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Abstract

This note is concerned with the differentiation of heat semigroups on Riemannian manifolds.
In particular, the relation dPtf = Ptdf is investigated for the semigroup generated by the
Laplacian with Dirichlet boundary conditions. By means of elementary martingale arguments
it is shown that well-known properties which hold on complete Riemannian manifolds fail if the
manifold is only BM-complete. In general, even if M is flat and f smooth of compact support,
‖dPtf‖∞ cannot be estimated on compact time intervals in terms of f or df.

1 Introduction

Let (M, g) be a Riemannian manifold and ∆ its Laplacian. Consider the minimal heat semi-
group associated to 1

2 ∆ on functions given by

(Ptf)(x) = E
[(
f ◦Xt(x)

)
1{t<ζ(x)}

]
(1.1)

where X.(x) is Brownian motion on M starting at x, with (maximal) lifetime ζ(x). Denote
by W0,.: TxM → TX.(x)M the linear transport on M along X.(x) determined by the following
pathwise covariant equation: {

D
dr
W0,r v = 1

2
Ric
(
W0,r v, ·

)
#

W0,0 v = v.
(1.2)

By definition, Ddr = //0,r
d
dr //

−1
0,r where //0,. denotes parallel transport along X.(x). For 1-forms

α ∈ Γ(T ∗M) let

(P
(1)
t α)v = E

[
αXt(x)W0,t v 1{t<ζ(x)}

]
, v ∈ TxM. (1.3)
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It is a well-known consequence of the spectral theorem that on a complete Riemannian mani-
fold M

dPtf = P
(1)
t df (1.4)

holds for all f ∈ C∞c (M) (compactly supported C∞ functions on M) if, for instance,

E
[
‖W0,t‖ 1{Xt(x)∈K} 1{t<ζ(x)}

]
<∞ (1.5)

for any x ∈ M and any compact subset K ⊂ M . Indeed, (1.4) holds true for the semigroups
associated to the self-adjoint extensions of the Laplacian on functions, resp. 1-forms. These
semigroups defined by the spectral theorem can be identified with the stochastic versions
(1.1) and (1.3) as soon as (1.3) is well-defined. The identification can be done, for instance,
with straightforward martingale arguments by exhausting the manifold through a sequence of
regular domains.

Note that from the defining equation (1.2) one gets

‖W0,t‖ ≤ exp

{
−1

2

∫ t

0

Ric(Xs(x)) ds

}
where Ric(x) is the smallest eigenvalue of the Ricci tensor Ricx at x. Thus (1.5) reads as a
condition imposing lower bounds on the Ricci curvature of M .

The Brownian motions X.(x) may be constructed as solutions of a globally defined (non-
intrinsic) Stratonovich SDE on M of the form

dX = A(X) ◦ dZ +A0(X) dt (1.6)

with A ∈ Γ(Rr ⊗ TM), A0 ∈ Γ(TM) and Z an Rr-valued Brownian motion on some filtered
probability space satisfying the usual completeness conditions. For x ∈M , let

Ft(x) := FX(x)
t ≡ σ

{
Xs(x) : 0 ≤ s ≤ t

}
(1.7)

be the filtration generated by X(x) starting at x. Then, by [4], A and A0 in the SDE (1.6)
can be chosen in such a way that

W0,t v 1{Xt(x)∈K} = //0,t EFt(x)
[
//−1

0,t (TxXt) v 1{Xt(x)∈K}
]
. (1.8)

Suppose that, instead of (1.5), we have

E
[
‖TxXt‖ 1{Xt(x)∈K} 1{t<ζ(x)}

]
<∞ (1.9)

for any x ∈M and any compact subset K ⊂M . Then

(P
(1)
t df)v = E

[
(df)Xt(x) TxXt v 1{t<ζ(x)}

]
, v ∈ TxM. (1.10)

Thus, supposing for simplicity that (M, g) is BM-complete, i.e., ζ(x) ≡ ∞ a.s. for all x ∈ M ,
relation (1.4) comes down to a matter of differentiation under the integral.

This point of view rises the question whether completeness of M is an essential ingredient
for (1.4) to hold. However, we show that (1.4) may fail on metrically incomplete manifolds,
even if the manifold is flat and BM-complete. Even then, lim sup

t→0+
‖dPtf‖∞ may be infinite for

compactly supported f ∈ C∞(M).
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2 Differentiation of semigroups

We follow the methods of [7]. In the sequel we write occasionally Txf instead of dfx for the
differential of a function f to avoid mix-up with stochastic differentials. Finally, we denote
by B(M) the bounded measurable functions on M and by bC1(M) the bounded C1-functions
on M with bounded derivative.

Lemma 2.1 Let (M, g) be a Riemannian manifold and f ∈ B(M). Fix t > 0, x ∈ M , and
v ∈ TxM . Then

Ns := TXs(x)(Pt−sf)TxXs v ,

Ns := TXs(x)(Pt−sf)W0,sv ,

0 ≤ s < t ∧ ζ(x),

0 ≤ s < t ∧ ζ(x),

are local martingales (with respect to the underlying filtration).

Proof To see the first claim, note that (Pt−.f)
(
X.(x)

)
is a local martingale depending on x in

a differentiable way. Thus, the derivative with respect to x is again a local martingale, see [1].
The second claim is reduced to the first one by conditioning with respect to F.(x) to filter out
redundant noise. The second part may also be checked directly using the Weitzenböck formula

d∆f ≡ ∆(1)df = ∆hordf − Ric(df#, . ) (2.1)

where ∆(1) is the Laplacian on 1-forms and ∆hordf the horizontal Laplacian on O(M) acting
on df when considered as equivariant function on O(M). Indeed, by lifting things up to the
orthonormal frame bundle O(M) over M , we can write

Ns = F (s, Us) · U−1
s W0,s v

where U is a horizontal lift of the BM X.(x) to O(M) (i.e., a horizontal BM on O(M) with
generator 1

2
∆hor) and

F : [0, t]×O(M)→ Rd, Fi(s, u) := (dPt−sf)π(u)(uei) , i = 1, . . . , d = dimM.

Then dNs
m
= 0 (equality modulo differentials of local martingales) follows by means of Itô’s

formula.

Notation For the Brownian motion X.(x) on M , let

B =

∫ .

0

//−1
0,r ◦ dXr(x)

denote the anti-development of X.(x) taking values in TxM . By definition, B is a BM on TxM
satisfying

A
(
X(x)

)
dZ = //0,. dB.
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Lemma 2.2 Let (M, g) be a Riemannian manifold, f ∈ B(M), x ∈ M and t > 0. Let
Θ0,.: TxM → TX.(x)M be linear maps such that

TXs(x)(Pt−sf) Θ0,s v , 0 ≤ s < t ∧ ζ(x),

is a continuous local martingale. Then

TXs(x)(Pt−sf) Θ0,s hs −
∫ s

0

(TXr(x)Pt−rf) Θ0,r dhr, 0 ≤ s < t ∧ ζ(x), (2.2)

is again a continuous local martingale for any adapted TxM -valued process h of locally bounded
variation. In particular,

TXs(x)(Pt−sf) Θ0,s hs − (Pt−sf)
(
Xs(x)

) ∫ s

0

〈
Θ0,r ḣr, //0,r dBr

〉
, 0 ≤ s < t ∧ ζ(x),

is a local martingale for any adapted process h with paths in the Cameron-Martin space
H([0, t], TxM), i.e., h.(ω) ∈ H([0, t], TxM) for almost all ω.

Proof Indeed, by Itô’s lemma,

d
(
TXs(x)(Pt−sf) Θ0,s hs

)
=
(
TXs(x)(Pt−sf) Θ0,s

)
dhs + d

(
TXs(x)(Pt−sf) Θ0,s

)
· hs

m
=
(
TXs(x)(Pt−sf) Θ0,s

)
dhs

where m
= stands for equality modulo local martingales. The second part can be seen using the

formula

(Pt−sf)
(
Xs(x)

)
=

∫ s

0

TXr(x)(Pt−rf) //0,r dBr .

This proves the Lemma.

Lemma 2.2 leads to explicit formulae for dPtf by means of appropriate choices for h which
make the local martingales in Lemma 2.2 to uniformly integrable martingales. This can be
done as in [7].

Theorem 2.3 [7] Let f : M → R be bounded measurable, x ∈ M and v ∈ TxM . Then, for

any bounded adapted process h with paths in H(R+, TxM) such that
(∫ τD∧t

0 |ḣs|2 ds
)

1/2 ∈ L1,
and the property that h0 = v, hs = 0 for all s ≥ τD ∧ t, the following formula holds:

d(Ptf)xv = −E
[
f
(
Xt(x)

)
1{t<ζ(x)}

∫ τD∧t

0

〈
W0,s(ḣs), //0,s dBs

〉]
(2.3)

where τD is the first exit time of X(x) from some relatively compact open neighbourhood D
of x.
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Theorem 2.4 Let (M, g) be a BM-complete Riemannian manifold such that Ric ≥ α for some
constant α.

(i) For f ∈ bC1(M) the relation dPsf = P
(1)
s df holds for 0 ≤ s ≤ t if and only if

sup
0≤s≤t

‖dPsf‖∞ <∞. (2.4)

(ii) Let f ∈ C1(M) be bounded such that (2.4) is satisfied. Then, for t > 0,

‖dPtf‖∞ ≤
((1− e−αt

α

)1/2 1

t
‖f‖∞

)
∧
(
e−α t/2 ‖df‖∞

)
(2.5)

with the convention (1− e−αt)/α = t for α = 0.

Proof (i) Of course, dPsf = P
(1)
s df implies (2.4) in case df is bounded. On the other hand,

let f ∈ C1(M) such that (2.4) holds. Condition (2.4) ensures the local martingale

Ns = (dPt−sf)Xs(x)W0,s v, v ∈ TxM,

of Lemma 2.1 to be a martingale for 0 ≤ s ≤ t, which gives by taking expectations

(dPtf)xv = E
[
(df)Xt(x)W0,tv

]
= P

(1)
t df(v).

(ii) As in (i), condition (2.4) for f ∈ C1(M) implies (dPtf)xv = E
[
(df)Xt(x)W0,tv

]
which

shows |d(Ptf)x| ≤ e−α t/2 ‖df‖∞. On the other hand, by Lemma 2.2,

TX.(x)(Pt− .f)W0,. h. − (Pt− .f)
(
X.(x)

) ∫ .

0

〈
W0,r ḣr, //0,r dBr

〉
(2.6)

is a local martingale for any adapted process h with h.(ω) ∈ H([0, t], TxM). If we take
hs := (1 − s/t)v where v ∈ TxM , then by means of assumption (2.4) and the bound on the
Ricci curvature, (2.6) is seen to be a uniformly integrable martingale, hence

d(Ptf)xv = −1

t
E
[
f ◦Xt(x)

∫ t

0

〈
W0,r v, //0,r dBr

〉]
.

Thus

|d(Ptf)x| ≤
1

t
‖f‖∞

(
E
∫ t

0

‖W0,r‖2 dr
)1/2

≤ 1

t
‖f‖∞

(∫ t

0

e−αr dr

)1/2

≤ 1

t

(1− e−αt
α

)1/2

‖f‖∞

which shows part (ii).

Remark 2.5 [8] Let M be an arbitrary Riemannian manifold and D ⊂ M an open set with
compact closure and nonempty smooth boundary. Let f ∈ B(M). Then, for x ∈ D and t > 0,

|d(Ptf)x| ≤ c ‖f‖∞

with a constant c depending on t, dimM , dist(x, ∂D) and the lower bound of Ric on D. This
follows from Theorem 2.3 with an explicit choice for h. See [8] for the details.
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Remark 2.6 In the abstract framework of the Γ2-theory of Bakry and Emery (e.g. [2]) lower
bounds on the Ricci curvature Ric ≥ α (i.e. Γ2 ≥ αΓ) may be expressed equivalently in terms
of the semigroup as

|dPtf |2 ≤ e−αt Pt|df |2, t ≥ 0,

for f in a sufficiently large algebra of bounded functions on M . However, in general, the
setting does not include the Laplacian on metrically incomplete manifolds. On such spaces,
we may have lim sup

t→0+
‖dPtf‖∞ =∞ for f ∈ C∞c (M), as can be seen from the examples below.

3 An example

Let R2\{0} be the plane with origin removed. For n ≥ 2, let Mn be an n-fold covering of
R2\{0} equipped with the flat Riemannian metric. See [6] for a detailed analysis of the heat
kernel on such BM-complete spaces. In terms of polar coordinates x = (r, ϑ) on Mn with
0 < r <∞, 0 ≤ ϑ < 2nπ,

h(x) = cos(ϑ/n)J1/n(r) (3.1)

is a bounded eigenfunction of ∆ on Mn (with eigenvalue −1); here J1/n denotes the Bessel

function of order 1/n. Note that J1/n(r) = O(r1/n) as r ↘ 0, consequently dh is unbounded
on Mn. The martingale property of

mt = et/2 (h ◦Xt(x)), t ≥ 0,

implies Pth = e−t/2h which means that dPth is unbounded on Mn as well.

Example 3.1 On Mn the relation dPtf = P
(1)
t df fails in general for compactly supported

f ∈ C∞(Mn). If this happens, then by Theorem 2.4 (i),

sup
0≤s≤t

‖dPsf‖∞ =∞ (3.2)

for f ∈ C∞(Mn) of compact support.

Proof Otherwise (3.2) holds true for all compactly supported f ∈ C∞(Mn). Fix t > 0. Then
by Theorem 2.4 (ii)

‖dPtf‖∞ ≤
1√
t
‖f‖∞ (3.3)

for any compactly supported f ∈ C∞(Mn). On the other hand, we may choose a sequence (f`)
of nonnegative, compactly supported elements in C∞(Mn) such that f` ↗ hc := h+ c with h
given by (3.1) and c a constant such that h+ c ≥ 0. But then (see Chavel [3] p. 187 Lemma 3;
note that this is a local argument which can be applied on any open relatively compact subset
of M)

Ptf` ↗ Pth
c and dPtf` → dPth

c as `→∞.

By (3.3) we would have

‖dPthc‖∞ ≤
1√
t
‖hc‖∞ ,

in contradiction to ‖dPthc‖∞ = e−t/2 ‖dh‖∞ =∞.
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Remark 3.2 In [5] it is shown that if a stochastic dynamical system of the type (1.6) is
strongly 1-complete, and if for each compact set K there is a δ > 0 such that

sup
x∈K

E ‖TxXs‖1+δ <∞,

then d Ptf = P
(1)
t df holds true for functions f ∈ bC1(M). Example 3.1 shows that the strong

1-completeness is necessary and can not be replaced by completeness.

On Mn consider the heat equation for 1-forms{
∂
∂t
α = 1

2
∆(1)α

α|t=0 = df
(3.4)

where f ∈ C∞(Mn). Take f ∈ C∞(Mn) of compact support with dPtf 6= P
(1)
t df . Then

α1
t := P

(1)
t df and α2

t := dPtf

define two different smooth solutions to (3.4). Note that ‖αit‖ ∈ L2, i = 1, 2.

Corollary 3.3 On the n-fold cover Mn of the punctured plane (n ≥ 2) there are infinitely
many nontrivial classical solutions to{

∂
∂t
α = 1

2
∆(1)α

α|t=0 = 0

of the form αt = P
(1)
t df − dPtf with f ∈ C∞(Mn) of compact support.
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