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Abstract

Rogers-Pitman have shown that the sum of the absolute value of B, Brownian motion with
constant drift i, and its local time L™ is a diffusion R . We exploit the intertwining relation
between B and R to show that the same addition operation performed on a one-parameter
family of diffusions {X(O"“)}aeR+ yields the same diffusion R . Recently we obtained an
exponential analogue of the Rogers-Pitman result. Here we exploit again the corresponding
intertwining relationship to yield a one-parameter family extension of our result.

1 Introduction

In our recent paper [9], we have obtained some interesting examples of a diffusion process
X = {X;,t 2 0} on R and an additive functional {A;,t = 0} of X such that there exists
a particular function 6 : R x Ry — Ry for which ©; = 6(X;, A:) gives another diffusion
process. The difficulty (or the interest) of the situation is that © = {©;,¢t = 0} enjoys the
Markov property with respect to its natural filtration {Z;,¢ = 0} and not with respect to the
larger filtration, say X = {X},¢ = 0}, of the original diffusion X.

In fact, to get more precisely into our framework, there exists a Markov kernel K such that

E[f(Xt)|Zt] = (Kf)(@t)
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holds for every bounded Borel function f : R — R4 and the Markov property of © is inherited
from that of X, via K. Such situations have been described and studied by Rogers-Pitman
[13]; see Kurtz [7] for a more recent discussion.

The purpose of this article is to examine, through concrete examples, how these properties are
transformed after a change of probabilities of the form

dQ|x, = Dy - dP)x, (1.1)

for some functional {D,}, which we shall assume to be of the form D; = ¢(X;, Ay, t).

In Section 2 we show that a number of different diffusion processes {X;,t = 0} have the
property that {|X;| + Ly(X),t 2 0} is distributed as {|Bt(“)| + Ly(BW),t 2 0}, where BW =
{Bt(”),t 2 0} denotes the Brownian motion with constant drift 1 € R and {L,(Y),¢ = 0} is
the local time of a diffusion process Y = {Y;,¢ = 0} at 0.

In Section 3 our choice for {D;} turns out to yield only “strict” local martingales, i.e., local
martingales which are not martingales (see, e.g., Elworthy-Li-Yor [1], [2] for detailed study
of such processes). Therefore the equation (1.1) has to be considered carefully and yields
“explosive” real-valued diffusions (see Feller [4], McKean [10]).

2 Kennedy’s Martingales

Let B = {By,t 2 0} be a standard Brownian motion and {L;,¢ 2 0} be its local time at 0.
Then it is known (cf. Kennedy [5], Revuz-Yor [12], Exercise (4.9), p.264) that

1
D" = (cosh(uBy) + %Sinh(u|Bt|)) exp(—aL; — i'th)’ t20,

defines a martingale for every «, p > 0.
We set
Ry = |B¢| + Ly,

which is a three-dimensional Bessel process by virtue of Pitman’s celebrated theorem. Then,
since the conditional distribution of |By| given Ry = o{Rs; s < t} is the uniform distribution
on [0, R], it is easy to obtain the following.

Proposition 2.1 For every a, i >0 and t > 0, it holds that

sinh(uRy)

B[D; "R = =2

exp(—p?t/2). (2.1)

We may rewrite (2.1) in the following manner by using Girsanov’s theorem.

Proposition 2.2 Let {v,t = 0} be a standard Brownian motion with v = 0 and B®" =
{B;"",t 2 0} be the solution of the stochastic differential equation

dX; = dy + (log pa,.) (Xy)dt, Xo =0, (2.2)

1

where @q,, (x) = cosh(pz) + p~tasinh(u|z|). Then one has

(B + L9+t 2 03 27 () ¢ > 0}, (2.3)
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where {L;"" t Z 0} is the local time of B** at 0 and {pi“),t 2 0} is the Ry -valued diffusion
process with infinitesimal generator

2

1 d
—— th —.
2 dx? + pcoth(pz) dx

Remark 2.1 The case a = 0 is precisely the extension of Pitman’s theorem by Rogers-Pitman
[13]. Here we simply remark that o does not appear on the right hand side of (2.3).

Proof. On one hand, using Girsanov’s theorem, the law Q%# of B**  the solution of (2.2),
satisfies
dQ(y7lL|Xt = D?WJ : dP|Xt7

where X; = 0{X;;s < t},t > 0, on the canonical space and P denotes the Wiener measure.
On the other hand, if we set Ry = | X;| + Li(X),t 2 0, then, thanks to (2.1) and Girsanov’s
theorem again, { Ry, t 2 0} satisfies, under Q**, the equation

dRy = dy + pcoth(uRy)dt,

where {7:,t 2 0} denotes a one-dimensional Brownian motion. O

3 Local martingales Related to Geometric Brownian Mo-
tion

In this section we discuss some computations analogous to those in the previous section, but
now we are concerned with geometric Brownian motion and related stochastic processes.
Let B = {B:¢ + pt,t 2 0} be a Brownian motion starting from 0 with constant drift g > 0,

defined on a probability space (2,8, P), and {Bt(”),t 2 0} be its natural filtration (which,
obviously, does not depend on p). We set

t
et = exp(BM) and A :/ (el)2ds.
0

Our main objects of study in [9] are the stochastic processes given by
Zt(u) _ (egu))flAgu) and ft(u) _ (egu))sziu)7

which turn out to be, in fact, diffusion processes [with respect to their own filtrations, re-
spectively]. It should be remarked that J{fﬁ”);s < t} coincides with B,g”) and that Zt(”) =

{ZS(”); s < t} is strictly contained in BEH). Here are the main facts, drawn from [9], about these
diffusions.

Proposition 3.1 (i) {§,§“),t = 0} is a diffusion process with respect to its natural filtration
{Bt(“),t = 0} and it admits the infinitesimal generator

2

d d
2— j— J—
2x e + (21— pwz+ 1)dx.
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(ii) {Zt(”),t = 0} is a (transient) diffusion process with respect to its natural filtration {Zt(“),t >
0} with infinitesimal generator

1,4 1 K\ (1), d
azﬁ”S‘W*(Ku Hir=
and a scale function is s,(z) = —(1,/K,)(z71).

(iii) For anyt > 0, Bt(“) = Zt(“) VO’(@EM)) and the conditional law of eﬁ“) given Zt(“) is expressed
by

p—1
Pel € dol2, 20" = 2) = s exnl-

= K,/ —(z+ l))dm, (3.1)

where K, is the usual Macdonald (modified Bessel) function.

Now we set ¢, (z) = z~"I,(z) for a modified Bessel function I, and consider the stochastic
process

Ail,,é _ Pu (56§H))

Pu (6)

Then, by using Itd’s formula and the fact that I,, solves the differential equation

82
exp(—;AE‘ )).

2
W) + ol (@)~ (14 2 yue) =0,

it is easy to show that A% = {A¥° t >0} is a (Bt(“))—local martingale.
Another proof of the local martingale property of A9 consists in using Lamperti’s represen-
tation (see, e.g., [12], Exercise (1.28), p.452)

o) = R (a0,

where R = { R0 (u),u = 0} denotes a Bessel process with index y, and the well-known fact
that the stochastic process {%(5}%5“) (u)) exp(—62u/2),u = 0} is a martingale with respect to
the natural filtration of R") (see, e.g., Kent [6]); the corresponding result for A*9 follows by
time change.
However, the following proposition shows how different the situation is from that in the pre-
vious section.

Proposition 3.2 A®9 is q strict (Bt(”))—local martingale, that is, it is a local martingale, but
not a martingale. More precisely, its “martingale default” may be computed from the formula

E[AP|20) = P(LY) 2 t|21"), (3.2)

where Ll(,“) = sup{t 2 0; Zt(“) =y}. Moreover, one has

P(LW 2 4|2, " = ) = min{ 218 1}, (3.3)
N

Remark 3.1 A general study of “strict” local martingales and their martingale defaults has
been undertaken by Elworthy-Li-Yor [1], [2]; see also Takaoka [14).
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Proof. Formula (3.3) is deduced from the conditional law (3.1); indeed, one has

,0 L
EIAP 27, 2{ = 2]

1 52
= oo Bleullel) exp(— et 212", 2 = 2]
1 ° 52 1 1 1
- - ) —— pnl _— -
) /0 0u(0z) exp( 5 xz) 2K,L(1/z)x exp( o (x+ m))dm

1 o 1 1
= LOK./7) / L ep=5 1+ Ho)v+ )7

We now recall the integral representation of the product of the modified Bessel functions,

1 [ 1., 5 5 8?2 dv

L a)Ku(@h) = = [ L (abo) exp(=2((a> + 20 + T L

2 /o 2 v’

for 0 £ a £ b (cf. [3], p.284 (56)). Then, noting that v, (z) = (I,/K,)(x) is an increasing
function, we obtain

-1
Bl 2 20 = 2] = minf 2 ) 1y, (3.4)

$u(9)
which implies that A#? is a strict local martingale.
Formula (3.2) is a particular case of the computation of the supermartingale P(L(y”) > t|Zt(”))

attached to the last passage time L(y”) for a transient diffusion, here {Zt(”)} (see, e.g., Pitman-
Yor [11], Section 6 and also Revuz-Yor [12], Exercise (4.16), p.321). O

Despite Proposition 3.2, we wish to apply Girsanov’s theorem with respect to P and the
(strict) local martingale A%, This type of extension of Girsanov’s theorem is dealt with in
McKean [10], pp.63—-64, who considers there explosive It6 stochastic differential equations, and
our situation fits into his framework perfectly well. See also Yoeurp [15].

Theorem 3.3 Let 1 2 0,0 >0, and {3t 2 0} be a standard Brownian motion with Sy = 0.
(i) The solution of the equation

X, = By + pt + /0 (%) (6 exp(X,))8 exp(X,s)ds (3.5)
m

is explosive a.s., that is, one can construct a process {X;,t < e} which solves (3.5); moreover
one has P(e < 00) = 1.
(ii) Let E*? denote the expectation with respect to the law WO of {X;,t < e}. Then one has

E*[P(Xy,5 £ D)lcey] = EIF(BY, s £ )AL (3.6)

for every positive Borel functional F' defined on C([0,t];R), where E on the right hand side
of (3.6) denotes the expectation with respect to the Wiener measure P.
(iii) Define the stochastic process {n,t < e} by n. = exp(Xy). Then it satisfies the equation

t t 1 t /
ne =1 +/ NsdBs +/ (5 + u)nsds +/ <%) (6775)5(n5)2ds, t <e. (3.7)
0 0 0

1%
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Moreover, {n:,t < e} is defined implicitly in terms of an upward Bessel process {Rgu’ﬁ)(u), U=
0} starting from 1 as follows :

t oo
(1,67) 2 _ ds
m=R (/ (ne)?ds), t<e:/ S — (3.8)
ot o (RVD(s))

Remark 3.2 For generalized (upward and downward) Bessel processes, we refer to Pitman-
Yor [11] and Watanabe [17].

Proof. The assertions of (i) and (ii) follows from the general discussion of explosive diffusions
on R (see, e.g., McKean [10], pp.66-67, and Feller [4]). In particular, we can check the Feller
test for explosion as follows. Letting b(x) be the drift coefficient given by

/

ba) = ot (£2) Gespla) - Gex(o)

©w

we see, after some elementary computations, that a scale function s(x) is given by

00 13 T
) = [ exp(=2 [ b = 1,67 [ 1,066 2de.
0 0 0
The speed measure is then given by
m(dx) = 2I,(6) 2L, (6 exp(x))?dz.

Noting that

L(z) = \/;T_Zez (to(l) as  z—oo (3.9)
and
o1
IM(Z): m(l-’—o(l)) as Z—>O
(cf. Lebedev [8], p.136), it is easy to show that s(c0) < co and s(—o0) = —oo. Moreover we
have
_ x p é exp(x) d§ 5[ an
o) = [ (st = stoymian = [ G [ne T

é exp(x) an dexp(x) d§
- 1,2 .
[owors /n BAGE

Therefore, using (3.9) again, we obtain v(co) < co and, consequently, P(e < co) = 1.
Equation (3.7) follows from (3.5), using the It6 formula. The implicit representation (3.8)
follows from (3.7) by performing the time change

¢
t— A = / (ns)?ds, t<e.
0
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To develop the passage formulae from 7 to Rg“ ’(ST), we note that, if {o,,u 2 0} is the inverse

of A;,t < e, then (1,,)%do, = du. This, combined with (3.8), yields

/“ ds
Ou = )
o (RVV(s))?

and one can define A; so long as

1 <00 = / (Rg“’éT)(s))_st,
0

which is the explosion time e. |
We now come back to our original task, which is to extend further our exponential version of
Pitman’s theorem [9], that is, precisely to study the law of {Zt(“),t < e} under W0,

Theorem 3.4 Keeping the notations in Theorem 3.3, we define

t 1 t

Zy = exp(—Xt)/ exp(2X;)ds = —/ (ns)?ds, t<e.

0 Nt Jo

Then one has the equality in law
" (law)
{(Zi,t < e), W} 20 {(z{" ¢ < L), PY.

Consequently, in the filtration {Zt(”)}, enlarged so that L(lljzs becomes a stopping time, the
stochastic process {Zt(”),t < L(lﬁ/%} satisfies the equation

t 1 t LKL, 1
7 :/ Zsdys + (= —u)/ sts—i—/ (—”) (—) ds
' 0 2 0 0 K, Zs

t
1

Y A S |

/0 I K.)1/Zy) (z.<1/6}ds

Proof. We provide two proofs. As a first proof, we project A} 9 on Zt(”) under P and remark

that the right hand side of (3.6), where F(Bgu), s £ t) has been replaced by F(ZS(”), s < 1),
thus obtained coincides with
(1)
E[F(ZS , S é t)l{L(l‘;?5>t}]'
Then, applying the progressive enlargement formula (see, e.g., Yor [16], Chapter 12), we obtain
the assertion of the theorem.
Our second proof is deduced from (3.8), using time inversion. Indeed, there exists an upward

Bessel process R((S”’”)(t) starting from ¢ such that
) 5 (1,1
RV (/1) = RYD().

t
u:/ (ns)st,
0
1

7= R ) = R (2, t<e= L)
t t

Therefore, setting

one has
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4 Concluding Remarks

In order to reinforce the parallel between the discussions in Sections 2 and 3, we now remark
that, for §,v > 0, the stochastic process

, St , 82 N2t
A?’&V — ¥ ( t )(egl ))k eXP(_EAEI ))eXp(_T)

©u(9)
L™ (b LA "
= T@(et ) eXP(—EAt ) exp( 9 t)

is a (Bt(“))—local martingale, if we take v = /72 + p2 and k = v — p. This may be deduced
from the Cameron-Martin relationship between the processes {ei“ )} and {etu)} and the fact,
which we already derived in Section 3, that {AY° ¢ >0} is a (BEV))—local martingale.

The local martingale property of {Af"s’v} can also be shown in the following way. Let us set

(1) LA 7’
M = f(e; )GXP(—EAt )eXP(—gt)

and look for a function f such that {M;} is a (Bt(”))—local martingale with My = 1. Then it is
easy to show from Itd’s formula that f should satisfy

f(x) +

2
L —;2Mf’(x) — (6% + %)f(x) =0 and f(1)=1. (4.1)

This is Bessel’s equation. Hence, one obtains that f is a linear combination of = #1I,(dx) and

x MK, (8z), where v = \/pu? + 2.

As an extension of Proposition 3.2, we obtain, using the same type of arguments as above,

v v v K, (1/z 2
BIAP |20, 200 = 2| = P, 2 020,20 = o) B e T, (42)

Thus, comparing (4.2) with formula (2.1), we see that (4.2) exhibits some dependency on 0,

whereas there is no dependency on « in (2.1) ; this difference is due to the following facts.

(i) {D&° = (14 | By|) exp(—aLy),t = 0} is a true martingale ; indeed, it projects on {R;} as

a true martingale, which must be of the form h(R;). However, the only such martingales (for

the BES(3) process or, more generally, transient diffusions) are constant, hence the projection

of {D°} is equal to 1.

(i) {Af’é,t 2 0} is already a strict local martingale, hence the previous arguments are not

applicable. On the other hand, we may consider the true martingale

2
DNy t
AP = () Hexp(-Lo), 20,

and its projection on (Z") is

(n) 2
K,(1/Z t
Lt(u))exp(_’y_), v = 1/72_’_”2.
Ku(1/2,™)
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