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Abstract

Let B(t) be a Brownian motion in R3. A subpath of the Brownian path B[0, 1] is a continuous
curve γ(t), where γ[0, 1] ⊆ B[0, 1], γ(0) = B(0), and γ(1) = B(1). It is well-known that any
subset S of a Browni an path must have Hausdorff dimension dimh(S) ≤ 2. This paper proves
that with probability one there exist subpaths of B[0, 1] with Hausdorff dimension strictly less
than 2. Thus the percolation dimension of Brownian motion in R3 is strictly less than 2.

1. Introduction

Let B(t) = B(ω, t) denote a Brownian motion inRd, and denote the image of [a, b] by B[a, b]. If
γ : R→ Rd is a continuous function, then we say γ[0, 1] is a subpath of B[0, 1] if γ[0, 1] ⊂ B[0, 1]
and gamma(0) = B(0), γ(1) = B(1). In this paper we prove that for d = 3, with probability
one, there exists a subpath of B[0, 1] with Hausdorff dimension strictly less than 2.

A double point of B[a, b] is any point x ∈ Rd such that there exist a ≤ t1 < t2 ≤ b with

B(t1) = B(t2) = x.

For such t1, t2 it is natural to call B[t1, t2] a “loop”. For d ≥ 4, Brownian motion has no double
po ints [7] and hence has no loops. However, for d = 3 Brownian motion has double points
(but no triple points [8]), and thus in order to find a lower dimensional subpath one might
proceed by erasing the loops. This arises naturally as an e xtension of loop-erased random
walk (e.g. see Lawler [11]).

Define the cut times of a Brownian motion B on [a, b] by,

L[a, b] = {t ∈ [a, b] : B[a, t)∩B(t, b] = ∅}.

The cut points are points x such that x = B(t), where t is a cut time. Clearly, any subpath of
B[0, 1] must contain the set of cut points B(L[0, 1]). Lawler [12] has shown that for d = 3, the
set B(L[0, 1]) has Hausdorff dimensi on dimh(B(L[0, 1])) > 1. The infimum of the dimensions
of all subpaths of B[0, 1] is known as the percolation dimension of Brownian motion [3]. The
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result of Lawler shows the percolation dimension of three dimensional Brownian motion is stri
ctly greater than 1. The main result of this paper is the following theorem,

Theorem 1.1. If B[0, 1] is a Brownian path in R3, then there exists an a > 0 such that with
probability one there exists a subpath γ(t) of B[0, 1] with

dimh(γ([0, 1])) ≤ 2(1− a).

As a corollary,

Corollary 1.2. The percolation dimension of three dimensional Brownian motion is strictly
less than 2.

This result tells us that the percolation dimension of three dimensional Brownian motion is
distinct from the Hausdorff dimension, 2, and the topological dimension, 1. In four or more
dimensions, the percolation dimension is 2, and in two dimensions the conjectured value for
the percolation dimension is 1.

Another useful dimensional quantity is boundary dimension, which takes on a non-trivial value
in d = 2. The boundary dimension of B[0, 1] is the Hausdorff dimension of the “frontier” of
Brownian motion, where the frontier of planar Brownian motion is t he boundary of the un-
bounded connected component of R2\B[0, 1]. Lawler and Werner [13, 17, 18] and Bishop,
Jones, Pemantle, and Peres [2], have shown independently that the dimension of the frontier
of planar Bro wnian motion is strictly greater than 1. Burdzy and Lawler [4] have shown that
the boundary dimension of planar Brownian motion is less than or equal to 3/2 - 1/4π2.

Two other papers also address the issue of the Hausdorff dimension of certain subsets of the
random set B[0, 1]. Burdzy [5] proves that a planar Brownian motionB[0, 1] (and hence the set
B[0, 1] in dimensions 3 and higher) contains Jordan arcs with Hausdorff dimension arbitrarily
close to 2. The supremum of the Hausdorff dimensions of all Jordan arcs contained in a fractal
is known as its labyrinth dimension, and hence the labyrinth dimension of B[0, 1] is 2. In the
other direction, Pe mantle [14] has shown that in d ≥ 2, B[0, 1] almost surely contains no line
segment. This is a start to deciding whether the percolation dimension of B[0, 1] in d = 2 is
possibly 1, as conjectured.

The other area of interest to which this paper relates is the self-avoiding walk. Erasing loops
from a Brownian path may make it possible to create a self-avoiding Brownian motion. Al-
though this would not be the limit of the usual self-avoiding walk, it may be the continuum
limit of the loop-erased walk. It should be noted that loop-erased random walk is conjectured
to be in a different universality class than self-avoiding walk. [11]

The main idea of the paper is as follows. We define a random subset of the Brownian motion
B(F ), where F ⊂ [0, 1]. The random set F is defined as the intersection of the nested sets
Fn, i.e. Fn+1 ⊆ Fn, so that standard techni ques may be used to give an upper bound for
the Hausdorff dimension of B(F ). We define a particular subpath of the Brownian motion,
γ(t) = γ(ω, t), as the subsequential limit of subpaths {γn(t)} such that γ([0, 1]) ⊂ B(F ). One
should note that the method of proof (using subsequences, etc.) does not lend itself to proving
that this subpath γ([0, 1]) is a random curve. That is, there is no reason to believe that the
mapping taking each ω in Wiene r space to γ(ω) is measurable. Nonetheless, we prove that
there exists an a > 0 such that dimh(B(F )) ≤ 2(1− a) and that γ([0, 1]) ⊂ B(F ) is a subpath
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of B[0, 1]. This proves the main result.

The crucial definitions of the random set F and the subpath γ(t) are given in the next section,
and the main theorem is proven in section 3. The main technical tools needed to obtain this
result are detailed estimates concerning the dimension of sets of cut points. These technical
estimates are left to the end of the paper.

I thank Greg Lawler for his advice and assistance with this paper. He suggested the problem,
and his advice in finding a solution has been invaluable. I also thank the referee for helpful
comments and advice.

2. Notation and Definitions

To define the particular choice of Brownian subset B(F ) studied below, it will be useful to
define the cut points of B[c, d] relative to B[a, b] as

C[a,b][c, d] = B([c, d] ∩L[a, b]),

which gives the points in the set B[c, d] that are cut points of B[a, b]. We also need to define
local cut times for [a, b], which are defined as

Lloc = {t ∈ [a, b] : there exists ε > 0 with B[t− ε, t)∩B(t, t + ε] = ∅}.
The local cut points are points x such that x = B(t), where t is a local cut time.

Let

I(k, n) =

[
k − 1

2n
,
k

2n

]
.

Definition 2.1. For 1 ≤ k ≤ 2n let A(k, n) be the event

A(k, n) =

{
C[0, k2n ][0,

k − 1

2n
] ∩B[

k

2n
, 1] = ∅

}
.

Let Fn and F be the random sets

Fn =
⋃

{k : A(k,n) holds}
I(k, n),

F =
∞⋂
n=1

Fn.

Lemma 2.2. For every n, Fn+1 ⊆ Fn.

Proof. To prove Fn+1 ⊆ Fn, it is sufficient to prove that if I(k, n) is not in Fn, then I(2k −
1, n+ 1) and I(2k, n+ 1) are both not in Fn+1. If I(k, n) 6⊂ Fn, then

B[
k

2n
, 1] ∩B

(
[0,

k − 1

2n
] ∩ L[0,

k

2n
]
)
6= ∅

=⇒ B[
k

2n
, 1] ∩B

(
[0,

2k − 1

2n+1
] ∩ L[0,

k

2n
]
)
6= ∅

=⇒ I(2k, n+ 1) 6⊂ Fn+1
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Figure 1. Construction of γ(t)

because there is now a larger set intersecting the same piece of the Brownian motion, so the
intersection is non-empty. Likewise, I(2k − 1, n+ 1) 6⊂ Fn+1, because

L[0,
2k − 1

2n+1
] ∩ [0,

2k − 2

2n+1
] ⊇ L[0,

k

2n
] ∩ [0,

k − 1

2n
]

=⇒ B[
2k − 1

2n+1
, 1]∩B

(
[0,

2k − 2

2n+1
] ∩L[0,

2k − 1

2n+1
]
)
6= ∅.

This says that the relative cut points of a section of Brownian motion only becomes larger as
the set is made larg er and the relative set stays the same. Thus Fn+1 ⊆ Fn.

Also, notice that since Fn is compact for all n, standard topological arguments imply that⋂∞
n=1B(Fn) = B(

⋂∞
n=1 Fn) = B(F ).

Roughly, the construction of γ(t) is as follows (see Figure 1 below).
Split the interval [0, 1] into 2n pieces, labeled I(k, n). Let t1 be the last time that B(t) in-
tersects B(I(1, n)), the first piece of the Brownian path. Let s1 ∈ I(1, n) be the unique time
such that B(s1) = B(t1). Remove [s1, t1] from [0, 1], thereby removing a loop (see Figure 1,
first arrow). Let k2 be such that t1 ∈ I(k2, n), making B(I(k2, n)) the second piece of the
loop-erased Brownian path. Let t2 be the last time that B(t) intersects B(I(k2, n)), and choose
s2 ∈ I(k2, n) such that B(s2) = B(t2). Remove the loop [s2, t2]. Continue this process until
ti = 1. Parametrize the remaining pieces of [0, 1] to give a continuous curve, γn(t), connecting
B(0) to B(1). Define γ(t) as a subsequential limit of {γn(t)}.

The precise definition of γn(t) is as follows. Most of the elements in the definition of γn(t)
depend on n in an obvious way, but we often suppress the dependence on n. Let

k1 = 1, Γ1 = Γ1,n = I(k1, n), and t1 = sup
r∈[0,1]

{B(r) ∈ Γ1}.

Then for i > 1 define

ki =sup

{
k :

k − 1

2n
< ti−1

}
,

Γi =Γi,n = Γi−1 ∪
[
ti−1,

ki
2n

]
,

ti = sup
r∈[0,1]

{B(r) ∈ Γi}.

(1)
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Since, with probability one, ki
2n is not a local cut point [12], then ti >

ki
2n . Hence for ki < 2n,

we have ki > ki−1 > . . . > k1. Let i∗ = inf{i : ki = 2n} and notice that ti∗ = 1. Define si as
the unique time such that

B(si) = B(ti), si 6= ti.

Since, with probability one, the Brownian path in d = 3 has only double po ints (no triple
points, etc.), this is well-defined. Note that si ∈ Γi, ti ∈ Γi+1, and 0 < s1 < t1 < s2 < t2 <
. . . < si∗ ≤ ti∗ .

To parametrize the pieces I(ki, n), we define a time change φn(t). Let t0 = 0 and notice that,
almost surely, si∗ = ti∗ = 1. Then define

φn(t) =

{
t for ti ≤ t ≤ si+1, 0 ≤ i ≤ i∗ − 1

si for si < t < ti, 1 ≤ i ≤ i∗.

Notice that with this definition, B(φn(t)) is continuous, since B(si) = B(ti). We define
γn(t) = B(φn(t)).

Below we show that there exists a subsequence {n(i)} such that the subsequential limit of
{γn(i)(t)}, called γ(t), exists, is continuous, and is a subpath of the B[0, 1]. Also, we show that
the sets B(Fn) contain the subpath γ(t). In Section 3 we prove the following theorem:

Theorem 1.1′. If B[0, 1] is a Brownian path in R3 and F and γ(t) are as described above,
then B(F ) is a subset of the Brownian motion containing γ([0, 1]), γ(t) is a subpath of B[0, 1],
and ther e exists a > 0 such that

P{dimh(F ) ≤ 1− a} = 1.

Using this theorem and the well-known result that Brownian motion in d ≥ 2 maps all Borel
subsets of [0, 1] into sets of twice the dimension [10, 15] proves Theorem ?? and Corollary 1.2.

A convention that is used throughout this paper is that c, c1, c2 will be used to stand for
constants that may change from line to line. The constants c3, c4, etc. will remain the same
throughout the paper.

Start two independent Brownian motionsB1, B2 at the origin. Let the cut points of the second
Brownian motion be denoted by C2

[a,b][c, d]. Also denote stopping times

T ji = inf{t : |Bj(t)| ≥ i}.

Then the main technical estimate nee ded is that there exists a c3 <∞, a > 0 such that

P{B1[0, T 1
n] ∩ C2

[0,T 2
m][T

2
1 , T

2
m] = ∅} ≤ c3(min(m, n))−2a(2)

P{B1[0, n]∩ C2
[0,m][1, m] = ∅} ≤ c3(min(m, n))−a.(3)

To obtain these results, we need an estimate on the intersection exponent ζ3 for Brownian
motion in R3 [4]. The intersection exponent is defined as follows. If B1, B2 are independent
Brownian motions in Rd (d < 4) s tarting at distinct x, y respectively, with |x| = |y| = 1, then
the intersection exponent is the number ζd such that

P{B1[0, T 1
n] ∩B2[0, T 2

n] 6= ∅} � n−2ζd .
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The symbol � denotes that the two side s are bounded within a constant as n → ∞. The
existence and rigorous bounds for this exponent are given in [4, 11, 12],

1

4
≤ ζ3 <

1

2
, d = 3.(4)

In p articular, this paper uses the fact that ζ3 < 1/2. To be precise, also notice that
a ≤ ζ3 < 1/2. This fact is used in the next section.

3. Proof of the Main Theorem

The proof of Theorem 1.1′ proceeds as follows. First we show that the functions γn(t) are
uniformly equicontinuous. This implies that a subsequence of {γn(t)} converges to a continu-
ous function γ(t), which is a subpath of the Brownian path. Lemma 3.3 shows that γ([0, 1])
is actually contained in B(F ). The final argument proves an upper bound on the Hausdorff
dimension of F and gives the main result.

The delta oscillation of a function f(t) over an interval [a, b] can be defined as

os(f, δ) = os(f, δ, [a, b]) = sup
{s,t∈[a,b] : |t−s|<δ}

|f(t) − f(s)|.

The following lemma uses a path-by-path comparison of γn(t) and B(t) to show that the path
of γn(t) has at most the same oscillation as the path of the Brownian motion from which it is
generated. In particular, Lemma 3.1 proves that the functions γn(t) are uniformly equiconti
nuous.

Lemma 3.1. With probability 1, over the interval [0, 1],

os(γn, δ) ≤ os(B, δ).

Proof. Fix δ > 0. For any s < t such that |t− s| < δ, let

r1 =

{
s if ti ≤ s ≤ si+1, 0 ≤ i ≤ i∗

ti if si < s < ti, 1 ≤ ileqi∗
r2 =

{
t if ti ≤ t ≤ si+1, 0 ≤ i ≤ i∗

si if si < s < ti, 1 ≤ i ≤ i∗.
(5)

Then |r1 − r2| ≤ |s− t|, and γn(ri) = B(ri), which implies that

|γn(t)− γn(s)| = |B(r2)− B(r1)|
≤ os(B, |r2 − r1|)
≤ os(B, δ).

(6)

This proves the lemma.

Corollary 3.2. There exists a subsequence {n(i)} such that γn(i)(t) converges to a continuous
function γ(t).

Proof. Using the previous lemma and the Arzela-Ascoli theorem, we can construct a function
γ(ω, t) which is a subsequential limit of the {γn(ω, t)}.

Now, it is clear that the set γ([0, 1]) is a subset of the Brownian path (since the Brownian path
is compact). Also, B(0) ∈ γ([0, 1]), because γn(0) = B(0) for all n, by construction. Likewise,
B(1) ∈ γ([0, 1]). Thus, gamma([0, 1]) is a subpath of B[0, 1]. The only other fact we need
about γ([0, 1]) is:

Lemma 3.3. With probability one, there exists a curve γ such that γ([0, 1]) ⊆ B(F ).
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Proof. This proof uses the notation in the definition of γn(t). Specifically,

Γi∗,n =
⋃
i≤i∗

[
ti−1,

ki
2n

]
.

Since B(Fn) is compact, it is sufficient to prove that Γi∗,n is contained in Fn for all n. Given r ∈
Γi∗,n, there is a j such that r ∈ [tj−1,

kj
2n ]. Since r ∈ Γi∗,n, then B(r, 1]∩B

(
[0,

kj−1
2n ] ∩ Γi∗,n

)
=

∅. S o, to prove r ∈ Fn, it is sufficient to show that

L

[
0,
kj

2n

]
∩
[
0,
kj − 1

2n

]
⊂ Γi∗,n.(7)

This fact follows directly from the construction of Γi∗,n. Specifically, if 0 ≤ t ≤ kj−1
2n and

t ∈ L[0,
kj
2n

], then either ti−1 ≤ t ≤ si, or si < t < ti, for some i ≤ j − 1. The second

possibility violates the fact that t ∈ L[0,
kj
2n ], since si < ti ≤ kj

2n , for all i ≤ j − 1. Thus,

ti−1 ≤ t ≤ si ≤ ki
2n for some i ≤ j − 1, which implies that t ∈ Γi∗,n. Thus Γi∗,n ⊆ Fn for all n,

and so γ([0, 1]) ⊆ B(Fn) for every n. Therefore, γ([0, 1]) ⊆
⋂∞
n=1 B(Fn) = B(F ).

Therefore, proving the set F has dimh(F ) ≤ 1− a, with probability 1, proves Theorem 1.1′.

Define the random variable Kn as

Kn = #{k : 1 ≤ k ≤ 2n and A(k, n) holds}.
By (3), there exists a constant c > 0 such that

E(Kn) ≤
c

1− a (2n)1−a.

Then for any ε > 0, Markov’s Inequality implies

P{Kn ≥ (2n)1−a+ε} ≤ c(2n)−ε,
and then using the Borel-Cantelli Lemma,

P{Kn ≥ (2n)1−a+ε i.o.} = 0.

Thus, for all sufficiently large n, Kn ≤ (2n)1−a+ε, which says that the set F can be covered
by (2n)1−a+ε intervals of length (2n)−1. Now, using standard arguments, dimh(F ) ≤ 1−a+ ε.
With probability one, this holds for every ε > 0, so

P{dimh(F ) ≤ 1− a} = 1.

This completes the proof of the upper bound on the dimension of the set F .

4. Cut Point Estimates

In this section we prove two technical results about the cut point properties of the Brownian
path. These results, Propositions 4.1 and 4.2, are needed in the next section to prove (3).
First, some definitions and notation are pr esented:

In the following, B(t) is a Brownian motion starting at the origin. The following notation is
used throughout the rest of the paper:

Si = sphere of radius ei centered at the origin.
B(a, r) = closed ball of radius r centered at a.
σi = sup{t <∞ : Bt ∈ Si−1}
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τi = Tei = inf{t : Bt ∈ Si} (Recall that Ti = inf{t : |B(t)| ≥ i}.)
Gi = I{(σi < τi) ∩ (σi+2 < τi+2)}
ρ0 = 0
ρl+1 = inf{j ∈ Z : B[0, σρl+2] ∩ Sj = ∅}

With these definitions, notice that (B(t), t ≥ τρl) conditioned on (B(t), t ≤ τρl) is a Brownian
motion conditioned never to hit Sρl−1+1.

We will think of Gi as the indicator of a “good” number: an i such that after traveling
distance ei from the origin, the Brownian motion never returns to the ball of radius ei−1 and
after hitting the ball of radius ei+2 never returns t o the ball of radius ei+1. Proposition 4.1
proves that there exists a fraction ε > 0 such that, with high probability, at least this fraction
ε of the Gi equal 1. Specifically,

Proposition 4.1. There exists ε > 0, b > 0, and c4 <∞, such that

P{
n∑
i=1

Gi < nε} < c4e
−bn.

This proposition says that a positive fraction of the sets B[0, τn] ∩ (B(0, ei+1)\B(0, ei)) are in
effect isolated from the rest of the Brownian path. This includes information from both the
past and the f uture. This “isolation” of annuli leads us to suspect that the probability of
having cut points in each annulus is bounded below by a positive constant. This is true and
is proven as:

Proposition 4.2. There exists c5 > 0 such that, for n ≥ 2, the following is true:

P{dimh(L[0, τn] ∩ [τ1, τ2]) = 1− ζ;B[τ3,∞] ⊂ B(0, e2)c;B[τ1,∞] ⊂ B(0, 1)c} ≥ c5,

where ζ = ζ3, the intersection exponent, and B(0, r)c is the complement of the ball of radius r.

This proposition could also be written as: There exists c5 > 0 such that for all i ≥ 0, for all
n ≥ i+ 1,

P{dimh(L[0, τn] ∩ [τi, τi+1]) = 1− ζ;B[τi+2,∞] ⊂ B(0, ei+1)c;B[τi,∞] ⊂ B(0, ei−1)c} ≥ c5.

We start by proving Proposition 4.1. It is well-known (see for example [6, p. 29]) that in
d = 3, for r < |x| < R,

Px{Tr < TR} =
R−1 − |x|−1

R−1 − r−1
,(8)

where Px is the probability given that B(0) = x. Using this fact,

P{Gj = 1} =
e− 1

e3 − 1

for any j. Therefore,

P{Gρl = 1 | ρ0, . . . , ρl−1} ≥
e− 1

e3 − 1
,(9)

since knowing that the Brownian motion never returns to Sρl−1+1 only increases this proba-
bility.
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Also, the ρl cannot be very far apart. In particular, we can prove similarly that

P{ρl+1 − ρl ≥ k | ρ1, . . . , ρl} ≤
e− 1

ek−1 − 1
.(10)

Now, using standard techniques, there exists an s > 0 such that (9) implies that
P{
∑m
l=1 Gρl ≤ sm} is exponentially decreasing in m. Similarly, there exists an r > 0 such

that (10) implies that p{
∑m
l=1(ρl − ρl−1) ≥ rm} is exponentially decreasing in m. Therefore,

since Gρ1 + . . .+Gρm ≤ ρm =
∑m
l=1(ρl − ρl−1) there exist c4 <∞, b1 > 0 such that

P{sm ≤ Gρ1 + . . .+Gρm ≤ ρm ≤ rm} ≥ 1− c4e−b1m.(11)

Choose
n

2r
≤m ≤ n

r
and then equation (11) becomes

P{ s
2r
n ≤ G1 + . . .+Gn} ≥ 1− c4e−b1m.(12)

Letting b = b1
2r finishes the proof of Proposition 4.1.

The proof of Proposition 4.2 uses two main ideas. First, if Gi = 1 then the Brownian motion
never returns to Si−1 after hitting Si and never returns to Si+1 after hitting Si+2. Thus, as-
suming Gi = 1 allows the possibility of local cut times t ∈ [τi, τi+1], because the Brownian
motion is “pulled away” from the annulus B(0, ei+1)\B(0, ei). Second, we use the fact [12] t
hat, with probability one, the dimension of the local cut points of a Brownian motion B[0, 1]
is 2 − 2ζ. Using these two ideas, we prove that there is a positive probability of having local
cut times t ∈ [τi, τi+1]. Moreover, the di mension of the cut points corresponding to these cut
times is 2− 2ζ. These heuristics are now made precise.

Specifically, in order to prove Proposition 4.2, we need to show: There exists a c5 > 0 such
that

P
{
dimh(L[0, τn] ∩ [τ1, τ2]) = 1− ζ;B[τ3,∞] ⊂ B(0, e2)c;B[τ1,∞] ⊂ B(0, 1)c

}
≥ c5.

It suffices to prove that there exists c5 > 0 such that the following is true:

P
{
dimh(L[0, τn]∩[

1

4
,
3

4
]) = 1−ζ;B[τ3,∞] ⊂ B(0, e2)c;B[τ1,∞] ⊂ B(0, 1)c; τ1 <

1

4
;
3

4
< τ2

}
≥ c5.

To prove this, let

A(k, n) =
{
C[0, k2n ][0,

k − 1

2n
] ∩B[

k

2n
, 1] = ∅;B[τ3,∞] ⊂ B(0, e2)c;

B[τ1,∞] ⊂ B(0, 1)c; τ1 <
1

4
;
3

4
< τ2

}(13)

and let

Jn = #{k :
1

4
2n < k ≤ 3

4
2n and A(k, n) holds }.

The next lemma provides the technical estimate to prove that E(Jn) ≥ c1(2
n)1−ζ , for some

c1 > 0, where ζ = ζ3, the in tersection exponent. A result of Lawler[12, Lemma 2.3] says that
there exists c2 < ∞ such that E(J2

n) ≤ c2(2
n)2(1−ζ). Using these two bounds on the first and

second moments, standard second moment arguments yield the result (see for example [12,
Proposition 2.2]).

So, in order to finish the proof of Proposition 4.2 it suffices to prove the following:
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Lemma 4.3. Define the following events on a Brownian Motion: (suppress the k and n de-
pendence)

η1 = inf{j : |B( j
2n )− B(k+1

2n )| < 1
16 and | j2n −

k+1
2n | <

1
16}

η2 = sup{j : |B( j
2n

)− B( k
2n

)| < 1
16

and | j
2n
− k

2n
| < 1

16
}

Q1 = {B[η1,
k

2n
] ∩B[ k+1

2n
, η2] = ∅}

Q2 = {τ1 < 1
4}

Q3 = {B[ 1
4
, η1] ∪B[η2,

3
4
] ⊂ B(0, e2 − 1

8
)}

Q4 = {B[τ1,
1
4 ] ⊂ B(0, 1)c, B[ 1

4 , η1] ⊂ B(0, 9
8 )c, B[η2, τ3] ⊂ B(0, 9

8)c}
Q5 = {B[τ3,∞] ⊂ B(0, e2)c}
Q6 = {B[0, η1] ∩B[ k+1

2n ,∞] = ∅}
Q7 = {B[0, k2n ] ∩B[η2,∞] = ∅}

Then there exists a c6 > 0 such that P{Q1 ∩ Q2 ∩ Q3 ∩ Q4 ∩ Q5 ∩ Q6 ∩ Q7} ≥ c6(2
n)−ζ , for

5
162n ≤ k ≤ 11

162n.

Proof. The events are chosen so that Q1 is independent of the rest, so

P{Q1 ∩Q2 ∩Q3 ∩Q4 ∩Q5 ∩Q6 ∩Q7}

= P{Q1}P{Q2 ∩Q3 ∩Q4 ∩Q5 ∩Q6 ∩Q7},
and by a result of Lawler [12, Proposi tion 3.16], there exists a c7 > 0 such that

≥ c7(2n)−ζP{Q2 ∩Q3 ∩Q4 ∩Q5 ∩Q6 ∩Q7}.

This last probability is clearly a positive probability event, because it doesn’t depend on n or
k in any sub stantial way.

These events are defined such that

P{A(k, n) holds } ≥ P{Q1 ∩Q2 ∩Q3 ∩Q4 ∩Q5 ∩Q6 ∩Q7} ≥ c6(2n)−ζ ,

for 5
16

2n ≤ k ≤ 11
16

2n. Therefore, E(Jn) ≥ 3
8
c6(2

n)1−ζ . This completes the proof of Proposition
4.2.

5. Proving Power Law Decay

The inequality (3) is the key estimate for this paper. This section is devoted to proving this
estimate using Propositions 4.1 and 4.2. We use two standard facts and assume throughout
this section that d = 3. The first is that in d = 3 any set of Hausdorff dimension strictly
greater than 1 has positive capacity [9, Theorem 4.13]. The second is that Brownian motion
hits sets of positive capacity with positive probability, i.e. there exists a c > 0 such that if
A ⊂ B(0, r) with Cap(A) > 0, for every x ∈ B(0, r),

Px{TA < T2r} > cr−1Cap(A),(14)

where TA = inf{t : B(t) ∈ A}. Bass [1, Chap. II., sect. 5] discusse s this fact at length.

Using the Strong Markov Property and (14), we can prove the following lemma,

Lemma 5.1. For every ε > 0, there exist c8 > 0, c9 < ∞ such that if A ⊂ B(0, en) and
#{k : Cap(A ∩ B(0, ek)) ≥ εek} ≥ εn, then for all |x| = 1, Px{τn < TA} ≤ c9e−nc8.
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Combining the fact [10, 15] that Brownian motion B[0,∞) doubles the dimension of subsets
of [0,∞) with Proposition 4.2 proves that there exists a c > 0 (independent of n) such that

P
{
dimh

(
B(L[0, τn] ∩ [τi, τi+1])

)
= 2− 2ζ

∣∣ i = ρl for some l, Gi = 1, ρ0, . . . , ρl−1

}
≥ c.

(15)

Let A = C[0,τn][τ1, τn]. Since ζ < 1/2, then A has Hausdorff dimension strictly greater than
1, and hence Cap(A) is positive. Proposition 4.1, Brownian scaling, and the scaling law for
capacity combine to prove the following lemma,

Lemma 5.2. There exists ε > 0, b > 0, and c10 <∞ such that

P{#{k : Cap(A ∩ B(0, ek+1)) ≥ εek} ≥ εn} ≥ 1− c10e
−bn.

Proof. If G1 = 1, then (15) implies that there exists a c1 > 0 such that

P{dimh(C[0,τn][τ1, τn]) > 1} ≥ c1.

Therefore, since sets of Hausdorff dimension greater than 1 have positive capacity in R3, there
exists ε1 > 0 such that

P{Cap(C[0,τn][τ1, τ2]) ≥ ε1} ≥
c1
2
.

Using a similar argument, if Gk = 1 for k ≥ 1,

P{dimh(C[0,τn+k−1 ][τk, τk+1]) > 1} ≥ c1.

Now, using the fact that capacity scales inversely with the diameter of the set in R3 [11], we
see that

P{Cap(C[0,τn+k−1][τk, τk+1]) > ε1e
k−1} ≥ c1

2
.

Since C[0,τn+k−1 ][τk, τk+1] ⊂ C[0,τn][τk, τk+1],

P{Cap(C[0,τn][τk, τk+1]) > ε1e
k−1} ≥ c1

2
.

Proposition 4.1 implies that there exists ε2 > 0, b > 0, and c <∞ such that

P{
n∑
i=1

Gi < nε2} < ce−bn.

Choose ε = min(
ε1
e
, (
c1
2

)ε2). Then,

n∑
k=1

Gk = #{k : Gk = 1} ≤ #{k : P{Cap(A ∩ B(0, ek+1)) ≥ εek} ≥ c1
2
}.

Then, again using Proposition 4.1

1− ce−bn ≤ P{
n∑
k=1

Gk < nε2} ≤ P{#{k : Cap(A ∩ B(0, ek+1)) ≥ εek} ≥ c1
2
ε2n}.

Therefore, using Lemmas 5.1 and 5.2, if B1, B2 are independent Brownian motions starting
at the origin, there exists an a′ > 0 and c <∞ such that,

P{B1[0, τ1
n] ∩C2

[0,τ2
m][τ

2
1 , τ

2
m] = ∅} ≤ ce−a′n + ce−a

′m,(16)



62 Electronic Communications in Probability

where τ ij = inf{t : Bi(t) ∈ Sj}. Then rewriting the inequality for non-exponential stopping
times, (16) implies

P{B1[0, T 1
n] ∩ C2

[0,T 2
m][T

2
1 , T

2
m] = ∅} ≤ c(min(n,m))−a

′
.(17)

A few extra results are needed here about how this probability works for arbitrary times (not
just distance stopping times). To this end, standard techniques yield the following:

Claim: For every β > 0 there exists a c = c(β) such that P{Tn ≤ n2(lnn)−2} ≤ cn−β.

Proof. This need only be proven for 1-dimensional Brownian motion.

P{Tn ≤ n2(lnn)−2} = P0{ sup
t≤n2(ln n)−2

|B(t)| ≥ n}

= 2P0{B(n2(lnn)−2) ≥ n}
= 2P0{B(1) ≥ lnn}

≤ ce−
(ln n)2

2

≤ cn− lnn
2 .

(18)

A similar proof shows that P{Tn ≥ n2(lnn)2} ≤ cn−
lnn

2 . Therefore, we get that for every
β > 0 there exists a c <∞ such that

P{n2(lnn)−2 ≤ Tn ≤ n2(lnn)2} ≥ q1− cn−β(19)

Then, using (19) we see that there exists a constant c3 <∞ and a > 0 such that

P{B1[0, n]∩ C2
[0,m][1, m] = ∅} ≤ c3(min(m, n))−a.

This completes the proof of (3).
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