ∀t > 0,

is called stochastically integrable on D.
The stochastic integrals

∫ t

0 Xs dΛα
β(s) are defined for any stochastically integrable process X

in [HuP], where [Λα
β ]dα,β=0 are the fundamental noise processes defined with respect to the
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standard basis of C d . The integral has domain D � E , and for all u ∈ h, v ∈ D, f, g ∈ M and
t > 0

〈uε(f),
∫ t

0

Xs dΛα
β (s) vε(g)〉 =

∫ t

0

fβ(s)gα(s)〈uε(f), Xsvε(g)〉 ds. (2.1)

Here f1, . . . , fd are the components of the C d -valued function f , and by convention f0 ≡ 1
and fα = fα. If Y is another process that is stochastically integrable on some subspace D′,
then, putting IX

t =
∫ t

0 Xs dΛα
β(s) and IY

t =
∫ t

0 Ys dΛµ
ν (s),

〈IX
t uε(f), IY

t vε(g)〉 =
∫ t

0

{
fν(s)gµ(s)〈IX

s uε(f), Ysvε(g)〉

+ fα(s)gβ(s)〈Xsuε(f), IY
s vε(g)〉 + δ̂β

ν fα(s)gµ(s)〈Xsuε(f), Ysvε(g)〉
}
ds (2.2)

for u ∈ D, v ∈ D′, f, g ∈ M , and where δ̂ ∈ Md+1(C ) is the Evans delta matrix defined by

δ̂α
β =

{
1, 1 ≤ α = β ≤ d

0, otherwise
.

Finally we have the estimate

‖IX
t uε(f)‖2 ≤ 2 exp(νf (t))

∫ t

0

‖Xsuε(f)‖2 dνf (s) (2.3)

for all u ∈ D, f ∈ M and t > 0, where νf (t) =
∫ t

0 (1 + ‖f(s)‖2) ds. This implies in particular
that the map t 7→ ∫ t

0 Xs dΛα
β(s)ξ is continuous for all ξ ∈ D � E .

2.2 The right and left equations; notions of solution

As stated in the introduction our main concern in this paper is the right HP equation (R)
determined by F = [Fα

β ], a matrix of operators on h, although we shall encounter the left
equation:

dVt =
d∑

α,β=0

VtG
α
β dΛ

β
α(t), V0 = 1, (L)

and in either case we shall only be concerned with contraction process solutions, that is pro-
cesses U or V such that ‖Ut‖ ≤ 1 or ‖Vt‖ ≤ 1 for all t. If each Fα

β is densely defined then F ∗

will denote the adjoint matrix [(F β
α )∗]. Associated to any such matrix F of operators is the

following subspace of h:
Dom [F ] :=

⋂
α,β≥0

DomFα
β .

Given a dense subspace D ⊂ h and a matrix of operators G, a contraction process V is a strong
solution to (L) on D for the operator matrix G if

(Li) D ⊂ Dom [G] and each process (VtG
α
β )t≥0 is stochastically integrable on D;

(Lii) Vt = 1 +
∑

α,β≥0

∫ t

0
VsG

α
β dΛ

β
α(s) on D � E .
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Because V is assumed to be a contraction process the matrix of processes [VtG
α
β ] is well-defined

on D, and so to check that (Li) holds it is sufficient to check that the maps t 7→ VtG
α
βξ are

strongly measurable for all α, β ≥ 0 and ξ ∈ D � E . However, note that as soon as (Lii) is
shown to hold we know more, since then t 7→ Vtη is strongly continuous for all η ∈ h⊗F .
For the right equation (R) the situation is more delicate, as noted in [FW], since we must now
pay attention to the image of U . If T is a closable operator on h then T�1, the algebraic tensor
ampliation with the identity operator on F , is again closable — see Section 1 of [FW] for a
discussion of these matters. We will always assume that each component Fα

β of the stochastic
generator in (R) is closable, and denote by F ⊗1 the matrix [Fα

β ⊗1] of closed operators on H.
With D as above, a contraction process U is a strong solution of (R) on D for the operator
matrix F if:

(Ri)
⋃

t>0 Ut(D � E) ⊂ Dom [F ⊗ 1], and each of the processes (Fα
β ⊗ 1)Ut is stochastically

integrable on D;

(Rii) Ut = 1 +
∑

α,β≥0

∫ t

0
(Fα

β ⊗ 1)Us dΛβ
α(s) on D � E .

The new notion of solution that we are introducing in this paper is the following: the process
U is a mild solution of (R) on D for the operator matrix F if:

(Mi)
⋃

t>0 Ut(D�E) ⊂ ⋂
α+β>0 DomFα

β ⊗ 1, and each of the processes (Fα
β ⊗ 1)Ut is stochas-

tically integrable on D;

(Mii) The map t 7→ Utξ is strongly measurable for all ξ ∈ H, and
∫ t

0
Us ds(D�E) ⊂ DomF 0

0 ⊗1
for all t > 0;

(Miii) Ut = 1 + (F 0
0 ⊗ 1)

∫ t

0 Us ds+
∑

α+β>0

∫ t

0 (Fα
β ⊗ 1)Us dΛβ

α(s) on D � E .

Note. The operator
∫ t

0 Us ds in the HP quantum stochastic calculus is defined by
∫ t

0 Us dsξ :=∫ t

0 Usξ ds — the Bochner integral of a vector -valued function rather than the integral of an
operator -valued function.

It is easy to see that any strong solution is also a mild solution. Also (2.3) implies that any
strong solution must consist of a strongly continuous family of operators, but the presence
of the term (F 0

0 ⊗ 1)
∫ t

0 Us ds seems at first glance only to imply that a mild solution is
weakly continuous. The next result allows us to improve on this by giving an alternative
characterisation of mild solutions, once we make the reasonable assumption that F 0

0 is the
generator of a strongly continuous contraction semigroup on h. We also justify our terminology
since (2.4) below contains stochastic convolution terms analogous to those appearing in (1.2).

Proposition 2.1 Let U be a contraction process, F = [Fα
β ] a matrix of closable operators,

and D ⊂ h a dense subspace. Suppose further that F 0
0 is the generator of a strongly continuous

one-parameter semigroup of contractions (Pt)t≥0 on h. The following are equivalent :

(i) U is a mild solution of (R) on D for this F .

(ii) (Mi) holds, and the integral identity

Ut = Pt +
∑

α+β>0

∫ t

0

Pt−s(Fα
β ⊗ 1)Us dΛβ

α(s) (2.4)

holds on D � E.
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Moreover if Dom [F ∗] is a core for (F 0
0 )∗ and either of the above hold then U is the unique

mild solution on D for this F .

Proof. Set K = F 0
0 throughout the proof.

(i ⇒ ii): Fix t ≥ 0, u ∈ Dom(K∗)2, v ∈ D and f, g ∈ M . Then for all s ∈ [0, t], (2.1) implies

〈P ∗
t−suε(f), Usvε(g)〉 = 〈P ∗

t−suε(f), vε(g)〉 + 〈K∗P ∗
t−suε(f),

∫ s

0

Urvε(g) dr〉

+
∑

α+β>0

〈P ∗
t−suε(f),

∫ s

0

fα(r)gβ(r)(Fα
β ⊗ 1)Urvε(g) dr〉,

(2.5)

and since P ∗
t−suε(f) =

∫ t−s

0 K∗P ∗
r uε(f) dr it is straightforward to check that the map s 7→

〈P ∗
t−suε(f), Usvε(g)〉 is absolutely continuous. Moreover, since each of the Bochner integrals

that appears in (2.5) is a.e. differentiable, we have

d

ds
〈P ∗

t−suε(f), Usvε(g〉) = −〈K∗P ∗
t−suε(f), vε(g)〉 + 〈K∗P ∗

t−suε(f), Usvε(g)〉

− 〈(K∗)2P ∗
t−suε(f),

∫ s

0

Urvε(g) dr〉

+
∑

α+β>0

fα(s)gβ(s)〈P ∗
t−suε(f), (Fα

β ⊗ 1)Usvε(g)〉

−
∑

α+β>0

〈K∗P ∗
t−suε(f),

∫ s

0

fα(r)gβ(r)(Fα
β ⊗ 1)Urvε(g) dr〉

for a.a. s ∈ [0, t]. Now the identity (2.5), with u replaced by −K∗u, appears on the right hand
side of the above, and so cancellations give

d

ds
〈P ∗

t−suε(f), Usvε(g)〉 =
∑

α+β>0

fα(s)gβ(s)〈uε(f), Pt−s(Fα
β ⊗ 1)Usvε(g)〉

for a.a. s ∈ [0, t]. The processes (Pt−s(Fα
β ⊗ 1)Us)0≤s≤t are clearly stochastically integrable

for all α+ β > 0, and so integrating over [0, t] and applying (2.1) gives

〈uε(f), (Ut − Pt)vε(g)〉 =
∑

α+β>0

〈uε(f),
∫ t

0

Pt−s(Fα
β ⊗ 1)Us dΛβ

α(s) vε(g)〉,

as required.

(ii ⇒ i): Let u ∈ DomK∗, v ∈ D and f, g ∈ M . Then (2.1) applied to (2.4) gives

〈uε(f), Utvε(g)〉 = 〈P ∗
t uε(f), vε(g)〉

+
∑

α+β>0

∫ t

0

fα(s)gβ(s)〈P ∗
t−suε(f), (Fα

β ⊗ 1)Usvε(g)〉 ds. (2.6)

Again the function t 7→ 〈uε(f), Utvε(g)〉 is absolutely continuous, and so

d

dt
〈uε(f), Utvε(g)〉 = 〈K∗uε(f), Utvε(g)〉

+
∑

α+β>0

fα(t)gβ(t)〈uε(f), (Fα
β ⊗ 1)Utvε(g)〉
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for a.a. t, since on differentiating (2.6) appears with u replaced by K∗u. Integrating this over
[0, t], and using (2.1) and the stochastic integrability assumptions on the non-time coefficients,
yields

〈uε(f), (Ut − 1)vε(g)〉 = 〈(K∗ � 1)uε(f),
∫ t

0

Us ds vε(g)〉

+
∑

α+β>0

〈uε(f),
∫ t

0

(Fα
β ⊗ 1)Us dΛβ

α(s) vε(g)〉,

and since DomK∗�E is a core for K∗⊗1 = (K⊗1)∗, we see that
∫ t

0
Us ds vε(g) ∈ DomK⊗1

and so U is a mild solution as required.

Finally, for the uniqueness part, if U is a mild solution to (R) on D for this F then it is
easy to check that the adjoint process U∗ is a weak solution of the adjoint left equation
dU∗

t = U∗
t (F β

α )∗ dΛβ
α(t) on Dom [F ∗]. That is, the matrix elements 〈uε(f), U∗

t vε(g)〉 satisfy
the same integral identity satisfied by any strong solution to this equation, but we do not
demand that t 7→ U∗

t (Fα
β )∗uε(f) is strongly measurable, and hence stochastically integrable.

However, if Dom [F ∗] is a core for K∗ = (F 0
0 )∗ then there is at most one weak solution by

Mohari’s uniqueness result for the left HP equation ([Moh], Proposition 3.6; see also the re-
mark after Proposition 2.2 of [FW]), which thus guarantees the uniqueness of the mild solution
to (R). �

Remark. For the proof (ii ⇒ i) we need to know that
∫ t

0
Us ds is well-defined, i.e. that the map

t 7→ Utξ is strongly measurable for all ξ ∈ h⊗ F . But this is immediate from (2.4) — indeed
this identity together with (2.3) can be used to show that (Ut)t≥0 is strongly continuous.

2.3 Existence results

We now establish two existence results for mild solutions of (R). For the first we make the very
strong assumption that the only unbounded term in F is the time coefficient F 0

0 (as happens
in our example in Section 3), and so condition (Mi) becomes a triviality to verify. However
the most interesting examples from a probabilistic or physical point of view do not satisfy this
assumption — the creation and annihilation coefficients will typically be unbounded — and
so Theorem 2.3 below shows how to adapt Theorem 2.3 of [FW] in order to be able to check
that (Mi) holds in these cases.
The statements of both results involve form inequalities: given any operator matrix G = [Gα

β ]
and S ∈ B(h), let θG(S) denote the form defined by

θG(S)((uγ), (vγ)) =
d∑

α,β=0

{
〈uα, SGα

βv
β〉 + 〈Gβ

αu
α, Svβ〉 +

d∑
i=1

〈Gi
αu

α, SGi
βv

β〉
}
,

with domain
⊕d

γ=0 Dom [G]. Also, let ι(S) denote the identity form defined by

ι(S)((uγ), (vγ)) =
∑
α≥0

〈uα, Svα〉,

that is ι(S) = S ⊗ 1Cd+1 ∈ B(hd+1).
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Theorem 2.2 Assume that the initial space h is separable, and let F be an operator matrix
satisfying the following:

(i) F 0
0 is the generator of a strongly continuous one-parameter semigroup of contractions.

(ii) Fα
β ∈ B(h) whenever α+ β > 0.

(iii) θF∗(1) ≤ 0 on
⊕d

γ=0 Dom [F ∗].

Then there is a contraction process U that satisfies (R) mildly on h.

Proof. Since θF∗(1) ≤ 0 on
⊕d

γ=0 Dom [F ∗] and h is separable we can apply Theorem 3.6
of [F1] to show the existence of a contraction process U∗ that is a strong solution to (L) on
Dom (F 0

0 )∗ for the operator matrix F ∗. Then (2.1) gives

〈uε(f), (Ut − 1)vε(g)〉 =
∑

α,β≥0

∫ t

0

fα(s)gβ(s)〈(Fα
β )∗uε(f), Usvε(g)〉 ds

for all u ∈ Dom(F 0
0 )∗, v ∈ h and f, g ∈ M . Now Fα

β ⊗ 1 ∈ B(H) whenever α + β > 0, so we
have

〈uε(f),
[
Ut − 1 −

∑
α+β>0

∫ t

0

(Fα
β ⊗ 1)Us dΛβ

α(s)
]
vε(g)〉 = 〈(F 0

0 )∗uε(f),
∫ t

0

Us ds vε(g)〉,

and the result follows since Dom (F 0
0 )∗ � E is a core for (F 0

0 ⊗ 1)∗. �

In order to be able to deal with unbounded coefficients in the next theorem we follow the ideas
of [FW] and introduce a positive self-adjoint operator C with which we can gain some control.
Both the next result and Theorem 2.3 of [FW] make the same basic assumptions, namely that
we hypothesise the existence of a family of (continuous) bounded maps (fε : [0,∞[→ [0,∞[)ε>0

such that fε(x) ↑ x as ε ↓ 0 for all x ∈ [0,∞[, and which satisfy

θF (fε(C)) ≤ b1ι(fε(C)) + b21, and

(Fα
β )∗fε(C)1/2 is bounded ∀α, β ≥ 0,

where b1, b2 are positive constants that do not depend on ε. In [FW] we must also check
that (Ri) holds, and so we also demand that DomC1/2 ⊂ Dom [F ], forcing C to be “as
unbounded as” (F 0

0 )2. An appropriate choice for fε in this case is fε(x) = x(1 + εx)−2.
However we are now only looking for mild solutions, and so to satisfy (Mi) it is enough to
assume DomC1/2 ⊂ ⋂

α+β>0 DomFα
β . Thus C will be of the same order as F 0

0 , and so if
(Fα

β )∗fε(C)1/2 is to be bounded for all α, β ≥ 0, in particular for α = β = 0, then we must
use higher powers of the resolvent; a reasonable choice is to set

Cε := C(1 + εC)−4 ∀ε > 0.

Theorem 2.3 Let U be a contraction process and F a matrix of closable operators with F 0
0

the generator of a strongly continuous one-parameter semigroup of contractions. Suppose that
C is a positive self-adjoint operator on h, and δ > 0 and b1, b2 ≥ 0 are constants such that the
following hold :
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(i) There is a dense subspace D ⊂ h that is a core for (F 0
0 )∗, and the adjoint process U∗ is

a strong solution to (L) on D for the operator matrix F ∗.

(ii) For each 0 < ε < δ there is a dense subspace Dε ⊂ D such that (Cε)1/2(Dε) ⊂ D and
(Fα

β )∗(Cε)1/2|Dε is bounded for all α, β ≥ 0.

(iii) DomC1/2 ⊂ ⋂
α+β>0 DomFα

β .

(iv) Dom [F ] is dense in h, and for all 0 < ε < δ the form θF (Cε) satisfies the inequality

θF (Cε) ≤ b1ι(Cε) + b21

on Dom [F ].

Then U is a mild solution to the right equation (R) on DomC1/2 for the operator matrix F .

Remark. Since F 0
0 is the generator of a strongly continuous one-parameter semigroup of

contractions on h, the fact that D is assumed to be a core for (F 0
0 )∗ implies that there is at

most one (strong) solution U∗ to (L) on D for this F ∗ by the result of Mohari ([Moh], cf. the
proof of our Proposition 2.1). The uniqueness of U∗ implies that it is a Markovian cocycle
and hence U∗ and U are both strongly continuous.

Proof. To prove this result it is possible to recycle almost all of the argument used in the
proof of Theorem 2.3 of [FW]. In particular the form θF (Cε) is bounded, and so the inequality
in (iv) holds on all of h. Also the integral identity

U∗
t (Cε)1/2 = (Cε)1/2 +

∑
α,β≥0

∫ t

0

U∗
s (F β

α )∗(Cε)1/2 dΛβ
α(s)

holds on h � E , and since all of the terms appearing above are bounded we may take the
adjoint of this expression and apply the quantum Itô formula (2.2), the Gronwall Lemma and
the Spectral Theorem to conclude that

Ut(DomC1/2 � E) ⊂ DomC1/2 ⊗ 1.

Then by (iii) we have Ut(DomC1/2 � E) ⊂ ⋂
α+β>0 DomFα

β ⊗ 1, and it is straightforward to
show that the processes {(Fα

β ⊗ 1)Ut} are stochastically integrable for α + β > 0. So for all
u ∈ D, v ∈ DomC1/2 and f, g ∈ M

〈uε(f), (Ut − 1)vε(g)〉 =
∑

α,β≥0

∫ t

0

fα(s)gβ(s)〈(Fα
β )∗uε(f), Usvε(g)〉 ds

since U∗ is a (strong) solution of (L) for F ∗, and so by what we have shown so far

〈uε(f),
[
Ut − 1 −

∑
α+β>0

∫ t

0

(Fα
β ⊗ 1)Us dΛβ

α(s)
]
vε(g)〉 = 〈(F 0

0 )∗uε(f),
∫ t

0

Us ds vε(g)〉.

The result follows once more because D � E is a core for (F 0
0 ⊗ 1)∗. �
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3 A mild solution that cannot be a strong solution

We now show that for a certain class of operator matrices F one can construct a unitary mild
solution of (R) on h, but that there is no strong solution for any choice of domain D ⊂ h. To
achieve this we need the following general result from semigroup theory:

Lemma 3.1 Let (Tr)r≥0 be a strongly continuous one-parameter semigroup on a Hilbert space
H, and denote its generator by Z. Let u ∈ H, then

u ∈ DomZ ⇐⇒ sup
r∈]0,1]

‖r−1(Tr − 1)u‖ <∞.

Proof. One implication is obvious, so assume that supr∈]0,1] ‖r−1(Tr − 1)u‖ < ∞. Since T is
strongly continuous the closed subspace H0 = Lin {Tru : r ≥ 0} of H is separable. Let (ek)k≥1

be a basis of H0, and (rn)n≥1 a sequence in ]0,∞[ with limn rn = 0. Then for each k the
sequence {〈ek, r

−1
n (Trn − 1)u〉} is bounded. A diagonalisation argument allows us to find a

subsequence (sm)m≥1 of (rn)n≥1 and numbers vk ∈ C such that

lim
m→∞〈ek, s

−1
m (Tsm − 1)u〉 = vk ∀k ≥ 1.

Fatou’s Lemma implies∑
k≥1

|vk|2 ≤ lim inf
m→∞

∑
k≥1

|〈ek, s
−1
m (Tsm − 1)u〉|2 = lim inf

m→∞ ‖s−1
m (Tsm − 1)u‖2 <∞

and so the series
∑

k≥1 vkek converges to an element v ∈ H0, satisfying

lim
m→∞〈w, s−1

m (Tsm − 1)u〉 = 〈w, v〉 ∀w ∈ H.

It then follows by Theorem 1.24 of [Dav] that u ∈ DomZ, with Zu = v. �

Let h be any separable Hilbert space, H an unbounded self-adjoint operator on h and choose
u0 ∈ h outside the domain of H . Let d = 1, so that we are working with only one dimension
of quantum noise, and define an operator matrix F by

F 0
0 = iH − 1

2
E, F 1

0 = E = −F 0
1 , F 1

1 = 0,

where E is the orthogonal projection onto the one-dimensional subspace spanned by u0. Writ-
ten as matrices we have

F =
[
iH − 1

2E −E
E 0

]
, F ∗ =

[−iH − 1
2E E

−E 0

]
,

with Dom [F ] = Dom [F ∗] = DomH . Standard results from perturbation theory for semi-
groups show that F 0

0 is the generator of a contraction semigroup — a perturbation of the
one-parameter unitary group with Stone generator H . Indeed F 0

0 generates a strongly contin-
uous one-parameter group on h, denoted (Pt)t∈R, with ‖Pt‖ ≤ 1 whenever t ≥ 0.
From now on we will identify the bounded operators E and Pt with their ampliations E ⊗ 1
and Pt ⊗ 1, recalling that the generator of the one-parameter group (Pt ⊗ 1)t∈R is F 0

0 ⊗ 1.
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It is easy to check that the form inequality θF∗(1) ≤ 0 holds on DomH ⊕ DomH , and so by
Theorem 2.2 there is a contraction process U that satisfies (R) mildly on h for this F , that is

Ut = 1 + (F 0
0 ⊗ 1)

∫ t

0

Us ds+
∫ t

0

EUsdA
†
s −

∫ t

0

EUsdAs

on h � E , and all of the terms in the above make sense! In fact we have that θF (1) = 0 and
θF∗(1) = 0, so that F ∗ satisfies the formal conditions for the process U to consist of unitary
operators. That this is indeed the case follows from Section 5 of [F1] and Example 3.2 in [BhS].
That U cannot be a strong solution to (R) for any domain D will be proved using the following
lemmas.

Lemma 3.2 The identity

P−rUt = Pt−r +
∫ t

0

Pt−s−rEUs dA
†
s −

∫ t

0

Pt−s−rEUs dAs

holds on h� E for all t ≥ 0 and r ∈ R.

Proof. For any stochastically integrable process X on D and S ∈ B(h) we have

(S ⊗ 1)
∫ t

0

Xs dΛα
β(s) =

∫ t

0

(S ⊗ 1)Xs dΛα
β(s)

for all α, β ≥ 0 and t > 0, and so the result is immediate from Proposition 2.1. �

Lemma 3.3 Let φ, ψ : [0,∞[→ R be continuous functions and k ≥ 0 a positive constant. If

φ(t) ≥ φ(u) − k

∫ t

u

φ(s) ds+
∫ t

u

ψ(s) ds (3.1)

for all 0 ≤ u ≤ t <∞, then

φ(t) ≥ e−ktφ(0) + k

∫ t

0

ek(u−t)

∫ t

u

ψ(s) ds du+ e−kt

∫ t

0

ψ(s) ds (3.2)

for all t ≥ 0.

Proof. Fix t > 0, and for each u ∈ [0, t] let θ(u) =
∫ t

u
φ(s) ds. Then (3.1) can be rewritten as

−θ′(t) ≥ −θ′(u) − kθ(u) +
∫ t

u

ψ(s) ds

which implies that
d

du
(ekuθ(u)) ≥ ekuθ′(t) + eku

∫ t

u

ψ(s) ds

for all u ∈ [0, t]. Integrating over this interval gives

−θ(0) = −
∫ t

0

φ(s) ds ≥ k−1(ekt − 1)θ′(t) +
∫ t

0

eku

∫ t

u

ψ(s) ds du,

and substituting this inequality into (3.1) (with u = 0) gives (3.2). �
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Lemma 3.4 For each t > 0 let It denote the operator

P−tUt = 1 +
∫ t

0

P−sEUs dA
†
s −

∫ t

0

P−sEUs dAs

with domain h� E, and let u ∈ h. Then

〈u, u0〉 6= 0 =⇒ Ituε(f) /∈ DomF 0
0 ⊗ 1 ∀f ∈ M .

Proof. For each r > 0 set Sr = r−1(Pr − 1), then by Lemma 3.2 we have

SrIt = SrIu +
∫ t

u

SrP−sEUs dA
†
s −

∫ t

u

SrP−sEUs dAs

for all 0 ≤ u ≤ t. Applying the quantum Itô formula (2.2) (with initial space h⊗Fu) gives

‖SrItuε(f)‖2 = ‖SrIuuε(f)‖2 + 4
∫ t

u

Im f(s)Im 〈SrIsuε(f), SrP−sEUsuε(f)〉 ds

+
∫ t

u

‖SrP−sEUsuε(f)‖2 ds

Now Im 〈ξ, η〉 ≥ − 1
2‖ξ‖2 − 1

2‖η‖2 for any ξ, η ∈ H, and so if we fix T ≥ 0 then

‖SrItuε(f)‖2 ≥ ‖SrIuuε(f)‖2 − 8‖f |[0,T ]‖2
∞

∫ t

u

‖SrIsuε(f)‖2 ds

+
1
2

∫ t

u

‖SrP−sEUsuε(f)‖2 ds

for all 0 ≤ u ≤ t ≤ T . Applying Lemma 3.3 gives

‖SrItuε(f)‖2 ≥ 1
2
e−kt

∫ t

0

‖SrP−sEUsuε(f)‖2 ds

where k = 8‖f |[0,T ]‖2
∞. But Sr and P−s commute, and since Ps is a contraction for each s ≥ 0

we have
‖P−sξ‖ ≥ ‖Ps‖‖P−sξ‖ ≥ ‖ξ‖ ∀ξ ∈ H, s ∈ [0, t].

Thus

‖SrItuε(f)‖2 ≥ 1
2
e−kt

∫ t

0

‖SrEUsuε(f)‖2 ds

=
1
2
e−kt‖Sru0‖2

∫ t

0

‖EUsuε(f)‖2 ds.

Finally note that supr∈]0,1] ‖Sru0‖2 = ∞ by Lemma 3.1 and choice of u0, and if 〈u, u0〉 6= 0
then the integral on the right hand side above is strictly positive; the result follows by another
application of Lemma 3.1. �

Conclusion. Note that for each t ∈ R the operator Pt defines, by restriction, a bijective map
of DomF 0

0 ⊗ 1 onto itself. Thus the unitary process U cannot be a strong solution of (R)
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for this operator matrix F and any dense subspace D ⊂ h, since for all u ∈ D satisfying
〈u, u0〉 6= 0 we have by Lemma 3.4 that Utuε(f) /∈ DomF 0

0 ⊗ 1, and the set of such u is dense
in D. But U is a mild solution of (R) on h, and so the uniqueness of mild solutions (Proposi-
tion 2.1) together with the elementary fact that any strong solution to (R) is necessarily a mild
solution shows that there are no strong solutions to (R) for this F and any choice of domain D.
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Comm Math Phys 93 (1984), 301–323.

[Mey] P-A Meyer, “Quantum Probability for Probabilists,” 2nd Edition, Springer Lecture
Notes in Mathematics 1538 Heidelberg (1993).

[Moh] A Mohari, Quantum stochastic differential equations with unbounded coefficients and
dilations of Feller’s minimal solution, Sankhyā Ser A 53 (1991), 255–287.
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