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Abstract:
We present a Gaussian correlation inequality which is closely related to a result of Schecht-
man, Schlumprecht and Zinn (1998) on the well-known Gaussian correlation conjecture. The
usefulness of the inequality is demonstrated by several important applications to the estimates
of small ball probability.

1 Introduction

The well-known Gaussian correlation conjecture states that for any two symmetric convex sets
A and B in a separable Banach space E and for any centered Gaussian measure µ on E,

µ(A ∩B) ≥ µ(A)µ(B). (1.1)

Various equivalent formulations, early history and recent progresses of the conjecture can be
found in Schechtman, Schlumprecht and Zinn (1998). A special case of the conjecture, when
one of the symmetric convex set is a slab of the form {x ∈ E : |f∗(x)| ≤ 1} for some linear
functional f∗ in the dual of E, was proved by Khatri (1967) and S̆idák (1968) independently.
The Khatri-S̆idák result has many applications in probability and statistics (see Tong (1980)).
Recently, it has became one of the most powerful tools in the lower bound estimates of the
small ball probability which studies the behavior of

logµ(x : ‖x‖ ≤ ε) = −φ(ε) as ε→ 0 . (1.2)

for a given measure µ and a norm ‖·‖, see, for example, Shao (1993), Monrad and Rootzén
(1995), and Talagrand (1993). For a recent comprehensive survey on small ball probability
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and its various applications, we refer the reader to Li and Shao (1999b). Other applications
and connections between correlation type results and small ball probabilities can be found
in Hitczenko, Kwapien, Li, Schechtman, Schlumprecht and Zinn (1998), Shao (1998), Li and
Shao (1999a).
In this short note, we first present the following Gaussian correlation inequality which is closely
related to a result of Schechtman, Schlumprecht and Zinn (1998) on the well-known Gaussian
correlation conjecture given in (1.1).

Theorem 1.1 Let µ be a centered Gaussian measure on a separable Banach space E. Then
for any 0 < λ < 1, any symmetric, convex sets A and B in E.

µ(A ∩B)µ(λ2A+ (1 − λ2)B) ≥ µ(λA)µ((1 − λ2)1/2B).

In particular,
µ(A ∩B) ≥ µ(λA)µ((1 − λ2)1/2B).

The proof follows along the arguments of Proposition 3 in Schechtman, Schlumprecht and Zinn
(1998) where the case λ = 1/

√
2 was proved. The full details are given in the next section.

Below we give several important applications of the inequality to the estimates of small ball
probability. Other applications of the inequality can be found in Li (1999a,b), Kuelbs and
Li (1999), Li and Shao (1999a), Lifshits and Linde (1999). The varying parameter λ plays
a fundamental role in all the applications we know so far. The main difference between the
Khatri-S̆idák inequality and our Theorem 1.1 in the applications to small ball probability
is that the former only provides rate (upto a constant) and the later can preserve the rate
together with the constant.
Our first application is to the small ball probability of the sum of two not necessarily indepen-
dent joint Gaussian random vectors.

Theorem 1.2 Let X and Y be any two joint Gaussian random vectors in a separable Banach
space with norm ‖·‖. If

lim
ε→0

εγ logP (‖X‖ ≤ ε) = −CX ,

and
lim
ε→0

εγ logP (‖Y ‖ ≤ ε) = 0

with 0 < γ <∞ and 0 < CX <∞. Then

lim
ε→0

εγ logP (‖X + Y ‖ ≤ ε) = −CX .

Note that it is easy to show the above result ifX and Y are independent. In fact, by Anderson’s
inequality and independent assumption,

P (‖X + Y ‖ ≤ ε) ≤ P (‖X‖ ≤ ε) .

On the other hand, for any 0 < δ < 1, we have by the independent assumption

P (‖X + Y ‖ ≤ ε) ≥ P (‖X‖ ≤ (1 − δ)ε, ‖Y ‖ ≤ δε)
= P (‖X‖ ≤ (1 − δ)ε) · P (‖Y ‖ ≤ δε) .

Thus
lim inf

ε→0
εγ logP (‖X + Y ‖ ≤ ε) ≥ −(1 − δ)−γCX
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and the result in the independent case follows by taking δ → 0. Now without independent
assumption, our Theorem 1.1 still allows us to obtain both upper and lower estimates. The very
simple proof is given in the next section. It is also interesting to point out that, without using
the correlation inequality, we can only obtain the correct rate (without the exact constant) by
the precise link, discovered in Kuelbs and Li (1993) and completed in Li and Linde (1998),
between the function φ(ε) in (1.2) and the metric entropy of the unit ball Kµ of the Hilbert
space Hµ generated by µ.
As a direct consequence of Theorem 1.2, we have the following for any Gaussian “bridge”.

Corollary 1.1 Let {X(t), 0 ≤ t ≤ 1} be a R
d -valued, d ≥ 1, continuous Gaussian random

variable. Assume for some norm ‖·‖ on C([0, 1],Rd) that

lim
ε→0

εγ logP (‖X(t)‖ ≤ ε) = −CX

with 0 < γ <∞ and 0 < CX <∞. Then

lim
ε→0

εγ logP (‖X(t) − tX(1)‖ ≤ ε) = −CX .

Our next application extends the previous known small ball results for Brownian motion under
weighted sup-norms over the finite interval to those over the infinite interval. Let W (t), t ≥ 0,
be the standard Brownian motion. If f : (0, T ] 7→ (0,∞) satisfies either of the conditions (H1):
inf0<t≤T f(t) > 0 or (H2): f(t) is nondecreasing in a neighborhood of 0. Then,

lim
ε→0

ε2 logP
(

sup
0<t≤T

|W (t)|
f(t)

≤ ε

)
= −π

2

8

∫ T

0

f−2(t)dt. (1.3)

This result was proved by Mogulskii (1974) under essentially condition (H1) and by Berthet and
Shi (1998) under condition (H2). The critical case, when

∫ T

0
f−2(t)dt = ∞, and connections

with Gaussian Markov processes were treated in Li (1998). Here we extend (1.3) to sup over
the whole positive half line.

Theorem 1.3 Let g : (0,∞) 7→ (0,∞] satisfies the conditions:
(i). inf0<t<∞ g(t) > 0 or g(t) is nondecreasing in a neighborhood of 0.
(ii). inf0<t<∞ t−1g(t) > 0 or t−1g(t) is nonincreasing for t sufficiently large;
Then,

lim
ε→0

ε2 logP
(

sup
0<t<∞

|W (t)|
g(t)

≤ ε

)
= −π

2

8

∫ ∞

0

g−2(t)dt. (1.4)

Here we use the convention 1/∞ = 0 and hence we can recover (1.3) from (1.4) by taking
g(t) = f(t) for t ≤ T and g(t) = ∞ for t > T . Results similar to Theorem 1.3 for Brownian
motion under weighted Lp-norm, 1 ≤ p ≤ ∞, are studied in Li (1999a).

Corollary 1.2 For p > 1,

lim
ε→0

ε2(p−1)/p logP
(

sup
t≥0

(|W (t)| − tp/2) ≤ ε

)
= −π

2

8
· kp

where

kp =
∫ ∞

0

dt

(1 + tp/2)2
=
{

1 if p = 2
2p−1

(
1 − 2p−1

)
π · csc(2π/p) if p > 1, p 6= 2 (1.5)
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The above result can be easily seen by using the following identity in law, given in Song and
Yor (1987) and Revuz and Yor (1994), page 23,

sup
t≥0

(|W (t)| − tp/2) d= sup
t≥0

( |W (t)|
1 + tp/2

)p/(p−1)

(1.6)

In particular, when p = 2, we have in fact

sup
t≥0

(|W (t)| − t) d= sup
t≥0

( |W (t)|
1 + t

)2
d= sup

0≤t≤1
B2(t)

where B(t) is the Brownian bridge. The evaluation of the integral in (1.5) follows from Grad-
shteyn and Ryzhik (1994), page 334. It is of some interests to note that the general relation,
see Song and Yor (1987),

P

(
ψ

(
sup

0≤t≤1
|W (t)|

)
≤ x

)
≥ P

(
sup
t≥0

(
|W (t)| − φ(t1/2)

)
≤ x

)

does not provide sharp estimate as x→ 0 (missing the constant at the log level) for φ(t) = tp,
p > 1, where φ : R+ → R+ is the Young function and ψ(t) = sups≥0(ts−φ(s)) is the conjugate
function.
Next we mention the corresponding results in higher dimensions. Let {Wd(t); t ≥ 0} denote
standard d–dimensional Brownian motion (d ≥ 1), and “‖ · ‖” the usual Euclidean norms in
R

d .

Theorem 1.4 If g is a positive function satisfying conditions (i) and (ii) of Theorem 1.3,
then

lim
ε→0

ε2 logP
(

sup
0<t<∞

‖Wd(t)‖
g(t)

≤ ε

)
= −

j2(d−2)/2

2

∫ ∞

0

g−2(t)dt

where j(d−2)/2 is the smallest positive root of the Bessel function J(d−2)/2 and j−1/2 = π/2.

Our next application is related to the theory of empirical processes where the Brownian bridge
plays an important role. To see how our next result can be applied to weighted empirical
processes, we refer to Csáki (1994).

Theorem 1.5 Let {Bd(t); 0 ≤ t ≤ 1} be a standard R
d -valued Brownian bridge, with d ≥ 1.

Assume that infa≤t≤b g(t) > 0 for all 0 < a ≤ b < 1. If inf0≤t≤1 g(t) > 0 or both (1 − t)−1g(t)
and (1 − t)−1g(1 − t) are nondecreasing in a neighborhood of 0, then

lim
ε→0

ε2 logP
(

sup
0<t<1

‖Bd(t)‖
g(t)

≤ ε

)
= −

j2(d−2)/2

2

∫ ∞

0

g−2(t)dt

where j(d−2)/2 is the smallest positive root of the Bessel function J(d−2)/2 and j−1/2 = π/2.

This result was mentioned in Berthet and Shi (1998), without proof, under a slightly stronger
condition. Here we can see easily that Theorem 1.5 follows from Theorem 1.4 by observing
the relation in law

sup
0<t<1

‖Bd(t)‖
g(t)

d= sup
0<t<1

‖(1 − t)Wd(t(1 − t)−1)‖
g(t)

d= sup
0<t<∞

‖Wd(t)‖
(1 + t)g(t(1 + t)−1)

.

For other applications to Chung’s functional laws and general moving boundaries, the results
in Berthet and Shi (1998) under weighted sup-norm over finite intervals can all be extended
to the corresponding results over the infinite intervals. We omit the details here.
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2 Proofs of Theorems

Proof of Theorem 1.1. Based on a classic finite dimensional approximation procedure which
can be found in Chapter 4 of Ledoux (1996), we only need to show theorem 1.1 for µ = µn,
the standard Gaussian product measure on E = R

n . For notational convenience, let η =
(1 − λ2)1/2.
Using the rotational invariance of the measure µn × µn for (x, y) 7→ (λx + ηy, ηx − λy), we
have

µn(λA)µn(ηB) =
∫

1A(λ−1x)1B(η−1y)µn(dx)µn(dy)

=
∫

1A(x+ λ−1ηy)1B(x− η−1λy)µn(dx)µn(dy)

=
∫
µn

(
(A− λ−1ηy) ∩ (B + η−1λy)

)
µn(dy). (2.1)

Note that for y ∈ R
n , (A−λ−1ηy)∩(B+η−1λy) is not empty if and only if there exists z ∈ R

n

for which λz + ηy ∈ λA and ηz − λy ∈ ηB and that can only happen if z ∈ λ2A+ η2B. Thus
the integrand

In(y) = µn

(
(A− λ−1ηy) ∩ (B + η−1λy)

)
can only be non-zero on λ2A+η2B = λ2A+(1−λ2)B. Next, by the Prékopa-Leindler theorem
on log concave functions, see Schechtman, Schlumprecht and Zinn (1998) for related details,
the integrand

In(y) =
∫

1A(x+ λ−1ηy) · 1B(x − η−1λy)µn(dx)

is log concave since both the indicator function of convex set and the density of µn are log
concave, and the product of log concave functions are log concave. Further, a symmetric log
concave function is maximized at zero, and hence the integrand In(y) is dominated by the
value at y = 0 which is µn(A ∩ B). Putting things together, the integral in (2.1) is bounded
by µ(A ∩B)µ(λ2A+ (1 − λ2)B) and the proof is finished.

Proof of Theorem 1.2. For the lower bound, we have by the correlation inequality with any
0 < δ < 1, 0 < λ < 1,

P (‖X + Y ‖ ≤ ε) ≥ P (‖X‖ ≤ (1 − δ)ε, ‖Y ‖ ≤ δε)

≥ P (‖X‖ ≤ λ(1 − δ)ε) · P
(
‖Y ‖ ≤ (1 − λ2)1/2δε

)
.

Thus
lim inf

ε→0
εγ logP (‖X + Y ‖ ≤ ε) ≥ −(λ(1 − δ))−γCX

and the lower bound follows by taking δ → 0 and λ→ 1.
For the upper bound, we have again by the correlation inequality with any 0 < δ < 1,
0 < λ < 1,

P

(
‖X‖ ≤ ε

(1 − δ)λ

)
≥ P

(
‖X + Y ‖ ≤ ε

λ
, ‖Y ‖ ≤ δ · ε

(1 − δ)λ

)

≥ P (‖X + Y ‖ ≤ ε) · P
(
‖Y ‖ ≤ (1 − λ2)1/2δ

ε

(1 − δ)λ

)
.
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Thus
lim sup

ε→0
εγ logP (‖X + Y ‖ ≤ ε) ≤ −(λ(1 − δ))γCX

and the upper bound follows by taking δ → 0 and λ→ 1.

Proof of Theorem 1.3. Without loss of generality, we assume
∫∞
0 g−2(t)dt exists and is finite.

The upper estimate follows easily from (1.3) by observing

lim sup
ε→0

ε2 logP
(

sup
0<t<∞

|W (t)|
g(t)

≤ ε

)
≤ lim sup

ε→0
ε2 logP

(
sup

0<t≤T

|W (t)|
g(t)

≤ ε

)

= −π
2

8

∫ T

0

g−2(t)dt

for any T > 0. Taking T → ∞ gives the desired upper bound.
For the lower bound, we have by the correlation inequality with any 0 < λ < 1 and T > 0,

P

(
sup

0<t<∞
|W (t)|
g(t)

≤ ε

)
= P

(
sup

0<t≤T

|W (t)|
g(t)

≤ ε , sup
T≤t<∞

|W (t)|
g(t)

≤ ε

)
(2.2)

≥ P

(
sup

0<t≤T

|W (t)|
g(t)

≤ λε

)
· P
(

sup
T≤t<∞

|W (t)|
g(t)

≤ (1 − λ2)1/2ε

)
.

For the second term in the equation above, we have by using the time inversion representation
{W (t), t > 0} = {tW (1/t), t > 0} in law

P

(
sup

T<t<∞

|W (t)|
g(t)

≤ (1 − λ2)1/2ε

)
= P

(
sup

0<t≤1/T

|W (t)|
tg(1/t)

≤ (1 − λ2)1/2ε

)
(2.3)

Combining (2.2) and (2.3), we obtain by (1.3),

lim inf
ε→0

ε2 logP
(

sup
0<t<∞

|W (t)|
g(t)

≤ ε

)
≥ lim inf

ε→0
ε2 logP

(
sup

0<t≤T

|W (t)|
g(t)

≤ λε

)

+ lim inf
ε→0

ε2P

(
sup

0<t≤1/T

|W (t)|
tg(1/t)

≤ (1 − λ2)1/2ε

)

= −λ−2π
2

8

∫ T

0

dt

g2(t)
− (1 − λ2)−1π

2

8

∫ 1/T

0

dt

t2g2(1/t)

= −λ−2π
2

8

∫ T

0

dt

g2(t)
− (1 − λ2)−1π

2

8

∫ ∞

T

dt

g2(t)
.

Taking T → ∞ first and then λ→ 1, we obtain the desired lower estimate and thus finish the
whole proof.
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[20] Šidák, Z. (1968). On multivariate normal probabilities of rectangles: their dependence on
correlations. Ann. Math. Stat. 39, 1425–1434.

[21] Shao, Q.M. (1993). A note on small ball probability of Gaussian processes with stationary
increments. J. Theoret. Probab. 6, 595-602.



Small Ball Probabilities 118

[22] Shao, Q.M. (1998). A Gaussian correlation inequality and its applications to the existence
of small ball constant, preprint.
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