Contact process on one-dimensional long range percolation

Van Hao Can*

Abstract

Recently, by introducing the notion of cumulatively merged partition, Ménard and Singh provide in [6] a sufficient condition on graphs ensuring that the critical value of the contact process is positive. In this note, we show that the one-dimensional long range percolation with high exponent satisfies their condition and thus the contact process exhibits a non-trivial phase transition.

Keywords: Contact process; Cumulative merging; Long range percolation.
AMS MSC 2010: 82C22; 60K35; 05C80.
Submitted to ECP on August 3, 2015, final version accepted on December 17, 2015.

1 Introduction

In this paper, we study the contact process on G_{s}, the one-dimensional long range percolation graph with exponent $s>1$, defined as follows: independently for any i and j in \mathbb{Z} there is an edge connecting them with probability $|i-j|^{-s}$. In particular, G contains \mathbb{Z} so it is connected.

On the other hand, the contact process was introduced in an article of T. E. Harris [4] and is defined as follows: given a locally finite graph $G=(V, E)$ and $\lambda>0$, the contact process on G with infection rate λ is a Markov process $\left(\xi_{t}\right)_{t \geq 0}$ on $\{0,1\}^{V}$. Vertices of V (also called sites) are regarded as individuals which are either infected (state 1) or healthy (state 0). By considering ξ_{t} as a subset of V via $\xi_{t} \equiv\left\{v: \xi_{t}(v)=1\right\}$, the transition rates are given by

$$
\begin{aligned}
& \xi_{t} \rightarrow \xi_{t} \backslash\{v\} \text { for } v \in \xi_{t} \text { at rate } 1, \text { and } \\
& \xi_{t} \rightarrow \xi_{t} \cup\{v\} \text { for } v \notin \xi_{t} \text { at rate } \lambda \operatorname{deg}_{\xi_{t}}(v),
\end{aligned}
$$

where $\operatorname{deg}_{\xi_{t}}(v)$ denotes the number of infected neighbors of v at time t. Given $A \subset V$, we denote by $\left(\xi_{t}^{A}\right)_{t \geq 0}$ the contact process with initial configuration A and if $A=\{v\}$ we simply write (ξ_{t}^{v}).

Since the contact process is monotone in λ, we can define the critical value

$$
\lambda_{c}(G)=\inf \left\{\lambda: \mathbb{P}\left(\xi_{t}^{v} \neq \varnothing \forall t\right)>0\right\}
$$

This definition does not depend on the choice of v if G is connected. If G has bounded degree, then there exists a non-trivial sub-critical phase, i.e. $\lambda_{c}>0$, as the contact process is stochastically dominated by a continuous time branching random walk with

[^0]reproduction rate λ. Thus for integer lattices and regular trees, the critical value is positive. The behavior of the contact process on these graphs was extensively investigated, see for instance [5, 7, 9].

In contrast, there is a little knowledge about the sub-critical phase on unbounded degree graphs. For Galton-Watson trees, Pemantle proved in [8] that if the reproduction law B asymptotically satisfies that $\mathbb{P}(B \geq x) \geq \exp \left(-x^{1-\varepsilon}\right)$, for some $\varepsilon>0$, then $\lambda_{c}=0$. Recently, in [6], by introducing the notion of cumulatively merged partition (abbr. CMP) (see Section 2.2), the authors provided a sufficient condition on graphs ensuring that $\lambda_{c}>0$. As an application, they show that the contact process on random geometric graphs and Delaunay triangulations exhibits a non-trivial phase transition.

The long range percolation graph was first introduced in [10, 11]. Then it gained interest in some contexts such as the graph distance, diameter, random walk, see [3] for a list of reference. The long range percolation is locally finite if and only if $s>1$, so we only consider the contact process on such graphs. Moreover, it follows from the ergodicity of G_{s} that there is a non negative constant $\lambda_{c}(s)$, such that

$$
\begin{equation*}
\lambda_{c}\left(G_{s}\right)=\lambda_{c}(s) \text { for almost all graphs } G_{s} . \tag{1.1}
\end{equation*}
$$

It is clear that the sequence of graphs $\left(G_{s}\right)$ is stochastically decreasing in s in the sense that $G_{s_{1}}$ can be coupled as a subgraph of $G_{s_{2}}$ if $s_{1} \geq s_{2}$. Therefore $\lambda_{c}\left(s_{1}\right) \geq \lambda_{c}\left(s_{2}\right)$. Hence, we can define

$$
\begin{equation*}
s_{c}=\inf \left\{s: \lambda_{c}(s)>0\right\} . \tag{1.2}
\end{equation*}
$$

We will apply the method in [6] to show that $s_{c}<+\infty$. Here is our main result.
Theorem 1.1. We have

$$
s_{c} \leq 102
$$

There is a phase transition in the structure of the long range percolation. If $s<2$, the graph G_{s} exhibits the small-world phenomenon. More precisely, the distance between x and y is of order $(\log |x-y|)^{\varkappa+o(1)}$ with $\varkappa=\varkappa(s)>1$, with probability tending to 1 as $|x-y| \rightarrow \infty$, see for instance [2]. In contrast, if $s>2$, the graph somehow looks like \mathbb{Z} (see Section 2.1) and the distance now is of order $|x-y|$, see [1]. On the other hand, as mentioned above, we know that $\lambda_{c}(\mathbb{Z})>0$. Hence, we conjecture that

$$
s_{c} \leq 2
$$

The results in [6] can be slightly improved and thus we could get a better bound on s_{c}, but it would still be far from the critical value 2 .

The paper is organized as follows. In Section 2, we first describe the structure of the graph and show that G_{s} can be seen as the gluing of i.i.d. finite subgraphs. Then we recall the definitions and results of [6] on the CMP. By studying the moment of the total weight of a subgraph, we are able to apply the results from [6] and prove our main theorem.

2 Proof of Theorem 1.1

2.1 Structure of the graph

We fix $s>2$. For any $k \in \mathbb{Z}$, we say that k is a cut-point if there is no edge (i, j) with $i<k$ and $j>k$.
Lemma 2.1. The following statements hold.
(i) For all $k \in \mathbb{Z}$

$$
\mathbb{P}(k \text { is a cut-point })=\mathbb{P}(0 \text { is a cut-point })>0 .
$$

As a consequence, almost surely there exist infinitely many cut-points.
(ii) The subgraphs induced in the intervals between consecutive cut-points are i.i.d. In particular, the distances between consecutive cut-points form a sequence of i.i.d. random variables.

Proof. We first prove (i). Observe that

$$
\begin{aligned}
\mathbb{P}(k \text { is a cut-point }) & =\mathbb{P}(0 \text { is a cut-point }) \\
& =\prod_{i<0<j}\left(1-|i-j|^{-s}\right) \\
& \geq \exp \left(-2 \sum_{i<0<j}|i-j|^{-s}\right) \\
& \geq e^{2 /(2-s)}
\end{aligned}
$$

where we used that $1-x \geq \exp (-2 x)$ for $0 \leq x \leq 1 / 2$ and

$$
\begin{aligned}
\sum_{i<0<j}|i-j|^{-s}=\sum_{i, j \geq 1}(i+j)^{-s} & \leq \frac{1}{s-1} \sum_{i \geq 1} i^{1-s} \\
& \leq \frac{1}{s-1}\left(1+\frac{1}{s-2}\right)=\frac{1}{s-2}
\end{aligned}
$$

using series integral comparison.
Then the ergodic theorem implies that there are infinitely many cut-points a.s.
Part (ii) is immediate, since there are no edges between different intervals between consecutive cut-points.

We now study some properties of the distance between two consecutive cut-points.
Proposition 2.2. Let D be the distance between two consecutive cut-points. Then there exists a sequence of integer-valued random variables $\left(\varepsilon_{i}\right)_{i \geq 0}$ with $\varepsilon_{0}=1$, such that
(i) $D=\sum_{i=0}^{T} \varepsilon_{i}$ with $T=\inf \left\{i \geq 1: \varepsilon_{i}=0\right\}$,
(ii) T is stochastically dominated by a geometric random variable with mean $e^{2 /(2-s)}$,
(iii) for all $i, \ell \geq 1$

$$
\mathbb{P}\left(\varepsilon_{i}>\ell \mid T \geq i\right) \leq \ell^{2-s} /(s-2)
$$

Proof. To simplify notation, we assume that 0 is a cut-point. Set $X_{-1}=0$ and $X_{0}=1$, then we define for $i \geq 1$

$$
\begin{aligned}
X_{i} & =\max \left\{k: \exists X_{i-2} \leq j \leq X_{i-1}-1, j \sim k\right\} \\
\varepsilon_{i} & =X_{i}-X_{i-1}
\end{aligned}
$$

Then $\varepsilon_{i} \geq 0$ and we define

$$
T=\inf \left\{i \geq 1: X_{i}=X_{i-1}\right\}=\inf \left\{i \geq 1: \varepsilon_{i}=0\right\}
$$

We have $X_{i}=X_{i-1}$ for all $i \geq T$, or equivalently $\varepsilon_{i}=0$ for all $i \geq T$.
Note that X_{T} is the closest cut-point on the right of 0 , so it has the same law as D, by definition. Moreover

$$
\begin{equation*}
X_{T}=\sum_{i=0}^{T} \varepsilon_{i} \tag{2.1}
\end{equation*}
$$

which implies (i). Observe that for $i \geq 1$ we have $\{T \geq i\}=\left\{X_{i-2}<X_{i-1}\right\}$ and

$$
\begin{aligned}
\mathbb{P}(T=i \mid T \geq i) & =\mathbb{P}\left(X_{i}=X_{i-1} \mid X_{i-2}<X_{i-1}\right) \\
& =\mathbb{P}\left(\nexists X_{i-2} \leq j<X_{i-1}<k: j \sim k \mid X_{i-2}<X_{i-1}\right) \\
& \geq \prod_{j<0<k}\left(1-|j-k|^{-s}\right) \\
& \geq e^{2 /(2-s)} .
\end{aligned}
$$

This implies (ii). For (iii), we note that for $i, \ell \geq 1$,

$$
\begin{aligned}
\mathbb{P}\left(X_{i} \leq X_{i-1}+\ell \mid X_{i-2}<X_{i-1}\right) & \geq \prod_{\substack{j<0 \\
k>\ell}}\left(1-|j-k|^{-s}\right) \\
& \geq 1-\sum_{\substack{j<0 \\
k>\ell}}|j-k|^{-s} .
\end{aligned}
$$

We have

$$
\begin{aligned}
\sum_{\substack{j<0 \\
k>\ell}}|j-k|^{-s} & =\sum_{j=1}^{\infty} \sum_{k=\ell+1}^{\infty}(k+j)^{-s} \\
& \leq \frac{1}{s-1} \sum_{j=1}^{\infty}(j+\ell)^{1-s} \\
& \leq \ell^{2-s} /(s-2)
\end{aligned}
$$

Therefore,

$$
\mathbb{P}\left(\varepsilon_{i}>\ell \mid T \geq i\right) \leq \ell^{2-s} /(s-2)
$$

which proves (iii).
Since the definition of λ_{c} is independent of the starting vertex, we can assume that the initially infected vertex is a cut-point.

It will be convenient to assume that 0 is a cut-point. Suppose that conditioned on 0 being a cut-point and infected at the beginning, we can prove that $\lambda_{c}>0$. Since the distribution is invariant under translations, we have $\lambda_{c}>0$ for the contact process starting from any cut point.

Hence, from now on we condition on the event 0 is a cut-point. Set $K_{0}=0$, for $i \geq 1$, we call K_{i} (resp. K_{-i}) the $i^{\text {th }}$ cut point from the right (resp. left) of 0 . By Lemma 2.1 (ii), the graphs induced in the intervals $\left[K_{i}, K_{i+1}\right)$ are i.i.d. Therefore, G_{s} is isomorphic to the graph \tilde{G}_{s} obtained by gluing an i.i.d. sequence of graphs with distribution of the graph $\left[0, K_{1}\right)$. We have to prove that the contact process on \tilde{G}_{s} exhibits a non-trivial phase transition.

2.2 Cumulatively merged partition

We recall here the definitions introduced in [6]. Given a locally finite graph $G=(V, E)$, an expansion exponent $\alpha \geq 1$, and a sequence of non-negative weights defined on the vertices

$$
(r(x), x \in V) \in[0, \infty)^{V}
$$

a partition \mathcal{C} of the vertex set V is said to be (r, α)-admissible if it satisfies

$$
\forall C, C^{\prime} \in \mathcal{C}, \quad C \neq C^{\prime} \quad \Longrightarrow \quad d\left(C, C^{\prime}\right)>\min \left\{r(C), r\left(C^{\prime}\right)\right\}^{\alpha}
$$

with

$$
r(C)=\sum_{x \in C} r(x)
$$

We call cumulatively merged partition (CMP) of the graph G with respect to r and α the finest (r, α) - admissible partition and denote it by $\mathscr{C}(G, r, \alpha)$. It is the intersection of all (r, α)-admissible partitions of the graph, where the intersection is defined as follows: for any sequence of partitions $\left(\mathcal{C}_{i}\right)_{i \in I}$,

$$
x \sim y \text { in } \cap_{i \in I} \mathcal{C}_{i} \quad \text { if } \quad x \sim y \text { in } \mathcal{C}_{i} \text { for all } i \in I
$$

As for Bernoulli percolation on \mathbb{Z}^{d}, the question we are interested in is the existence of an infinite cluster (here an infinite partition). For the CMP on \mathbb{Z}^{d} with i.i.d. weights, we have the following result.
Proposition 2.3. [6, Proposition 3.7] For any $\alpha \geq 1$, there exists a positive constant $\beta_{c}=\beta_{c}(\alpha)$, such that for any positive random variable Z satisfying $\mathbb{E}\left(Z^{\gamma}\right) \leq 1$ with $\gamma=(4 \alpha d)^{2}$ and any $\beta<\beta_{c}$, almost surely $\mathscr{C}\left(\mathbb{Z}^{d}, \beta Z, \alpha\right)$-the $C M P$ on \mathbb{Z}^{d} with expansion exponent α and i.i.d. weights distributed as βZ-has no infinite cluster.

We note that in [6, Proposition 3.7], the authors only assume that $\mathbb{E}\left(Z^{\gamma}\right)<\infty$ and they do not precise the dependence of β_{c} with $\mathbb{E}\left(Z^{\gamma}\right)$. However, we can deduce from their proof a lower bound on β_{c} depending only on $\mathbb{E}\left(Z^{\gamma}\right)$ (and only on α, γ, d if we suppose $\mathbb{E}\left(Z^{\gamma}\right) \leq 1$), see Appendix for more details. Finally, our $\beta_{c}(\alpha)$ is a lower bound of the critical parameter $\lambda_{c}(\alpha)$ introduced by Ménard and Singh.

Using the notion of CMP, they give a sufficient condition on a graph G ensuring that the critical value of the contact process is positive.
Theorem 2.4. [6, Theorem 4.1] Let $G=(V, E)$ be a locally finite connected graph. Consider $\mathscr{C}\left(G, r_{\Delta}, \alpha\right)$ the CMP on G with expansion exponent α and degree weights

$$
r_{\Delta}(x)=\operatorname{deg}(x) 1(\operatorname{deg}(x) \geq \Delta)
$$

Suppose that for some $\alpha \geq 5 / 2$ and $\Delta \geq 0$, the partition $\mathscr{C}\left(G, r_{\Delta}, \alpha\right)$ has no infinite cluster. Then

$$
\lambda_{c}(G)>0
$$

Thanks to this result, Theorem 1.1 will follow from the following proposition.
Proposition 2.5. Fix $s>102$. There exists a positive constant Δ, such that the partition $\mathscr{C}\left(\tilde{G}_{s}, r_{\Delta}, 5 / 2\right)$ has no infinite cluster a.s.

2.3 Proof of Proposition 2.5

Let \mathscr{C}_{1} and \mathscr{C}_{2} be two CMPs. We write $\mathscr{C}_{1} \preceq \mathscr{C}_{2}$, if there is a coupling such that \mathscr{C}_{1} has an infinite cluster only if \mathscr{C}_{2} has an infinite cluster.

Contact process on one-dimensional long range percolation

Lemma 2.6. We have

$$
\begin{equation*}
\mathscr{C}\left(\tilde{G}_{s}, r_{\Delta}, 5 / 2\right) \preceq \mathscr{C}\left(\mathbb{Z}, Z_{\Delta}, 5 / 2\right) \tag{2.2}
\end{equation*}
$$

with

$$
Z_{\Delta}=\sum_{0 \leq x<K_{1}} \operatorname{deg}(x) 1(\operatorname{deg}(x) \geq \Delta) .
$$

Proof. For $i \in \mathbb{Z}$, we define

$$
Z_{i}=\sum_{K_{i} \leq x<K_{i+1}} \operatorname{deg}(x) 1(\operatorname{deg}(x) \geq \Delta) .
$$

Then $\left(Z_{i}\right)_{i \in \mathbb{Z}}$ is a sequence of i.i.d. random variables with the same distribution as Z_{Δ}, since the graph \tilde{G}_{s} is composed of i.i.d. subgraphs $\left[K_{i}, K_{i+1}\right)$. Therefore, $\mathscr{C}\left(\mathbb{Z},\left(Z_{i}\right), 5 / 2\right)$ has the same law as $\mathscr{C}\left(\mathbb{Z}, Z_{\Delta}, 5 / 2\right)$. Thus to prove Lemma 2.6 , it remains to show that

$$
\begin{equation*}
\mathscr{C}\left(\tilde{G}_{s}, r_{\Delta}, 5 / 2\right) \preceq \mathscr{C}\left(\mathbb{Z},\left(Z_{i}\right), 5 / 2\right) . \tag{2.3}
\end{equation*}
$$

For any subset A of the vertices of \tilde{G}_{s}, we define its projection

$$
p(A)=\left\{i \in \mathbb{Z}: A \cap\left[K_{i}, K_{i+1}\right) \neq \varnothing\right\} .
$$

Since all intervals $\left[K_{i}, K_{i+1}\right.$) have finite mean, if $|A|=\infty$ then $|p(A)|=\infty$. Therefore, to prove (2.3), it suffices to show that

$$
\begin{equation*}
x \sim y \text { in } \mathscr{C}\left(\tilde{G}_{s}, r_{\Delta}, 5 / 2\right) \quad \text { implies } \quad p(x) \sim p(y) \text { in } \mathscr{C}\left(\mathbb{Z},\left(Z_{i}\right), 5 / 2\right) . \tag{2.4}
\end{equation*}
$$

We prove (2.4) by contradiction. Suppose that there exist x_{0} and y_{0} such that $x_{0} \sim y_{0}$ in $\mathscr{C}\left(\tilde{G}_{s}, r_{\Delta}, 5 / 2\right)$ and $p\left(x_{0}\right) \nsim p\left(y_{0}\right)$ in $\mathscr{C}\left(\mathbb{Z},\left(Z_{i}\right), 5 / 2\right)$. Then by definition there exists \mathcal{C}, a $\left(\left(Z_{i}\right), 5 / 2\right)$-admissible partition of \mathbb{Z}, such that $p\left(x_{0}\right) \nsim p\left(y_{0}\right)$ in \mathcal{C}.

We define a partition $\tilde{\mathcal{C}}$ of \tilde{G}_{s} as follows:

$$
x \sim y \text { in } \tilde{\mathcal{C}} \quad \text { if and only if } \quad p(x) \sim p(y) \text { in } \mathcal{C}
$$

In other words, an element in $\tilde{\mathcal{C}}$ is $\cup_{i \in C}\left[K_{i}, K_{i+1}\right)$ with C a set in \mathcal{C}. We now claim that $\tilde{\mathcal{C}}$ is $\left(r_{\Delta}, 5 / 2\right)$-admissible. Indeed, let \tilde{C} and \tilde{C}^{\prime} be two different sets in $\tilde{\mathcal{C}}$. Then by the definition of $\tilde{\mathcal{C}}$, we have $p(\tilde{C})$ and $p\left(\tilde{C}^{\prime}\right)$ are two different sets in \mathcal{C} and

$$
Z(p(\tilde{C})):=\sum_{i \in p(\tilde{C})} Z_{i}=\sum_{x \in \tilde{C}} \operatorname{deg}(x) 1(\operatorname{deg}(x) \geq \Delta)=r_{\Delta}(\tilde{C}) .
$$

Moreover, since these intervals [K_{i}, K_{i+1}) are disjoint,

$$
d\left(\tilde{C}, \tilde{C}^{\prime}\right) \geq d\left(p(\tilde{C}), p\left(\tilde{C}^{\prime}\right)\right)
$$

On the other hand, as \mathcal{C} is $\left(\left(Z_{i}\right), 5 / 2\right)$-admissible,

$$
d\left(p(\tilde{C}), p\left(\tilde{C}^{\prime}\right)\right)>\min \left\{Z(p(\tilde{C})), Z\left(p\left(\tilde{C}^{\prime}\right)\right)\right\}^{5 / 2}
$$

It follows from the last three inequalities that

$$
d\left(\tilde{C}, \tilde{C}^{\prime}\right)>\min \left\{r_{\Delta}(\tilde{C}), r_{\Delta}\left(\tilde{C}^{\prime}\right)\right\}^{5 / 2}
$$

which implies that $\tilde{\mathcal{C}}$ is $\left(r_{\Delta}, 5 / 2\right)$-admissible.

Let C_{0} and C_{0}^{\prime} be the two sets in the partition \mathcal{C} containing $p\left(x_{0}\right)$ and $p\left(y_{0}\right)$ respectively. Then by assumption $C_{0} \neq C_{0}^{\prime}$. We define

$$
\tilde{C}_{0}=\bigcup_{i \in C_{0}}\left[K_{i}, K_{i+1}\right) \quad \text { and } \quad \tilde{C}_{0}^{\prime}=\bigcup_{i \in C_{0}^{\prime}}\left[K_{i}, K_{i+1}\right)
$$

Then both \tilde{C}_{0} and \tilde{C}_{0}^{\prime} are in $\tilde{\mathcal{C}}$, and $\tilde{C}_{0} \neq \tilde{C}_{0}^{\prime}$. Moreover \tilde{C}_{0} contains x_{0} and \tilde{C}_{0}^{\prime} contains y_{0}. Hence $x_{0} \nsim y_{0}$ in $\tilde{\mathcal{C}}$ which is a $\left(r_{\Delta}, 5 / 2\right)$-admissible partition. Therefore, $x_{0} \nsim y_{0}$ in $\mathscr{C}\left(\tilde{G}_{s}, r_{\Delta}, 5 / 2\right)$, which leads to a contradiction. Thus (2.4) has been proved.

We now apply Proposition 2.3 and Lemma 2.6 to prove Proposition 2.5. To do that, we fix a positive constant $\beta<\beta_{c}(5 / 2)$ with $\beta_{c}(5 / 2)$ as in Proposition 2.3 with $d=1$ and rewrite

$$
Z_{\Delta}=\beta \frac{Z_{\Delta}}{\beta} .
$$

If we can show that there is $\Delta=\Delta(\beta, s)$, such that

$$
\begin{equation*}
\mathbb{E}\left(\left(\frac{Z_{\Delta}}{\beta}\right)^{100}\right) \leq 1 \tag{2.5}
\end{equation*}
$$

then Proposition 2.3 implies that a.s. $\mathscr{C}\left(\mathbb{Z}, Z_{\Delta}, 5 / 2\right)$ has no infinite cluster. Therefore, by Lemma 2.6, there is no infinite cluster in $\mathscr{C}\left(\tilde{G}_{s}, r_{\Delta}, 5 / 2\right)$ and thus Proposition 2.5 follows. Now it remains to prove (2.5).

It follows from Proposition 2.2 (i) that

$$
\begin{equation*}
\mathbb{E}\left(K_{1}^{100}\right)=\mathbb{E}\left(D^{100}\right)=\mathbb{E}\left(\left(\sum_{i=0}^{T} \varepsilon_{i}\right)^{100}\right) \tag{2.6}
\end{equation*}
$$

where T and $\left(\varepsilon_{i}\right)$ are as in Proposition 2.2.
Applying the inequality $\left(x_{1}+\ldots+x_{n}\right)^{100} \leq n^{99}\left(x_{1}^{100}+\ldots+x_{n}^{100}\right)$ for any $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in \mathbb{R}$, we get

$$
\begin{align*}
\mathbb{E}\left(\left(\sum_{i=0}^{T} \varepsilon_{i}\right)^{100}\right) & \leq \mathbb{E}\left[(T+1)^{99} \sum_{i=0}^{T} \varepsilon_{i}^{100}\right] \\
& =\sum_{i=0}^{\infty} \mathbb{E}\left[(T+1)^{99} \varepsilon_{i}^{100} 1(T \geq i)\right] \tag{2.7}
\end{align*}
$$

Let $p=1+(s-102) / 200>1$ and q be its conjugate, i.e. $p^{-1}+q^{-1}=1$. Then applying Hölder's inequality, we obtain

$$
\begin{equation*}
\mathbb{E}\left[(T+1)^{99} \varepsilon_{i}^{100} 1(T \geq i)\right] \leq \mathbb{E}\left((T+1)^{99 q}\right)^{1 / q} \mathbb{E}\left(\varepsilon_{i}^{100 p} 1(T \geq i)\right)^{1 / p} \tag{2.8}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\mathbb{E}\left(\varepsilon_{i}^{100 p} 1(T \geq i)\right)=\mathbb{E}\left(\varepsilon_{i}^{100 p} \mid T \geq i\right) \mathbb{P}(T \geq i) \tag{2.9}
\end{equation*}
$$

Using Proposition 2.2 (iii) we have for $i \geq 1$

$$
\begin{aligned}
\mathbb{E}\left(\varepsilon_{i}^{100 p} \mid T \geq i\right) & \leq 100 p \sum_{\ell=0}^{\infty} \mathbb{P}\left(\varepsilon_{i}>\ell \mid T \geq i\right)(\ell+1)^{100 p-1} \\
& \leq 100 p\left[1+\sum_{\ell \geq 1} \ell^{2-s}(1+\ell)^{100 p-1} /(s-2)\right] \\
& \leq C_{1}=C_{1}(s)<\infty
\end{aligned}
$$

since by definition

$$
2-s+100 p-1=-1-(s-102) / 2<-1
$$

Hence for all $i \geq 1$

$$
\begin{equation*}
\mathbb{E}\left(\varepsilon_{i}^{100 p} 1(T \geq i)\right) \leq C_{1} \mathbb{P}(T \geq i) \tag{2.10}
\end{equation*}
$$

It follows from (2.6), (2.7), (2.8) and (2.10) that

$$
\begin{align*}
\mathbb{E}\left(K_{1}^{100}\right) & \leq \mathbb{E}\left[(T+1)^{99 q}\right]^{1 / q}\left[1+\sum_{i=1}^{\infty}\left(C_{1} \mathbb{P}(T \geq i)\right)^{1 / p}\right] \\
& =M<\infty \tag{2.11}
\end{align*}
$$

since T is stochastically dominated by a geometric random variable.
For any $j \in \mathbb{Z}$ and any interval I, we denote by $\operatorname{deg}_{I}(j)$ the number of neighbors of j in I when we consider the original graph (without conditioning on 0 being a cut-point).

Now for any non decreasing sequence $\left(x_{k}\right)_{k \geq 1}$ with $x_{1} \geq 1$, conditionally on $\varepsilon_{1}=$ $x_{1}-1, \varepsilon_{2}=x_{2}-x_{1}, \ldots$, we have for all $j \in\left(x_{k-1}, x_{k}\right)$,

$$
\operatorname{deg}(j) \prec 1+\operatorname{deg}_{\left[x_{k-2}, x_{k+1}\right)}(j),
$$

where \prec means stochastic domination.
Indeed, the conditioning implies that j is only connected to vertices in $\left[x_{k-2}, x_{k+1}\right]$ and that there is a vertex in $\left[x_{k-1}, x_{k}\right)$ connected to x_{k+1}.

Similarly, if $j=x_{k}$, it is only connected to vertices in $\left[x_{k-2}, x_{k+2}\right]$. Moreover, j is connected to at least one vertex in $\left[x_{k-2}, x_{k-1}\right)$ and there is a vertex in $\left[x_{k}, x_{k+1}\right)$ connected to x_{k+2}. Therefore,

$$
\operatorname{deg}\left(x_{k}\right) \prec 2+\operatorname{deg}_{\left[x_{k-2}, x_{k+2}\right)}\left(x_{k}\right) .
$$

In conclusion, conditionally on $j \in\left[0, K_{1}\right)$,

$$
\operatorname{deg}(j) \prec 2+Y
$$

where

$$
Y=\operatorname{deg}_{(-\infty,+\infty)}(j)
$$

Hence,

$$
\begin{equation*}
\mathbb{E}\left(\operatorname{deg}(j)^{100} 1(\operatorname{deg}(j) \geq \Delta) \mid j \in\left[0, K_{1}\right)\right) \leq \mathbb{E}\left((2+Y)^{100} 1(Y \geq \Delta-2)\right) \tag{2.12}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\mathbb{P}(Y=k) & =\mathbb{P}\left(\operatorname{deg}_{(-\infty,+\infty)}(0)=k\right) \\
& \leq \mathbb{P}\left(\operatorname{deg}_{(-\infty,+\infty)}(0) \geq k\right) \\
& \leq \sum_{i_{1}<i_{2}<\ldots<i_{k}}\left|i_{1}\right|^{-s}\left|i_{2}\right|^{-s} \ldots\left|i_{k}\right|^{-s} \\
& \leq \frac{1}{k!} \sum_{i_{1}, i_{2}, \ldots, i_{k}}\left|i_{1}\right|^{-s}\left|i_{2}\right|^{-s} \ldots\left|i_{k}\right|^{-s} \\
& =\frac{1}{k!}\left(2 \sum_{i \geq 1} i^{-s}\right)^{k}=\frac{C^{k}}{k!},
\end{aligned}
$$

with $C=2 \sum_{i \geq 1} i^{-s}$. Therefore,

$$
\begin{align*}
\mathbb{E}\left((2+Y)^{100} 1(Y \geq \Delta-2)\right) & \leq \sum_{k \geq \Delta-2} \frac{C^{k}(k+2)^{100}}{k!} \\
& :=f(\Delta) \tag{2.13}
\end{align*}
$$

It follows from (2.11), (2.12) and (2.13) that

$$
\begin{aligned}
\mathbb{E}\left(Z_{\Delta}^{100}\right) & =\mathbb{E}\left[\left(\sum_{0 \leq j<K_{1}} \operatorname{deg}(j) 1(\operatorname{deg}(j) \geq \Delta)\right)^{100}\right] \\
& \leq \mathbb{E}\left[K_{1}^{99} \sum_{0 \leq j<K_{1}} \operatorname{deg}(j)^{100} 1(\operatorname{deg}(j) \geq \Delta)\right] \\
& \leq \mathbb{E}\left(K_{1}^{100}\right) f(\Delta) \\
& \leq M f(\Delta)
\end{aligned}
$$

Since $f(\Delta) \rightarrow 0$ as $\Delta \rightarrow \infty$, there exists $\Delta_{0} \in(0, \infty)$, such that $M f\left(\Delta_{0}\right) \leq \beta^{100}$ and thus (2.5) is satisfied.

Appendix: a lower bound on β_{c}

In [6], Proposition 3.7 (our Proposition 2.3) follows from Lemmas 3.9, 3.10, 3.11 and a conclusion argument. Let us find in their proof a lower bound on β_{c}.

At first, they define a constant $c=2 \alpha d+1$ and some sequences

$$
L_{n}=2^{c^{n}} \quad \text { and } \quad R_{n}=L_{1} \ldots L_{n} \quad \text { and } \quad \varepsilon_{n}=2^{-2 d c^{n+1}}
$$

In Lemma 3.9, the authors do not use any information on Z and β. They set a constant $k_{0}=\left[2^{d+1}(c+1)\right]$.

In Lemma 3.10, they suppose that $\beta \leq 1$ and the information concerning Z is as follows. There exists n_{0}, such that for all $n \geq n_{0}$, we have

$$
2^{d} \mathbb{E}\left(Z^{\gamma}\right) L_{n+1}^{-\mu} \leq 1 / 2,
$$

with

$$
\mu=\frac{\gamma-1}{2 \alpha}-3 d-4 \alpha d^{2}>0
$$

In fact, under the assumption $\mathbb{E}\left(Z^{\gamma}\right) \leq 1$, we can take

$$
\begin{equation*}
n_{0}=\left[\frac{\log \left(\frac{d+1}{\mu}\right)}{\log c}\right] . \tag{2.14}
\end{equation*}
$$

In Lemma 3.10, they also assume that $\beta \leq 1$ and define a constant n_{1}, such that $n_{1} \geq n_{0}$ and for all $n \geq n_{1}$

$$
3 k_{0}^{\alpha+1} L_{n+1} \leq \frac{R_{n+1}}{20}
$$

or equivalently,

$$
\begin{equation*}
60 k_{0}^{\alpha+1} \leq R_{n} . \tag{2.15}
\end{equation*}
$$

In the conclusion leading to the proof of [6, Proposition 3.7], a lower bound on β_{c} is implicit. Indeed, with Lemmas 3.9, 3.10, 3.11 in hand, the authors only require that

$$
\begin{equation*}
\mathbb{P}\left(\mathcal{E}\left(R_{n_{1}}\right)\right) \geq 1-\varepsilon_{n_{1}} \tag{2.16}
\end{equation*}
$$

where for any $N \geq 1$

$$
\mathcal{E}(N)=\left\{\text { there exits a stable set } S \text { such that } \llbracket N / 5,4 N / 5 \rrbracket^{d} \subset S \subset \llbracket 1, N \rrbracket^{d}\right\}
$$

We do not recall the definition of stable sets here. However, we notice that by the first part of Proposition 2.5 and Corollary 2.13 in [6], the event $\mathcal{E}(N)$ occurs when the weights of all vertices in $\llbracket 1, N \rrbracket^{d}$ are less than $1 / 2$. Therefore

$$
\begin{aligned}
\mathbb{P}(\mathcal{E}(N)) & \geq \mathbb{P}\left(r(x) \leq 1 / 2 \text { for all } x \in \llbracket 1, N \rrbracket^{d}\right) \\
& =\mathbb{P}(\beta Z \leq 1 / 2)^{N^{d}} \\
& =(1-\mathbb{P}(\beta Z>1 / 2))^{N^{d}} \\
& =\left(1-\mathbb{P}\left(Z^{\gamma}>(2 \beta)^{-\gamma}\right)\right)^{N^{d}} \\
& \geq\left(1-(2 \beta)^{\gamma} \mathbb{E}\left(Z^{\gamma}\right)\right)^{N^{d}}
\end{aligned}
$$

Hence (2.16) is satisfied if

$$
\left(1-(2 \beta)^{\gamma} \mathbb{E}\left(Z^{\gamma}\right)\right)^{R_{n_{1}}^{d}} \geq\left(1-\varepsilon_{n_{1}}\right)
$$

or equivalently

$$
(2 \beta)^{\gamma} \mathbb{E}\left(Z^{\gamma}\right) \leq 1-\left(1-\varepsilon_{n_{1}}\right)^{R_{n_{1}}^{-d}}
$$

Hence, under the assumption $\mathbb{E}\left(Z^{\gamma}\right) \leq 1$, we can take

$$
\beta_{c}=\frac{1}{2}\left(1-\left(1-\varepsilon_{n_{1}}\right)^{R_{n_{1}}^{-d}}\right)^{1 / \gamma}
$$

with n_{1} as in (2.15).

References

[1] I. Benjamini, N. Berger. The diameter for long range percolation cluster on finite cycles, Random Struct. Algorithms, 19 (2001), no. 2, 102-111. MR-1848786
[2] M. Biskup. On the scaling of the chemical distance in long range percolation models, Ann. Probab. 32 (2004), no. 4, 2938-2977. MR-2094435
[3] N. Crawford, A. Sly. Simple random walk on long range percolation cluster II: Scaling limits, Ann. probab. 41 (2013), 445-502. MR-3077517
[4] T. E. Harris. Contact interactions on a lattice, Ann. probab. 2 (1974), 969-988. MR-0356292
[5] T.M. Liggett. Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Grundlehren de Mathematischen Wissenschaften 324, Springer (1999). MR-1717346
[6] L. Ménard, A. Singh. Percolation by cumulative merging and phase transition for the contact process on random graphs, arXiv:1502.06982v1.
[7] R. Pemantle. The contact process on trees, Ann. Probab. 20 (1992), no. 4, 2089-2116. MR-1188054
[8] R. Pemantle, A. M. Stacey. The branching random walk and contact process on Galton-Watson and nonhomogeneous trees, Ann. Probab. 29 (2001), no. 4, 1563-1590. MR-1880232
[9] A. M. Stacey. The existence of an intermediate phase for the contact process on trees, Ann. Probab. 24 (1996), no. 4, 1711-1726. MR-1415226
[10] L. S. Schulman. Long range percolation in one dimension, J. Phys. A. Lett 16 (1983). MR0701466
[11] Z. Q. Zhang, F. C. Pu, B. Z. Li. Long range percolation in one dimension, J. Phys. A: Math. Gen. 16 (1983). MR-0701466

Acknowledgments. I am deeply grateful to my advisor Bruno Schapira for his help and many suggestions during the preparation of this work. I would like also to thank the referee for a careful reading this paper as well as many valuable comments.

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)

Economical model of EJP-ECP

- Low cost, based on free software (OJS ${ }^{1}$)
- Non profit, sponsored by $\mathrm{IMS}^{2}, \mathrm{BS}^{3}, \mathrm{PKP}^{4}$
- Purely electronic and secure (LOCKSS ${ }^{5}$)

Help keep the journal free and vigorous

- Donate to the IMS open access fund ${ }^{6}$ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

[^1]
[^0]: *Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France.
 E-mail: cvhao89@gmail.com

[^1]: ${ }^{1}$ OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
 ${ }^{2}$ IMS: Institute of Mathematical Statistics http://www.imstat.org/
 ${ }^{3}$ BS: Bernoulli Society http://www.bernoulli-society.org/
 ${ }^{4}$ PK: Public Knowledge Project http://pkp.sfu.ca/
 ${ }^{5}$ LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
 ${ }^{6}$ IMS Open Access Fund: http://www.imstat.org/publications/open.htm

