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Abstract

Recently, by introducing the notion of cumulatively merged partition, Ménard and
Singh provide in [6] a sufficient condition on graphs ensuring that the critical value of
the contact process is positive. In this note, we show that the one-dimensional long
range percolation with high exponent satisfies their condition and thus the contact
process exhibits a non-trivial phase transition.
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1 Introduction

In this paper, we study the contact process on Gs, the one-dimensional long range
percolation graph with exponent s > 1, defined as follows: independently for any i and j
in Z there is an edge connecting them with probability |i− j|−s. In particular, G contains
Z so it is connected.

On the other hand, the contact process was introduced in an article of T. E. Harris [4]
and is defined as follows: given a locally finite graph G = (V,E) and λ > 0, the contact
process on G with infection rate λ is a Markov process (ξt)t≥0 on {0, 1}V . Vertices of
V (also called sites) are regarded as individuals which are either infected (state 1) or
healthy (state 0). By considering ξt as a subset of V via ξt ≡ {v : ξt(v) = 1}, the transition
rates are given by

ξt → ξt \ {v} for v ∈ ξt at rate 1, and

ξt → ξt ∪ {v} for v 6∈ ξt at rate λdegξt(v),

where degξt(v) denotes the number of infected neighbors of v at time t. Given A ⊂ V ,
we denote by (ξAt )t≥0 the contact process with initial configuration A and if A = {v} we
simply write (ξvt ).

Since the contact process is monotone in λ, we can define the critical value

λc(G) = inf{λ : P(ξvt 6= ∅∀t) > 0}.

This definition does not depend on the choice of v if G is connected. If G has bounded
degree, then there exists a non-trivial sub-critical phase, i.e. λc > 0, as the contact
process is stochastically dominated by a continuous time branching random walk with
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reproduction rate λ. Thus for integer lattices and regular trees, the critical value is posi-
tive. The behavior of the contact process on these graphs was extensively investigated,
see for instance [5, 7, 9].

In contrast, there is a little knowledge about the sub-critical phase on unbounded
degree graphs. For Galton-Watson trees, Pemantle proved in [8] that if the reproduction
law B asymptotically satisfies that P(B ≥ x) ≥ exp(−x1−ε), for some ε > 0, then λc = 0.
Recently, in [6], by introducing the notion of cumulatively merged partition (abbr. CMP)
(see Section 2.2), the authors provided a sufficient condition on graphs ensuring that
λc > 0. As an application, they show that the contact process on random geometric
graphs and Delaunay triangulations exhibits a non-trivial phase transition.

The long range percolation graph was first introduced in [10, 11]. Then it gained
interest in some contexts such as the graph distance, diameter, random walk, see [3]
for a list of reference. The long range percolation is locally finite if and only if s > 1,
so we only consider the contact process on such graphs. Moreover, it follows from the
ergodicity of Gs that there is a non negative constant λc(s), such that

λc(Gs) = λc(s) for almost all graphs Gs. (1.1)

It is clear that the sequence of graphs (Gs) is stochastically decreasing in s in the sense
that Gs1 can be coupled as a subgraph of Gs2 if s1 ≥ s2. Therefore λc(s1) ≥ λc(s2).
Hence, we can define

sc = inf{s : λc(s) > 0}. (1.2)

We will apply the method in [6] to show that sc < +∞. Here is our main result.

Theorem 1.1. We have

sc ≤ 102.

There is a phase transition in the structure of the long range percolation. If s < 2, the
graph Gs exhibits the small-world phenomenon. More precisely, the distance between x
and y is of order (log |x − y|)κ+o(1) with κ = κ(s) > 1, with probability tending to 1 as
|x− y| → ∞, see for instance [2]. In contrast, if s > 2, the graph somehow looks like Z
(see Section 2.1) and the distance now is of order |x− y|, see [1]. On the other hand, as
mentioned above, we know that λc(Z) > 0. Hence, we conjecture that

sc ≤ 2.

The results in [6] can be slightly improved and thus we could get a better bound on sc,
but it would still be far from the critical value 2.

The paper is organized as follows. In Section 2, we first describe the structure of the
graph and show that Gs can be seen as the gluing of i.i.d. finite subgraphs. Then we
recall the definitions and results of [6] on the CMP. By studying the moment of the total
weight of a subgraph, we are able to apply the results from [6] and prove our main
theorem.

2 Proof of Theorem 1.1

2.1 Structure of the graph

We fix s > 2. For any k ∈ Z, we say that k is a cut-point if there is no edge (i, j) with
i < k and j > k.

Lemma 2.1. The following statements hold.
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(i) For all k ∈ Z
P(k is a cut-point) = P(0 is a cut-point) > 0.

As a consequence, almost surely there exist infinitely many cut-points.

(ii) The subgraphs induced in the intervals between consecutive cut-points are i.i.d. In
particular, the distances between consecutive cut-points form a sequence of i.i.d.
random variables.

Proof. We first prove (i). Observe that

P(k is a cut-point) = P(0 is a cut-point)

=
∏
i<0<j

(
1− |i− j|−s

)

≥ exp

−2 ∑
i<0<j

|i− j|−s


≥ e2/(2−s),

where we used that 1− x ≥ exp(−2x) for 0 ≤ x ≤ 1/2 and∑
i<0<j

|i− j|−s =
∑
i,j≥1

(i+ j)−s ≤ 1

s− 1

∑
i≥1

i1−s

≤ 1

s− 1

(
1 +

1

s− 2

)
=

1

s− 2
,

using series integral comparison.
Then the ergodic theorem implies that there are infinitely many cut-points a.s.
Part (ii) is immediate, since there are no edges between different intervals between

consecutive cut-points.

We now study some properties of the distance between two consecutive cut-points.

Proposition 2.2. Let D be the distance between two consecutive cut-points. Then there
exists a sequence of integer-valued random variables (εi)i≥0 with ε0 = 1, such that

(i) D =
T∑
i=0

εi with T = inf{i ≥ 1 : εi = 0},

(ii) T is stochastically dominated by a geometric random variable with mean e2/(2−s),

(iii) for all i, ` ≥ 1

P(εi > ` | T ≥ i) ≤ `2−s/(s− 2).

Proof. To simplify notation, we assume that 0 is a cut-point. Set X−1 = 0 and X0 = 1,
then we define for i ≥ 1

Xi = max{k : ∃Xi−2 ≤ j ≤ Xi−1 − 1, j ∼ k},
εi = Xi −Xi−1.

Then εi ≥ 0 and we define

T = inf{i ≥ 1 : Xi = Xi−1} = inf{i ≥ 1 : εi = 0}.
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We have Xi = Xi−1 for all i ≥ T , or equivalently εi = 0 for all i ≥ T .

Note that XT is the closest cut-point on the right of 0, so it has the same law as D, by
definition. Moreover

XT =

T∑
i=0

εi, (2.1)

which implies (i). Observe that for i ≥ 1 we have {T ≥ i} = {Xi−2 < Xi−1} and

P(T = i | T ≥ i) = P(Xi = Xi−1 | Xi−2 < Xi−1)

= P(@Xi−2 ≤ j < Xi−1 < k : j ∼ k | Xi−2 < Xi−1)

≥
∏

j<0<k

(
1− |j − k|−s

)
≥ e2/(2−s).

This implies (ii). For (iii), we note that for i, ` ≥ 1,

P(Xi ≤ Xi−1 + ` | Xi−2 < Xi−1) ≥
∏
j<0
k>`

(
1− |j − k|−s

)
≥ 1−

∑
j<0
k>`

|j − k|−s.

We have

∑
j<0
k>`

|j − k|−s =

∞∑
j=1

∞∑
k=`+1

(k + j)−s

≤ 1

s− 1

∞∑
j=1

(j + `)1−s

≤ `2−s/(s− 2).

Therefore,

P(εi > ` | T ≥ i) ≤ `2−s/(s− 2),

which proves (iii).

Since the definition of λc is independent of the starting vertex, we can assume that
the initially infected vertex is a cut-point.

It will be convenient to assume that 0 is a cut-point. Suppose that conditioned on
0 being a cut-point and infected at the beginning, we can prove that λc > 0. Since
the distribution is invariant under translations, we have λc > 0 for the contact process
starting from any cut point.

Hence, from now on we condition on the event 0 is a cut-point. Set K0 = 0, for i ≥ 1,
we call Ki (resp. K−i) the ith cut point from the right (resp. left) of 0. By Lemma 2.1
(ii), the graphs induced in the intervals [Ki,Ki+1) are i.i.d. Therefore, Gs is isomorphic
to the graph G̃s obtained by gluing an i.i.d. sequence of graphs with distribution of the
graph [0,K1). We have to prove that the contact process on G̃s exhibits a non-trivial
phase transition.
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2.2 Cumulatively merged partition

We recall here the definitions introduced in [6]. Given a locally finite graphG = (V,E),
an expansion exponent α ≥ 1, and a sequence of non-negative weights defined on the
vertices

(r(x), x ∈ V ) ∈ [0,∞)V ,

a partition C of the vertex set V is said to be (r, α)-admissible if it satisfies

∀C,C ′ ∈ C, C 6= C ′ =⇒ d(C,C ′) > min{r(C), r(C ′)}α,

with

r(C) =
∑
x∈C

r(x).

We call cumulatively merged partition (CMP) of the graph G with respect to r and α the
finest (r, α)- admissible partition and denote it by C (G, r, α). It is the intersection of all
(r, α)-admissible partitions of the graph, where the intersection is defined as follows: for
any sequence of partitions (Ci)i∈I ,

x ∼ y in ∩i∈I Ci if x ∼ y in Ci for all i ∈ I.

As for Bernoulli percolation on Zd, the question we are interested in is the existence of
an infinite cluster (here an infinite partition). For the CMP on Zd with i.i.d. weights, we
have the following result.

Proposition 2.3. [6, Proposition 3.7] For any α ≥ 1, there exists a positive constant
βc = βc(α), such that for any positive random variable Z satisfying E(Zγ) ≤ 1 with
γ = (4αd)2 and any β < βc, almost surely C (Zd, βZ, α)-the CMP on Zd with expansion
exponent α and i.i.d. weights distributed as βZ-has no infinite cluster.

We note that in [6, Proposition 3.7], the authors only assume that E(Zγ) < ∞ and
they do not precise the dependence of βc with E(Zγ). However, we can deduce from their
proof a lower bound on βc depending only on E(Zγ) (and only on α, γ, d if we suppose
E(Zγ) ≤ 1), see Appendix for more details. Finally, our βc(α) is a lower bound of the
critical parameter λc(α) introduced by Ménard and Singh.

Using the notion of CMP, they give a sufficient condition on a graph G ensuring that
the critical value of the contact process is positive.

Theorem 2.4. [6, Theorem 4.1] Let G = (V,E) be a locally finite connected graph.
Consider C (G, rM, α) the CMP on G with expansion exponent α and degree weights

rM(x) = deg(x)1(deg(x) ≥M).

Suppose that for some α ≥ 5/2 and M≥ 0, the partition C (G, rM, α) has no infinite cluster.
Then

λc(G) > 0.

Thanks to this result, Theorem 1.1 will follow from the following proposition.

Proposition 2.5. Fix s > 102. There exists a positive constant M, such that the partition
C (G̃s, rM, 5/2) has no infinite cluster a.s.

2.3 Proof of Proposition 2.5

Let C1 and C2 be two CMPs. We write C1 � C2, if there is a coupling such that C1 has
an infinite cluster only if C2 has an infinite cluster.
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Lemma 2.6. We have

C (G̃s, rM, 5/2) � C (Z, ZM, 5/2), (2.2)

with

ZM =
∑

0≤x<K1

deg(x)1(deg(x) ≥M).

Proof. For i ∈ Z, we define

Zi =
∑

Ki≤x<Ki+1

deg(x)1(deg(x) ≥M).

Then (Zi)i∈Z is a sequence of i.i.d. random variables with the same distribution as ZM,
since the graph G̃s is composed of i.i.d. subgraphs [Ki,Ki+1). Therefore, C (Z, (Zi), 5/2)

has the same law as C (Z, ZM, 5/2). Thus to prove Lemma 2.6, it remains to show that

C (G̃s, rM, 5/2) � C (Z, (Zi), 5/2). (2.3)

For any subset A of the vertices of G̃s, we define its projection

p(A) = {i ∈ Z : A ∩ [Ki,Ki+1) 6= ∅}.

Since all intervals [Ki,Ki+1) have finite mean, if |A| =∞ then |p(A)| =∞. Therefore, to
prove (2.3), it suffices to show that

x ∼ y in C (G̃s, rM, 5/2) implies p(x) ∼ p(y) in C (Z, (Zi), 5/2). (2.4)

We prove (2.4) by contradiction. Suppose that there exist x0 and y0 such that x0 ∼ y0
in C (G̃s, rM, 5/2) and p(x0) 6∼ p(y0) in C (Z, (Zi), 5/2). Then by definition there exists C, a
((Zi), 5/2)-admissible partition of Z, such that p(x0) 6∼ p(y0) in C.

We define a partition C̃ of G̃s as follows:

x ∼ y in C̃ if and only if p(x) ∼ p(y) in C.

In other words, an element in C̃ is ∪i∈C [Ki,Ki+1) with C a set in C. We now claim that
C̃ is (rM, 5/2)-admissible. Indeed, let C̃ and C̃ ′ be two different sets in C̃. Then by the
definition of C̃, we have p(C̃) and p(C̃ ′) are two different sets in C and

Z(p(C̃)) :=
∑
i∈p(C̃)

Zi =
∑
x∈C̃

deg(x)1(deg(x) ≥M) = rM(C̃).

Moreover, since these intervals [Ki,Ki+1) are disjoint,

d(C̃, C̃ ′) ≥ d(p(C̃), p(C̃ ′)).

On the other hand, as C is ((Zi), 5/2)-admissible,

d(p(C̃), p(C̃ ′)) > min{Z(p(C̃)), Z(p(C̃ ′))}5/2.

It follows from the last three inequalities that

d(C̃, C̃ ′) > min{rM(C̃), rM(C̃ ′)}5/2,

which implies that C̃ is (rM, 5/2)-admissible.
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Let C0 and C ′0 be the two sets in the partition C containing p(x0) and p(y0) respectively.
Then by assumption C0 6= C ′0. We define

C̃0 =
⋃
i∈C0

[Ki,Ki+1) and C̃ ′0 =
⋃
i∈C′0

[Ki,Ki+1).

Then both C̃0 and C̃ ′0 are in C̃, and C̃0 6= C̃ ′0. Moreover C̃0 contains x0 and C̃ ′0 contains
y0. Hence x0 6∼ y0 in C̃ which is a (rM, 5/2)-admissible partition. Therefore, x0 6∼ y0 in
C (G̃s, rM, 5/2), which leads to a contradiction. Thus (2.4) has been proved.

We now apply Proposition 2.3 and Lemma 2.6 to prove Proposition 2.5. To do that, we fix
a positive constant β < βc(5/2) with βc(5/2) as in Proposition 2.3 with d = 1 and rewrite

ZM = β
ZM

β
.

If we can show that there is M=M (β, s), such that

E

((
ZM

β

)100
)
≤ 1, (2.5)

then Proposition 2.3 implies that a.s. C (Z, ZM, 5/2) has no infinite cluster. Therefore, by
Lemma 2.6, there is no infinite cluster in C (G̃s, rM, 5/2) and thus Proposition 2.5 follows.
Now it remains to prove (2.5).

It follows from Proposition 2.2 (i) that

E(K100
1 ) = E(D100) = E

( T∑
i=0

εi

)100
 , (2.6)

where T and (εi) are as in Proposition 2.2.
Applying the inequality (x1 + . . .+ xn)

100 ≤ n99(x1001 + . . .+ x100n ) for any n ∈ N and
x1, . . . , xn ∈ R, we get

E

( T∑
i=0

εi

)100
 ≤ E

[
(T + 1)99

T∑
i=0

ε100i

]

=

∞∑
i=0

E
[
(T + 1)99ε100i 1(T ≥ i)

]
. (2.7)

Let p = 1 + (s− 102)/200 > 1 and q be its conjugate, i.e. p−1 + q−1 = 1. Then applying
Hölder’s inequality, we obtain

E
[
(T + 1)99ε100i 1(T ≥ i)

]
≤ E

(
(T + 1)99q

)1/q
E
(
ε100pi 1(T ≥ i)

)1/p
. (2.8)

On the other hand,

E
(
ε100pi 1(T ≥ i)

)
= E

(
ε100pi | T ≥ i

)
P(T ≥ i). (2.9)

Using Proposition 2.2 (iii) we have for i ≥ 1

E
(
ε100pi | T ≥ i

)
≤ 100p

∞∑
`=0

P(εi > ` | T ≥ i)(`+ 1)100p−1

≤ 100p

1 +∑
`≥1

`2−s(1 + `)100p−1/(s− 2)


≤ C1 = C1(s) <∞,
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since by definition

2− s+ 100p− 1 = −1− (s− 102)/2 < −1.

Hence for all i ≥ 1

E
(
ε100pi 1(T ≥ i)

)
≤ C1P(T ≥ i). (2.10)

It follows from (2.6), (2.7), (2.8) and (2.10) that

E(K100
1 ) ≤ E

[
(T + 1)99q

]1/q [
1 +

∞∑
i=1

(C1P(T ≥ i))1/p
]

= M <∞, (2.11)

since T is stochastically dominated by a geometric random variable.
For any j ∈ Z and any interval I, we denote by degI(j) the number of neighbors of j

in I when we consider the original graph (without conditioning on 0 being a cut-point).
Now for any non decreasing sequence (xk)k≥1 with x1 ≥ 1, conditionally on ε1 =

x1 − 1, ε2 = x2 − x1, . . ., we have for all j ∈ (xk−1, xk),

deg(j) ≺ 1 + deg[xk−2,xk+1)
(j),

where ≺ means stochastic domination.
Indeed, the conditioning implies that j is only connected to vertices in [xk−2, xk+1]

and that there is a vertex in [xk−1, xk) connected to xk+1.
Similarly, if j = xk, it is only connected to vertices in [xk−2, xk+2]. Moreover, j

is connected to at least one vertex in [xk−2, xk−1) and there is a vertex in [xk, xk+1)

connected to xk+2. Therefore,

deg(xk) ≺ 2 + deg[xk−2,xk+2)
(xk).

In conclusion, conditionally on j ∈ [0,K1),

deg(j) ≺ 2 + Y,

where

Y = deg(−∞,+∞)(j).

Hence,

E
(
deg(j)1001(deg(j) ≥M) | j ∈ [0,K1)

)
≤ E

(
(2 + Y )1001(Y ≥M −2)

)
. (2.12)

On the other hand,

P(Y = k) = P(deg(−∞,+∞)(0) = k)

≤ P(deg(−∞,+∞)(0) ≥ k)

≤
∑

i1<i2<...<ik

|i1|−s|i2|−s . . . |ik|−s

≤ 1

k!

∑
i1,i2,...,ik

|i1|−s|i2|−s . . . |ik|−s

=
1

k!

2
∑
i≥1

i−s

k

=
Ck

k!
,
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with C = 2
∑
i≥1 i

−s. Therefore,

E
(
(2 + Y )1001(Y ≥M −2)

)
≤

∑
k≥M−2

Ck(k + 2)100

k!

:= f(M). (2.13)

It follows from (2.11), (2.12) and (2.13) that

E(Z100
M ) = E


 ∑

0≤j<K1

deg(j)1(deg(j) ≥M)

100


≤ E

K99
1

∑
0≤j<K1

deg(j)1001(deg(j) ≥M)


≤ E(K100

1 )f(M)

≤ Mf(M).

Since f(M) → 0 as M→ ∞, there exists M0∈ (0,∞), such that Mf(M0) ≤ β100 and thus
(2.5) is satisfied. �

Appendix: a lower bound on βc

In [6], Proposition 3.7 (our Proposition 2.3) follows from Lemmas 3.9, 3.10, 3.11 and
a conclusion argument. Let us find in their proof a lower bound on βc.

At first, they define a constant c = 2αd+ 1 and some sequences

Ln = 2c
n

and Rn = L1 . . . Ln and εn = 2−2dc
n+1

.

In Lemma 3.9, the authors do not use any information on Z and β. They set a constant
k0 = [2d+1(c+ 1)].

In Lemma 3.10, they suppose that β ≤ 1 and the information concerning Z is as
follows. There exists n0, such that for all n ≥ n0, we have

2dE(Zγ)L−µn+1 ≤ 1/2,

with

µ =
γ − 1

2α
− 3d− 4αd2 > 0.

In fact, under the assumption E(Zγ) ≤ 1, we can take

n0 =

 log
(
d+1
µ

)
log c

 . (2.14)

In Lemma 3.10, they also assume that β ≤ 1 and define a constant n1, such that n1 ≥ n0
and for all n ≥ n1

3kα+1
0 Ln+1 ≤

Rn+1

20
,

or equivalently,

60kα+1
0 ≤ Rn. (2.15)
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In the conclusion leading to the proof of [6, Proposition 3.7], a lower bound on βc is
implicit. Indeed, with Lemmas 3.9, 3.10, 3.11 in hand, the authors only require that

P(E(Rn1)) ≥ 1− εn1 , (2.16)

where for any N ≥ 1

E(N) = {there exits a stable set S such that JN/5, 4N/5Kd ⊂ S ⊂ J1, NKd}.

We do not recall the definition of stable sets here. However, we notice that by the first
part of Proposition 2.5 and Corollary 2.13 in [6], the event E(N) occurs when the weights
of all vertices in J1, NKd are less than 1/2. Therefore

P(E(N)) ≥ P
(
r(x) ≤ 1/2 for all x ∈ J1, NKd

)
= P(βZ ≤ 1/2)N

d

= (1− P(βZ > 1/2))
Nd

=
(
1− P(Zγ > (2β)−γ)

)Nd

≥ (1− (2β)γE(Zγ))
Nd

.

Hence (2.16) is satisfied if

(1− (2β)γE(Zγ))
Rd

n1 ≥ (1− εn1),

or equivalently

(2β)γE(Zγ) ≤ 1− (1− εn1)
R−d

n1 .

Hence, under the assumption E(Zγ) ≤ 1, we can take

βc =
1

2

(
1− (1− εn1

)R
−d
n1

)1/γ
,

with n1 as in (2.15).
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