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Abstract

We prove the continuity of the shape governing the asymptotic growth of the super-
critical contact process in Zd, with respect to the infection parameter. The proof is
valid in any dimension d ≥ 1.
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1 Introduction

The contact process is a famous interacting particle system modelling the spread
of an infection on the sites of Zd. The evolution in time depends on a fixed parameter
λ ∈ (0,+∞) and is as follows: at each moment, an infected site becomes healthy at rate 1

while a healthy site becomes infected at a rate equal to λ times the number of its infected
neighbors. There exists a critical value λc(Zd) ∈ (0,+∞) such that the infection, starting
from the origin, infinitely expands with positive probability if and only if λ > λc(Z

d). See
for instance Liggett’s book [15] for a review on the contact process.

Durrett and Griffeath [5] proved that when the contact process on Zd starting from
the origin survives, the set of sites occupied before time t satisfies an asymptotic shape
theorem, as in first-passage percolation. In [8], two of us extended this result to the case
of the contact process in a random environment. The shape theorem can be stated as
follows: provided that λ > λc(Z

d), there exists a norm µλ on Rd such that the set Ht of
points already infected before time t satisfies:

Pλ

(
∃T > 0 : t ≥ T =⇒ (1− ε)tS(λ) ⊂ H̃t ⊂ (1 + ε)tS(λ)

)
= 1,

where H̃t = {z + u : (z, u) ∈ Ht × [0, 1]d}, S(λ) is the unit ball for µλ and Pλ is the law
of the contact process with parameter λ, starting from the origin and conditioned to
survive. The growth of the contact process is thus asymptotically linear in time, and
governed by the shape S(λ).

The aim of this note is to prove the continuity of the map λ 7→ S(λ). More precisely,
we prove the following result: denote by Sd−1 is the unit sphere for ‖.‖1 on Rd, then
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Continuity of the asymptotic shape

Theorem 1.1. For every λ > λc(Z
d), lim

λ′→λ
sup

x∈Sd−1

|µλ′(x)− µλ(x)| = 0.

It is then easy to deduce the following continuity for the asymptotic shape. Denote by
dH the Hausdorff distance between non-empty compact sets in Rd. For every λ > λc(Z

d),

lim
λ′→λ

dH(S(λ′),S(λ)) = 0.

Continuity properties for asymptotic shapes in random growth models have already
been investigated. In first passage percolation, perhaps the most famous random growth
model, Cox and Kesten [2, 3, 13] proved that the time constant is continuous with
respect to the distribution of the passage-time of an edge. In a forthcoming paper, Garet,
Marchand, Procaccia and Théret [10] extend their result to the case of possibly infinite
passage times by renormalization techniques. In these two cases, thanks to a good
subadditivity property, the quantity whose continuity is studied appears as an infimum
of a decreasing sequence of continuous functions, which gives quite easily one half of
the continuity.

Because of the possibility of extinction of the contact process, the subadditivity
properties are not so obvious and we thus use the essential hitting time presented in
Garet–Marchand [8]. Note that the one-dimensional case is simpler because the growth
of the supercritical contact process in dimension 1 is characterized by the right-edge
velocity: its continuity is proved in Liggett [14], Theorem 3.36. See also Durrett [4] for
an analogous result about 2D oriented percolation.

In Section 2, we introduce the notation, build contact processes with distinct infection
parameters on the same space thanks to the Harris construction and recall the definition
and properties of the essential hitting time introduced in [8]. Section 3 is devoted to the
proof of the left-continuity, while in Section 4 we prove the right-continuity.

2 Notation and known results

We work on the grid Zd, with d ≥ 1, and we put an edge between any pair of sites
at distance 1 for ‖ · ‖1. We denote by Ed the set of these edges. To define the contact
process, we use the Harris construction [12]. It allows to couple contact processes
starting from distinct initial configurations and distinct parameters λ ∈ (0, λmax], where
λmax > 0 is fixed and finite, by building them from a single collection of Poisson measures
on R+.

2.1 Construction of the Poisson measures

As the continuity is a local property, it will be sufficient in the sequel to build a
coupling for contact processes with parameters in (0, λmax], for a fixed and well chosen
λmax > 0. Roughly speaking, to couple contact processes of parameter λ and λ′ in
(0, λmax],

- we associate to each vertex of Zd an independent Poisson point process of parame-
ter 1, that corresponds to the recovery process for both contact processes;

- we associate to each edge of Ed an independent Poisson point process of parameter
λmax;

- we associate to each atom of these Poisson point process of parameter λmax a
variable U that is uniform on [0, λmax] : this atom is part of the infection process
for the contact process of parameter λ (respectively λ′) if and only if U ≤ λ/λmax

(respectively U ≤ λ′/λmax).

Let us do this more formally. We endow R+ with the Borel σ-algebra B(R+), and we
denote by M the set of locally finite counting measures m =

∑+∞
i=0 δti . We endow this set

with the σ-algebraM generated by the maps m 7→ m(B), where B is a Borel set in R+.
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Continuity of the asymptotic shape

We define the measurable space (Ω,F) by setting

Ω = MEd ×MZd × ([0, λmax]N)E
d

and F =M⊗E
d

⊗M⊗Z
d

⊗ ([0, λmax]⊗N)⊗E
d

.

On this space, we consider the probability measure defined by

P = P⊗E
d

λmax
⊗ P⊗Z

d

1 ⊗ (U([0, λmax])⊗N)⊗E
d

,

where, for every λ ∈ R+, Pλ is the law of a Poisson point process on R+ with intensity λ
and U([a, b]) is the uniform law on the compact set [a, b].

Fix an edge e and consider ωe ∈ M . Denoting by (Sei )i≥1 the atoms of ωe, we build
the classical coupling between the Poisson measures of the infection processes with
different parameters λ ∈ (0, λmax]. Define

me
λ = mλ(ωe, (U

e
i )i≥1) =

+∞∑
i=1

11{Uei ≤ λ
λmax

}δSei .

Under P, the random variable mλ is a Poisson point process with parameter λ. We then
define, for λ ≤ λmax, the application

Ψλ : Ω −→ MEd ×MZd

((ωe)e∈Ed , (ωz)z∈Zd , (U
i
e)e∈Ed,i≥1) 7−→ ((mλ(ωe, (U

e
i )i≥1))e∈Ed , (ωz)z∈Zd).

The law of Ψλ under P is then

Pλ = P⊗E
d

λ ⊗ P⊗Z
d

1 .

We thus recover infection processes, indexed by Ed, with parameter λ and recovering
processes, indexed by Zd, with parameter 1. Note that the Poisson measures for
recoverings, (ωz)z∈Zd , do not depend on λ. The following lemma will be useful to
compare the evolution of two contact processes with different parameters.

Lemma 2.1. Let t > 0 and let S be a finite subset of Ed. Assume 0 < λ′ ≤ λ ≤ λmax and
define

Idem(S, t, λ, λ′) = ∩
e∈S

{
me
λ [0,t] = me

λ′ [0,t]

}
.

For each ε > 0, there exists δ = δ(S, t, ε) > 0 such that

∀λ, λ′ ∈ (0, λmax] |λ′ − λ| ≤ δ ⇒ P(Idem(S, t, λ, λ′)) ≥ 1− ε.

Proof. Let λ, λ′ ∈ (0, λmax], and assume without loss of generality that λ ≤ λ′.
For each e ∈ Ed and t > 0, set

De
t =

+∞∑
i=1

11{ λ
λmax

<Uei ≤
λ′

λmax
}11{Sei≤t},

then E(De
t ) =

λ′ − λ
λmax

E(ωe([0, t])) =
λ′ − λ
λmax

λmaxt = (λ′ − λ)t.

Now,

P(Idem(S, t, λ, λ′)c) ≤
∑
e∈S

P(me
λ [0,t] 6= me

λ′ [0,t])

≤
∑
e∈S

P(De
t ≥ 1) ≤

∑
e∈S

E(De
t ) ≤ |S|t(λ′ − λ),

so we can take δ = 1/(t|S|ε).
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Continuity of the asymptotic shape

2.2 Graphical construction of the contact process

This construction is exposed in all details in Harris [12]; we just give here an informal
description. Suppose that λ ∈ (0, λmax] is fixed. Let ω = ((ωe)e∈Ed , (ωz)z∈Zd , (U

i
e)e∈Ed,i≥1) ∈

Ω. Above each site z ∈ Zd, we draw a time line R+, and we put a cross at the times given
by ωz, corresponding to potential recoverings at site z. Above each edge e ∈ Ed, we
draw at the times given by mλ((ωe)e∈Ed , (U

i
e)e∈Ed,i≥1) an horizontal segment between the

extremities of the edge, corresponding to a potential infection through edge e (remember
we fix the infection rate λ).

An open path is a connected oriented path which moves along the time line in the
increasing time direction without passing a cross symbol, and along the horizontal
segments corresponding to potential infections. In this description, the evolution of the
contact process looks like a percolation process, oriented in time but not in space. For
x, y ∈ Zd and t ≥ 0, we say that y ∈ ξλ,xt if and only if there exists an open path from
(x, 0) to (y, t), then we define:

∀A ∈ P(Zd) ξλ,At =
⋃
x∈A

ξλ,xt .

For instance, we obtain

(A ⊂ B, λ′ ≤ λ) ⇒ (∀t ≥ 0 ξλ
′,A
t ⊂ ξλ,Bt ).

Harris proved that under P, or under Pλ, the process (ξλ,At )t≥0 is the contact process
with infection rate λ, starting from initial configuration A.

2.3 Translations

For t ≥ 0, we define the translation operator θt on a locally finite counting measure
m =

∑+∞
i=1 δti on R+ by setting

θtm =

+∞∑
i=1

11{ti≥t}δti−t.

The translation θt induces an operator on Ω, still denoted by θt:
for every ω = ((ωe)e∈Ed , (ωz)z∈Zd , (U

i
e)e∈Ed,i≥1) ∈ Ω, we set

θt(ω) = ((θtωe)e∈Ed , (θtωz)z∈Zd , (U
i+ωe([0,t])
e )e∈Ed,i≥1).

Since the Poisson point processes are translation invariant and ωe([0, t]) is independent
from the (U ie)’s, P and Pλ are invariant under θt.

There is also a natural action of Zd on Ω, which preserves P and Pλ, and which
consists in changing the observer’s point of view: for x ∈ Zd, we define the translation
operator Tx by setting:

∀ω ∈ Ω Tx(ω) = ((ωx+e)e∈Ed , (ωx+z)z∈Zd , (U
i
x+e)e∈Ed;i≥1),

where x+ e the edge e translated by vector x.

2.4 Notation and classical estimates for the contact process

For a set A ⊂ Zd, we define the life time τAλ of the process starting from A by

τAλ = inf{t ≥ 0 : ξλ,At = ∅}.

If y ∈ Zd, we write τyλ instead of τ{y}λ and we simply write τλ for τ0λ . With the graphical
construction in mind, it is clear that {τλ = +∞} if and only if there is an infinite path
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Continuity of the asymptotic shape

starting from (0, 0) in the graph that is built from potential infections that are present at

rate λ. Then, it will be often more appealing to write {0 λ↔ ∞} instead of {τλ = +∞}.
The critical parameter for the contact process in Zd is then

λc(Z
d) = inf{λ > 0 : Pλ(τλ = +∞) > 0}

= inf{λ > 0 : Pλ(0
λ↔∞) > 0} ∈ (0,+∞).

The fact that λc(Zd) < +∞ is due to Harris [11]. Define, for λ > λc(Z
d), the following

conditional probability

Pλ(·) = Pλ(·|τλ = +∞) =
P( · ∩ {0 λ↔∞})

P(0
λ↔∞)

.

For A ⊂ Zd and x ∈ Zd, we also define the first infection time tAλ (x) of site x from set A
by

tAλ (x) = inf{t ≥ 0 : x ∈ ξλ,At }.

It follows from Bezuidenhout–Grimmett [1] (see also Durrett [6]) that Pλ(tAλ (x) < +∞) =

1 as soon as A 6= ∅. If y ∈ Zd, we write tyλ(x) instead of t{y}λ (x) and we simply write tλ(x)

for t0λ(x). The set of points infected before time t is then

Hλ
t = {x ∈ Zd : tλ(x) ≤ t} and H̃λ

t = {x+ u : (x, u) ∈ Hλ
t × [0, 1]d}.

The following estimates are classical for the supercritical contact process; they are mainly
due to Bezuidenhout–Grimmett [1] and Durrett [6]. Here, we need an extra uniformity in
the parameter λ (this uniformity is mainly obtained by stochastic comparison):

Proposition 2.2 (Proposition 5 in Garet–Marchand [8]).
Let λmin, λmax with λc(Z

d) < λmin ≤ λmax. There exist A,B,C, c, ρ > 0 such that for
every λ ∈ [λmin, λmax], for every x ∈ Zd, for every t ≥ 0,

P(τλ = +∞) ≥ ρ,

P(Hλ
t 6⊂ [−Ct,Ct]d) ≤ A exp(−Bt),
P(t < τλ < +∞) ≤ A exp(−Bt),

P

(
tλ(x) ≥ ‖x‖

c
+ t, τλ = +∞

)
≤ A exp(−Bt).

2.5 Essential hitting times and shape theorem

We now recall the definition of the essential hitting time σλ(x). It was introduced in
[8] to prove an asymptotic shape result for the supercritical contact process in random
environment. See also Garet–Marchand [9] and Garet–Gouéré–Marchand [7] for further
uses. The essential hitting time σλ(x) is a time when the site x is infected from the origin
0 and also has an infinite life time.

We begin by an informal description: first wait until site x is occupied. If the
progeny of the particle that occupies x at that time is infinite, then we have found σλ(x).
Otherwise, wait until this progeny dies, and then wait until site x is occupied again. If the
progeny of the particle that occupies x at that new time is infinite, then we have found
σλ(x), otherwise we repeat the process until the whole population has disappeared or
we have found through this process someone living at x and having an infinite progeny.

Formally, σλ(x) is defined through a family of stopping times as follows: we set
u0(x) = v0(x) = 0 and we define recursively two increasing sequences of stopping times
(un(x))n≥0 and (vn(x))n≥0 with u0(x) = v0(x) ≤ u1(x) ≤ v1(x) ≤ u2(x) . . . :
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Continuity of the asymptotic shape

• Assume that vk(x) is defined. We set uk+1(x) = inf{t ≥ vk(x) : x ∈ ξλ,0t }.
• Assume that uk(x) is defined, with k ≥ 1. We set vk(x) = uk(x) + τxλ ◦ θuk(x).

We then set

Kλ(x) = min{n ≥ 0 : vn(x) = +∞ or un+1(x) = +∞}.

This quantity represents the number of steps before we stop: either we stop because we
have just found an infinite vn(x), which corresponds to a time un(x) when x is occupied
and has infinite progeny, or we stop because we have just found an infinite un+1(x),
which says that after vn(x), site x is never infected anymore. Since Pλ(t0λ(x) < +∞) = 1,
it follows from the strong Markov property that un+1 is never infinite when the contact
process survives.

In [8], using (2.4) and (2.5), it is proved that Kλ(x) is almost surely finite, which
allows to define the essential hitting time σλ(x) by setting

σλ(x) = uKλ(x).

At the same time, we define the operator Θ̃x,λ on Ω by:

Θ̃x,λ =

{
Tx ◦ θσλ(x) if σλ(x) < +∞,

Tx otherwise.

The advantage of the essential hitting time σλ(x), compared to tλ(x), is that θσλ(x)
preserves Pλ (see below). So, σλ(x) can be seen as a regenerating time. It also enjoys
good integrability properties. We now recall the main results of [8] we will need here. In
the following, we fix λmin, λmax > 0 such that λc(Zd) < λmin ≤ λmax.

Proposition 2.3 (Garet–Marchand [8], Theorems 1 and 3, Corollary 21, Theorem 22 and
Lemma 29).

• For each λ > λc(Z
d), for every x ∈ Zd,

the probability measure Pλ is invariant under the map Θ̃x,λ. (2.6)

• There exist constants (Cp)p≥1 such that for every λ ∈ [λmin, λmax], for every x ∈ Zd,
for every p ≥ 1,

Eλ[σλ(x)p] ≤ Cp(1 + ‖x‖)p. (2.7)

• For each λ > λc(Z
d), for every x ∈ Zd, there exists a deterministic µλ(x) such that

lim
n→+∞

tλ(nx)

n
= lim
n→+∞

σλ(nx)

n
= µλ(x). (2.8)

The convergence holds Pλ almost surely, and also in L1(Pλ).

• The function x 7→ µλ(x) can be extended to a norm on Rd. Let

S(λ) = {x ∈ Rd : µλ(x) ≤ 1}.

• For every ε > 0, Pλ − a.s., for every t large enough,

(1− ε)S(λ) ⊂ H̃λ
t

t
⊂ (1 + ε)S(λ). (2.9)
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The only drawback of this essential hitting time is that it is only almost subadditive,
but we proved in Theorem 2 in [8] that the lack of subadditivity is well controlled: There
exist A,B > 0 such that for any λ ∈ [λmin, λmax], for any x, y ∈ Zd,

∀t > 0 Pλ(σλ(x+ y)− (σλ(x) + σλ(y) ◦ Θ̃x,λ ≥ t) ≤ A exp(−B
√
t).

Thus there exists M1 > 0 such that, for each λ ∈ [λmin, λmax] and each x ∈ Zd\{0}, the
sequence (Eλσλ(nx) +M1)n≥1 is subadditive, and with (2.8), we can represent µλ(x) as
the following infimum:

∀λ ∈ [λmin, λmax] ∀x ∈ Zd µλ(x) = inf
n≥1

M1 + Eλ(σλ(nx))

n
. (2.10)

As a corollary of (2.8), we obtain the following monotonicity property:

Corollary 2.4. For each x ∈ Zd, λ 7→ µλ(x) is non-increasing on (λc(Z
d),+∞).

Proof. Suppose λc(Zd) < λ′ < λ < +∞. Choose λmin, λmax with λc(Z
d) < λmin < λ′ <

λ ≤ λmax. Use the construction of Subsection 2.2 to build the two contact processes

with respective parameters λ and λ′. On the event {0 λ′↔ ∞}, which has positive

probability, we have that for each n ≥ 1, tλ(nx)n ≤ tλ′ (nx)
n . Letting n go to infinity, we get

µλ′(x) ≤ µλ(x).

3 Left-Continuity

We prove here the left-continuity of µλ. More precisely, we prove that for each
λ0 > λc(Z

d), for every ε > 0, there exists δ > 0 such that

∀λ ∈ [λ0 − δ, λ0] ∀x ∈ Sd−1 |µλ0
(x)− µλ(x)| ≤ ε.

When proving continuity theorems for the time constant in first passage percolation
(see Cox and Kesten [2, 3, 13]), the left-continuity is usually considered as the easy part,
due to the fact that the time constant is an infimum. In the case of the contact process,
there are extra difficulties, because contact processes with different intensities can not
be coupled in such a way that they die simultaneously.

Lemma 3.1. Let λ > λc(Z
d). For each x ∈ Zd, lim

λ′→λ−
Eλ′(σλ′(x)) ≤ Eλ(σλ(x)).

Proof. Fix λ > λc(Z
d). Choose λmin such that λc(Zd) < λmin < λ and set λmax = λ.

Fix x ∈ Zd. Use the construction of Subsection 2.2. In this proof, for λ′ ∈ [λmin, λ],
we write σλ′ instead of σλ′(x) to simplify the notation. Fix λ′ ∈ [λmin, λ]. Note that

{0 λ′↔ +∞} ⊂ {0 λ↔ +∞}, and thus, for any non negative random variable X,

Eλ′(X) =
E
(
X, 0

λ′↔∞
)

P(0
λ′↔∞)

≤
E
(
X, 0

λ↔∞
)

P(0
λ′↔∞)

=
P(0

λ↔∞)

P(0
λ′↔∞)

Eλ(X). (3.1)
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For any λ′ ∈ [λmin, λ], with (3.1) and the control (2.7) on the moments of σλ′ , we get

Eλ′(σλ′) = Eλ′(σλ, σλ′ = σλ) + Eλ′(σλ′ , σλ′ 6= σλ)

≤ P(0
λ↔ +∞)

P(0
λ′↔ +∞)

Eλ(σλ) +
√
Eλ′(σ2

λ′)Pλ′(σλ′ 6= σλ)

≤ P(0
λ↔ +∞)

P(0
λ′↔ +∞)

Eλ(σλ) +
√
C2(1 + ‖x‖2)

√√√√P(0
λ↔∞)

P(0
λ′↔∞)

Pλ(σλ′ 6= σλ)

≤ P(0
λ↔ +∞)

P(0
λ′↔ +∞)

(
Eλ(σλ) +

√
C2(1 + ‖x‖2)

√
Pλ(σλ′ 6= σλ)

)
.

As λ 7→ P(0
λ↔ +∞) is continuous on [λc(Z

d),+∞) (see Theorems 1.10.a and 1.6.d in
[15]), if we prove that Pλ(σλ′ = σλ) tends to 1 when λ′ goes to λ, we complete the proof.

We now build a “good” event G(λ′) such that G(λ′) ∩ {0 λ↔ ∞} ⊂ {σλ′ = σλ} and
Pλ(G(λ′)) goes to 1 as λ′ goes to λ. Since σλ is Pλ-a.s. finite and Hλ

σλ
is Pλ-a.s. a finite

set, we can first choose M > 0 such that

Pλ(AM ) ≥ 1− ε

3
, where AM = {Hλ

σλ
⊂ [−M,M ]d, σλ ≤M}. (3.2)

The event AM says that, apart from the fact that (x, σλ)
λ↔∞, the time σλ is determined

by the configuration of the Poisson processes in the space-time box [−M,M ]d × [0,M ].
Then, with estimates (2.3) and (2.4) we choose L > 0 such that for each λ′ ∈ [λmin, λ]

Pλ(BL(λ′)) ≥ 1− ε

3
, with BL(λ′) = {Hλ′

L ⊂ [−CL,CL]d} ∩ {L < τλ′ <∞}c. (3.3)

Set S = [−(M + CL), (M + CL)]d ∩Zd and t = M + L. With Lemma 2.1, we can choose
δ > 0 such that

∀λ′ ∈ [λ− δ, λ] Pλ(Idem(S, t, λ, λ′)) ≥ 1− ε/3. (3.4)

Finally, we consider, for every λ′ ∈ [λ− δ, λ], the event

G(λ′) = AM ∩ Θ̃−1x,λ(BL(λ′)) ∩ Idem(S, t, λ, λ′).

The choices (3.2), (3.3) and (3.4) we respectively made for M,L and δ, and the invariance
property (2.6) ensure that

∀λ′ ∈ [λ− δ, λ] Pλ(G(λ′)) ≥ 1− ε.

It now remains to see that G(λ′) ∩ {0 λ↔∞} ⊂ {σλ′ = σλ}. On the event G(λ′) ∩ {0 λ↔
∞}, the point (x, σλ) has a progeny for parameter λ that is still alive at time σλ + L. But
the event Idem(S, t, λ, λ′) ensures that the infection at rate λ′ in the box S× [0, t] behaves
exactly like the infection at rate λ in the same box, so the point (x, σλ) has a progeny
for parameter λ′ that is also still alive at times σλ + L. The event Θ̃−1x,λ(BL(λ′)) says then

that (x, σλ)
λ′↔ ∞, and, with Idem(S, t, λ, λ′), this implies that σλ′ = σλ. This completes

the proof.

Lemma 3.2. For each x ∈ Zd, λ 7→ µλ(x) is left-continuous on (λc(Z
d),+∞).

Proof. Fix x ∈ Zd. Since, from Corollary 2.4, the application λ 7→ µλ(x) is non-increasing
on (λc(Z

d),+∞), we can define

L = lim
λ′→λ−

µλ′(x).
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Continuity of the asymptotic shape

Obviously L ≥ µλ(x) and we must prove L ≤ µλ(x). Put λn = λ − 1/n. Using the
representation (2.10) of µλ(x) as an infimum, we have

L = inf
n≥1

µλn(x) = inf
n≥1

inf
k≥1

Eλn(σλn(kx)) +M1

k

= inf
k≥1

inf
n≥1

Eλn(σλn(kx)) +M1

k
= inf

k≥1

(
M1

k
+ inf

n≥1

Eλn(σλn(kx))

k

)
.

By Lemma 3.1, for each k, inf
n≥1

Eλn(σλn(kx)) ≤ Eλ(σλ(kx)), so

L ≤ inf
k≥1

(
M1

k
+
Eλ(σλ(kx))

k

)
= µλ(x),

which completes the proof.

By homogeneity of µλ, the result of Lemma 3.2 also holds for all x ∈ Rd, thus the
difference between (3) and Lemma 3.2 is the uniformity of the control. For all λ > 0,
since µλ is a norm and by symmetry of the model, we have for all x, y ∈ Rd,

|µλ(x)− µλ(y)| ≤ µλ(x− y) ≤ ‖x− y‖1µλ(e1) ,

where e1 = (1, 0, . . . , 0). Fix λ0 ∈ (λc,+∞) and ε > 0. By Lemma 3.2 we know that
limλ→λ−0

µλ(e1) = µλ0
(e1), thus there exists δ > 0 such that for all λ ∈ [λ0 − δ, λ0], for all

x, y ∈ Rd, we have |µλ(x)− µλ(y)| ≤ 2‖x− y‖1µλ0
(e1). We obtain the existence of η > 0

such that for all x, y ∈ Rd satisfying ‖x− y‖1 ≤ η, we have

sup
λ∈[λ0−δ,λ0]

{|µλ(x)− µλ(y)|} ≤ ε .

There exists a finite set of points y1, . . . , ym in Rd such that

Sd−1 ⊂
m⋃
i=1

{x ∈ Rd : ‖x− yi‖1 ≤ η} ,

thus for all λ ∈ [λ0 − δ, λ0] we obtain

sup
x∈Sd−1

|µλ(x)− µλ0(x)| ≤ 2ε+ max
i=1,...,m

|µλ(yi)− µλ0(yi)| .

By homogeneity of µλ, the result of Lemma 3.2 also holds for yi, i ∈ {1, . . . ,m}. This
concludes the proof of (3).

We can notice that the previous argument also applies to the study of the right-
continuity of µλ. However, as we will see in the next section, we do not need it since we
perform directly the study of the right-continuity of µλ uniformly in all directions.

4 Right-continuity

We prove here the right-continuity of µλ. More precisely, we prove that for each
λ0 > λc(Z

d), for every ε > 0, there exists δ > 0 such that

∀λ ∈ [λ0, λ0 + δ] ∀x ∈ Sd−1 |µλ0(x)− µλ(x)| ≤ ε. (4.1)

As we will see, the right-continuity of the asymptotic shape of the contact process
can be obtained by a slight modification of a part of the proof of the large deviations
inequality for the contact process established by Garet and Marchand in [9].

ECP 20 (2015), paper 92.
Page 9/11

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-4103
http://ecp.ejpecp.org/


Continuity of the asymptotic shape

Let λ0 > λc(Z
d) be fixed. Fix λmin, λmax with λc(Zd) < λmin ≤ λ0 < λmax.

Let α, ε > 0 and L,N be positive integers. Consider λ ≥ λ0 and close to λ0. We define
the following event, relative to the space-time box BN = BN (0, 0) = ([−N,N ]d ∩ Zd)×
[0, 2N ]:

Aα,L,N,ελ,λ0
=
{
∀(x0, t0) ∈ BN ξx0,λ

αLN−t0 ◦ θt0 ⊂ x0 + (1 + ε)(αLN − t0)S(λ0)
}

∩
{
∀(x0, t0) ∈ BN ∪

0≤s≤αLN−t0
ξx0,λ
s ◦ θt0 ⊂]− LN,LN [d

}
.

Consider first Aα,L,N,ελ0,λ0
. The first part of the event ensures that the descendants, at time

αLN , of any point (x0, t0) in the box BN are included in x0 + (1 + ε)(αLN)S(λ): it is a
sharp control, requiring the asymptotic shape Theorem for parameter λ0. The second
part ensures that the descendants, at all times in [0, αLN ], of the whole box BN are
included in ]− LN,LN [d: the bound is rough, only based on the (at most) linear growth
of the process with parameter λ0. Thus, the "good growth" event Aα,L,N,ελ0,λ0

is typical, and
the following Lemma has been proved, using essentially (2.9) and (2.3) :

Lemma 4.1 ([9]). Fix λ0 > λc(Z
d). There exists α = α(λ0) ∈ (0, 1) such that for every

ε ∈ (0, 1), every L0 > 0, there exists an integer L > L0 such that

lim
N→+∞

P(Aα,L,N,ελ0,λ0
) = 1.

Garet and Marchand used Lemma 4.1 to prove the upper large deviations for the
contact process: for every λ0 ∈ [λmin, λmax], provided that α = α(λ0) is fixed as in
Lemma 4.1, then for L greater than some L0 = L0(ε, λ0), they prove that there exists
p1 = p1(λ0, ε, L) > 0 such that

P(A
α,L,N,ε/3
λ0,λ0

) > p1 =⇒ ∃A,B ∀t > 0 P(ξ0,λ0

t 6⊂ (1 + ε)tS(λ0)) ≤ A exp(−Bt).

The idea of the proof is classical and as follows: a too fast infection from (0, 0) to Zd×{n}
uses a too fast path, along which we find a number of order θn of "bad growth" events,
i.e. translated versions of (A

α,L,N,ε/3
λ0,λ0

)c. The proof ends with a Peierls argument: the

event (A
α,L,N,ε/3
λ0,λ0

)c is local, thus its translated events are only locally dependent. If their

probability is small enough, the probability that there exists a path from (0, 0) to Zd×{n}
with at least θn "bad growth" events decreases exponentially fast in n.

Let’s come back to the right-continuity. Fix λ0 > λc(Z
d) and ε > 0. Take α given by

Lemma 4.1, L ≥ L0(ε, λ0) large enough, and p1(λ0, ε, L) > 0 as before. The very same
Peierl argument ensures that for any λ ≥ λ0, we have

P(A
α,L,N,ε/3
λ,λ0

) > p1 =⇒ ∃A,B ∀t > 0 P(ξ0,λt 6⊂ (1 + ε)tS(λ0)) ≤ A exp(−Bt).

Remember that the event Aα,L,N,ε/3λ,λ0
is local. Thus, applying Lemma 2.1 with the set

S = [−LN,LN ]d ∩Zd and t = αLN , we obtain the existence of λ1 ∈ (λ0, λmax] such that

for every λ ∈ [λ0, λ1], P(A
α,L,N,ε/3
λ,λ0

) > p1. Thus,

∀λ ∈ [λ0, λ1] ∃A,B ∀t > 0 P(ξ0,λt 6⊂ (1 + ε)tS(λ0)) ≤ A exp(−Bt),

from which we deduce (for a detailed proof, see the passage from (62) to (63) in [9]):

∀λ ∈ [λ0, λ1] ∃A,B ∀t > 0 Pλ(H0,λ
t 6⊂ (1 + ε)tS(λ0)) ≤ A exp(−Bt).

Fix λ ∈ [λ0, λ1] and η > 0. With the asymptotic shape result (2.9), choose t large
enough to have A exp(−Bt) < 1/2 and Pλ((1 − η)tS(λ) 6⊂ H0,λ

t ) < 1/2. Then the event
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Continuity of the asymptotic shape

{(1− η)tS(λ) ⊂ H0,λ
t ⊂ (1 + ε)tS(λ0)} has positive probability; particularly, (1− η)S(λ) ⊂

(1 + ε)S(λ0), and, letting η tend to 0, we have

∀λ ∈ [λ0, λ1] S(λ) ⊂ (1 + ε)S(λ0),

or equivalently ∀λ ∈ [λ0, λ1], ∀x ∈ Rd, µλ0(x) ≤ (1 + ε)µλ(x). This completes the proof of
(4.1).
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