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Abstract

The trajectory of the ball in a soccer game is modelled by the Brownian motion on a cylinder,
subject to elastic reflections at the boundary points (as proposed in [KPY]). The score is then
the number of windings of the trajectory around the cylinder. We consider a generalization of
this model to higher genus, prove asymptotic normality of the score and derive the covariance
matrix. Further, we investigate the inverse problem: to what extent the underlying geometry
can be reconstructed from the asymptotic score.

0 Introduction

0.1 Let D ⊂ R2 be the soccer field, i.e. a rectangular area with two segments I1, I2 marked
on two opposite sides of it, of equal length and centered at the middle of the sides. The
movement of the ball is described by the trajectory of the plane Brownian motion subject to
reflections at the boundary points (we neglect the event of hitting the corner as being of zero
measure).
This model was proposed by Kozlov, Pitman and Yor [KPY] as a realistic description of the
soccer game. They, however, investigated a far less realistic model with the field described by
a half-plane <z > 0 with goalposts on the real axis.
The score, according to [3], is defined as follows. Gluing together two copies of D along the
segments I1,2 one obtains a (topological) cylinder D̄. Choose a system of short paths on D̄
(which associates to each point a path joining it to a base point p0 on the cylinder so that
the lengths of the paths are bounded). If γ : [0, T ]→ D is a trajectory of the ball, then one
can lift it to D̄ and close it by joining its endpoints to p0. The score Sc(T ) is the winding of
the resulting closed curve around the cylinder. In other words, score represents an element of
H1(D̄,Z) ∼= Z. We are interested in the asymptotic behavior of the score. It is clear that the
ambiguity of the short paths system contributes just a bounded term to the score.

0.2 The main result of [3] is that the score normed by
√

logT has asymptotically symmetric
exponential distribution with the variance proportional to the ratio of certain elliptic integrals
associated with the goalposts positions on the real line. Regarding the realistic model described
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in the beginning, the authors noted that the score in this case is asymptotically Gaussian
with variance growing as T (which follows quite easily from Kozlov’s results [3]) but refer to
difficulties of finding the expression for variance.

The log in this theorem is typical for wandering on the complex plane (see [6] for example)
and reflects the growth of the local time at zero of the Bessel process of order 2. The score in
this model is the normal one with the variance exponentially distributed.

0.3 In this paper we will address the following model generalising the Wiener soccer. Let
D ⊂ R2 be a topological disk bounded by a Jordan curve ∂D, g a smooth Riemannian metric
defined in an open neighborhood of D and {Ii}i=0,...,N a collection of nonintersecting (closed)
arcs in ∂D. Gluing two copies of D along the arcs Ii one obtains a topological 2-sphere D̄ with
N + 1 holes. We represent the first homology group of D̄ as the factorspace H = ZN+1/(e)
where e = (1, . . . , 1). This space is generated by the cycles corresponding to the coherently
oriented circumferences of the (N + 1) holes of D̄. Fix once and forever a system of short
paths in D̄. This given, one can associate to any continuous curve γ : [0, T ]→ D̄ an element
of H1(D̄,Z) ∼= ZN defined up to a bounded term depending on the short paths system.

Let γ(t), t ∈ [0, T ] be the Brownian motion on D̄ associated to the metric g and subject to
elastic reflections at ∂D̄ (we address the question how to define precisely the Brownian motion
in D̄ in the next section).

Definition 0.1 We denote by Sc(T ) the random element of H1(D̄,Z) obtained by joining the
ends of the Bronian motion γ : [0, T ]→ D̄ to the basepoint using the short paths system .

0.5 We are interested in the asymptotic behavior of the score. The variance of Sc(T ) grows
linearly in T and the expectation is bounded, so the correct scaling is Sc(T )/

√
T . The con-

tribution of the change of the basepoint and of the short paths system to Sc(T ) is bounded
and therefore negligible in the scaled score. The scaled score is by definition an element of
HR = H ⊗ R ∼= RN+1/(e).

In Section 2 we investigate the asymptotics of the score. Using some general central limit
theorems for martingales with bounded quadratic variations we prove the convergence of the
scaled score Sc(T )/

√
T to a Gaussian vector in RN and determine its covariance matrix. This

covariant matrix is given by a certain quadratic form which can be given a ‘physical meaning’
as the energy loss for a conducting plate.

0.6 Further, in Section 3, we investigate the related inverse problem. It was, actually, first
posed in [1] in the context of the conducting plates mentioned above and can be formulated as
follows: assume that only the asymptotical behavior of the score is known; is it possible then to
reconstruct the original data (D, g, {Ii})? There is, certainly, a large group acting on the data
which preserves the only observable thing, the covariance matrix (or the energy loss form): the
data (hD, h∗g, {hIi}) will give the same matrix for any diffeomorphism h. One can therefore
reduce the problem to the case with fixed D and g (say, the unit circle with the standard
metrics). The group of diffeomorphisms preserving D and g is now three-dimensional, and the
variable parameters are 2N + 2 endpoints of the intervals I.

We address this inverse problem in Section 3. It turns out that it can be reduced to the Shottky
problem for hyperelliptic curves (solved by Mumford [5]) and thence settled completely.

I would like to mention in this connection the paper [7] where an inverse problem of similar
spirit has been addressed.

0.7 In Section 4 we discuss some ramifications and generalizations.
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1 Brownian Motion in D̄

1.1 We start with the precise construction of the Brownian motion on the manifold with
boundary D̄. The boundary of D consists of N + 1 arcs Ii interlaced with N + 1 other arcs;
we will denote them by I′i and number them so that I′i lies between Ii and Ii+1; addition
in subscripts henceforth is always understood modulo (N + 1). Let D1, D2 be two copies of
D. The (N + 1)-holed sphere D̄ is the factor space obtained upon identification of the ‘same’
points in Ii’s. The lift of the metric g from D1,2 defines a metric on an open dense subset of
D̄ which we will refer to as g again.

1.2 To define the Brownian motion with elastic reflections at the boundary points in the
topological manifold D̄ we use the standard trick describing Brownian motions under conformal
maps [4].
Specifically, let f : U → D be a continuous one-to-one mapping of the upper half of the
complex plane U = {<(·) ≥ 0} ⊂ C̄ to D which is smooth in the interior of U and takes the
conformal class of the standard metric on C (given by dx2 + dy2) to that of g. Such a map
exists by theorems of Riemann and Koebe.
Let the segments Ji = [ai, bi] ∈ ∂U = RP1 be the preimages of the arcs Ii ⊂ ∂D under f (one
of these segments can contain the infinity). Define S̄ to be the Riemann sphere C̄ with slits
made along the intervals J ′i = (bi, ai+1), i = 0, . . . , N . This surface is topologically a 2-sphere
with N + 1 holes. The map f : U → D defined on the upper half of this holed sphere can be
extended to a map f̄ : S̄ → D̄ in an obvious way. The resulting map is a homeomorphism
which is smooth outside the real line RP1.

1.3 At this stage we could already define the Brownian motion on D̄ with elastic reflections
at boundary as the image under f̄ of the Brownian motion on S̄ with elastic reflections at the
points of intervals J ′i. Changing the clock of this Brownian motion would result in a D̄-valued
Markov process with continuous trajectories such that the generator of the corresponding
semigroup is ∆g (the Laplacian in g metric) in the interiority of D̄.
We make, however one step further in view of some applications to follow and describe the
Brownian motion on S̄ itself as the projection of a Brownian motion on an adequate twofold
covering of S̄, analogously to the description of the reflected Brownian motion on the halfline as
|w|, for w Brownian motion on R. To achieve this, consider the hyperelliptic curve M ⊂ CP2

given by

w2 =
N∏
i=0

(t − ai)(t − bi)

in inhomogeneous coordinates. It is clear that the curve M is of genus N and that the
projection p : M → C̄ : (t, w) 7→ t is a 2-to-1 covering of C̄ ramified over {ai, bi}i=0,...,N . We
denote the corresponding critical points on M by Ai, Bi. Cutting M along the preimage of the
equator RP1 ⊂ CP = C̄ one decomposes the surface into the union of two copies of the upper
half-sphere and two copies of the lower one. We denote these as N1,2 and S1,2 respectively, so
that Ni is glued to Si along the intervals Ji. Now we define the modified projection p̄ : M → S̄
as follows: p̄ coincides with p on N1 ∪ S1 and with the composition of p with the complex
conjugation on N2 ∪ S2.

Lemma 1.1 The map p̄ is continuous and smooth outside of the preimage of the intervals
I′i, i = 0, . . . , N . Moreover, it is conformal on the latter set. Near a point in the preimage of
I′i the map p̄ is equivalent (that is can be reduced by a local change of coordinates in the image
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and preimage) to the folding

x+ iy 7→ x+ i|y|.

Proof:
Obvious.

1.6 We assume that M is provided with a complete Riemannian metric, e.g. with the metric
of constant curvature. The previous lemma shows that the p̄ image of the corresponding
Brownian motion on M is the Brownian motion on S̄ with elastic reflections at the slits I′i
with changed time. The Brownian motion on D̄ is therefore the image of the Brownian motion
on M under the composition map h = f̄ ◦ p̄ : M → D̄ with the clock

τ(t) =

∫ t

0

|h′(w(s))|2ds.

Here |h′| is the coefficient of dilatation: the image of the metric on M under h is the |h′|-
multiple of g (recall that the conformal classes of these two metrics on D̄ coincide by construc-
tion).

Proposition 1.1 Almost surely,

τ(t)

t
→ 4SD

SM
as t→∞,

where SM is the area of M and SD is the (g)-area of D.

Proof:
From the definition, it follows that

∫
M
|h′(z)|2volM , for volM the volume form on M is the

area of D̄× 2 = area of D× 4 (as h is 2-to-1 and |h′(z)|2 is the Jacobian of h). Therefore, by
the ergodic theorem for Brownian motion on the compact manifold M ,

1

t

∫ t

0

|h′(w(s))|2ds→ 1

SM

∫
M

|h′(z)|2volM

almost surely.

1.8 Therefore, we can define the Bronian motion on D̄ as γτ(t) = h(w(t)), with w denoting
the Brownian motion on M . The Proposition shows that the process γ is defined almost
everywhere for all times τ .

2 Asymptotic Score and Conducting Plates

2.1 Let the data (D, g, {Ii}) be as above, that is g is a Riemannian metric on the disk D
and {Ii} is a system of nonintersecting arcs on ∂D. We introduce the N + 1-dimensional real
vector space V of locally constant functions on the disjoint union of the intervals I = qiIi.
Consider the following quadratic form Q on V :

Q(x) = inf
u∈C∞(D):u|I=x

∫
D

‖du‖gvolg.
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In other words, the infimum is taken over all function assuming the boundary values xi on the
arcs Ii and is free elsewhere. The norm ‖ · ‖g and the volume form volg are induced by the
metric g.
Another way to write the integrand is, of course, du ∧ d∗u, where d∗ = ∗d∗, and ∗ is the
standard dualising operator on forms [2].

Lemma 2.1 The quadratic form Q has one-dimensional kernel generated by e = (1, . . . , 1) ∈
V . The restriction of Q to any N -hyperplane complementary to e is postive definite.

Proof:

This is obvious: if all boundary values are equal, the infimum is attained at a constant function;
if some of the values are different, an easy estimate using Cauchy inequality proves positivity.

2.3. Remark. The quadratic form Q has a physical meaning: if (D, g) describes a conducting
plate with (generally anisotropic) resistance g, then Q(x) is the energy loss resulting from
applying a constant electric potential xi to the i-th arc on the boundary of D. In the simplest
case, when D is a rectangle with sides a, b and I1,2 are just its a sides, then Q(x0, x1) =
(ab )(x0 − x1)

2. In particular, identifying the quadratic form Q on V with the linear map
Q : V → V ∗, the image of the vector (x0, . . . , xN) is the vector of total currents through the
corresponding segments of the boundary.

2.4 Let (D̃, g̃) be a disk with Riemannian metric and f : D̃ → D be homeomorphic and
smooth in the interior of D̃. Assume that f takes the conformal class of the Riemannian
metric g̃ to that of g.

Lemma 2.2 For any function u on D smooth in its interiority, the energies of u and f∗u
coincide: ∫

D

|du|2volg =

∫
D̃

|df∗u|2g̃volg̃.

Proof:
Well known (the integrand is divided, and the volume is multiplied by the squared dilatation
coefficient).

2.6 Hence, the functional Q is invariant under mappings of (D, g, {Ii}) which respect the
conformal classes and take boundary arcs to boundary arcs.
The factor space of V by the line generated by the vector e = (1, . . . , 1) is isomorphic to the
first cohomology group of D̄ with real coefficients. An element a of the latter is defined by its
value ai = (a, Ai) on the cycle Ai encircling the i-th hole (the preimage of I′i). Clearly, the
numbers ai satisfy

∑
ai = 0 as the cycles Ai do. We fix an isomorphism s : V/(e)→ H1(D̄,R)

which sends (x0, . . . , xN) to 2(x1 − x0, x2 − x1, . . . , x0 − xN) (the 2 will be explained below).
The lift of Q via s−1 to H1(D̄,R) ∼= RN we will denote as QH .

The relevance of the quadratic form QH to the score Brownian motion on the surface D̄ is
given by the following Theorem.

Theorem 2.1 The random variable Sc(T )/
√
T ∈ HR ∼= RN converges almost surely to a

Gaussian random value ξ ∈ HR. For any vector a ∈ H1 the variance of (a, ξ) is QH(a)/SD,
where SD is the area of D (measured with respect to the g-area form).
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Ji

J’i

D

Figure 1. The lift of the form du . The levels of the form are shown

as solid lines in D ; the dotted lines show the levels of its orthogonal form.

N1

S1

N2

S2

Figure 1: Figure 1. The lift of du. The solid lines denote the levels of u on M ; the dotted
lines — the levels of the orthogonal form.

Proof:
To start the proof we will construct a linear mapping from the space V of locally constant
functions on I = qiIi to the space of harmonic 1-forms on M . For x = (x0, . . . , xN) ∈ V , let ux
be the continuous function on the upper halfplane U ⊂ C̄ which has the following properties:

• The function is harmonic in the interiority of U ;

• The restriction of ux to Ji is identically xi;

• The normal derivative of u at the points of ∂U ∼= RP1 − ∪iJi vanishes.

The existence of such a function is standard; one could define ux as the expected value of
the xI, where I is the number of the first of the intervals Ji hitted by the reflected Brownian
motion in U .
Let f : C̄→ U be the folding of the complex sphere to the upper halfplane, x+ iy 7→ x+ i|y|.
The composite mapping of the hyperelliptic curve M to U given by k = f ◦ p is smooth
(and even conformal) outside the preimage of the real projective line RP ⊂ C̄. On this set
M − k−1(RP) = N1 ∪ S1 ∪N2 ∪ S2 the mapping k preserves orientation on N ’s and reverses
it on S’s. Define the 1-form on this set as

ωx = k∗(dux) on N1 ∪ S2 and ωx = −k∗(dux) on N2 ∪ S1.

Lemma 2.3 The form ωx extends to a smooth harmonic form on M (also denoted by ωx).

Proof:
Indeed, the continuity of ωx outside of the ramification points of p (that is, preimages of
ai, bi’s) is clear from the fact that the annulator of dux is tangent to the real line at points of
Ji and orthogonal to it at points of J ′i (see Figure 1).

Further, the fact that ωx is harmonic at the interior points of the preimages of intervals Ji or J ′i
(that is, outside the ramification locus {p−1(ai), p

−1(bi)}i=0,...,N} of the projection p) follows
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from the symmetry principle. The fact that the ramification points are removable singularities
follows from the boundedness of the integral of ωx, (which is clearly exact in the neighborhood
of each of the ramification points).
The p-preimage of the segment Ji is a smooth closed curve in M . We fix the orientation of this
curve by demanding that it coincides with the lift of the natural orientation of ∂U = RP to
N1∪S1. This defines an element of H1(M,Z). We will denote this element as Bi. Analogously,
we will denote as Ai the cycle corresponding to the preimage of J ′i oriented in accordance with
the lift from ∂U to N1 ∪ S2.
Clearly, the elements {Ai, Bi} generate H1(M,Z) and satisfy

N∑
i=0

Ai =
N∑
i=0

Bi = 0.

Lemma 2.4
∫
Ai
ωx = 2(xi+1 − xi).

Proof:
The integration contour splits into two parts, one along the preimage of J ′i in N1 ∪S2, another
along the preimage in N2 ∪ S1. The form along the first part is k∗(du) and its integral is
xi+1 − xi, along the second part of the contour, ωx = −k∗du and the integral is xi+1 − xi
again.
Proof of Theorem 2.1
Pick an element a ∈ H1(D̄,R). The evaluation of a on the score Sc(T ) ∈ H1(D̄,Z) differs,
by definition, just by a bounded term from the evaluation of p̄∗(a) on the cycle in H1(M,Z)
obtained by closing the trajectory of the Brownian motion w ∈M run to the time t such that
τ(t) = T . Let x = s−1(a), with s defined in 2.6. Then the (closed) 1-form ωx represents p̄∗(a)
under the de Rham isomorphism. Therefore, (Sc(T ), a) differs just by a bounded term from
I(t) =

∫
{w(s)}0≤s≤t ωx. The process I(t) is a martingale as ωx is harmonic, and its characteristic

is
∫ t

0
|ωx(w(s))|2ds. Therefore, I(t)/t converges a.e. to a normal random value with variance

1
SM

∫
M
|ωx|2vol. Applying Proposition and the fact that∫

M

|ωx|2vol = 4

∫
U

|ωx|2gvolg,

(M covers D fourfold) we obtain the desired result.
2.10. Example. For the rectangular field of size a × b and I1,2 being the b-sides, (and
standard metric) one finds the variance of the asymptotical score ξ is a−2. This is, of course,
of little surprise, as in this case the score Sc(T ) is just some rounding of w(T )/b, where w the
1-dimensional Brownian motion.
We notice here that any disk D with just two marked arcs on its boundary can be mapped
conformally onto one of the rectangular areas with the intervals being the opposite sides.
Moreover, one can adjust the sizes to preserve the area under this mapping.

3 Inverse Problem

3.0 Theorem 2.1 describes the asymptotic behavior of the score in terms of the g-area of the
plane domainD and of a certain quadratic form Q. It makes sense to pose an inverse problem:
to what extent do these data characterize the original ones, that is (D, g, {I}i)?
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3.1 Firstly, the Lemma 2.2 implies that the energy form Q is an invariant of the conformal
class of the metric g only. Therefore, it cannot distinguish between ‘soccer fields’ differing by a
conformal diffeomorphism and the inverse problem can be meaningfully posed only if one fixes
one within each equivalence class. As was mentioned, one can choose the upper half plane U
on the Riemannian sphere S̄ = CP1 as D provided with its standard (Fubini-Study) metric.
The unspecified data then are the positions of the ‘goalposts’ {ai, bi}i=0,...,N , ai, bi ∈ RP1.
These positions form, apparently, a 2(N + 1)-dimensional family C (diffeomorphic to S1 times
a 2N + 1-dimensional open simplex). The group PSL(2,R) of conformal diffeomorphisms of
U is three-dimensional, and the associated Teichmüller space is a cell of dimension 2N − 1,
T = C/PSL(2,R) ∼= R2N−1. The best way to introduce coordinates on T is to employ the
cross ratios of the points ai, bi. Indeed, for any 0 ≤ i, j ≤ N we set

cij =
(ai − aj
bi − aj

)
/
(ai − bj
bi − bj

)
.

The parameters cij are real, invariant with respect to automorphisms of U and take values in
R>1. Clearly, they determine an embedding of T into the Rn>1 for some large n.

3.2 The energy form Q is a function on T with values in the space of quadratic forms Q
on the (N + 1)-dimensional real vector space V , which have a one-dimensional kernel and are
nonnegative definite (we will denote this space as Sym0(V )). The set of such quadratic forms
is a cell of dimension N(N − 1)/2. The dimension of the image is not less than that of the
source and one can ask whether the energy form defines an embedding of the Teichmueller
space. If this is the case, one can solve the inverse problem unambiguously.

3.3 Remark. The question about the properites of the energy mapping E : T → Sym0(V )
was raised by Colin de Verdière [1] in connection with his studies of the energy forms of plane
electric circuits.

3.4 The main result of this section is that the energy functional is indeed an embedding.
This follows quite easily from the next Proposition.
Let M be the hyperelliptic curve constructed in the previous section and Ai(Bi), i = 0, . . . , N

be the cycles defined in 2.8. The cycles Ai, B
′
i =

∑i
j=1Bj , i = 1, . . . , N form a basis in

the integer homologies H1(M,Z) with respect to which the intersection form is standard:
〈Ai, B′j〉 = δij ; 〈Ai, Aj〉 = 〈B′i, B′j〉 = 0.
Let {ωi} be the basis of the space of holomorphic 1-forms on M dual to {Ai}, that is such that∫
Ai
ωj = δij . The matrix Z = (zij), zij =

∫
B′i
ωj is called the period matrix (of the curve M)

and determines the Jacobian variety of the curve M : J(M) = CN/L, L = {n + Zm,n,m ∈
ZN}.

Proposition 3.1 The period matrix Z is i/2 times TTQT , where T is the (N+1)×N matrix
with entries tij = 1 if i ≤ j and 0 otherwise .

Proof:
We recall from (2.8) that for any x ∈ V , we have a 1-form dux which is harmonic on U . Let
ı be the operator defining the complex structure on U . The 1-form dux ◦ ı is again harmonic.
The annulator of this form is tangent to ∂U at points of intervals J ′i and orthogonal to it at
points of ∂U (as follows from the opposite behavior of dux). The standard calculation shows
that

Q(x) =
∑
i

xi

∫
Ji

ωxı
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whence ∫
Ji

duxı =
∑
j

Qij.

The properties of the form duxı stated above show that its lift from U to M , with properly
adjusted signs on different branches of k (we set it to be the lifting on N1 ∪ S1 and opposite
to it on N2 ∪ S2), we obtain, analogously to the case of ωx, a smooth harmonic form on M .
One can check immediately that this form coincide with ωxı (where this time ı is the complex
structure on M). Therefore the form ωCx = ωx − iωxı is a holomorphic 1-form on M . Its
integrals over a cycle Ai are, obviosly, the integrals of ωx over it, as the ωxı part vanishes on
the lifts of the vectors tangent to intervals J .
It follows that for xi = (1/2)(e0 +

∑N
j=i+1 ej), ej the standard basis vectors in V , the cor-

responding holomorphic differential ωCi = ωCxi (as well as its ‘real part’ ωi = ωxi) has the
property that

∫
Ai
ωj = δij , i, j = 1, . . . , N .

By the definition, the entries of the period matrix Z are

zij =

∫
B′j

ωCi = −i
j∑
l=1

∫
Bl

ωiı.

As was established above,

intBlωjı = (1/2)(Ql0 +
N∑

k=j+1

Qlk) = −(1/2)

j∑
k=1

Qlk,

where we used the fact
∑N
k=0 Qlk = 0.

Combining all together we obtain the claimed formula.
As a corollary we immediately obtain the solutiuon of our inverse problem:

Theorem 3.1 The energy map associating the form Q to the data (U, g, {I}i) (g = dx2+dy2)
is a proper imbedding of the Teichmüller space T into the space Sym0(V ).

Proof:
The main claim, that the energy map is one-to-one, follows immediately from the Torelli
theorem. Indeed, by the Proposition , the form Q defines the period matrix and thence the
Jacobian. By Torelli theorem, the curve M can be unambiguously reconstructed form J(M).
In our case, the curve is hyperelliptic, and admits the unique (up to an automorphism in the
image) 2-to-1 holomorphic map to CP1. The critical values of the map are just the numbers
ai, bi, i = 0, . . . , N , up to an automorphism of CP1, and, apparently, define the interval system
{I}i.
In fact, one can give a pretty detailed description of the image of the Teichmueller space using
the theory in [5]. Indeed, given Z one can form 2N theta constants

θ[
η′

η′′
](Z) =

∑
n∈ZN

exp(πi(n + η′, Z(n + η′)) + 2πi(n, η′′)),

where the vectors η′, η′′ ∈ (1/2)ZN have coodinate entries 0 or 1/2. According to [5], the
Abelian variety CN/L, L = {n+Zm,n,m ∈ ZN} is the Jacobian of a hyperelliptic curve M if
and only if all but

(
2N+2
N+1

)
of these theta constants vanish. The remaining theta constants can
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be used to find the cross ratios parametrizing T : each squared cross ratio c2ij can be expressed
(via Frobenius formulae) as some ratio of fourth degrees of certain theta-constants [5] p. 3.136.
In our situation we are bounded by the requirement that all the cross ratios are real. One
sees immediately that it follows from the reality of the theta constants; inversely, the reality
of cross-ratios results in the reality of iZ and therefore in that of the theta constants (as each
term in the series defining them is real).

The properness of the energy mapping is also immediate from the Frobenius formula.

4 Concluding Remarks

The results of the previous section yield quite of lot of different corollaries and generalizations.

4.1 Returning to the initial motivation of this study, the soccer field, the Theorem implies,
that given the size of the soccer field and assuming that the goalposts are placed symmetrically
on the opposite sides of it, the variance of the asymptotic score determines unambigously
their width. This is obvious, as the (only) cross ratio involved is that of the images of the
goalposts under the conformal mapping taking the field to the upper half plane, and it depends
monotonously on the width of the goalposts.

4.2 The results of this paper can be easily extended to the case when the metric has sin-
gularities, provided that the total area of the domain remains finite. If the singularities are
strong enough, so that the area becomes infinite, we arrive at various generalizations of the
results of [3]. The original result of Kozlov, Pitman and Yor describes the case when M has
genus 1 and the metric g is the smooth one times a positive function which has at two points
(preimages of infinity on M) poles of order 2. Nearly all the time, the trajectory of the motion
wanders near these singular points and the characteristic of the integral of any harmonic on
M form is, asymptotically, a local time process L0

t at zero for the Bessel process (of order 2).

An immediate generalization can be obtained if one considers an algebraic curve M , a rational
function f : M → C on it and the Riemannian metric on M given by the lift of dx2 + dy2 via
f . One can see quite easily that the resulting distribution of the asymptotical score (scaled by√

log t) has the Laplace transform (1 + (λ,QHλ))
−1 for the quadratic form QH defined in 2.6.

Similarly, one can address the question about the metrics with singularities of other orders.
Once again, this can be solved by finding the asymptotical distribution of the local time at
zero for the Bessel process of relevant order. Notice, however, that the order of the pole cannot
be larger than two: in this case the process is transient, the local time remains finite and one
cannot apply the ergodic theorems. Geometrically, this corresponds to Riemannian surfaces
with nonempty killing boundary.

4.3 The real Teichmueller space T , like its complex counterpart, admits a compactification
by divisors on which some points come together pairwise. It is well known that near such
a divisor some entries of the period matrix tend to infinity as the logarithm of the function
defining the divisor. One very interesting site in this compactified space is the vicinity of
the maximal ((N + 1)-fold) selfintersection of its boundary. For example, one can consider
the situation where all J ′-intervals are very small (or, equivalently, all J ones are very large.
The entries of the period matrix tend to infinity and the theta constant becomes dominated
by a finite number of terms. The condition of vanishing of a theta constant reduces then to
coincidence of the values of the energy form on certain points of the integer lattice. One can
show that near the infinity, the image of the energy map is (asymptotically) piecewise-linear
and has the combinatorial type of the fan dual to associahedron.
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