A LARGE WIENER SAUSAGE FROM CRUMBS

OMER ANGEL

Department of Mathematics, The Weizmann Institute of Science, Rehovot, Israel 76100
email: omer@wisdom.weizmann.ac.il

ITAI BENJAMINI

Department of Mathematics, The Weizmann Institute of Science, Rehovot, Israel 76100
email: itai@wisdom.weizmann.ac.il
http://www.wisdom.weizmann.ac.il/~itai/
YUVAL PERES
Institute of Mathematics, The Hebrew University, Jerusalem and Department of Statistics, University of California, Berkeley, USA
email: peres@math.huji.ac.il
http://www.math.huji.ac.il/~peres/
submitted March 20, 2000 Final version accepted April 14, 2000
AMS 1991 Subject classification: Primary 60J45; Secondary 60J65, 31C15 Brownian motion, capacity, polar set, Wiener sausage

Abstract

Let $B(t)$ denote Brownian motion in \mathbb{R}^{d}. It is a classical fact that for any Borel set A in \mathbb{R}^{d}, the volume $V_{1}(A)$ of the Wiener sausage $B[0,1]+A$ has nonzero expectation iff A is nonpolar. We show that for any nonpolar A, the random variable $V_{1}(A)$ is unbounded.

1. Introduction

The impetus for this note was the following message, that was sent to one of us (Y. P.) by Harry Kesten:
"... First a question, though. It is not of major importance but has bugged me for a while in connection with some large deviation result for the Wiener sausage (with Yuji Hamana). Let $V_{1}(A)$ be the volume of the Wiener sausage at time 1 , that is, $V_{1}(A)=\operatorname{Vol}_{d}\left(\cup_{s \leq 1} B_{s}+A\right)$, where B_{s} is d-dimensional Brownian motion, and A is a d-dimensional
set of positive capacity. Is it true that the support of $V_{1}(A)$ is unbounded, i.e., is $\mathbf{P}\left[V_{1}(A)>x\right]>0$ for all x ? This is easy if A has a section of positive $(d-1)$-dimensional Lebesgue measure, but I cannot prove it in general. Do you have any idea? "
We were intrigued by this question, because it led us to ponder the source of the volume of the Wiener sausage when A is a "small" set (e.g., a nonpolar set of zero Hausdorff dimension, in the plane). Is it due to the macroscopic movement of B (in which case $V_{1}(A)$ would not be bounded) or to the microscopic fluctuations (in which case $V_{1}(A)$ might be bounded, like the quadratic variation)?
Our proof of the following theorem indicates that while the microscopic fluctuations of B are necessary for the positivity of $V_{1}(A)$, the macroscopic behaviour of B certainly affects the magnitude of $V_{1}(A)$.
Theorem 1. If the capacity $\mathcal{C}(A)$ of $A \subset \mathbb{R}^{d}$ is positive, then $V_{1}(A)$ is not bounded. The relevant capacity can be defined for $A \subset \mathbb{R}^{d}$ with $d \geq 3$, by

$$
\begin{aligned}
\mathcal{C}(A) & =\sup _{\mu} \frac{\mu(A)^{2}}{\mathcal{E}(\mu)} \\
\text { where } \mathcal{E}(\mu) & =\iint \frac{c_{d} d \mu(x) d \mu(y)}{|x-y|^{d-2}}
\end{aligned}
$$

and the supremum is over measures supported on A. (the constant c_{d} is unimportant for our purpose). A similar formula holds for $d=2$ with a logarithmic kernel; in that case $\mathcal{C}(A)$ is often called Robin's constant, and it will be convenient to restrict attention to sets A of diameter less than 1.
Denote by τ_{A} the hitting time of A by Brownian motion. By Fubini's theorem

$$
\mathbf{E}\left[V_{1}(A)\right]=\int_{\mathbb{R}^{d}} \mathbf{P}_{x}\left[\tau_{A} \leq 1\right] d x
$$

It follows from the relation between potential theory and Brownian motion, that $\mathbf{E}\left[V_{1}(A)\right]$ is nonzero if and only if A has positive capacity; see, e.g., [3], [2], or [4].

2. The recipe

For any kernel $K(x, y)$, the corresponding capacity is defined by $\mathcal{C}_{K}(A)=\sup _{\mu} \frac{\mu(A)^{2}}{\mathcal{E}_{K}(\mu)}$ where $\mathcal{E}_{K}(\mu)=\iint K(x, y) d \mu(x) d \mu(y)$ and the supremum is over measures on A. We assume that $K(x, x)=\infty$ for all x, and that for $0<|x-y|<R_{K}$, the kernel K is continuous and $K(x, y)>0$.
The following lemma holds for all such kernels.
Lemma 1. If a set $A \subset \mathbb{R}^{d}$ has $\mathcal{C}_{K}(A)>0$, then for any $L<\infty$ there exists $\epsilon>0$ and subsets $A_{1}, A_{2}, \ldots, A_{m}$ of A such that $\sum_{i=1}^{m} \mathcal{C}_{K}\left(A_{i}\right) \geq L$, and the distance between A_{i} and A_{j} is at least ϵ for all $i \neq j$. (m and ϵ depend on A and L).
Proof: We can assume that $\operatorname{diam}(A)<R_{K}$, for otherwise we can replace A by a subset of positive capacity and diameter less than R_{K}.
Let μ be a measure supported on A such that $\mu(A)=1$ and $\mathcal{E}_{K}(\mu)<\infty$.

By dominated convergence,

$$
\lim _{\delta \rightarrow 0} \iint_{|x-y| \leq \delta} K(x, y) d \mu(x) d \mu(y)=0 .
$$

Choose δ so that this integral is less then $2^{-2 d} L^{-1}$. Let $\epsilon=\delta d^{-1 / 2}$ and let \mathcal{F} be a grid of cubes of side ϵ, i.e.,

$$
\mathcal{F}=\left\{\prod_{i=1}^{d}\left[\epsilon \ell_{i}, \epsilon \ell_{i}+\epsilon\right):\left(\ell_{1}, \ldots, \ell_{d}\right) \in \mathbb{Z}^{d}\right\} .
$$

We can partition \mathcal{F} into 2^{d} subcollections $\left\{\mathcal{F}_{v}: v \in\{0,1\}^{d}\right\}$ according to the vector of parities of $\left(\ell_{1}, \ldots, \ell_{d}\right)$. Then the distance between any two cubes in the same \mathcal{F}_{v} is at least ϵ. Since μ is a probability measure, there exists $v \in\{0,1\}^{d}$ such that

$$
\begin{equation*}
\sum_{Q \in \mathcal{F}_{v}} \mu(Q) \geq 2^{-d} \tag{1}
\end{equation*}
$$

Let $A_{1}, A_{2}, \ldots, A_{m}$ be all the nonempty sets among $\left\{A \cap Q: Q \in \mathcal{F}_{v}\right\}$. Since μ is supported on A, we can rewrite (1) as $\sum_{i=1}^{m} \mu\left(A_{i}\right) \geq 2^{-d}$.
Denote by $e_{i}=\iint_{A_{i} \times A_{i}} K(x, y) d \mu d \mu$ the energy in A_{i}. Then

$$
\begin{equation*}
\sum_{i=1}^{m} e_{i} \leq \iint_{|x-y| \leq \delta} K(x, y) d \mu d \mu<2^{-2 d} L^{-1} \tag{2}
\end{equation*}
$$

By Cauchy-Schwarz,

$$
\begin{equation*}
\left(\sum_{i=1}^{m} e_{i}\right)\left(\sum_{i=1}^{m} \frac{\mu\left(A_{i}\right)^{2}}{e_{i}}\right) \geq\left(\sum_{i=1}^{m} \mu\left(A_{i}\right)\right)^{2} \geq 2^{-2 d} \tag{3}
\end{equation*}
$$

We have $\mathcal{C}_{K}\left(A_{i}\right) \geq \mu\left(A_{i}\right)^{2} / e_{i}$, whence

$$
\sum_{i=1}^{m} \mathcal{C}_{K}\left(A_{i}\right) \geq \sum_{i=1}^{m} \frac{\mu\left(A_{i}\right)^{2}}{e_{i}} \geq L
$$

by (2) and (3).

Proof of Theorem 1: Suppose that

$$
\begin{equation*}
\operatorname{esssup} V_{1}(A)=M<\infty . \tag{4}
\end{equation*}
$$

Let $V_{t}(A)$ denote the volume of the Wiener sausage $B[0, t]+A$. From Spitzer [3] (see also [2] or [1]) it follows that $\mathbf{E}\left[V_{1}(A)\right]>2 \alpha_{d} \mathcal{C}(A)$ for some absolute constant α_{d}. (If $d=2$ we assume that $\operatorname{diam} A<1)$. We infer that $\mathbf{E}\left[V_{t}(A)\right]>\alpha_{d} t \mathcal{C}(A)$ for $0<t<1$, by subadditivity of Lebesgue measure and monotonicity of $V_{t}(A)$,
Fix $L>6 M / \alpha_{d}$, and let A_{1}, \ldots, A_{m} be the subsets of A given by the lemma. A Wiener sausage on A contains the union of Wiener sausages on the A_{i}, and the sum of their volumes is expected to be large. If we can arrange for the intersections to be small, then $V_{1}(A)$ will be large as well.

Consider the event

$$
H_{n}=\left\{\max _{0 \leq s \leq \frac{1}{2 n}}\left|B_{s}\right|<\frac{\epsilon}{2}\right\}
$$

By Brownian scaling and standard estimates for the maximum of Brownian motion,

$$
\mathbf{P}\left[H_{n}^{c}\right] \leq 4 d \exp \left(-\frac{n \epsilon^{2}}{4 d}\right)
$$

Choose n large enough so that the right-hand side is less than $\frac{1}{n m}$. For each i, we have $\mathbf{E}\left[\left.V_{\frac{1}{2 n}}\left(A_{i}\right) \right\rvert\, H_{n}^{c}\right] \leq M$ by (4), so

$$
\begin{equation*}
\mathbf{E}\left[\left.V_{\frac{1}{2 n}}\left(A_{i}\right) \right\rvert\, H_{n}\right] \geq \mathbf{E}\left[V_{\frac{1}{2 n}}\left(A_{i}\right)\right]-M \mathbf{P}\left[H_{n}^{c}\right] \geq \frac{\alpha_{d}}{2 n} \mathcal{C}\left(A_{i}\right)-\frac{M}{m n} \tag{5}
\end{equation*}
$$

For $0 \leq j<n$, denote by G_{j} the event that

$$
\max _{\frac{2 j}{2 n} \leq s \leq \frac{2 j+1}{2 n}}\left|B_{s}-B_{\frac{2 j}{2 n}}\right|<\epsilon / 2
$$

and the first coordinate of the increment $B_{\frac{2 j+2}{2 n}}-B_{\frac{2 j+1}{2 n}}$ is greater than the diam $(A)+2 \epsilon$. Define $G=\cap_{j=0}^{n-1} G_{j}$. We will see that the expectation of $V_{1}(A)$ given G is large.
On the event G, for each fixed j, the m sausages $\left\{B\left[\frac{2 j}{2 n}, \frac{2 j+1}{2 n}\right]+A_{i}\right\}_{i=1}^{m}$ are pairwise disjoint due to the separation of the A_{i} and the localization of B in the time interval $\left[\frac{2 j}{2 n}, \frac{2 j+1}{2 n}\right]$. Therefore,

$$
\mathbf{E}\left[\left.\operatorname{Vol}_{d}\left(B\left[\frac{2 j}{2 n}, \frac{2 j+1}{2 n}\right]+A\right) \right\rvert\, G\right] \geq \sum_{i=1}^{m}\left(\frac{\alpha_{d}}{2 n} \mathcal{C}\left(A_{i}\right)-\frac{M}{m n}\right) \geq \frac{\alpha_{d} L}{2 n}-\frac{M}{n}>\frac{2 M}{n}
$$

Also, on G, the sausages on the odd intervals, $B\left[\frac{2 j}{2 n}, \frac{2 j+1}{2 n}\right]+A$ for $0 \leq j<n$, are pairwise disjoint due to the large increments of B (in the first coordinate) on the even intervals. We conclude that

$$
\begin{equation*}
\mathbf{E}\left[V_{1}(A) \mid G\right] \geq \sum_{j=0}^{n-1} \mathbf{E}\left[\left.\operatorname{Vol}_{d}\left(B\left[\frac{2 j}{2 n}, \frac{2 j+1}{2 n}\right]+A\right) \right\rvert\, G\right]>2 M \tag{6}
\end{equation*}
$$

This contradicts the assumption (4) and completes the proof.

Questions:

- Can the event G that we conditioned on at the end of the preceding proof, be replaced by a simpler event involving just the endpoint of the Brownian path? In particular, does every nonpolar $A \subset \mathbb{R}^{d}$ satisfy

$$
\lim _{R \rightarrow \infty} \mathbf{E}\left[V_{1}(A)| | B(1) \mid>R\right]=\infty ?
$$

- Can one estimate precisely the tail probabilities $\mathbf{P}\left[V_{1}(A)>v\right]$ for specific nonpolar fractal sets A and large v, e.g., when $d=2$ and A is the middle-third Cantor set on the x-axis ?
Acknowledgments. We are grateful to Harry Kesten for suggesting the problem, and for a correction to an earlier version of this note. We thank Dimitris Gatzouras and Yimin Xiao for helpful comments. Research of Peres was partially supported by

NSF grant \#DMS-9803597 and by the Landau Center for Mathematical Analysis at the Hebrew University.

References

[1] I. Benjamini, R. Pemantle and Y. Peres, Martin capacity for Markov chains. Ann. Probab. 23 (1995), 1332-1346.
[2] K. Itô and H. P. McKean (1974), Diffusion Processes and Their Sample Paths, SpringerVerlag.
[3] F. Spitzer (1964), Electrostatic capacity, heat flow, and Brownian motion. Z. Wahrschein. Verw. Gebiete 3, 110-121.
[4] A. S. Sznitman (1998), Brownian motion, Obstacles and Random Media. Springer Monographs in Mathematics. Springer-Verlag, Berlin.

