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Abstract

We give a “direct” coupling proof of strict monotonicity of the speed for 1-dimensional
multi-excited random walks with positive speed. This reproves (and extends) a recent
result of Peterson without using branching processes.
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1 Introduction and main results

Multi-excited random walk is a nearest-neighbour self-interacting random walk model
where, on the k-th departure from a site x ∈ Zd, the step distribution of the walker is given
by β(x, k, ●), supported on {±e1,±e2, . . . ,±ed} (where e1, . . . , ed denotes the canonical
basis for Zd). When {{β(x, k, ●)}k∈N}x∈Zd are i.i.d. over x the model is said to be a multi-
excited random walk in i.i.d. random cookie environment. When β(x, k, ●) = β(k, ●) for
every x (i.e. the transition probabilities do not depend on the site of departure) the
environment is said to be non-random. The original model, introduced by Benjamini and
Wilson [5], where β(x,1, e) = (1 + βe ⋅ e1)/(2d) and β(x, k, e) = 1/(2d) for all e when k > 1,
has been extensively studied, and in particular it is known that the limiting velocity of the
walker limn→∞ n−1Xn = v(β) is (deterministic and) strictly positive when d > 1 [6, 17, 16]
(see also the generalised results in [19, 20]) and strictly monotone in β when d > 8 [10]
(see also [22, 8, 12]). It is believed that this monotonicity holds in dimensions d > 1, but
the absence of any natural coupling argument has been an obstacle to resolving this
conjecture. Note that the main idea behind proving monotonicity in high dimensions is
to differentiate a formula for the speed provided by either an expansion [9] or a Girsanov
transformation, and it is currently not known how to adapt these arguments to low
dimensions.

In this paper we henceforth restrict ourselves to one dimension, where the law of the
model is completely described by the quantities β(x, k) ≡ β(x, k, e1). Here, Benjamini and
Wilson’s single cookie model is well understood (see e.g. [7] and [5]), but in the general
setting of (multi-excited) random walks in random cookie environments (introduced by
Zerner [23]) there are a number of interesting open problems (see the excellent recent
survey of Kosygina and Zerner [15]).

Amir, Berger, and Orenshtein [1] (see also [15, Theorem 4.1]) have recently confirmed
that a deterministic speed exists when the environment is stationary and ergodic (in the
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Strict monotonicity for ERW

Z-shift) and elliptic (β(x, k) ∈ (0,1)). In i.i.d. random environments, Basdevant and Singh,
and Kosygina and Zerner, [23, 2, 3, 14] have shown that under certain assumptions the
speed (exists, is deterministic and) is positive if and only if δ > 2, where

δ ≡ E [
∞
∑
k=1

(2β(o, k) − 1)] . (1.1)

Moreover the random walker is transient to the right if and only if δ > 1. See [15] for a
comprehensive survey of known results up to 2012, and Kosygina and Peterson [13] for
a discussion of more recent results in 1 dimension.

One such set of conditions under which the criterion (1.1) for positive speeds and
directional transience holds is when there exists M ∈ N such that β(x, k) = pk ∈ (0,1) for
each x (i.e. non-random environment) and that pk = 1/2 for all k ≥M . In this case the
sum in (1.1) is deterministic and finite. This is the setting in which Peterson [21] proves
a strict monotonicity property for the speed. Before properly stating Peterson’s results,
we first recall the partial ordering on arrow systems introduced in [11].

An arrow system is an element E = {E(x, k)}x∈Z,k∈N of {−1,+1}Z×N. An arrow system E
defines (uniquely) a nearest neighbour walk E = {En}n∈Z+ by setting E0 = 0 and if En = x

and #{m ≤ n ∶ Em = x} = k then En+1 = En + E(x, k). For two arrow systems L,R, we
write L ≼R if ∑

k
j=1L(x, j) ≤ ∑

k
j=1R(x, j) for each x ∈ Z, k ∈ N. The following results are

among those proved in [11, Corollary 3.7, (3.4),Theorem 1.3].

Theorem 1.1. If L ≼R then the corresponding walks L,R satisfy:

(a) For every x > 0, inf{n ∶ Rn = x} ≤ inf{n ∶ Ln = x}.

(b) For every n ∈ Z+, maxm≤nLm ≤ maxm≤nRm and minm≤nLm ≤ minm≤nRm.

(c) lim infn→∞Ln ≤ lim infn→∞Rn.

(d) Let an ≤ n be an increasing sequence, with an →∞. If there exists x ∈ Z such that
Rn ≥ x infinitely often then lim supn→∞Ln/an ≤ lim supn→∞Rn/an.

(e) If Ln → +∞ then #{m ∶ Lm = x} ≥ #{m ∶ Rm = x} for every x.

In particular, (c) implies that if L is transient to the right (Ln →∞) then so is R, and
(d) implies that if the speeds v(L) and v(R) exist then v(L) ≤ v(R). These facts were
used by the authors to prove monotonicity for the speed of excited random walks in one
dimension, under some technical assumptions on the environments. Note that examples
are given in [11] where L ≼R but Ln > Rn for some n etc.

Peterson [21] strengthened these results to strict monotonicity of the speed under
much stronger assumptions. To be precise, Peterson considers the situation where there
are two elliptic non-random i.i.d. cookie environments p⃗ ∈ (0,1)N and q⃗ ∈ (0,1)N, such
that p⃗ ≺ q⃗ where:

Definition 1.2. p⃗ ⪯ q⃗ if there exists a coupling P of (Y⃗ , Z⃗) with Y⃗ = {Yi}i∈N and Z⃗ =

{Zi}i∈N such that {Yi}i∈N are independent random variables with Yj ∼Ber(pj), {Zi}i∈N are
independent with Zj ∼ Ber(qj), and moreover

P(
m

∑
j=1

Yj ≤
m

∑
j=1

Zj) = 1 for every m ∈ N. (1.2)

p⃗ ≺ q⃗ if p⃗ ⪯ q⃗ and also

P(
m

∑
j=1

Yj <
m

∑
j=1

Zj) > 0 for some m ∈ N. (1.3)
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Swapping pi and pj (i.e. setting p′j = pi and p′i = pj) is said to be favorable if i < j and
pj > pi. Given an environment p⃗, one should think of generating environments q⃗ ≻ p⃗ in
two generic ways: increasing pi for one or more i, or making favorable swaps of pi.

Peterson then proves the following theorem by appealing to a connection with
branching processes with migration (which has become a standard tool in proving
ballisticity and related properties for multi-excited random walks on integers [15]), and
comments that “proving these results via a direct coupling of excited random walks
fails”. In this theorem (and the remainder of the paper), we use the notation Pp⃗ to denote
the law of an excited random walk in environment p⃗ (to be more precise, the sequence
{Xn}n∈Z+ is an excited random walk in environment p⃗ under this probability measure Pq⃗).
We also refer to a (the) walk with this law as a (the) p⃗-walk.

Theorem 1.3 (Theorems 1.7 and 1.8 of [21]). Let p⃗, q⃗ ∈ (0,1)N. Suppose that

(i) p⃗ ≺ q⃗, and

(ii) there exists M ∈ N such that pk = qk = 1/2 for all k >M .

Then either v(p⃗) = v(q⃗) = 0 or v(p⃗) < v(q⃗). Moreover, if the p⃗-walk is transient to the right
(a.s.) then Pp⃗(Xn > 0,∀n > 0) < Pq⃗(Xn > 0,∀n > 0).

In this paper we reprove this result without assuming (ii). In other words, we prove:

Theorem 1.4. Let p⃗, q⃗ ∈ (0,1)N be such that p⃗ ≺ q⃗. Then the conclusions of Theorem 1.3
hold.

The existence of (deterministic) v(p⃗) and v(q⃗) is known to hold in this elliptic (and
deterministic) setting by [1]. Our proof is via a coupling of arrow systems, which might
be considered a “direct” coupling of excited random walks, in the sense that it does not
use any facts about branching processes. We note that our methods and results can be
extended to more general cookie environments (see [11, Section 5], and also Section 3)
at the cost of much more cumbersome notation.

One class of environments to which condition (ii) does not hold yet our results apply,
is the so-called periodic environments, as studied by Kozma, Orenshtein, and Shinkar
in [18]. In this setting the finite sequence of cookies p1, . . . , pM is repeated indefinitely,
i.e. pi+M = pi for every i ∈ N. Let p̄ =M−1∑

M
i=1 pi and

θ(p1, . . . , pM) =
∑

M
i=1(1 − pi)∑

i
j=1(2pj − 1)

4∑
M
l=1 pl(1 − pl)

.

It is shown in [18] that the walk is transient to the right if either p̄ > 1/2 or p̄ = 1/2

and θ(p1, . . . , pM) > 1. Kosygina and Peterson [13] have recently given a complete
characterization of the limiting behaviour in the setting of i.i.d. (finite-state)-Markovian
cookie stacks, which includes the periodic cases. In particular in the periodic setting
they prove that the speed is positive when p̄ > 1/2, and also when p̄ = 1/2 and θ > 2.

Theorem 1.4 applied in the context of periodic cookie environments says that if p⃗
is periodic and induces a positive speed then any environment q⃗ created by favourable
swaps has greater speed. This of course includes the cases where q⃗ is also periodic.

2 Proof of Theorem 1.4

Our first result is an elementary one connecting arrow systems and excited random
walks.

Lemma 2.1. If p⃗ ≺ q⃗ then there exists a probability space (Ω,F ,P) on which there are
(random) arrow systems L ≼ R whose corresponding walks L,R are p⃗- and q⃗- walks
respectively.
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Proof. By assumption there exists a probability space (Ω,F ,P) on which we have
random sequences (Y⃗ , Z⃗) satisfying the properties in Definition 1.2. By consider-
ing product spaces one can easily embed this into a larger probability space where
we have {(Y⃗ , Z⃗)x}x∈Zd each with the same law and independent over x. Now define
L(x, k) = 2Yx,k − 1 and R(x, k) = 2Zx,k − 1. It is easy to see that L,R and L,R have the
desired properties. ∎

Standard proofs of the existence of a deterministic speed are based on the notion
of regeneration points and times. A point x ∈ Z+ is a regeneration point for a (right-
transient) walk X if Xn ≥ x for all n ≥ inf{m ∈ N ∶ Xm = x}, in other words if the
walker never returns to the left of x after it reaches x. Let D(X) denote the set of
(non-negative) regeneration points of X. If E is an arrow system, let D(E) = D(E) denote
the regeneration points of the walk E defined from it.

The following is now a standard result in the literature, see e.g. [15, Lemma 3.17
(also Lemma 4.5, Theorem 4.6)].

Lemma 2.2. For an i.i.d. elliptic environment, if P(Xn → +∞) > 0 then for every x ∈ Z+,
P(x ∈ D(p⃗)) = εp⃗ > 0.

The following elementary lemma is one of the main facts that lets us upgrade mono-
tonicity as proved in [11] to strict monotonicity (under stronger assumptions such as
those of Theorem 1.4). In this lemma, TE(x) denotes the first hitting time of level x > 0

by the walk E, and D(L) = {D1(L),D2(L), . . .} where 0 ≤Di(L) <Di+1(L) for each i.

Lemma 2.3. If L ≼R then D(L) ⊂ D(R) on the probability space in Lemma 2.1. More-
over TR(Dk+1(L)) − TR(Dk(L)) ≤ TL(Dk+1(L)) − TL(Dk(L)) for every k ∈ N.

Proof. Theorem 1.1(b) proves that if 0 ∈ D(L) then 0 ∈ D(R). If L reaches level x > 0

then Theorem 1.1(b) proves that R does too (and that L cannot reach x earlier than R).
Both claims then follow immediately since the property L ≼ R is translation invariant,
and x ∈ D does not depend on the arrow system to the left of x. ∎

Let T (E) = inf{n ∈ N ∶ Xn ∈ D(E) ∖ 0} denote the first hitting time of the first
regeneration level to the right of the starting point, and for p⃗ ∈ (0,1)N, let T (p⃗) denote
the corresponding hitting time for an excited random walk with cookie environment p⃗.
The following result connects the speeds of (a.s. right-transient) excited random walks
L ≼ R given by [15, Lemma 4.5, Theorem 4.6] according to their mutual regeneration
levels. Note that coupling of regenerations is not new (see e.g. [4], where the notion
of super-regeneration times are introduced), but given the importance in the present
context, we include a proof of the following result.

Proposition 2.4. Assume that the excited random walk in environment p⃗ ∈ (0,1)N is
almost surely transient to the right. If p⃗ ≺ q⃗ then there exists a probability space on
which the speeds for the p⃗-walk and q⃗-walk satisfy

v(p⃗) =
E[XT (p⃗)1{0∈D(p⃗)}]

E[T (p⃗)1{0∈D(p⃗)}]
, and (2.1)

v(q⃗) =
E[XT (p⃗)1{0∈D(p⃗)}]

E[Tq⃗(p⃗)1{0∈D(p⃗)}]
, (2.2)

where Tq⃗(p⃗) denotes the hitting time of XT (p⃗) by the q⃗-walk.

Proof. Construct the probability space given by Lemma 2.1, on which L and R are p⃗ and
q⃗ excited random walks defined from L and R respectively.

Since L is almost surely transient to the right (by assumption), the first claim is then
a simple consequence of [15, Lemma 3.17, Lemma 4.5, Theorem 4.6], using the fact that
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the chunks of arrow environment seen by the L-walker in between regeneration times
(times between hitting of regeneration levels) are i.i.d. By Theorem 1.1(c), R is also
transient to the right (a.s.), and by Lemma 2.3 we have D(L) ⊂ D(R) on this probability
space. Since the arrow environments seen by the walk R in between hitting regeneration
levels of L are i.i.d., the second claim follows in exactly the same way. ∎

Proof of Theorem 1.4. We continue to work in the probability space of Lemma 2.1.
Without loss of generality we may assume that v(p⃗) ≥ 0.

On the event {Ln ↛ +∞}, we have Ln ≤ x infinitely often for some x, whence the lim inf

analogue of Theorem 1.1(d) applies and tells us that 0 = lim inf n−1Ln ≤ lim inf n−1Rn.

On the event {Ln → +∞}, regeneration levels exist (a.s.) and Lemma 2.3 tells us that
D(L) ⊂ D(R) and the inter-hitting times of the regeneration levels satisfy TR(Dk+1(L))−

TR(Dk(L)) ≤ TL(Dk+1(L)) − TL(Dk(L)) for every Dk(L) < Dk+1(L) ∈ D(L). It follows
that on the event Ln → +∞: the speeds vL = limn→∞ n−1Ln and vR = limn→∞ n−1Rn (exist
and) satisfy vL ≤ vR (a.s.). This gives (non-strict) monotonicity of the speeds on the event
Ln → +∞.

Combining the arguments for the two events above proves the claimed monotonicity
of the speed when v(p⃗) = 0.

Suppose now that v(p⃗) > 0. Then Ln → +∞ almost surely so v(q⃗) ≥ v(p⃗) by Theorem
1.1(d), and Proposition 2.4 gives us formulas for the speeds. In particular, since v(p⃗) > 0

we have E[T (p⃗)1{0∈D(p⃗)}] < ∞. To verify strict monotonicity of the speed it therefore
remains to show that

P(T (p⃗)1{0∈D(p⃗)} > Tq⃗(p⃗)1{0∈D(p⃗)}) > 0. (2.3)

By Lemma 2.2, εp⃗ ≡ P(2 ∈ D(L)) > 0. Note that this is independent of the environment
before level 2 (assuming one reaches level 2). Let m0 = inf{m ∈ N ∶ P(∑m

j=1 Yj < ∑
m
j=1Zj) >

0}, which is finite since p⃗ ≺ q⃗. Since pk ∈ (0,1) for each k, with positive probability on our
probability space, all of the following hold simultaneously

(i) Yj,0 = Zj,0 = 1 for all j ≤m0 + 1,

(ii) Yj,1 = 0 for all j ≤m0, Zm0,1 = 1,

(iii) 2 ∈ D(L) ⊂ D(R).

It is then easy to see that on this event 0 ∈ D(p⃗) ⊂ D(q⃗), and that T (p⃗) = inf{n ∶ Ln = 2} =

2m0 + 2 > 2m0 ≥ inf{n ∶ Rn = 2} = Tq⃗(p⃗), as required.

The last claim of the theorem is that Pq⃗(X1 = 1,1 ∈ D(X)) > Pp⃗(X1 = 1,1 ∈ D(X))

when the latter is positive. This holds by a similar construction to that above: By
assumption, the event 3 ∈ D(p⃗) has positive probability and this event does not depend
on the environment to the left of 3 (assuming that 3 is actually reached). Since p⃗ is
elliptic, with positive probability all of the following hold simultaneously

(i) Y1,0 = 1 = Z1,0

(ii) Yj,1 = Zj,1 = 1 for all j <m0, and Ym0,1 = 0, Zm0,1 = 1,

(iii) Yj,2 = 0 for all j <m0, Zm0,2 = 1,

(iv) 3 ∈ D(L) ⊂ D(R).

It is easy to see that on this event, Rn > 0 for all n > 0 but 0 ∈ {Ln}n>0. ∎
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3 Further generalisations

Note that all we have really needed here to make the proof work is:

(a) there is a coupling of the walks in terms of arrow systems L ≼R,

(b) deterministic speeds exist and are expressed in terms of regeneration levels and
times (when we have transience to the right),

(c) under this coupling, with positive probability the hitting time of the first regen-
eration level is smaller for R than L (as in (2.3)). Assuming that with positive
probability the two environments actually differ, this is easy to achieve under the
assumption of ellipticity.

In particular, the method used here remains valid if one has for example a pair of
environments, each alternating (or more generally cyclic) in x ∈ Z as p⃗even, p⃗odd and
q⃗even, q⃗odd, with p⃗even ≺ q⃗even and p⃗odd ≺ q⃗odd (only one would need to be strict). To prove
strict monotonicity in such a setting (using the method in this paper), one would need an
external input of existence of speeds and an expression for them in terms of e.g. “even
regeneration levels”.

In the setting of two i.i.d. elliptic random cookie environments β and β′ for which
there exists a coupling such that β⃗ ⪯ β⃗′ almost surely and β⃗ ≺ β⃗′ with positive probability
(where β⃗ = {β(0, k)}k∈N and β⃗′ = {β′(0, k)}k∈N), the proof given here yields monotonicity
of speeds under annealed/averaged measures.
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