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Abstract

We construct a Brownian path conditioned on its minimum value over a fixed time interval
by simple transformations of a Brownian bridge.

Path transformations have proved useful in the study of Brownian motion and related pro-
cesses, by providing simple constructions of various conditioned processes such as Brownian
bridge, meander and excursion, starting from an unconditioned Brownian motion. As well as
providing insight into the structure of these conditioned processes, path constructions assist
in the computation of various conditional laws of Brownian functionals, and in the simulation
of conditioned processes.

Starting from a standard one-dimensional Brownian motion B = (Bt)0≤t≤1 with B0 = 0,
one well known construction of a Brownian bridge of length 1 from 0 to x, denoted Bbr,x, is
the following:

Bbr,x
u := Bu − uB1 + ux (0 ≤ u ≤ 1). (1)

Then a Brownian meander of length 1 starting at 0 and conditioned to end at r ≥ 0, de-
noted Bme,r, can be constructed from three independent copies (Bbr,0

i,u )0≤u≤1, i = 1, 2, 3 of the
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standard Brownian bridge Bbr,0 as

Bme,r
u :=

√
(ru + Bbr,0

1,u )2 + (Bbr,0
2,u )2 + (Bbr,0

3,u )2 (0 ≤ u ≤ 1). (2)

So Bme,r is identified with the three-dimensional Bessel bridge from 0 to r, the case r = 0
yielding the standard Brownian excursion. The standard Brownian meander is recovered as
Bme := Bme,ρ, where ρ = Bme

1 is independent of the three bridges with the Rayleigh density

P (ρ ∈ dx)/dx = xe−
1
2x2

(x > 0).

The above descriptions of Bme,r and Bme are read from [20, 12]. See also [8, 3, 6, 17, 18]
for further background. Many other path transformations relating these processes are known.
For instance, the transformation of Vervaat [19] (see also Biane [4] and Imhof [13]) shows that
the standard Brownian excursion can be obtained by transposing the pre-minimum and the
post-minimum parts of a standard Brownian bridge. Analogously, reversing the pre-minimum
part and then tacking on the post-minimum part of a standard Brownian bridge from 0 to 0
yields a standard Brownian meander, as shown by Bertoin [2]. We refer to Biane and Yor [5],
Bertoin and Pitman [3], Chaumont [7] and Yor [22] for many further results in this vein.

The work of Williams [21] and Denisov [10] shows how the path of B over [0, 1] decomposes
at the a.s. unique time µ of its minimum on [0, 1] into two path fragments, which given µ are
are two independent Brownian meanders of lengths µ and 1−µ respectively, put back-to-back.
Combined with any of the constructions of Brownian meander mentioned above, this gives an
explicit construction of the path of B given µ, the time of its minimum on [0, 1]. The main
purpose of this note is to present the following construction of B conditioned instead on Bµ,
the level of the minimum:

Theorem 1 For each x ≤ 0 there is the equality of distributions on the path space C[0, 1]

(B |Bµ = x) d= B(max−reflect,x) (3)

where the left side denotes the unique determination of the conditional law of (Bt)0≤t≤1 given
Bµ = x that is weakly continuous in x, and the process on the right side is constructed as
follows from a Brownian bridge Bbr,x from 0 to x:

B
(max−reflect,x)
t =

{
Bbr,x

t if 0 ≤ t ≤ T br,x
x

2
(
max

Tbr,x
x ≤u≤t

Bbr,x
u

)
− Bbr,x

t if T br,x
x < t ≤ 1

(4)

where T br,x
x is the first hitting time of x by Bbr,x. The path-transformation Bbr,x → B(max−reflect,x)

is depicted in Figure 1 below.
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Proof: The path decomposition at time µ due to Williams [21] and Denisov [10] as formulated
in Proposition 2 of [1] states that the process ((Bs−t − x)0≤t≤s |µ = s and Bµ = x) has the
same distribution as a three-dimensional Bessel bridge of length s from 0 to |x|. It then follows
from a classical time-reversal identity observed by Williams [21] that there is the equality in
distribution of processes

((Bt)0≤t≤s |µ = s and Bµ = x) d= ((Bt)0≤t≤s |Tx = s) (5)

where Tx denotes the first hitting time of x by the Brownian motion B.

On the other hand, it is elementary, and implicit in well known results [9, 17], that for
0 < t < 1 and x < 0

P (µ ∈ ds, Bµ ∈ dx) = 2P (Tx ∈ ds, B1 ∈ dx). (6)

This can be understood in terms of random walks, using the basic random walk duality lemma
of Feller [11]. Or it can be justified by excursion theory, using the fact underlying the arcsine
density of µ, that 1/

√
t is up to constant factors both the rate of Brownian excursions of length
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> t, and the density of returns to 0 at time t. It follows now readily from (5) and (6) that

((Bt)0≤t≤µ |Bµ = x) d= (Bbr,x
t )

0≤t≤Tbr,x
x

(7)

Again by decomposition at the minimum, the remaining path of B on the interval [µ, 1] given
(Bt)0≤t≤µ is a Brownian meander of length 1−µ shifted to start at (µ, x). On the other hand,
the rest of the bridge Bbr,x given (Bbr,x

t )
0≤t≤Tbr,x

x
is a Brownian bridge of length 1 − T br,x

x

from (T br,x
x , x) to (1, x). The conclusion of the theorem now follows by a simple scaling of the

construction of the standard meander from a standard bridge which is the known special case
x = 0 of the theorem, recalled in the following lemma rephrasing Theorem 4.3 in [3].

Lemma 2 In the notation of Theorem 1,

(B |Bµ = 0) d= Bme d= B(max−reflect,0) (8)

where

B
(max−reflect,0)
t := 2

(
max

0≤u≤t
Bbr,0

u

)
− Bbr,0

t (0 ≤ t ≤ 1).

We now point out another construction of the conditioned process considered in Theo-
rem 1 which involves a time-reversal. See also [16] for another application of a very similar
construction. Given a path ω = (ωt)0≤t≤1 and a real number x ∈ {ωt, t ∈ [0, 1]}, let

`(x) := sup{t ∈ [0, 1] : ωt = x} ,

denote the last passage time of ω at level x. Consider the path transformation Reverse defined
by time-reversing the portion of ω before its last passage time at level x, then tacking on the
part after `(x). That is

Reverse(ω, x)t :=
{

ω`(x)−t − x if t ≤ `(x) ,
ωt − 2x if `(x) ≤ t ≤ 1 .

Theorem 3 With notation as Theorem 1, for each x < 0, there is the following equality of
distributions on C[0, 1]:

(B |Bµ = x) d= (Reverse(Bme, |x|) |Bme
1 > |x|). (9)

The path-transformation Reverse(Bme, |x|) is depicted in Figure 2 below.
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Proof: This is the weak limit, by standard approximation arguments, of a corresponding
bijection between the set of n-step lattice paths as in [11], starting at (0, 0) whose minimum
value is x, and the set of n+1 step lattice paths starting at (0, 0) which remain strictly positive
and terminate at level |x| + 1 or higher.

We point out that the Brownian meander conditioned on having a terminal value greater
than |x| which appears in Theorem 3 can be constructed from a Brownian bridge with length
1 from 0 to x by a path transformation similar to that in Lemma 2; see the remark after
Theorem 4.3 in [3].

In the same vein, we record also the following result, which is related to Corollary 4 in
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[2].

Theorem 4 Let (Rt)0≤t≤1 be a 3-dimensional Bessel process, started at R0 = 0, and U an
independent random variable with uniform distribution on [0, 1]. Set

B := Reverse(R, UR1) .

Then B is a standard 1-dimensional Brownian motion and

min
0≤t≤1

Bt = −UR1 .

Proof: This is a variation of the result of [15] that if (Rt) is constructed from a Brownian
motion B as Rt := 2Mt −Bt, where Mt := max0≤s≤t Bs, then M1 = UR1 where U is uniform
on [0, 1] independent of R. There is an exact analog for lattice walks, which can be given a
bijective proof and then passed to the limit as in [15] and [14].

Theorem 4 can also be deduced from excursion theory, or by the techniques developed by
Biane and Yor [5].

Acknowledgement. We thank Jean-François Le Gall for posing the problem of finding a
simple construction of Brownian motion conditioned on its minimum.
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