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Abstract

We study the following backward stochastic differential equation on finite time horizon
driven by an integer-valued random measure µ on R+ × E, where E is a Lusin space,
with compensator ν(dt, dx) = dAt φt(dx):

Yt = ξ +

∫
(t,T ]

f(s, Ys−, Zs(·)) dAs −
∫
(t,T ]

∫
E

Zs(x) (µ− ν)(ds, dx), 0 ≤ t ≤ T.

The generator f satisfies, as usual, a uniform Lipschitz condition with respect to its last
two arguments. In the literature, the existence and uniqueness for the above equation
in the present general setting has only been established when A is continuous or
deterministic. The general case, i.e. A is a right-continuous nondecreasing predictable
process, is addressed in this paper.
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1 Introduction

Backward Stochastic Differential Equations (BSDEs) have been deeply studied since
the seminal paper [13]. In [13], as well as in many subsequent papers, the driving term
was a Brownian motion. BSDEs with a discontinuous driving term have also been studied,
see, among others, [14], [1], [9], [15], [2], [3], [5], [7].

In all the papers cited above, and more generally in the literature on BSDEs, the
generator (or driver) of the backward stochastic differential equation, usually denoted
by f , is integrated with respect to a measure dA, where A is a nondecreasing continuous
(or deterministic and right-continuous as in [5]) process. The general case, i.e. A is a
right-continuous nondecreasing predictable process, is addressed in this paper. It is
worth mentioning that Section 4.3 in [7] provides a counter-example to existence for
such general backward stochastic differential equations. For this reason, the existence
and uniqueness result (Theorem 4.1) is not a trivial extension of known results. Indeed,
in Theorem 4.1 we have to impose an additional technical assumption, which is violated
by the counter-example presented in [7] (see Remark 4.3(ii)). This latter assumption
reads as follows: there exists ε ∈ (0, 1) such that (notice that ∆At ≤ 1)

2L2
y |∆At|2 ≤ 1− ε, P-a.s., ∀ t ∈ [0, T ], (1.1)
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where Ly is the Lipschitz constant of f with respect to y. As mentioned earlier, in [5]
the authors study a class of BSDEs with a generator f integrated with respect to a
deterministic (rather than predictable) right-continuous nondecreasing process A, even
if this class is driven by a countable sequence of square-integrable martingales, rather
than just a random measure. They provide an existence and uniqueness result for this
class of BSDEs, see Theorem 6.1 in [5], where the same condition (1.1) is imposed (see
Remark 4.3(i)). However, the proof of Theorem 6.1 in [5] relies heavily on the assumption
that A is deterministic, and it can not be extended to the case where A is predictable,
which therefore requires a completely different proof.

The results obtained in this paper can be particularly useful in the study of control
problems related to piecewise deterministic Markov processes by means of BSDEs
methods, see Remark 4.5.

The paper is organized as follows: in Section 2 we introduce the random measure
µ and we fix the notation. In Section 3 we provide the definition of solution to the
backward stochastic differential equation and we solve it in the case where f = f(t, ω)

is independent of y and z (Lemma 3.6). Finally, in Section 4 we prove the main result
(Theorem 4.1) of this paper, i.e. the existence and uniqueness for our backward stochastic
differential equation.

2 Preliminaries

Consider a finite time horizon T ∈ (0,∞), a Lusin space (E, E), and a filtered probabil-
ity space (Ω,F , (Ft)t≥0,P), with (Ft)t≥0 right-continuous. We denote by P the predictable
σ-field on Ω×[0, T ]. In the sequel, given a measurable space (G,G), we say that a function
on the product space Ω× [0, T ]×G is predictable if it is P ⊗ G-measurable.

Let µ be an integer-valued random measure on R+ × E. In the sequel we use a
martingale representation theorem for the random measure µ, namely Theorem 5.4
in [11]. For this reason, we suppose that (Ft)t≥0 is the natural filtration of µ, i.e. the
smallest right-continuous filtration in which µ is optional. We also assume that µ is a
discrete random measure, i.e. the sections of the set D = {(ω, t) : µ(ω, {t} × E) = 1}
are finite on every finite interval. However, the results of this paper (in particular,
Theorem 4.1) are still valid for more general random measure µ for which a martingale
representation theorem holds (see Remark 4.4 for more details).

We denote by ν the (Ft)t≥0-compensator of µ. Then, ν can be disintegrated as follows

ν(ω, dt, dx) = dAt(ω)φω,t(dx), (2.1)

where A is a right-continuous nondecreasing predictable process such that A0 = 0, and
φ is a transition probability from (Ω× [0, T ],P) into (E, E). We suppose, without loss of
generality, that ν satisfies ν({t} × dx) ≤ 1 identically, so that ∆At ≤ 1. We define Ac as
Act = At −

∑
0<s≤t ∆As, νc(dt, dx) = 1Jc×E ν(dt, dx), νd(dt, dx) = ν(dt, dx) − νc(dt, dx) =

1J×E ν(dt, dx), where J = {(ω, t) : ν(ω, {t} × dx) > 0}.
We denote by B(E) the set of all Borel measurable functions on E. Given a measur-

able function Z : Ω × [0, T ] × E → R, we write Zω,t(x) = Z(ω, t, x), so that Zω,t, often
abbreviated as Zt or Zt(·), is an element of B(E). For any β ≥ 0 we also denote by Eβ
the Doléans-Dade exponential of the process βA, which is given by

Eβt = eβ At
∏

0<s≤t

(1 + β∆As) e
−β∆As . (2.2)

3 The backward stochastic differential equation

The backward stochastic differential equation driven by the random measure µ is
characterized by a triple (β, ξ, f), where β > 0 is a positive real number, and:
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• ξ : Ω→ R, the terminal condition, is an FT -measurable random variable satisfying
E[EβT |ξ|2] <∞;

• f : Ω× [0, T ]×R× B(E)→ R, the generator, is such that:

(i) for any y ∈ R and Z : Ω × [0, T ] × E → R predictable =⇒ f(ω, t, y, Zω,t(·))
predictable;

(ii) for some nonnegative constants Ly, Lz, we have

|f(ω, t, y′, ζ ′)− f(ω, t, y, ζ)| ≤ Ly|y′ − y|

+ Lz

(∫
E

∣∣∣∣ζ ′(x)− ζ(x)−∆At(ω)

∫
E

(
ζ ′(z)− ζ(z)

)
φω,t(dz)

∣∣∣∣2 φω,t(dx)

+ ∆At(ω)
(
1−∆At(ω)

)∣∣∣∣ ∫
E

(ζ ′(x)− ζ(x))φω,t(dx)

∣∣∣∣2)1/2

, (3.1)

for all (ω, t) ∈ Ω× [0, T ], y, y′ ∈ R, ζ, ζ ′ ∈ L2(E, E , φω,t(dx));
(iii) E[(1 +

∑
0<t≤T |∆At|2)

∫ T
0
Eβt |f(t, 0, 0)|2 dAt] <∞.

Remark 3.1. The measurability condition (i) on f is somehow awkward, however it
seems to be unavoidable. Indeed, we notice that the same condition is imposed in [7],
assumption (2.8), and a similar condition is imposed in [6], assumption (3.2). We also
observe that at page 4 of [7], the authors provide some examples of assumptions on f
which imply the measurability condition (i) above (see in particular assumption (2.10) in
[7]).

Given (β, ξ, f), the backward stochastic differential equation takes the following form

Yt = ξ +

∫
(t,T ]

f(s, Ys−, Zs(·)) dAs −
∫

(t,T ]

∫
E

Zs(x) (µ− ν)(ds, dx), 0 ≤ t ≤ T. (3.2)

Definition 3.2. For every β ≥ 0, we define H2
β(0, T ) as the set of pairs (Y,Z) such that:

• Y : Ω× [0, T ]→ R is an adapted càdlàg process satisfying

‖Y ‖H2
β,Y (0,T ) :=

(
E

[ ∫
(0,T ]

Eβt |Yt−|2 dAt
])1/2

<∞; (3.3)

• Z : Ω× [0, T ]× E → R is a predictable process satisfying

‖Z‖H2
β,Z(0,T ) :=

(
E

[ ∫
(0,T ]

Eβt
∫
E

∣∣Zt(x)− Ẑt
∣∣2 ν(dt, dx)

+
∑

0<t≤T

Eβt
∣∣Ẑt∣∣2(1−∆At

)])1/2

< ∞, (3.4)

where

Ẑt =

∫
E

Zt(x) ν({t} × dx), 0 ≤ t ≤ T.

For every (Y, Z) ∈ H2
β(0, T ), we denote

‖(Y,Z)‖2H2
β(0,T ) := ‖Y ‖2H2

β,Y (0,T ) + ‖Z‖2H2
β,Z(0,T ).

Remark 3.3. (i) Notice that the space H2
β(0, T ), endowed with the topology induced by

‖ · ‖H2
β(0,T ), is an Hilbert space, provided we identify pairs of processes (Y, Z), (Y ′, Z ′)

satisfying ‖(Y − Y ′, Z − Z ′)‖H2
β(0,T ) = 0.
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(ii) Suppose that there exists γ ∈ (0, 1] such that ∆At ≤ 1−γ, for all t ∈ [0, T ], P-a.s.. Then
Z belongs to H2

β,Z(0, T ) if and only if
√
EβZ is in L2(Ω× [0, T ]× E,P ⊗ E ,P⊗ ν(dt, dx)),

i.e.

E

[ ∫
(0,T ]

Eβt
∫
E

∣∣Zt(x)
∣∣2 ν(dt, dx)

]
< ∞.

Definition 3.4. A solution to equation (3.2) with data (β, ξ, f) is a pair (Y, Z) ∈ H2
β(0, T )

satisfying equation (3.2). We say that equation (3.2) admits a unique solution if, given
two solutions (Y,Z), (Y ′, Z ′) ∈ H2

β(0, T ), we have (Y,Z) = (Y ′, Z ′) in H2
β(0, T ).

Remark 3.5. Notice that, given a solution (Y,Z) to equation (3.2) with data (β, ξ, f), we
have (recalling that β ≥ 0, so that Eβt ≥ 1)

E

[ ∫
(0,T ]

∫
E

∣∣Zt(x)− Ẑt
∣∣2 ν(dt, dx) +

∑
0<t≤T

∣∣Ẑt∣∣2(1−∆At
)]

= ‖Z‖2H2
0,Z(0,T )

≤ ‖Z‖2H2
β,Z(0,T ) <∞.

This implies that the process (Zt1[0,T ](t))t≥0 belongs to G2(µ), see (3.62) and Proposition
3.71-(a) in [12]. In particular, the stochastic integral

∫
(t,T ]

∫
E
Zs(x) (µ− ν)(ds, dx) in (3.2)

is well-defined, and the process Mt :=
∫

(0,t]

∫
E
Zs(x)(µ− ν)(ds, dx), t ∈ [0, T ], is a square

integrable martingale (see Proposition 3.66 in [12]).

Lemma 3.6. Consider a triple (β, ξ, f) and suppose that f = f(ω, t) does not depend on
(y, ζ). Then, there exists a unique solution (Y,Z) ∈ H2

β(0, T ) to equation (3.2) with data
(β, ξ, f). Moreover, the following identity holds:

E
[
Eβt |Yt|2

]
+ βE

[ ∫
(t,T ]

Eβs (1 + β∆As)
−1 |Ys−|2 dAs

]
+ E

[ ∫
(t,T ]

Eβs
∫
E

∣∣Zs(x)− Ẑs
∣∣2 ν(ds, dx) +

∑
t<s≤T

Eβs
∣∣Ẑs∣∣2(1−∆As

)]

= E
[
EβT |ξ|

2
]

+ 2E

[ ∫
(t,T ]

Eβs Ys− fs dAs
]
− E

[ ∑
t<s≤T

Eβs |fs|2 |∆As|2
]
, (3.5)

for all t ∈ [0, T ].

Proof. Uniqueness. It is enough to prove that equation (3.2) with data (β, 0, 0) has the
unique (in the sense of Definition 3.4) solution (Y,Z) = (0, 0). Let (Y, Z) be a solution
to equation (3.2) with data (β, 0, 0). Since the stochastic integral in (3.2) is a square
integrable martingale (see Remark 3.5), taking the conditional expectation with respect
to Ft we obtain, P-a.s., Yt = 0, for all t ∈ [0, T ]. This proves the claim for the component
Y and shows that the martingale Mt :=

∫
(0,t]

∫
E
Zs(x)(µ − ν)(ds, dx) = 0, P-a.s., for all

t ∈ [0, T ]. Therefore, the predictable bracket 〈M,M〉T = 0, P-a.s., where we recall that
(see Proposition 3.71-(a) in [12])

〈M,M〉T =

∫
(0,T ]

∫
E

∣∣Zt(x)− Ẑt
∣∣2 ν(dt, dx) +

∑
0<t≤T

∣∣Ẑt∣∣2(1−∆At
)
.

This concludes the proof, since ‖Z‖2
H2
β,Z(0,T )

≤ E
[
EβT 〈M,M〉T

]
= 0.
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Identity (3.5). Let (Y, Z) be a solution to equation (3.2) with data (β, ξ, f). From Itô’s
formula applied to Eβs |Ys|2 it follows that (recall that dEβs = β Eβs− dAs)

d(Eβs |Ys|2) = Eβs− d|Ys|2 + |Ys−|2 dEβs + ∆Eβs ∆|Ys|2

= Eβs− d|Ys|2 + |Ys−|2 dEβs + (Es − Eβs−) d|Ys|2

= Eβs d|Ys|2 + |Ys−|2 dEβs
= 2 Eβs Ys− dYs + Eβs (∆Ys)

2 + β Eβs− |Ys−|2 dAs
= 2 Eβs Ys− dYs + Eβs (∆Ys)

2 + β Eβs (1 + β∆As)
−1 |Ys−|2 dAs, (3.6)

where the last equality follows from the identity Eβs− = Eβs (1 +β∆As)
−1. Integrating (3.6)

on the interval [t, T ], we obtain

Eβt |Yt|2 = EβT |ξ|
2 + 2

∫
(t,T ]

Eβs Ys− fs dAs − 2

∫
(t,T ]

Eβs Ys−
∫
E

Zs(x) (µ− ν)(ds, dx) (3.7)

−
∑

t<s≤T

Eβs (∆Ys)
2 − β

∫
(t,T ]

Eβs (1 + β∆As)
−1 |Ys−|2 dAs.

Now, notice that

∆Ys =

∫
E

Zs(x) (µ− ν)({s} × dx)− fs ∆As. (3.8)

Thus

|∆Ys|2 =

∣∣∣∣ ∫
E

Zs(x) (µ− ν)({s} × dx)

∣∣∣∣2 + |fs|2|∆As|2

− 2fs∆As

∫
E

Zs(x) (µ− ν)({s} × dx). (3.9)

Plugging (3.9) into (3.7), we find

Eβt |Yt|2 + β

∫
(t,T ]

Eβs (1 + β∆As)
−1 |Ys−|2 dAs +

∑
t<s≤T

Eβs
∣∣∣∣ ∫
E

Zs(x) (µ− ν)({s} × dx)

∣∣∣∣2
= EβT |ξ|

2 + 2

∫
(t,T ]

Eβs Ys− fs dAs − 2

∫
(t,T ]

Eβs Ys−
∫
E

Zs(x) (µ− ν)(ds, dx)

−
∑

t<s≤T

Eβs |fs|2 |∆As|2 + 2
∑

t<s≤T

Eβs fs ∆As

∫
E

Zs(x) (µ− ν)({s} × dx). (3.10)

Notice that

E

[ ∑
t<s≤T

Eβs
∣∣∣∣ ∫
E

Zs(x) (µ− ν)({s} × dx)

∣∣∣∣2]

= E

[ ∫
(t,T ]

Eβs
∫
E

∣∣Zs(x)− Ẑs
∣∣2 ν(ds, dx) +

∑
t<s≤T

Eβs
∣∣Ẑs∣∣2(1−∆As

)]
. (3.11)

We also observe that the two stochastic integrals

M1
t :=

∫
(0,t]

Eβs Ys−
∫
E

Zs(x) (µ− ν)(ds, dx)

M2
t :=

∑
0<s≤t

Eβs fs ∆As

∫
E

Zs(x) (µ− ν)({s} × dx)
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are martingales. Therefore, taking the expectation in (3.10) and using (3.11), we end up
with (3.5).

Existence. Consider the martingale M̃t := E[ξ +
∫

(0,T ]
fs dAs|Ft], t ∈ [0, T ]. M̃ admits a

right-continuous modificationM (see e.g. Corollary 2.48 in [10]). Then, by the martingale
representation Theorem 5.4 in [11] and Proposition 3.66 in [12] (noting that M is a
square integrable martingale), there exists a predictable process Z : Ω× [0, T ]×E → R

such that

E

[ ∫
(0,T ]

∫
E

∣∣Zt(x)− Ẑt
∣∣2 ν(dt, dx) +

∑
0<t≤T

∣∣Ẑt∣∣2(1−∆At
)]
<∞

and

Mt = M0 +

∫
(0,t]

∫
E

Zs(x) (µ− ν)(ds, dx), t ∈ [0, T ]. (3.12)

Set

Yt = Mt −
∫

(0,t]

fs dAs, t ∈ [0, T ]. (3.13)

Using the representation (3.12) of M , and noting that YT = ξ, we see that Y satisfies
(3.2). When β > 0, it remains to show that Y satisfies (3.3) and Z satisfies (3.4). To this
end, let us define the increasing sequence of stopping times

Sk = inf
{
t ∈ (0, T ] :

∫
(0,t]

Eβs |Ys−|2 dAs

+

∫
(0,t]

Eβs
∫
E

∣∣Zs(x)− Ẑs
∣∣2 ν(ds, dx) +

∑
0<s≤t

Eβs
∣∣Ẑs∣∣2(1−∆As

)
> k

}
with the convention inf ∅ = T . Computing the Itô differential d(Eβs |Ys|2) on the interval
[0, Sk] and proceeding as in the derivation of identity (3.5), we find

E

∫
(0,Sk]

Eβs
∫
E

∣∣Zs(x)− Ẑs
∣∣2 ν(ds, dx) +

∑
0<s≤Sk

Eβs
∣∣Ẑs∣∣2(1−∆As

)
+ βE

[∫
(0,Sk]

Eβs (1 + β∆As)
−1 |Ys−|2 dAs

]

≤ E
[
EβSk |YSk |

2
]

+ 2E

[∫
(0,Sk]

Eβs Ys− fs dAs

]
. (3.14)

Let us now prove the following inequality (recall that we are assuming β > 0)

Eβt
(∫

(t,T ]

|fs| dAs
)2

≤
(

1

β
+ β

∑
t<s≤T

|∆As|2
)∫

(t,T ]

Eβs |fs|2 dAs. (3.15)

Set, for all s ∈ [0, T ],

Ās :=
β

2
Acs +

∑
0<r≤s,∆Ar 6=0

(√
1 + β∆Ar − 1

)
,

As := −β
2
Acs −

∑
0<r≤s,∆Ar 6=0

√
1 + β∆Ar − 1√

1 + β∆Ar
.

Denote by Ē (resp. E) the Doléans-Dade exponential of the process Ā (resp. A). Using
Proposition 6.4 in [12] we see that

1 = Es Ēs, (Ēs)2 = Eβs , ∀ s ∈ [0, T ]. (3.16)
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Then, we conclude that

Eβt
(∫

(t,T ]

|fs| dAs
)2

= Eβt
(∫

(t,T ]

Es− Ēs− |fs| dAs
)2

≤
(

1

β
+ β

∑
t<s≤T

|∆As|2
)∫

(t,T ]

Eβs |fs|2 dAs,

where we used the inequality Eβs− ≤ Eβs (which follows from (2.2)) and

Eβt
∫

(t,T ]

(Es−)2 dAs = Eβt
(Et)2 − (ET )2

β
+ Eβt β

∑
t<s≤T

(Es−)2 |∆As|2

1 + β∆As

≤ 1

β
+ β

∑
t<s≤T

|∆As|2,

where the last inequality follows from 1
1+β∆As

≤ 1 and identities (3.16). Now, using
(3.13) and (3.15) we obtain

Eβt |Yt|2 = Eβt
∣∣∣∣E[ξ +

∫
(t,T ]

fs dAs

∣∣∣Ft]∣∣∣∣2
≤ 2E

[
Eβt |ξ|2

∣∣Ft]+ 2E

[
Eβt
(∫

(t,T ]

|fs| dAs
)2∣∣∣Ft]

≤ 2E

[
EβT |ξ|

2 +

(
1

β
+ β

∑
0<s≤T

|∆As|2
)∫

(0,T ]

Eβs |fs|2 dAs
∣∣∣Ft]. (3.17)

Denote by mt a right-continuous modification of the right-hand side of (3.17). We see
that m = (mt)t∈[0,T ] is a uniformly integrable martingale. In particular for every stopping
time S with values in [0, T ], we have, by Doob’s optional stopping theorem,

E
[
EβS |YS |

2
]
≤ E [mS ] ≤ E [mT ] <∞. (3.18)

Notice that (1 + β∆As)
−1 ≥ 1

1+β P-a.s. Using the inequality 2ab ≤ γa2 + 1
γ b

2 with

γ = β
2(1+β) , and plugging (3.18) (with S = Sk) into (3.14), we find the estimate

β

2(1 + β)
E

[∫
(0,Sk]

Eβs |Ys−|2 dAs

]

+ E

∫
(0,Sk]

Eβs
∫
E

∣∣Zs(x)− Ẑs
∣∣2 ν(ds, dx) +

∑
0<s≤Sk

Eβs
∣∣Ẑs∣∣2(1−∆As

)
≤ 2E

[
EβT |ξ|

2
]

+ 2E

[(
1

β
+ β

∑
0<s≤T

|∆As|2
)(∫

(0,T ]

Eβs |fs|2 dAs
)]
.

From the above inequality we deduce that

E

[∫
(0,Sk]

Eβs |Ys−|2 dAs

]

+ E

[ ∫
(0,Sk]

Eβs
∫
E

∣∣Zs(x)− Ẑs
∣∣2 ν(ds, dx) +

∑
0<s≤Sk

Eβs
∣∣Ẑs∣∣2(1−∆As

)]

≤ c(β)

E [EβT |ξ|2]+ E

( 1

β
+ β

∑
0<s≤T

|∆As|2
)∫

(0,T ]

Eβs |fs|2 dAs

 , (3.19)
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Existence and uniqueness for BSDEs driven by a general random measure

where c(β) = 2 + 4(1+β)
β . Setting S = limk Sk we deduce

E

[∫
(0,S]

Eβs |Ys−|2 dAs

]
+ E

[ ∫
(0,S]

Eβs
∫
E

∣∣Zs(x)− Ẑs
∣∣2 ν(ds, dx) +

∑
0<s≤S

Eβs
∣∣Ẑs∣∣2(1−∆As

)]
<∞, P-a.s.,

which implies S = T , P-a.s., by the definition of Sk. Letting k →∞ in (3.19), we conclude
that Y satisfies (3.3) and Z satisfies (3.4), so that (Y,Z) ∈ H2

β(0, T ).

4 Main result

Theorem 4.1. Suppose that there exists ε ∈ (0, 1) such that

2L2
y |∆At|2 ≤ 1− ε, P-a.s., ∀ t ∈ [0, T ]. (4.1)

Then there exists a unique solution (Y, Z) ∈ H2
β(0, T ) to equation (3.2) with data (β, ξ, f),

for every β satisfying

β ≥

L2
y

L̂2
z,t

+
2 L̂2

z,t

1−δ+2 L̂2
z,t ∆At

1−∆At

(
L2
y

L̂2
z,t

+
2 L̂2

z,t

1−δ+2 L̂2
z,t ∆At

) , P-a.s., ∀ t ∈ [0, T ], (4.2)

for some δ ∈ (0, ε) and strictly positive predictable process (L̂z,t)t∈[0,T ] given by

L̂2
z,t = max

(
L2
z + δ,

(1− δ)Ly√
2(1− δ)− 2Ly ∆At

)
. (4.3)

Remark 4.2. (i) Notice that when condition (4.1) holds the right-hand side of (4.2) is
a well-defined nonnegative real number, so that there always exists some β ≥ 0 which
satisfies (4.2).

(ii) Observe that condition 4.1 does not involve Lz, i.e. the Lipschitz constant of f with
respect to its last argument.

Proof of Theorem 4.1. The proof is based on a fixed point argument that we now describe.
Let us consider the function Φ : H2

β(0, T )→ H2
β(0, T ), mapping (U, V ) to (Y,Z) as follows:

Yt = ξ +

∫
(t,T ]

f(t, Us−, Vs) dAs −
∫

(t,T ]

∫
E

Zs(x) (µ− ν)(ds, dx), 0 ≤ t ≤ T. (4.4)

By Lemma 3.6 there exists a unique (Y,Z) ∈ H2
β(0, T ) satisfying (4.4), so that Φ is a

well-defined map. We then see that (Y,Z) is a solution in H2
β(0, T ) to the BSDE (3.2) with

data (β, ξ, f) if and only if it is a fixed point of Φ.

Let us prove that Φ is a contraction when β is large enough. Let (U i, V i) ∈ H2
β(0, T ),

i = 1, 2, and set (Y i, Zi) = Φ(U i, V i). Denote Ȳ = Y 1 − Y 2, Z̄ = Z1 − Z2, Ū = U1 − U2,
V̄ = V 1 − V 2, f̄s = f(s, U1

s−, V
1
s )− f(s, U2

s−, V
2
s ). Notice that

Ȳt =

∫
(t,T ]

f̄s dAs −
∫

(t,T ]

∫
E

Z̄s(x) (µ− ν)(ds, dx), 0 ≤ t ≤ T. (4.5)
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Then, identity (3.5), with t = 0, becomes (noting that E[Eβ0 |Ȳ0|2] is nonnegative)

βE

[ ∫
(0,T ]

Eβs (1 + β∆As)
−1 |Ȳs−|2 dAs

]
+ E

[ ∫
(0,T ]

Eβs
∫
E

∣∣Z̄s(x)− ˆ̄Zs
∣∣2 ν(ds, dx) +

∑
0<s≤T

Eβs
∣∣ ˆ̄Zs∣∣2(1−∆As

)]

≤ 2E

[ ∫
(0,T ]

Eβs Ȳs− f̄s dAs
]
− E

[ ∑
0<s≤T

Eβs |f̄s|2 |∆As|2
]
. (4.6)

From the standard inequality 2ab ≤ 1
αa

2 + αb2, ∀ a, b ∈ R and α > 0, we obtain, for any
strictly positive predictable processes (cs)s∈[0,T ] and (ds)s∈[0,T ],

2E

[ ∫
(0,T ]

Eβs Ȳs− f̄s dAs
]
≤ E

[ ∫
(0,T ]

1

cs
Eβs |Ȳs−|2 dAcs

]
+ E

[ ∑
0<s≤T

1

ds
Eβs |Ȳs−|2 ∆As

]

+ E

[ ∫
(0,T ]

cs Eβs |f̄s|2 dAcs
]

+ E

[ ∑
0<s≤T

ds Eβs |f̄s|2 ∆As

]
.

Therefore (4.6) becomes

E

[ ∫
(0,T ]

(
β − 1

cs

)
Eβs |Ȳs−|2 dAcs

]
+ E

[ ∑
0<s≤T

(
β (1 + β∆As)

−1 − 1

ds

)
Eβs |Ȳs−|2 ∆As

]

+ E

[ ∫
(0,T ]

Eβs
∫
E

∣∣Z̄s(x)− ˆ̄Zs
∣∣2 ν(ds, dx) +

∑
0<s≤T

Eβs
∣∣ ˆ̄Zs∣∣2(1−∆As

)]

≤ E
[ ∫

(0,T ]

cs Eβs |f̄s|2 dAcs
]

+ E

[ ∑
0<s≤T

(
ds −∆As

)
Eβs |f̄s|2 ∆As

]
. (4.7)

Now, by the Lipschitz property (3.1) of f , we see that for any predictable process
(L̂z,s)s∈[0,T ], satisfying L̂z,s > Lz, P-a.s. for every s ∈ [0, T ], we have

|f̄s|2 ≤ 2L2
y|Ūs−|2 + 2L̂2

z,s

(∫
E

∣∣V̄s(x)− ˆ̄Vs
∣∣2 φs(dx) + 1{∆As 6=0}

1−∆As
∆As

∣∣ ˆ̄Vs∣∣2), (4.8)

for all s ∈ [0, T ]. For later use, fix δ ∈ (0, ε) and take (L̂z,s)s∈[0,T ] given by (4.3). Notice
that the two components inside the maximum in (4.3) are nonnegative (the first being
always strictly positive, the second being zero if Ly = 0) and uniformly bounded, as it
follows from condition (4.1). Plugging inequality (4.8) into (4.7), and using the following
identity for Z̄ (and the analogous one for V̄ )

E

[ ∫
(0,T ]

Eβs
∫
E

∣∣Z̄s(x)− ˆ̄Zs
∣∣2 ν(ds, dx) +

∑
0<s≤T

Eβs
∣∣ ˆ̄Zs∣∣2(1−∆As

)]

= E

[ ∫
(0,T ]

Eβs
∫
E

|Z̄s(x)|2 νc(ds, dx)

]
+ E

[ ∑
0<s≤T

Eβs
(
|̂Z̄s|2 − | ˆ̄Zs|2

)]
,
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we obtain

E

[ ∫
(0,T ]

(
β − 1

cs

)
Eβs |Ȳs−|2 dAcs

]
+ E

[ ∑
0<s≤T

(
β (1 + β∆As)

−1 − 1

ds

)
Eβs |Ȳs−|2 ∆As

]

+ E

[ ∫
(0,T ]

Eβs
∫
E

|Z̄s(x)|2 νc(ds, dx)

]
+ E

[ ∑
0<s≤T

Eβs
(
|̂Z̄s|2 − | ˆ̄Zs|2

)]

≤ 2L2
y E

[ ∫
(0,T ]

cs Eβs |Ūs−|2 dAcs
]

+ 2E

[ ∫
(0,T ]

cs L̂
2
z,s Eβs

∫
E

|V̄s(x)|2 νc(ds, dx)

]
+ 2L2

y E

[ ∑
0<s≤T

(
ds −∆As

)
Eβs |Ūs−|2 ∆As

]

+ 2E

[ ∑
0<s≤T

(
ds −∆As

)
L̂2
z,s Eβs

(
|̂V̄s|2 − | ˆ̄Vs|2

)]
. (4.9)

Set bs := min(β − 1
cs
, β(1 + β∆As)

−1 − 1
ds

) and as := 2L̂2
z,s max(cs, ds −∆As), s ∈ [0, T ].

Then, inequality (4.9) can be rewritten as (recalling that L̂z,s > 0)

E

[ ∫
(0,T ]

bs Eβs |Ȳs−|2 dAcs
]

+ E

[ ∑
0<s≤T

bs Eβs |Ȳs−|2 ∆As

]

+ E

[ ∫
(0,T ]

Eβs
∫
E

|Z̄s(x)|2 νc(ds, dx)

]
+ E

[ ∑
0<s≤T

Eβs
(
|̂Z̄s|2 − | ˆ̄Zs|2

)]

≤ E

[ ∫
(0,T ]

L2
y

L̂2
z,s

as Eβs |Ūs−|2 dAcs
]

+ E

[ ∑
0<s≤T

L2
y

L̂2
z,s

as Eβs |Ūs−|2 ∆As

]

+ E

[ ∫
(0,T ]

as Eβs
∫
E

|V̄s(x)|2 νc(ds, dx)

]
+ E

[ ∑
0<s≤T

as Eβs
(
|̂V̄s|2 − | ˆ̄Vs|2

)]
. (4.10)

It follows from (4.10) that Φ is a contraction if:

(i) there exists α ∈ (0, 1) such that as ≤ α, P-a.s. for every s ∈ [0, T ];

(ii)
L2
y

L̂2
z,s

≤ bs, P-a.s. for every s ∈ [0, T ].

Let us prove that (i) and (ii) hold. Condition (i) is equivalent to ask that there exists
α ∈ (0, 1) such that, for all s ∈ [0, T ],

cs ≤
1− α
2 L̂2

z,s

, ds ≤
1− α
2 L̂2

z,s

+ ∆As, P-a.s.

Then we choose α = δ, where δ ∈ (0, ε) was fixed in the statement of the theorem, and
cs, ds given by

cs =
1− δ
2 L̂2

z,s

, ds =
1− δ
2 L̂2

z,s

+ ∆As, (4.11)

for all s ∈ [0, T ], so that (i) holds true. Concerning (ii), we have, for all s ∈ [0, T ], P-a.s.,

min
(
β − 1

cs
, β(1 + β∆As)

−1 − 1

ds

)
≥

L2
y

L̂2
z,s

,

which becomes

β ≥
L2
y

L̂2
z,s

+
1

cs
, β ≥

L2
y

L̂2
z,s

+ 1
ds

1−∆As

(
L2
y

L̂2
z,s

+ 1
ds

) , (4.12)
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where for the last inequality in (4.12) we need to impose the additional condition

1−∆As

(
L2
y

L̂2
z,s

+
1

ds

)
> 0.

This latter inequality can be rewritten as

L2
y ∆As < L̂2

z,s

(
1− ∆As

ds

)
=

(1− δ) L̂2
z,s

1− δ + 2 L̂2
z,s ∆As

, (4.13)

where the last equality follows from the definition of ds in (4.11). From (4.3), and since
in particular

L̂2
z,s ≥

(1− δ)Ly√
2(1− δ)− 2Ly ∆As

>
(1− δ)L2

y ∆As

1− δ − 2L2
y |∆As|2

, P-a.s., ∀ s ∈ [0, T ],

it follows that inequality (4.13) holds. Finally, concerning (4.12), we begin noting that

L2
y

L̂2
z,s

+
1

cs
<

L2
y

L̂2
z,s

+ 1
ds

1−∆As

(
L2
y

L̂2
z,s

+ 1
ds

) ,
as it can be shown using (4.11). Now, let us denote

L2
y

L̂2
z,s

+ 1
ds

1−∆As

(
L2
y

L̂2
z,s

+ 1
ds

) = Hs(L̂
2
z,s),

where, for every s ∈ [0, T ],

Hs(`) =
hs(`)

1−∆As hs(`)
, hs(`) =

L2
y

`
+

2 `

1− δ + 2 `∆As
, ` > 0.

Notice that Hs attains its minimum at `∗s =
(1−δ)Ly√

2(1−δ)−2Ly ∆As
. This explains the expression

of the second component inside the maximum in (4.3). In conclusion, given (L̂z,s)s∈[0, T ]

as in (4.3) we obtain a lower bound for β from the second inequality in (4.12), which
corresponds to (4.2).

Remark 4.3. (i) In [5] the authors study a class of BSDEs driven by a countable sequence
of square-integrable martingales, with a generator f integrated with respect to a right-
continuous nondecreasing process A as in (3.2). Similarly to our setting, A is not
necessarily continuous, however in [5] it is supposed to be deterministic (instead of
predictable). Theorem 6.1 in [5] provides an existence and uniqueness result for the
class of BSDEs studied in [5] under the following assumption (2L2

y,t corresponds to ct
and ∆At corresponds to ∆µt in the notation of [5]):

2L2
y,t |∆At|2 < 1, ∀ t ∈ [0, T ], (4.14)

where Ly,t is a measurable deterministic function uniformly bounded such that (3.1)
holds with Ly,t in place of Ly. As showed at the beginning of the proof of Theorem 6.1 in
[5], if (4.14) holds (and A is as in [5]), then there exists ε ∈ (0, 1) such that

2L2
y,t |∆At|2 ≤ 1− ε, ∀ t ∈ [0, T ]. (4.15)
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This proves that when condition (4.14) holds then (4.15) is also valid, since in our setting
we can take Ly,t ≡ Ly.
(ii) Section 4.3 in [7] provides a counter-example to existence for BSDE (3.2) when A is
discontinuous, as it can be the case in our setting; the rest of the paper [7] studies BSDE
(3.2) with A continuous. Let us check that the counter-example proposed in [7] does not
satisfy condition (4.1). In [7] the process A is a pure jump process with a single jump of
size p ∈ (0, 1) at a deterministic time t ∈ (0, T ]. The Lipschitz constant of f with respect
to y is Ly = 1

p . Then

2L2
y |∆At|2 = 2

if t is the jump time of A, so that condition (4.1) is violated.

Remark 4.4. Suppose that µ is an integer-valued random measure on R+ × E not
necessarily discrete. Then ν can still be disintegrated as follows

ν(ω, dt, dx) = dAt(ω)φω,t(dx),

where A is a right-continuous nondecreasing predictable process such that A0 = 0,
but φ is in general only a transition measure (instead of transition probability) from
(Ω × [0, T ],P) into (E, E). Notice that when µ is discrete one can choose φ to be a
transition probability, therefore φ(E) = 1 and ν({t} ×E) = ∆At (a property used in the
previous sections). When µ is not discrete, let us suppose that νd can be disintegrated
as follows

νd(ω, dt, dx) = ∆At(ω)φdω,t(dx), φdω,t(E) = 1, (4.16)

where φd is a transition probability from (Ω× [0, T ],P) into (E, E). In particular νd({t} ×
E) = ∆At. Then, when (4.16) and a martingale representation theorem for µ hold, all
the results of this paper are still valid and can be proved proceeding along the same
lines. As an example, (4.16) holds when µ is the jump measure of a Lévy process, indeed
in this case ∆At is identically zero.

Remark 4.5. As an application of the results presented in this paper, suppose that µ is
the jump measure of a Piecewise Deterministic Markov Process (PDMP) X with values
in E. We follow the notation introduced in [8], Chapter 2, Section 24 and 26. Denoted by
(Tn)n the jump times of the process X, the random measure µ can be written as

µ(dt, dx) =

∞∑
n=1

δ(Tn, XTn )(dt, dx).

Moreover, according to (26.2) in [8], the compensator of µ has the form

ν(ω, dt, dx) = (λ(Xt−(ω)) dt+ dp∗t (ω))Q(Xt−(ω), dx), (4.17)

where Q and λ are respectively the transition rate measure and the jump rate of the
process X, and

p∗t =

∞∑
n=1

1{t≥Tn} 1{XTn−∈Γ}

is the process counting the number of jumps of X from the active boundary Γ ⊂ ∂E (for
the precise definition of Γ see page 61 in [8]).

From (4.17) we see that decomposition (2.1) for ν holds with dAt(ω) = λ(Xt−(ω)) dt+

dp∗t (ω) and φω,t(dx) = Q(Xt−(ω), dx). In particular, A is predictable (not deterministic)
and discontinuous, with jumps ∆At = 1{Xt−∈Γ}. In this case condition (4.1) can be
written as

Ly <
1√
2
. (4.18)
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The fact that the above condition is only on Ly, rather than on Lz, is particularly
important in the study of control problems related to PDMPs by means of BSDEs
methods (successfully implemented in the diffusive framework). This latter turns out to
be technically involved and is the subject of a work in progress by the author, where, in
particular, a rigorous formulation of the optimal control problem and precise assumptions
are provided. Here, we just say that when control problems are considered then Ly = 0

and condition (4.18) is automatically satisfied. We also emphasize that, as expected, the
main difficulties arise from the presence of discontinuities at the boundary of the domain.

References

[1] Barles, G., Buckdahn, R. and Pardoux, E.: Backward stochastic differential equations and
integral-partial differential equations. Stochastics and Stochastics Reports, 60, (1997), 57–83.
MR-1436432

[2] Becherer D.: Bounded solutions to backward SDEs with jumps for utility optimization and
indifference hedging. The Annals of Applied Probability, 16, (2006), 2027–2054. MR-2288712

[3] Carbone, R., Ferrario, B. and Santacroce, M.: Backward stochastic differential equations
driven by càdlàg martingales. Theory Probab. Appl., 52, (2008), 304–314. MR-2742510

[4] Cohen, S.: A martingale representation theorem for a class of jump processes.
arXiv:1310.6286v1

[5] Cohen, S. and Elliott, R. J.: Existence, uniqueness and comparisons for BSDEs in general
spaces. The Annals of Probability, 40, (2012), 2264–2297. MR-3025717

[6] Confortola, F. and Fuhrman, M.: Backward stochastic differential equations and optimal
control of marked point processes. SIAM Journal on Control and Optimization, 51, (2013),
3592–3623. MR-3105784

[7] Confortola, F., Fuhrman, M. and Jacod, J.: Backward stochastic differential equations driven
by a marked point process: an elementary approach, with an application to optimal control.
arXiv:1407.0876

[8] Davis, M.H.A.: Markov models and optimization. Monographs on Statistics and Applied
Probability 49, Chapman and Hall, London, 1993. MR-1283589

[9] El Karoui, N. and Huang, S. J.: A general result of existence and uniqueness of backward
stochastic differential equations. In Backward Stochastic Differential Equations (Paris, 1995-
1996). Pitman Research Notes in Mathematics Series, Longman, Harlow, 364, (1997), 27–36.
MR-1752673

[10] He, S., Wang, J. and Yan, Y.: Semimartingale theory and stochastic calculus. Science Press
Bejiing New York, 1992. MR-1219534

[11] Jacod, J.: Multivariate point processes: predictable projection, Radon-Nikodym derivatives,
representation of martingales. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 31, (1975),
235–253. MR-0380978

[12] Jacod, J.: Calcul stochastique et problèmes de martingales. Lecture Notes in Mathematics
714, Springer, Berlin, 1979. MR-0542115

[13] Pardoux, E. and Peng, S.: Adapted solution of a backward stochastic differential equation.
Syst. Control Lett., 14, (1990), 55–61. MR-1037747

[14] Tang, S. J. and Li, X. J.: Necessary conditions for optimal control of stochastic systems with
random jumps. SIAM J. Control Optim., 32, (1994), 1447–1475. MR-1288257

[15] Xia, J.: Backward stochastic differential equation with random measures. Acta Math. Appl.
Sinica (English Ser.), 16, (2000), 225–234. MR-1779016

Acknowledgments. The author would like to thank Prof. Jean Jacod for his helpful
discussions and valuable suggestions to improve this paper.

ECP 20 (2015), paper 71.
Page 13/13

ecp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=1436432
http://www.ams.org/mathscinet-getitem?mr=2288712
http://www.ams.org/mathscinet-getitem?mr=2742510
http://arXiv.org/abs/1310.6286v1
http://www.ams.org/mathscinet-getitem?mr=3025717
http://www.ams.org/mathscinet-getitem?mr=3105784
http://arXiv.org/abs/1407.0876
http://www.ams.org/mathscinet-getitem?mr=1283589
http://www.ams.org/mathscinet-getitem?mr=1752673
http://www.ams.org/mathscinet-getitem?mr=1219534
http://www.ams.org/mathscinet-getitem?mr=0380978
http://www.ams.org/mathscinet-getitem?mr=0542115
http://www.ams.org/mathscinet-getitem?mr=1037747
http://www.ams.org/mathscinet-getitem?mr=1288257
http://www.ams.org/mathscinet-getitem?mr=1779016
http://dx.doi.org/10.1214/ECP.v20-4348
http://ecp.ejpecp.org/


Electronic Journal of Probability

Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

Economical model of EJP-ECP

• Low cost, based on free software (OJS1)

• Non profit, sponsored by IMS2, BS3, PKP4

• Purely electronic and secure (LOCKSS5)

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
2IMS: Institute of Mathematical Statistics http://www.imstat.org/
3BS: Bernoulli Society http://www.bernoulli-society.org/
4PK: Public Knowledge Project http://pkp.sfu.ca/
5LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/Open_Journal_Systems
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
http://en.wikipedia.org/wiki/Public_Knowledge_Project
http://en.wikipedia.org/wiki/LOCKSS
https://secure.imstat.org/secure/orders/donations.asp
http://pkp.sfu.ca/ojs/
http://www.imstat.org/
http://www.bernoulli-society.org/
http://pkp.sfu.ca/
http://www.lockss.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Preliminaries
	The backward stochastic differential equation
	Main result
	References

