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Abstract
The cover time of a finite connected graph is the expected number of steps needed for a simple
random walk on the graph to visit all the vertices. It is known that the cover time on any n-vertex,
connected graph is at least

(
1 + o(1)

)
n log n and at most

(
1 + o(1)

)
4
27n3. This paper proves that

for bounded-degree planar graphs the cover time is at least cn(log n)2, and at most 6n2, where c
is a positive constant depending only on the maximal degree of the graph. The lower bound is
established via use of circle packings.

1 Introduction

Let G = (V, E) be a finite, connected, n-vertex graph and let {Xk}∞k=0 be a simple random walk
on G. For each v ∈ V , set Tv = min{k ∈ N : Xk = v} and let C = maxv∈V Tv be the cover time.
We are primarily interested in the expected cover time EvC, where Ev denotes expectation with
respect to the probability measure of the random walk starting at X0 = v. In words, EvC is the
expected time taken for the random walk starting at v to visit every vertex of the graph.
Over the last decade or so, much work has been devoted to finding the expected cover time
for different graphs and to giving general upper and lower bounds of the cover time. For an
introduction, we refer the reader to the draft book by Aldous and Fill [2], in particular to Chapters
3, 5 and 6. It has been shown by Feige [9, 8] that

(1 + o(1))n log n ≤ EvC ≤ (1 + o(1))
4
27

n3,

and these bounds are tight.
In this paper, we show that for bounded-degree planar graphs, one has better bounds, namely,

Theorem 1.1 Let G = (V, E) be a finite connected planar graph with n vertices and maximal
degree M . Then for every vertex v ∈ V ,

cn(log n)2 < EvC < 6n2 ,

where c is a positive constant depending only on M .

This generalizes a result of Zuckerman [19] showing that minv EvC ≥ cn(log n)2 for bounded-
degree trees on n vertices. If G = Z

d ∩ [−m, m]d, a finite portion of the d-dimensional integer
lattice, then EvC is Θ(n2) for d = 1, Θ(n(log n)2) for d = 2 and Θ(n log n) for d ≥ 3 [1,20]. Here,
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n = (2m + 1)d = |V |. The cases d = 1 and d = 2 show that Theorem 1.1 is tight (up to the
constants). The case d = 3 shows that the planarity assumption is necessary.
The upper bound in Theorem 1.1 is quite easy. The lower bound will be based on Koebe’s [12]
Circle Packing Theorem (CPT):

Theorem 1.2 Let G = (V, E) be a finite planar graph. Then there is a disk packing
{
Cv : v ∈ V

}
in R2 , indexed by the vertices of G, such that Cv ∩ Cu 6= ∅ iff {v, u} ∈ E.

Koebe’s proof relies on complex analysis, but recently several new proofs have been discovered.
See, for example, [4] for a geometric, combinatorial proof.
Some fascinating relations between the CPT and analytic function theory have been studied in
the last decade. Additionally, the CPT became a tool for studying planar graphs in general, and
random walks on planar graphs in particular [15, 13, 10, 3, 17]. In these applications, as well as
here, the CPT is useful because it endows the graph with a geometry that is better, for many
purposes, than the usual graph-metric.

We conjecture that Theorem 1.1 holds with c = c′/ log(M +2), where c′ > 0 is a positive constant.
For example, this is true for trees, since in a tree one can easily find a set of at least n1/2 vertices
with pairwise distances at least log n/

(
2 log(M +2)

)
. As we shall see, this implies that the expected

cover time is bounded below by a constant times n(log n)2/ log(M + 2).

2 Preliminaries

For a simple random walk on the graph G = (V, E) we define for every ordered pair (u, v) of vertices,
the hitting time as H(u, v) := EuTv. The commute time is given by C(u, v) := H(u, v) + H(v, u)
and the difference time is given by

D(u, v) := H(u, v) − H(v, u).

From the so called cyclic tour property of reversible Markov chains it follows that difference times
are additive (see [6]):

D(u, v) + D(v, w) = D(u, w). (2.1)

Commute times are closely related to effective resistances in electrical networks: Regard each edge
of G as a unit resistor and define for each pair (u, v) of vertices the effective resistance R(u, v)
between them as i−1 where i is the current flowing into v when grounding v and applying a 1 volt
potential to u. In mathematical terms, R(u, v) can be defined as

R(u, v) := sup

(
f(v) − f(u)

)2

D(f)
,

where D(f) is the Dirichlet energy of f ,

D(f) :=
∑

{a,b}∈E

(
f(a) − f(b)

)2
,

and the sup is with respect to all f : V → R such that D(f) > 0. (If u and v are in distinct
components of G, then R(u, v) = ∞.) It is an immediate consequence from this definition that
when G is a subgraph of another graph G′, and u, v are vertices in G, then the effective resistance
between u and v in G′ is bounded from above by the effective resistance between them in G. It is
well known that resistances satisfy the triangle inequality

R(u, w) ≤ R(u, v) + R(v, w), (2.2)

which follows from the following useful formula from [5]:

C(u, v) = 2 |E|R(u, v). (2.3)

There is also a formula from [18] for H(u, v) in terms of resistances, but it is more complicated:

H(u, v) =
1
2

∑
w∈V

dw

(
R(u, v) + R(v, w) − R(u, w)

)
, (2.4)
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where dw is the degree of w.
The main lemma in the proof of Theorem 1.1 involves estimating the resistances. A combination
of the above identities will then yield lower bounds for the hitting times. We then need some way
to estimate the cover time from the hitting times. For this Matthews’ method [14] will prove useful.

Lemma 2.1 Let G(V, E) be a finite graph. Then

max
v∈V

EvC ≤ hn−1 max
{
H(u, v) : v, u ∈ V

}
,

where hk denotes the harmonic series
∑k

i=1 i−1. Furthermore,

min
v∈V

EvC ≥ h|V0|−1 min
{
H(u, v) : u, v ∈ V0, u 6= v

}

holds for every subset V0 ⊂ V .

A proof can be found in [14] or [2]. The proof relies on one ingenious trick, namely, to assign a
uniformly chosen random order to V independent of the random walk.

3 Proof of Theorem 1.1

We start with the easy proof of the upper bound. It is a well known consequence of Euler’s formula
|V | − |E| + |F | = 2 (see [7, Theorem 4.2.7]) that the average degree d̄ in a finite planar graph is
less than 6. By [2, Chapter 6, Theorem 1], maxv EvC ≤ d̄n(n − 1) < 6n2, which gives the upper
bound.
Let us now turn to the lower bound. The main tool in the proof of Theorem 1.1 is the following
lemma:

Lemma 3.1 There exist positive constants c = c(M) and r = r(M) such that for every planar
connected graph G = (V, E) with maximum degree M and every set of vertices W ⊂ V there is a
subset V ′ ⊂ W with |V ′| ≥ |W |c and R(u, v) ≥ r log |W | for every u 6= v, u, v ∈ V ′.

Proof of Theorem 1.1 from Lemma 3.1. The strategy is to convert the information Lemma 3.1
gives about resistances to information about hitting times H(v, u), and then use the second part
of Lemma 2.1.
Let a ∈ V be some vertex, and let {v1, v2, . . . , vn} be an ordering of V such that i ≤ j implies
D(a, vi) ≤ D(a, vj). Then we have

i ≤ j ⇒ D(vi, vj) ≥ 0 (3.1)

for all i, j ∈ {1, . . . , n}, by (2.1). Let k = [n/2], the largest integer in [0, n/2]. We now consider
several distinct cases.

Case 1: there are some i < j in {1, 2, . . . , n} such that H(vj , vi) ≥ n(log n)2/2. Observe that for
all v ∈ V , we have EvC ≥ min{H(vj , vi), H(vi, vj)}, for the random walk starting at v must either
visit vj before vi or visit vi before vj . Consequently, (3.1) completes the proof in this case.

Case 2: D(v1, vk) ≥ n(log n)3, and Case 1 does not hold. By (3.1) and (2.1), we then have
D(v1, vj) ≥ n(log n)3 for all j ≥ k. By (2.4) and (2.2) we have

H(vn, v1) ≥ 1
2

n∑
j=k

(
R(v1, vn) + R(v1, vj) − R(vn, vj)

)

=
1

4|E|
n∑

j=k

(
C(v1, vn) + C(v1, vj) − C(vn, vj)

)
(by (2.3))

>
1

12n

n∑
j=k

(
C(v1, vn) + C(v1, vj) − D(vj , vn) − 2H(vn, vj)

)
,
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since |E| < 3|V | for planar graphs and C(vn, vj) = 2H(vn, vj) + D(vj , vn). Consequently, since
Case 1 does not hold,

H(vn, v1) >
1

12n

n∑
j=k

(
C(v1, vn) + C(v1, vj) − D(vj , vn) − n(log n)2

)

≥ 1
12n

n∑
j=k

(
D(v1, vn) + D(v1, vj) − D(vj , vn) − n(log n)2

)

=
1

12n

n∑
j=k

(
2D(v1, vj) − n(log n)2

)
≥ 1

12
n(log n)3,

for all sufficiently large n, since we have D(v1, vj) ≥ n(log n)3 for all j ≥ k. However, H(vn, v1) ≥
1
12n(log n)3 brings us back to Case 1.

Case 3: D(v1, vk) ≤ n(log n)3. Set W = {v1, . . . , vk}, and let V ′ ⊂ W be as in Lemma 3.1. Let
m := |V ′| ≥ nc, and let i1 < i2 < · · · < im be those indices i ∈ {1, . . . , k} such that vi ∈ V ′. Set
s := [

√
m] − 1. Since

s−1∑
j=1

D(vijs , vi(j+1)s ) = D(vis , vis2 ) ≤ D(v1, vk) ≤ n(log n)3,

there is some t ∈ {1, . . . , s − 1} such that D(vits , vi(t+1)s ) ≤ n(log n)3/(s − 1) = o(n). Set V0 :=
{vits , vits+1 , . . . , vi(t+1)s}. Then |V0| ≥ nc′ for some constant c′ > 0 and D(u, w) ≤ o(n) for
u, w ∈ V0, if n is large. However, we have C(u, w) = 2|E|R(u, w) ≥ rn log n for u, w ∈ V0, since
V0 ⊂ V ′. Because 2H(u, w) = C(u, w) − D(w, u), this gives H(u, w) ≥ (r/3)n log n for u, w ∈ V0,
provided that n is large. Now the second part of Lemma 2.1 completes the proof. 2

Remark. The recent preprint by Kahn et. al. [11] gives an estimate (Prop. 1.2 and Thm. 1.3)
of the expected cover time in terms of the commute times. This result could be used to simplify
the above argument (but was not available at the time of writing of the first draft of the current
paper).

Proof of Lemma 3.1. We first consider the case where G is a triangulation of the sphere. This
means that G is a graph embedded in S2 with the property that every connected component of
S2 \ G has precisely 3 edges of G as its boundary.
The Circle Packing Theorem implies the existance of a disk packing

{
Cv : v ∈ V

}
indexed by the

vertices of G, such that each Cv is a closed round disk in R2 and Cv ∩ Cu 6= ∅ iff {v, u} ∈ E.
Moreover (by normalizing by a Möbius transformation), we assume with no loss of generality that
the outer three disks in the packing all have radius 1.
The Ring Lemma from [16] implies that there is a constant A = A(M) such that

{v, u} ∈ E ⇒ rv < Aru, (3.2)

where rv denotes the radius of Cv. It then follows that there is another constant A′ := A′(M) > 0
such that

{v, u} /∈ E ⇒ dist(Cv, Cu) ≥ A′ru, (3.3)

where dist(Cv, Cu) := inf{|p− q| : p ∈ Cv, q ∈ Cu}, because the disks around Cu separate Cv from
Cu, since G is assumed to be a triangulation.
Most important for us is the following lower bound for the resistance

R(w, u) ≥ A′′ log
(
dist(Cw, Cu)/ru

)
, (3.4)

for some constant A′′ := A′′(M) > 0. Similar estimates appear in [10] and in [3]. For completeness,
we include a quick proof here. For each v ∈ V let zv be the center of the disk Cv. Set a := log ru

and b := log |zw − zu|. Consider F (z) := log(z − zu) as a map from C \ {zu} = R
2 \ {zu} to the

cylinder R + i(R/2πZ). Set f(v) := min{ReF (zv), b}, for v 6= u and f(u) := log ru = a. The
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inequality dist(Cu, Cv) ≥ A′rv implies that area
(
F (Cv)

)
/diam

(
F (Cv)

)2 is bounded above and
below by positive constants. For neighbors v1 and v2 we have

|f(v1) − f(v2)| ≤ diam
(
F (Cv1)

)
+ diam

(
F (Cv2)

) ≤ O(1)diam
(
F (Cv1)

)

and f(v1) − f(v2) = 0 unless dist(Cu, Cv1 ∪ Cv2) ≤ |zw − zu| − ru. Consequently, D(f) ≤
O(1)

∑
v diam

(
F (Cv)

)2, where the sum extends over all v 6= u such that F (Cv) intersects the cylin-
der [a, b] + i(R/2πZ). All these sets F (Cv) are contained in the cylinder

[
a, b + O(1)

]
+ i(R/2πZ),

and their interiors are disjoint. Since the area of each F (Cv) is proportional to the square of its
diameter, we find that

D(f) ≤ O(1)area
(
[a + O(1)] + i(R/2πZ)

)
= O(1)(b − a + 1).

The inequality (3.4) now follows from the definition of the effective resistance.
Fix a small s > 0 (which will be specified later), and set n = |W |. For j ∈ Z, let

Wj :=
{
v ∈ W : rv ∈ (ns(j−1), nsj ]

}
.

Then W =
⋃

j∈ZWj . For n so large that ns ≥ A we have by (3.2) that if u ∈ Wj , v ∈ Wk

and k − j ≥ 2 then {u, v} 6∈ E, and by (3.3) and (3.4), R(u, v) ≥ A′′ log(dist(Cu, Cv)/ru) ≥
A′′ log(A′rv/ru) ≥ 1

2A′′s log n, when n is large.

Now either
∣∣∣⋃j odd Wj

∣∣∣ ≥ n/2 or
∣∣∣⋃j even Wj

∣∣∣ ≥ n/2. Let us assume the latter case, noting that
the former is treated similarly.
For each even j, let Zj be a maximal subset of vertices of Wj such that

u, v ∈ Zj , u 6= v ⇒ dist(Cu, Cv) ≥ ns(j+1),

and note that by the definition of Wj and (3.4), R(u, v) ≥ A′′ log(ns(j+1)/nsj) = A′′s log n for all
u, v ∈ Zj , u 6= v. Since for any v ∈ Wj the disk of radius 3ns(j+1) centered at zv, the center of
Cv, does not contain more than

(
3ns(j+1)/ns(j−1)

)2 = 9n4s disks Cu with u ∈ Wj , it follows that
|Zj | ≥ n−4s|Wj |/9. Now put V ′ =

⋃
j even Zj. Then |V ′| ≥ n1−5s for n large enough and when

v 6= v′ are in V ′ we have R(u, v) ≥ 1
2A′′s log n. The result for G a triangulation of S2 follows by

choosing s = 1/6, say.
Now consider the case where G is not a triangulation of S2. It is easy then to construct a trian-
gulation T of the sphere with maximum degree at most 3M which contains G as a subgraph. The
effective resistence RG(u, v) in G between two vertices u, v in G is at least RT (u, v), their effective
resistance in T . Consequently, this case follows from the previous.

2
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