Sharp lower bounds on the least singular value of a random matrix without the fourth moment condition*

Pavel Yaskov ${ }^{\dagger}$

Abstract

We obtain non-asymptotic lower bounds on the least singular value of $\mathbf{X}_{p n}^{\top} / \sqrt{n}$, where $\mathbf{X}_{p n}$ is a $p \times n$ random matrix whose columns are independent copies of an isotropic random vector X_{p} in \mathbb{R}^{p}. We assume that there exist $M>0$ and $\alpha \in(0,2]$ such that $\mathbb{P}\left(\left|\left(X_{p}, v\right)\right|>t\right) \leqslant M / t^{2+\alpha}$ for all $t>0$ and any unit vector $v \in \mathbb{R}^{p}$. These bounds depend on $y=p / n, \alpha, M$ and are asymptotically optimal up to a constant factor.

Keywords: Random matrices; Singular values; Heavy-tailed distributions.
AMS MSC 2010: 60B20.
Submitted to ECP on February 3, 2015, final version accepted on June 2, 2015.

1 Introduction

In this paper we obtain sharp lower bounds on the least singular value of a random matrix with independent heavy-tailed rows.

For precise statements, we need to introduce some notation. Let X_{p} be an isotropic random vector in \mathbb{R}^{p}, i.e. $\mathbb{E} X_{p} X_{p}^{\top}=I_{p}$ for a $p \times p$ identity matrix I_{p}. Let also $\mathbf{X}_{p n}$ be a $p \times n$ random matrix whose columns $\left\{X_{p k}\right\}_{k=1}^{n}$ are independent copies of X_{p}. Denote by $s_{p}\left(n^{-1 / 2} \mathbf{X}_{p n}^{\top}\right)$ the least singular value of the matrix $n^{-1 / 2} \mathbf{X}_{p n}^{\top}$.

The celebrated Bai-Yin theorem states that, with probability one,

$$
s_{p}\left(n^{-1 / 2} \mathbf{X}_{p n}^{\top}\right)=1-\sqrt{y}+o(1)
$$

when $n \rightarrow \infty, p=p(n)$ satisfies $p / n \rightarrow y \in(0,1)$, and the entries of X_{p} are independent copies of a random variable ξ with $\mathbb{E} \xi=0, \mathbb{E} \xi^{2}=1$, and $\mathbb{E} \xi^{4}<\infty$. In [5], Tikhomirov extended this result to the case $\mathbb{E} \xi^{4}=\infty$. Several authors have studied non-asymptotic versions of this theorem, relaxing the independence assumption, and obtained bounds of the form

$$
s_{p}\left(n^{-1 / 2} \mathbf{X}_{p n}^{\top}\right) \geqslant 1-C y^{a}|\log y|^{b}
$$

that hold with large probability for some $C, a, b>0$ and all small enough $y=p / n$. See papers [2], [3], [4], and [6]. For general isotropic random vectors X_{p} with dependent entries not having finite fourth moments, the optimal values of a and b are unknown. Assuming that there exist $M>0$ and $\alpha \in(0,2]$ such that

$$
\begin{equation*}
\mathbb{P}\left(\left|\left(X_{p}, v\right)\right|>t\right) \leqslant \frac{M}{t^{2+\alpha}} \text { for all } t>0 \text { and any unit (in the } l^{2} \text {-norm) vector } v \in \mathbb{R}^{p} \tag{1.1}
\end{equation*}
$$

[^0]we derive the optimal values of a and b in this paper.
The paper is organized as follows. Section 2 contains the main results of the paper. Section 3 deals with the proofs. An Appendix with proofs of auxiliary results is given in Section 4.

2 Main results

Our main lower bound is a corollary of Theorem 2.1 in [6]. It is given below.
Theorem 2.1. Let $C \geqslant 1$ and $n>p \geqslant 1$. If (1.1) holds for $M=C^{\alpha / 2}$ and some $\alpha \in(0,2]$, then, with probability at least $1-e^{-p}$,

$$
s_{p}\left(n^{-1 / 2} \mathbf{X}_{p n}^{\top}\right) \geqslant 1-14 \begin{cases}K_{\alpha}(C y)^{\alpha /(2+\alpha)}, & \alpha \in(0,2) \\ \sqrt{C y \log (C / y)} & \alpha=2 \text { and } C / y>e \\ \sqrt{C y}, & \alpha=2 \text { and } C / y \leqslant e\end{cases}
$$

where $y=p / n$ and $K_{\alpha}=1 /(\alpha(1-\alpha / 2))^{2 /(2+\alpha)}$.
The next theorem contains our main upper bound for a class of random vectors

$$
\begin{equation*}
X_{p}=\eta Z_{p} \text { for } Z_{p}=\left(z_{1}, \ldots, z_{p}\right) \text { with i.i.d. entries }\left\{z_{i}\right\}_{i=1}^{p} \text { independent of } \eta . \tag{2.1}
\end{equation*}
$$

Theorem 2.2. Let (2.1) hold for each $p \geqslant 1$, where $\left\{z_{i}\right\}_{i=1}^{\infty}$ are independent copies of a random variable z with $\mathbb{E} z=0, \mathbb{E} z^{2}=1$, and η is a random variable with $\mathbb{E} \eta^{2}=1$. If there exist $\alpha \in(0,2]$ and $C>0$ such that

$$
\begin{equation*}
\mathbb{P}(|\eta|>t) \geqslant \frac{C^{\alpha / 2}}{t^{2+\alpha}} \quad \text { for all large enough } t>0 \tag{2.2}
\end{equation*}
$$

then, for each small enough $y>0$,

$$
s_{p}\left(n^{-1 / 2} \mathbf{X}_{p n}^{\top}\right) \leqslant 1+o(1)-\frac{1}{2} \begin{cases}K_{\alpha}(C y)^{\alpha /(2+\alpha)}, & \alpha \in(0,2) \\ \sqrt{C y \log (C / y)}, & \alpha=2\end{cases}
$$

almost surely as $n \rightarrow \infty$, where $p=p(n)=y n+o(n)$ and K_{α} is given in Theorem 2.1.
Theorem 2.2 and the next proposition show that, when y is small enough, the lower bounds in Theorem 2.1 are asymptotically optimal up to a constant factor (equal to 14).
Proposition 2.3. For any given $C>1 / 4$ and $\alpha \in(0,2]$, there exists a random variable η such that $\mathbb{E} \eta^{2}=1$, (2.2) holds, and

$$
\mathbb{P}\left(\left|\left(X_{p}, v\right)\right|>t\right) \leqslant \frac{(\kappa C)^{\alpha / 2}}{t^{2+\alpha}} \quad \text { for all } t>0 \text { and any unit vector } v \in \mathbb{R}^{p}
$$

where $X_{p}=\eta Z_{p}, Z_{p}$ is a standard normal vector in \mathbb{R}^{p} that is independent of η, and $\kappa>0$ is a universal constant.

The proof of Proposition 2.3 is given at the end of the paper, before the Appendix.

3 Proofs

We will use below the following fact. By definition, $s_{p}\left(n^{-1 / 2} \mathbf{X}_{p n}^{\top}\right)$ is the square root of $\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right)$, where $\lambda_{p}(A)$ is the least eigenvalue of a $p \times p$ matrix A. In addition,

$$
\text { if } a \geqslant 1-b \text { for some } a, b \geqslant 0 \text {, then } \sqrt{a} \geqslant 1-b
$$

Moreover, if $a \leqslant 1-b$ for some $a, b \geqslant 0$, then $\sqrt{a} \leqslant 1-b / 2$. Thus, to prove Theorems 2.1 and 2.2 we need to derive appropriate lower and upper bounds only for $\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right)$.

Sharp lower bounds on the least singular value

Proof of Theorem 2.1. By Theorem 2.1 in [6], for all $a>0$ and $y=p / n \in(0,1)$,

$$
\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant c_{p}(a)-\frac{C_{p}(a)}{a}-5 a y+\frac{\sqrt{C_{p}(2 a)} Z}{\sqrt{n}}
$$

where $Z=Z(p, n, a)$ is a random variable with $\mathbb{E} Z=0$ and $\mathbb{P}(Z<-t) \leqslant e^{-t^{2} / 2}, t>0$,

$$
c_{p}(a)=\inf \mathbb{E} \min \left\{\left(X_{p}, v\right)^{2}, a\right\} \quad \text { and } \quad C_{p}(a)=\sup \mathbb{E}\left(X_{p}, v\right)^{2} \min \left\{\left(X_{p}, v\right)^{2}, a\right\}
$$

with inf and sup taken over all unit vectors $v \in \mathbb{R}^{p}$.
Since $\mathbb{P}(Z<-\sqrt{2 p}) \leqslant e^{-p}$ and $y=p / n$, we have, with probability at least $1-e^{-p}$,

$$
\begin{equation*}
\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant c_{p}(a)-\frac{C_{p}(a)}{a}-5 a y-\sqrt{2 y C_{p}(2 a)} \tag{3.1}
\end{equation*}
$$

To estimate $c_{p}(a)$ and $C_{p}(a)$, we will use the following lemma that is proved in the Appendix.
Lemma 3.1. Let $a>0, X_{p}$ be an isotropic random vector in \mathbb{R}^{p}, and (1.1) hold for some $M>0$ and $\alpha \in(0,2]$. If $\alpha \in(0,2)$, then

$$
c_{p}(a) \geqslant 1-\frac{2 M}{\alpha} a^{-\alpha / 2} \quad \text { and } \quad C_{p}(a) \leqslant(2 / \alpha+4 /(2-\alpha)) M a^{1-\alpha / 2}
$$

In addition, if $\alpha=2$, then

$$
c_{p}(a) \geqslant 1-\frac{M}{a} \quad \text { and } \quad C_{p}(a) \leqslant 2 M+M \log \left(a^{2} / M\right) I\left(a^{2}>M\right)
$$

First, assume that $\alpha \in(0,2)$. Using (1.1) and Lemma 3.1, we get

$$
c_{p}(a)-\frac{C_{p}(a)}{a} \geqslant 1-\left[\frac{4}{\alpha}+\frac{4}{2-\alpha}\right] \frac{M}{a^{\alpha / 2}}=1-\frac{8 M a^{-\alpha / 2}}{\alpha(2-\alpha)} .
$$

Taking

$$
a=\left[\frac{2 M y^{-1}}{\alpha(2-\alpha)}\right]^{2 /(2+\alpha)}=K_{\alpha}(M / y)^{2 /(2+\alpha)}
$$

we have

$$
a y=\frac{2 M a^{-\alpha / 2}}{\alpha(2-\alpha)} \quad \text { and } \quad c_{p}(a)-\frac{C_{p}(a)}{a} \geqslant 1-4 a y
$$

In addition,

$$
\frac{C_{p}(2 a)}{2 a} \leqslant\left[\frac{2}{\alpha}+\frac{4}{2-\alpha}\right] M(2 a)^{-\alpha / 2} \leqslant\left[\frac{4}{\alpha}+\frac{4}{2-\alpha}\right] M a^{-\alpha / 2}=\frac{8 M a^{-\alpha / 2}}{\alpha(2-\alpha)}=4 a y
$$

and

$$
\sqrt{2 y C_{p}(2 a)} \leqslant \sqrt{2 y\left(8 a^{2} y\right)}=4 a y=4 K_{\alpha}\left(M^{2 / \alpha} y\right)^{\alpha /(2+\alpha)}
$$

Since $C=M^{2 / \alpha}$, we infer from (3.1) that, with probability at least $1-e^{-p}$,

$$
\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant 1-13 a y=1-13 K_{\alpha}(C y)^{\alpha /(2+\alpha)}
$$

Thus we get the desired lower bounds for $\alpha \in(0,2)$.
Suppose now $\alpha=2$. Then $M=C^{\alpha / 2}=C \geqslant 1$ and $\log \left(a^{2} / C\right) \leqslant \log \left(a^{2}\right)$ for any $a>0$. Lemma 3.1 implies that

$$
c_{p}(a)-\frac{C_{p}(a)}{a} \geqslant 1-\frac{3 C+C \log \left(a^{2}\right) I\left(a^{2}>C\right)}{a}
$$

Sharp lower bounds on the least singular value

Consider two possibilities $\log (C / y)>1$ and $\log (C / y) \leqslant 1$.
Assuming that $\log (C / y) \leqslant 1$ and taking $a=\sqrt{C / y}$, we have $a^{2}>C, \log \left(a^{2}\right) \leqslant 1$, and

$$
\frac{3 C+C \log \left(a^{2}\right)}{a} \leqslant \frac{4 C}{a}=4 \sqrt{C y}
$$

Additionally, we get $5 a y=5 \sqrt{C y}$,

$$
C_{p}(2 a) \leqslant 2 C+C \log \left(4 a^{2}\right) \leqslant(3+\log 4) C \leqslant 9 C / 2 \quad \text { and } \quad \sqrt{2 y C_{p}(2 a)} \leqslant 3 \sqrt{C y}
$$

As a result, we conclude from (3.1) that, with probability at least $1-e^{-p}$,

$$
\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant 1-12 \sqrt{C y}
$$

Suppose $\log (C / y)>1$. Set $a=\sqrt{(C / y) \log (C / y)}$. Then $a^{2}>C, \sqrt{C / y} \leqslant a \leqslant C / y$, and

$$
\frac{3 C+C \log \left(a^{2}\right)}{a} \leqslant \frac{3 C}{\sqrt{C / y}}+\frac{C \log (C / y)^{2}}{a} \leqslant 5 \sqrt{C y \log (C / y)}
$$

Similarly, $C_{p}(2 a) \leqslant 2 C+C \log \left(4 a^{2}\right) \leqslant 7 C / 2+C \log \left(a^{2}\right) \leqslant(7 / 2+2) C \log (C / y)$ and

$$
\sqrt{2 y C_{p}(2 a)} \leqslant 4 \sqrt{C y \log (C / y)}
$$

Noting that $5 a y=5 \sqrt{C y \log (C / y)}$, we infer that, with probability at least $1-e^{-p}$,

$$
\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant 1-14 \sqrt{C y} .
$$

Thus we have proved the theorem.

Proof of Theorem 2.2. We will use the following lemma (for the proof, see the Appendix).
Lemma 3.2. Under the conditions of Theorem 2.2,

$$
\begin{equation*}
\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \leqslant \max \left\{0, \sup _{s>0} \lambda(s)\right\}+o(1) \quad \text { a.s., } \quad n \rightarrow \infty \tag{3.2}
\end{equation*}
$$

where $p=p(n), p / n \rightarrow y \in(0,1)$, and $\lambda(s)=-y / s+\mathbb{E} \eta^{2} /\left(1+s \eta^{2}\right)$.
We estimate $\lambda=\lambda(s)$ given in Lemma 3.2 as follows. Set $\zeta=\eta^{2}$. Since $\mathbb{E} \zeta=1$,

$$
\lambda(s)+\frac{y}{s}=\mathbb{E} \frac{\zeta}{1+s \zeta}=1+\mathbb{E}\left(\frac{\zeta}{1+s \zeta}-\zeta\right)=1-\mathbb{E} \frac{s \zeta^{2}}{1+s \zeta}
$$

It follows from the inequality $x /(1+x) \geqslant \min \{x, 1\} / 2, x \geqslant 0$, and (4.1) that

$$
\mathbb{E} \frac{s \zeta^{2}}{1+s \zeta} \geqslant \frac{1}{2} \mathbb{E} \zeta \min \{s \zeta, 1\}=\frac{1}{2 s}\left[\mathbb{E}(s \zeta-1) I(s \zeta>1)+\mathbb{E} \min \left\{(s \zeta)^{2}, 1\right\}\right] .
$$

As a result, for all $s>0$, we get the following upper bound

$$
\begin{equation*}
\lambda(s) \leqslant 1-\frac{y}{s}-\frac{1}{2 s}\left[\mathbb{E}(s \zeta-1) I(s \zeta>1)+\mathbb{E} \min \left\{(s \zeta)^{2}, 1\right\}\right] \tag{3.3}
\end{equation*}
$$

Recall also that, by (2.2) and the definition of $\zeta\left(=\eta^{2}\right)$, there exists $t_{0} \geqslant 1$ such that

$$
\begin{equation*}
\mathbb{P}(\zeta>t) \geqslant \frac{C^{\alpha / 2}}{t^{1+\alpha / 2}} \quad \text { for all } t \geqslant t_{0} \tag{3.4}
\end{equation*}
$$

Sharp lower bounds on the least singular value

As in the proof of Lemma 3.2 (see the Appendix), we get that

$$
\lambda^{\prime}(s)=(y-h(s)) / s^{2}, \quad s>0
$$

where $h(s)=\mathbb{E}(s \zeta)^{2} /(1+s \zeta)^{2}$ is a continuous strictly increasing function on \mathbb{R}_{+}with $h(0)=0$ and $h(\infty)=\mathbb{P}(\zeta>0)>0$. Hence, if $y<\mathbb{P}(\zeta>0), \lambda(s)$ achieves its maximum in $s=b$ with $b=h^{-1}(y)$.

Let $\alpha \in(0,2)$ and take y small enough to make $b=h^{-1}(y) \leqslant 1 /\left(2^{1 /(1-\alpha / 2)} t_{0}\right)$. Then $1 / b>t_{0}$ and, by (3.4),

$$
\mathbb{E}(b \zeta-1) I(b \zeta>1)=\int_{1}^{\infty} \mathbb{P}(b \zeta>t) d t \geqslant \int_{1}^{\infty} \frac{C^{\alpha / 2}}{(t / b)^{1+\alpha / 2}} d t=\frac{2}{\alpha}(C b)^{\alpha / 2} b
$$

Moreover, $(1 / b)^{1-\alpha / 2} / 2>t_{0}^{1-\alpha / 2}$ and, by (3.4),

$$
\begin{array}{rl}
\mathbb{E} \min \left\{(b \zeta)^{2}, 1\right\}=\int_{0}^{1} & \mathbb{P}\left((b \zeta)^{2}>t\right) d t=2 b^{2} \int_{0}^{1 / b} z \mathbb{P}(\zeta>z) d z \\
& \geqslant 2 b^{2} \int_{t_{0}}^{1 / b} \frac{C^{\alpha / 2}}{z^{\alpha / 2}} d z=2 C^{\alpha / 2} b^{2} \frac{(1 / b)^{1-\alpha / 2}-t_{0}^{1-\alpha / 2}}{1-\alpha / 2} \\
& \geqslant 2 C^{\alpha / 2} b^{2} \frac{(1 / b)^{1-\alpha / 2} / 2}{1-\alpha / 2}=\frac{(C b)^{\alpha / 2} b}{1-\alpha / 2}
\end{array}
$$

By (3.3), $\lambda(b) \leqslant g(b)$, where $g(b)=1-y / b-K b^{\alpha / 2}$ and

$$
K=\frac{C^{\alpha / 2}}{2}\left(\frac{1}{\alpha / 2}+\frac{1}{1-\alpha / 2}\right)=\frac{C^{\alpha / 2}}{\alpha(1-\alpha / 2)}
$$

By Young's inequality,

$$
\left(K^{2 / \alpha} y\right)^{\frac{\alpha}{2+\alpha}}=\left(\frac{y}{b}\right)^{\frac{\alpha}{2+\alpha}}\left(K b^{\alpha / 2}\right)^{\frac{2}{2+\alpha}} \leqslant \frac{y / b}{(2+\alpha) / \alpha}+\frac{K b^{\alpha / 2}}{(2+\alpha) / 2} \leqslant \frac{y}{b}+K b^{\alpha / 2}
$$

and

$$
\lambda(b) \leqslant g(b) \leqslant 1-\left(K^{2 / \alpha} y\right)^{\alpha /(2+\alpha)}
$$

The right-hand side of the last inequality can be made positive for small enough y. Hence, combining the above bounds with Lemma 3.2, we get the desired upper bound for $\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right)$ when $\alpha \in(0,2)$ (see also the beginning of Section 3).

Let now $\alpha=2$ and take y small enough to make $b=h^{-1}(y) \leqslant 1 / t_{0}^{2}$. Since $t_{0} \geqslant 1$, we have $1 / b \geqslant t_{0}^{2} \geqslant t_{0}$ and, hence, the same arguments as above yield

$$
\begin{gathered}
\mathbb{E}(b \zeta-1) I(b \zeta>1)=\int_{1}^{\infty} \mathbb{P}(b \zeta>t) d t \geqslant \int_{1}^{\infty} \frac{C}{(t / b)^{2}} d t=C b^{2} \\
\mathbb{E} \min \left\{(b \zeta)^{2}, 1\right\} \geqslant 2 b^{2} \int_{t_{0}}^{1 / b} \frac{C}{z} d z=2 C b^{2} \log \frac{1}{b t_{0}} \geqslant 2 C b^{2} \log \frac{1}{\sqrt{b}}=C b^{2} \log (1 / b) .
\end{gathered}
$$

Therefore, it follows from (3.3) that $\lambda(b) \leqslant g(b)$, where

$$
g(s)=1-\frac{y}{s}-\frac{C s}{2}(\log (1 / s)+1), \quad s>0
$$

Differentiating g yields

$$
g^{\prime}(s)=\frac{y}{s^{2}}-\frac{C}{2}(\log (1 / s)+1)+\frac{C s}{2} \frac{1}{s}=\frac{2 y-C s^{2} \log (1 / s)}{2 s^{2}}
$$

Sharp lower bounds on the least singular value

If $2 y / C$ is small enough, then $g=g(s)$ has a unique local maximum in s_{1} and a unique local minimum in s_{2}, where $s_{1}<s_{2}$, and s_{1}, s_{2} are solutions to the equation $f(s)=2 y / C$ with $f(s)=s^{2} \log (1 / s)$.

The function $f=f(s)$ is increasing on $[0,1 / \sqrt{e}]$, decreasing on $[1 / \sqrt{e}, \infty]$ and has $f(0)=f(1)=0$. Hence, $s_{2}>1 / 2$ and $b=h^{-1}(y)<1 / 2$ when y is small enough. Thus,

$$
\lambda(b) \leqslant g(b) \leqslant 1-\frac{y}{s_{1}}-\frac{C s_{1}}{2}\left(\log \left(1 / s_{1}\right)+1\right) \leqslant 1-\frac{y}{s_{1}}-\frac{C s_{1}^{2} \log \left(1 / s_{1}\right)}{2 s_{1}}=1-\frac{2 y}{s_{1}}
$$

Let us bound s_{1} from above. Take $s_{0}=\sqrt{(4 y / C) / \log (C / y)}$. If y is small enough, then $s_{0}<1 / \sqrt{e}$ as well as

$$
s_{0}^{2} \log \left(1 / s_{0}\right)=\frac{4 y / C}{\log (C / y)}\left[\frac{1}{2} \log (C / y)+\frac{1}{2} \log \left(\frac{1}{4} \log (C / y)\right)\right]=\frac{2 y}{C}+\frac{2 y \log \log \sqrt[4]{C / y}}{C \log (C / y)}>\frac{2 y}{C}
$$

Therefore, $s_{1}<s_{0}$ and

$$
\lambda(b) \leqslant 1-\frac{2 y}{s_{1}} \leqslant 1-\frac{2 y}{s_{0}}=1-\sqrt{C y \log (C / y)} .
$$

The right-hand side of the last inequality can be made positive for small enough y. Hence, combining the above bounds with Lemma 3.2, we get the desired upper bound for $\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right)$ in the case with $\alpha=2$ (see also the beginning of Section 3).

Proof of Proposition 2.3. Let $t_{0}=(1+2 / \alpha)^{-1}$ and $q=C / t_{0}^{1+2 / \alpha}$. If $\alpha \in(0,2]$, then

$$
q \geqslant C \inf _{\alpha \in(0,2]}(1+2 / \alpha)^{1+2 / \alpha}=4 C>1
$$

Let $\eta=\sqrt{\xi \zeta}$, where ξ and ζ are independent random variables,

$$
\mathbb{P}(\xi=q)=q^{-1} \quad \text { and } \quad \mathbb{P}(\xi=0)=1-q^{-1}
$$

ζ has the Pareto distribution

$$
\mathbb{P}(\zeta>t)= \begin{cases}\left(t_{0} / t\right)^{1+\alpha / 2}, & t \geqslant t_{0} \\ 1, & t<t_{0}\end{cases}
$$

It is easy to see that $\mathbb{E} \xi=1$. Moreover, $\mathbb{P}(\zeta>t) \leqslant\left(t_{0} / t\right)^{1+\alpha / 2}$ for all $t>0$ and

$$
\mathbb{E} \zeta=\int_{0}^{\infty} \mathbb{P}(\zeta>t) d t=t_{0}+\int_{t_{0}}^{\infty}\left(t_{0} / t\right)^{1+\alpha / 2} d t=t_{0}+\frac{2 t_{0}}{\alpha}=1
$$

Hence, $\mathbb{E} \eta^{2}=\mathbb{E} \xi \mathbb{E} \zeta=1$. In addition, (2.2) holds since, for all large enough $t>0$,

$$
\mathbb{P}(|\eta|>t)=q^{-1} \mathbb{P}\left(\zeta>t^{2} / q\right)=q^{-1}\left(q t_{0} / t^{2}\right)^{1+\alpha / 2}=\frac{q^{\alpha / 2} t_{0}^{1+\alpha / 2}}{t^{2+\alpha}}=\frac{C^{\alpha / 2}}{t^{2+\alpha}}
$$

We also have

$$
\left|\left(X_{p}, v\right)\right|=\sqrt{\xi \zeta}\left|\left(Z_{p}, v\right)\right| \stackrel{d}{=} \sqrt{\xi \zeta}|Z| \quad \text { for all unit vectors } v \in \mathbb{R}^{p}
$$

where $Z \sim \mathcal{N}(0,1)$ is independent of (ξ, ζ), « $\stackrel{d}{=}$ means equality in law. Hence, if $t>0$,

$$
\begin{aligned}
& \mathbb{P}(\sqrt{\xi \zeta}|Z|>t)=\left.\mathbb{E} \mathbb{P}\left(s \zeta>t^{2}\right)\right|_{s=\xi Z^{2}} \leqslant\left.\mathbb{E}\left(s t_{0} / t^{2}\right)^{1+\alpha / 2} I(s>0)\right|_{s=\xi Z^{2}} \leqslant \\
& \leqslant \frac{\mathbb{E}\left(t_{0} \xi Z^{2}\right)^{1+\alpha / 2}}{t^{2+\alpha}}=\frac{t_{0}^{1+\alpha / 2} q^{\alpha / 2} \mathbb{E}|Z|^{2+\alpha}}{t^{2+\alpha}}=\frac{C^{\alpha / 2} \mathbb{E}|Z|^{2+\alpha}}{t^{2+\alpha}} \leqslant \frac{(\kappa C)^{\alpha / 2}}{t^{2+\alpha}}
\end{aligned}
$$

Sharp lower bounds on the least singular value

where

$$
\kappa=\sup _{\alpha \in(0,2]}\left(\mathbb{E}|Z|^{2+\alpha}\right)^{2 / \alpha} .
$$

Let us show that $\kappa<\infty$. If $Z \sim \mathcal{N}(0,1)$, then

$$
f(\alpha)=\mathbb{E}|Z|^{2+\alpha}=\frac{2^{\frac{2+\alpha}{2}} \Gamma\left(\frac{3+\alpha}{2}\right)}{\sqrt{\pi}}
$$

is a smooth function on $[0,2]$ with $f(0)=1$ and, in particular, $f^{\prime}(0)$ exists and is finite. The function $g(\alpha)=f(\alpha)^{2 / \alpha}$ is continuous on $(0,2]$ and

$$
g(\alpha)=\left(1+f^{\prime}(0) \alpha+o(\alpha)\right)^{2 / \alpha} \rightarrow \exp \left\{2 f^{\prime}(0)\right\}, \quad \alpha \rightarrow 0+
$$

As a result, $\kappa=\sup \{g(\alpha): \alpha \in(0,2]\}$ is finite. This finishes the proof of the proposition.

4 Appendix

Proof of Lemma 3.1. If U is a non-negative random variable with $\mathbb{E} U=1$, then
$\mathbb{E} \min \{U, a\}=\int_{0}^{a} \mathbb{P}(U>t) d t=\mathbb{E} U-\int_{a}^{\infty} \mathbb{P}(U>t) d t \geqslant 1-\int_{a}^{\infty} \frac{M}{t^{1+\alpha / 2}} d t=1-\frac{2 M}{\alpha a^{\alpha / 2}}$,
where $M=\sup \left\{t^{1+\alpha / 2} \mathbb{P}(U>t): t>0\right\}$. Putting $U=\left(X_{p}, v\right)^{2}$ for a given unit vector $v \in \mathbb{R}^{p}$ and taking the infimum over such v, we obtain the desired lower bound for $c_{p}(a)$.

Similarly, we have

$$
\begin{align*}
\mathbb{E} U \min \{U, a\} & =a \mathbb{E}(U-a) I(U>a)+a^{2} \mathbb{P}(U>a)+\mathbb{E} U^{2} I(U \leqslant a) \\
& =a \mathbb{E}(U-a) I(U>a)+\mathbb{E} \min \left\{U^{2}, a^{2}\right\} \\
& =I_{1}+I_{2}, \tag{4.1}
\end{align*}
$$

where

$$
I_{1}=a \int_{a}^{\infty} \mathbb{P}(U>t) d t \leqslant a \int_{a}^{\infty} \frac{M}{t^{1+\alpha / 2}} d t=\frac{2 M}{\alpha} a^{1-\alpha / 2}, \quad I_{2}=\int_{0}^{a^{2}} \mathbb{P}\left(U^{2}>t\right) d t
$$

If $\alpha \in(0,2)$, then I_{2} can be bounded as follows

$$
I_{2} \leqslant \int_{0}^{a^{2}} \frac{M d t}{t^{1 / 2+\alpha / 4}}=\frac{M a^{1-\alpha / 2}}{1 / 2-\alpha / 4}
$$

Similarly, if $\alpha=2$, then

$$
I_{2} \leqslant M+I\left(a^{2}>M\right) \int_{M}^{a^{2}} \frac{M d t}{t}=M+M \log \left(a^{2} / M\right) I\left(a^{2}>M\right)
$$

Thus, we have proved that

$$
\mathbb{E} U \min \{U, a\} \leqslant M \cdot \begin{cases}(2 / \alpha+4 /(2-\alpha)) a^{1-\alpha / 2}, & \alpha \in(0,2) \\ 2+\log \left(a^{2} / M\right) I\left(a^{2}>M\right), & \alpha=2\end{cases}
$$

Putting $U=\left(X_{p}, v\right)^{2}$ for a given unit vector $v \in \mathbb{R}^{p}$ and taking the supremum over such v, we get the desired upper bound for $C_{p}(a)$.

Sharp lower bounds on the least singular value

Proof of Lemma 3.2. We have $n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}=n^{-1} \mathbf{Z}_{p n} \mathbf{T}_{n} \mathbf{Z}_{p n}^{\top}$, where $\mathbf{Z}_{p n}$ is a $p \times n$ matrix with i.i.d. entries, \mathbf{T}_{n} is a $n \times n$ diagonal matrix whose diagonal entries are independent copies of $\zeta=\eta^{2}$, and $\mathbf{Z}_{p n}$ is independent of \mathbf{T}_{n}.

By the Glivenko-Cantelli theorem, the empirical spectral distribution of \mathbf{T}_{n} converges a.s. to the distribution of ζ. By Theorem 4.3 in [1], there is a non-decreasing cádlág function $F=F(\lambda), \lambda \in \mathbb{R}$, such that $F(\lambda)=0$ for $\lambda<0, F(\infty) \leqslant 1$, and

$$
\begin{equation*}
\mathbb{P}\left(\lim _{n \rightarrow \infty} \frac{1}{p} \sum_{k=1}^{p} I\left(\lambda_{k n} \leqslant \lambda\right)=F(\lambda)\right)=1 \quad \text { for all continuity points } \lambda \text { of } F \tag{4.2}
\end{equation*}
$$

where $p=p(n)=y n+o(n)$ and $\left\{\lambda_{k n}\right\}_{k=1}^{p}$ is the set of eigenvalues of $p^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}$. The Stieltjes transform

$$
\begin{equation*}
f(z)=\int_{\mathbb{R}} \frac{F(d \lambda)}{\lambda-z}, \quad z \in \mathbb{C}^{+}=\{w \in \mathbb{C}: \Im z>0\} \tag{4.3}
\end{equation*}
$$

of F can be defined explicitly as a unique solution in \mathbb{C}^{+}to the equation

$$
\begin{equation*}
f(z)=-\left(z-\frac{1}{y} \mathbb{E} \frac{\zeta}{1+f(z) \zeta}\right)^{-1} \text { or, equivalently, } z=-\frac{1}{f(z)}+\frac{1}{y} \mathbb{E} \frac{\zeta}{1+f(z) \zeta} \tag{4.4}
\end{equation*}
$$

Define

$$
\mathcal{S}_{G}=\{\lambda \geqslant 0: G(\lambda+\varepsilon)>G(\lambda-\varepsilon) \quad \text { for any small enough } \varepsilon>0\}
$$

for a non-decreasing cádlág function $G=G(\lambda), \lambda \in \mathbb{R}$. In other words, \mathcal{S}_{G} is the set of points of increase of G. Obviously, \mathcal{S}_{G} is a closed set. Using (4.2) and setting $G=F$ as well as

$$
a=\inf \left\{\lambda \geqslant 0: \lambda \in \mathcal{S}_{F}\right\},
$$

we conclude that $a \in \mathcal{S}_{F}$ and

$$
\begin{equation*}
\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right)=\frac{p}{n} \lambda_{p}\left(p^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \leqslant a y+o(1) \quad \text { a.s. } \tag{4.5}
\end{equation*}
$$

when $n \rightarrow \infty$.
Consider the function

$$
z(s)=-\frac{1}{s}+\frac{1}{y} \mathbb{E} \frac{\zeta}{1+s \zeta}
$$

defined for $s \in D$, where D consists of all $s \in \mathbb{R} \backslash\{0\}$ with $-s^{-1} \notin \mathcal{S}_{G}$ for $G(\lambda)=\mathbb{P}(\zeta \leqslant \lambda)$, $\lambda \in \mathbb{R}$. This function differs from $\lambda=\lambda(s)$ given in Lemma 3.2 by the factor y, i.e. $\lambda(s)=y z(s)$ for all $s>0$. Therefore, to finish the proof, we only need to show that

$$
a=\max \left\{0, \sup _{s>0} z(s)\right\}
$$

Let us show that $a=0$ when $z(s) \leqslant 0$ for all $s>0$. The latter can be reformulated as follows: if $a>0$, then there is $s>0$ satisfying $z(s)>0$. Suppose $a>0$. Then $a / 2 \in \mathbb{R} \backslash \mathcal{S}_{F}$ and $F(a / 2)=0$. Hence,

$$
f(a / 2)=\int_{\mathbb{R}} \frac{F(d \lambda)}{\lambda-a / 2}>0 \quad \text { and } \quad \lim _{\varepsilon \rightarrow 0+} f(a / 2+i \varepsilon)=f(a / 2)>0
$$

Taking $z=a / 2+i \varepsilon$ in (4.4) and tending ε to zero, we get $a / 2=z(s)>0$ for $s=f(a / 2)$.
Assume further that there is $s>0$ satisfying $z(s)>0$ or, equivalently,

$$
g(s)=\mathbb{E} \frac{s \zeta}{1+s \zeta}>y
$$

The function $g=g(s)$ is continuous and strictly increasing on \mathbb{R}_{+}. It changes from zero to $\mathbb{P}(\zeta>0)$ when s changes from zero to infinity. The same can be said about

$$
h(s)=\mathbb{E} \frac{(s \zeta)^{2}}{(1+s \zeta)^{2}}
$$

Hence, $y<\mathbb{P}(\zeta>0)$ and there is $b=b(y)>0$ that solves $h(b)=y$. By the Lebesgue dominated convergence theorem,

$$
z^{\prime}(s)=\frac{1}{s^{2}}-\frac{1}{y} \mathbb{E} \frac{\zeta^{2}}{(1+s \zeta)^{2}}=\frac{y-h(s)}{y s^{2}} \quad \text { for any } s>0
$$

Therefore, b is a strict global maximum point of $z=z(s)$ on $\{s: s>0\}$.
The rest of the proof is based on Lemma 6.1 in [1] which states that $z^{\prime}(s)>0$ and $s \in D$ if $s=f(\lambda)$ for some $\lambda \in \mathbb{R} \backslash \mathcal{S}_{F}$. Moreover, $\left\{z(s): s \in D, z^{\prime}(s)>0\right\} \subseteq \mathbb{R} \backslash \mathcal{S}_{F}$.

We will now prove that $a \leqslant z(b)$. Suppose the contrary, i.e. $a>z(b)$. By definition, $F(\lambda)=0$ for all $\lambda<a$. Set $z_{0}=z(b)$. Then $z_{0} \in \mathbb{R} \backslash \mathcal{S}_{F}$,

$$
s_{0}=f\left(z_{0}\right)=\int_{\mathbb{R}} \frac{F(d \lambda)}{\lambda-z_{0}}>0
$$

and, by the above lemma, $z^{\prime}\left(s_{0}\right)>0$. Taking $z=z_{0}+i \varepsilon$ in (4.4) and tending ε to zero, we arrive at $z(b)=z_{0}=z\left(f\left(z_{0}\right)\right)=z\left(s_{0}\right)$. Since $z^{\prime}\left(s_{0}\right)>0$ and $s_{0}>0$, we get the contradiction to the fact that b is a strict global maximum point of $z=z(s)$ on $\{s: s>0\}$.

Let us finally prove that $a \geqslant z(b)$. The function $z=z(s)$ is continuous and strictly increasing on the set $(0, b)$ with $z(0+)=-\infty$ and $z(b-)=z(b)$. By the above lemma,

$$
z((0, b))=(-\infty, z(b)) \subseteq \mathbb{R} \backslash \mathcal{S}_{F}
$$

Thus, $z(b) \leqslant a$. This finishes the proof.

References

[1] Bai, Zh. and Silverstein, J.: Spectral analysis of large dimensional random matrices. Second Edition. New York: Springer, (2010). MR-2567175
[2] Koltchinskii, V. and Mendelson, S.: Bounding the smallest singular value of a random matrix without concentration. arXiv:1312.3580.
[3] Oliveira, R.I.: The lower tail of random quadratic forms, with applications to ordinary least squares and restricted eigenvalue properties. arXiv:1312.2903.
[4] Srivastava, N. and Vershynin, R.: Covariance estimation for distributions with $2+\varepsilon$ moments. Ann. Probab., 41, (2013), 3081-3111. MR-3127875
[5] Tikhomirov, K.: The limit of the smallest singular value of random matrices with i.i.d. entries. arXiv:1410.6263.
[6] Yaskov, P.: Lower bounds on the smallest eigenvalue of a sample covariance matrix. Electron. Commun. Prob., 19 (2014), paper 83, 1-10. MR-3291620

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)

Economical model of EJP-ECP

- Low cost, based on free software (OJS ${ }^{1}$)
- Non profit, sponsored by $\mathrm{IMS}^{2}, \mathrm{BS}^{3}, \mathrm{PKP}^{4}$
- Purely electronic and secure (LOCKSS ${ }^{5}$)

Help keep the journal free and vigorous

- Donate to the IMS open access fund ${ }^{6}$ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

[^1]
[^0]: *Supported by RNF grant 14-21-00162 from the Russian Scientific Fund.
 ${ }^{\dagger}$ Steklov Mathematical Institute, Russia. E-mail: yaskov@mi. ras.ru

[^1]: ${ }^{1}$ OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
 ${ }^{2}$ IMS: Institute of Mathematical Statistics http://www.imstat.org/
 ${ }^{3}$ BS: Bernoulli Society http://www.bernoulli-society.org/
 ${ }^{4}$ PK: Public Knowledge Project http://pkp.sfu.ca/
 ${ }^{5}$ LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
 ${ }^{6}$ IMS Open Access Fund: http://www.imstat.org/publications/open.htm

