On percolation in one-dimensional stable Poisson graphs

Johan Björklund* Victor Falgas-Ravry ${ }^{\dagger}$ Cecilia Holmgren ${ }^{\ddagger}$

Abstract

Equip each point x of a homogeneous Poisson point process \mathcal{P} on \mathbb{R} with D_{x} edge stubs, where the D_{x} are i.i.d. positive integer-valued random variables with distribution given by μ. Following the stable multi-matching scheme introduced by Deijfen, Häggström and Holroyd [1], we pair off edge stubs in a series of rounds to form the edge set of a graph G on the vertex set \mathcal{P}. In this note, we answer questions of Deijfen, Holroyd and Peres [2] and Deijfen, Häggström and Holroyd [1] on percolation (the existence of an infinite connected component) in G. We prove that percolation may occur a.s. even if μ has support over odd integers. Furthermore, we show that for any $\varepsilon>0$, there exists a distribution μ such that $\mu(\{1\})>1-\varepsilon$, but percolation still occurs a.s..

Keywords: Poisson process ; Random graph ; Matching ; Percolation.
AMS MSC 2010: 60C05; 60D05; 05C70; 05C80.
Submitted to ECP on December 1, 2014, final version accepted on June 30, 2015.
Supersedes arXiv:1411.6688.

1 Introduction

In this paper, we study certain matching processes on the real line. Let D be a random variable with distribution μ supported on the positive integers. Generate a set of vertices \mathcal{P} by a Poisson point process of intensity 1 on \mathbb{R}. Equip each vertex $x \in \mathcal{P}$ with a random number D_{x} of edge stubs, where the $\left(D_{x}\right)_{x \in \mathcal{P}}$ are i.i.d. random variables with distribution given by D. Now form edges in rounds by matching edge stubs in the following manner. In each round, say that two vertices x, y are compatible if they are not already joined by an edge and both x and y still possess some unmatched edge stubs. Two such vertices form a mutually closest compatible pair if x is the nearest y-compatible vertex to y in the usual Euclidean distance and vice-versa. For each such mutually closest compatible pair (x, y), remove an edge stub from each of x and y to form the edge $x y$. Repeat the procedure indefinitely.

This matching scheme, known as stable multi-matching, was introduced by Deijfen, Häggström and Holroyd [1], who showed that it a.s. exhausts the set of edge stubs, yielding an infinite graph $G=G(\mu)$ with degree distribution given by μ. Note that the graph $G(\mu)$ arising from our multi-matching process is stable a.s.; for any pair of

[^0]distinct points $x, y \in \mathcal{P}$, either $x y \in E(G)$ or at least one of x, y is incident to no edge in G of length greater than $|x-y|$. The concept of stable matchings was introduced in an influential paper of Gale and Shapley [3]; in the context of spatial point processes its study was initiated by Holroyd and Peres, and by Holroyd, Pemantle, Peres and Schramm [4, 5].

A natural question to ask is which degree distributions μ (if any) yield an infinite connected component in $G(\mu)$. For example if $\mu(\{1\})=1$, then no such component exists, while if $\mu(\{2\})=1$, Deijfen, Holroyd and Peres [2] suggest that percolation (the existence of an infinite component) occurs a.s.. Note that by (a version of) Kolmogorov's zero-one law, the probability of percolation occurring is zero or one. Also, as shown by Deijfen, Holroyd and Peres (see [2], Proposition 1.1), an infinite component in G, if it exists, is almost surely unique.

Taking the Poisson point process in \mathbb{R}^{d} for some $d \geq 1$ and applying the stable multi-matching scheme mutatis mutandis, we obtain the d-dimensional Poisson graph G_{d}. Deijfen, Häggström and Holroyd proved the following result on percolation in G_{d} :

Theorem 1.1. (Deijfen, Häggström and Holroyd [1, Theorem 1.2])
(i) For all $d \geq 2$ there exists $k=k(d)$ such that if $\mu(\{n \in \mathbb{N}: n \geq k\})=1$, then a.s. G_{d} percolates.
(ii)) For all $d \geq 1$, if $\mu(\{1,2\})=1$ and $\mu(\{1\})>0$, then a.s. G_{d} does not percolate.

Their proof of part (i) of Theorem 1.1 relies on a comparison of the d-dimensional stable multi-matching process with dependent site percolation on \mathbb{Z}^{d}. In particular, since the threshold for percolation in \mathbb{Z} is trivial, their argument cannot say anything about percolation in the 1-dimensional Poisson graph $G=G_{1}$.

Related to part (ii) of Theorem 1.1, Deijfen, Häggström and Holroyd asked the following question.

Question 1 (Deijfen, Häggström and Holroyd). Does there exist some $\varepsilon>0$ such that if $\mu(\{1\})>1-\varepsilon$, then a.s. G_{d} contains no infinite component?

In subsequent work on $G=G_{1}$, Deijfen, Holroyd and Peres [2] observed that simulations suggested percolation might not occur when $\mu(\{3\})=1$, and asked whether the presence of odd degrees kills off infinite components in general.

Question 2 (Deijfen, Holroyd and Peres). Is it true that percolation in $G=G_{1}$ occurs a.s., if and only if, μ has support only on the even integers?

In this paper we prove the following theorem:
Theorem 1.2. Let μ be a degree distribution such that

$$
\mu\left(\left\{n \in \mathbb{N}: n \geq 20 \cdot 3^{i}\right\}\right) \geq \frac{1}{2^{i}}
$$

for all but finitely many i, then a.s. the one-dimensional stable Poisson graph $G=G_{1}(\mu)$ will contain an infinite path.

Since Theorem 1.2 does not assume anything about μ besides its heavy tail, our result implies a negative answer to both Question 1 and Question 2:

Corollary 1.3. For any $\varepsilon>0$, there exist degree distributions μ with $\mu(\{1\})>1-\varepsilon$ such that the one-dimensional stable Poisson graph $G=G_{1}(\mu)$ a.s. contains an infinite connected component.

Figure 1: Restrictions on the number of nodes in various intervals when the event $E_{i}(z)$ occurs.

Corollary 1.4. There exist degree distributions μ with support on the odd integers, such that the one-dimensional stable Poisson graph $G=G_{1}(\mu)$ a.s. contains an infinite connected component.

We note however that the degree distributions μ satisfying the assumptions of Theorem 1.2 have unbounded support; it would be interesting to find a distribution μ with bounded support only that still gives a negative answer to Questions 1 and 2 (see the discussion of this problem in Section 3).

2 Proof of Theorem 1.2

To prove Theorem 1.2, we construct a degree distribution μ for which $G_{1}(\mu)$ a.s. contains an infinite path, and then show that for any degree distribution μ^{\prime} stochastically dominating $\mu, G_{1}\left(\mu^{\prime}\right)$ also a.s. contains an infinite path.

The idea underlying our construction of μ is to set $\mu\left(\left\{d_{i}\right\}\right)=1 / 2^{i}$ for a sharply increasing sequence of integers $\left(d_{i}\right)_{i \in \mathbb{N}}$. Suppose that we are given a vertex x_{i} with degree $D_{x_{i}}=d_{i}$. By choosing d_{i} large enough we can ensure that with probability close to 1 , there exists some vertex x_{i+1} with $D_{x_{i+1}}=d_{i+1}$ that is connected to x_{i} by an edge of G. Let $U_{i}, i \geq 1$, be the event that a given vertex x_{i} of degree d_{i} is connected to some vertex x_{i+1} of degree d_{i+1}. Starting from a vertex x_{1} of degree d_{1}, we see that if $\bigcap_{i=1}^{\infty} U_{i}$ occurs, then there is an infinite path $x_{1} x_{2} x_{3} \ldots$ in G. If the events $\left(U_{i}\right)_{i \in \mathbb{N}}$ were independent of each other, then $\mathbb{P}\left(\bigcap_{i=1}^{\infty} U_{i}\right)=\prod_{i \in \mathbb{N}} \mathbb{P}\left(U_{i}\right)$, which we could make strictly positive by letting the sequence $\left(d_{i}\right)_{i \in \mathbb{N}}$ grow sufficiently quickly, ensuring in turn that percolation occurs a.s.. Of course the events $\left(U_{i}\right)_{i \in \mathbb{N}}$ as we have loosely defined them above are highly dependent. We circumvent this problem by working with a sequence of slightly more restricted events, for which we do have full independence.

Before we begin the proof, let us introduce the following notation. Given $x \in \mathcal{P}$, let $B(x, r)$ be the collection of all vertices in \mathcal{P} within distance at most r of x. We say that a pair of vertices (x, y) with degrees $\left(D_{x}, D_{y}\right)$ is strongly connected if $|B(x,|y-x|)| \leq D_{x}$ and $|B(y,|y-x|)| \leq D_{y}$. Observe that if a pair of vertices (x, y) is strongly connected, then, by the stability property of the multi-matching scheme, there will a.s. be an edge of $G(\mu)$ joining x and y.

Proof of Theorem 1.2. Set $d_{i}=20 \cdot 3^{i}$ and $\mu\left(\left\{d_{i}\right\}\right)=\frac{1}{2^{i}}$ for each $i \in \mathbb{N}$. Let $z \in \mathbb{R}$ be arbitrary. Suppose that we condition on a particular vertex x_{i} of degree d_{i} belonging to the point process \mathcal{P} and lying inside the interval $\left[z, z+0.1 d_{i}\right]$, and further condition on there being at most $0.3 d_{i}$ points of \mathcal{P} in the interval of length $0.2 d_{i}$ centered at z. Write $F_{i}(z)$ for the event that we are conditioning on. By the standard properties of Poisson
point processes, conditioning on $F_{i}(z)$ does not affect the probability of any event defined outside the interval $\left[z-0.1 d_{i}, z+0.1 d_{i}\right]$.

Let $A_{i}(z)$ be the event that there is a vertex $x_{i+1} \in \mathcal{P}$ with degree d_{i+1} such that $0.1 d_{i}<x_{i+1}-z<0.2 d_{i}$. Viewing \mathcal{P} as the union of two thinned Poisson point processes, one of intensity $2^{-(i+1)}$ giving us the vertices of degree d_{i+1} and another of intensity $1-2^{-(i+1)}$ giving us the rest of the vertices, we see that $\mathbb{P}\left(\left(A_{i}(z)\right)^{c}\right)=e^{-\frac{0.1 d_{i}}{2^{i+1}}}=e^{-\left(\frac{3}{2}\right)^{i}}$. If $A_{i}(z)$ occurs, let x_{i+1} denote the a.s. unique vertex of degree d_{i+1} which is nearest to x_{i} among those degree d_{i+1} vertices lying at distance at least $0.1 d_{i}$ to the right of z.

Let $B_{i}(z)$ be the event that there are at most $0.3 d_{i}$ vertices $x \in \mathcal{P}$ with $0.1 d_{i}<|x-z|<$ $0.2 d_{i}$. Furthermore, let $C_{i}(z)$ be the event that there are at most $0.3 d_{i}$ vertices $x \in \mathcal{P}$ lying in the interval $\left[z+0.2 d_{i}, z+0.4 d_{i}\right]$. A quick calculation (using the Chernoff bound, see e.g., [6]) yields that $\mathbb{P}\left(B_{i}(z)^{c}\right)=\mathbb{P}\left(C_{i}(z)^{c}\right)=e^{-2\left(3 \log \left(\frac{3}{2}\right)-1\right) 3^{i}+O(i)}$.

Finally, let $E_{i}(z)=A_{i}(z) \cap B_{i}(z) \cap C_{i}(z)$. If $E_{i}(z)$ occurs, then the vertices x_{i} and x_{i+1} are strongly connected, since our initial assumption $F_{i}(z)$ together with $B_{i}(z)$ tells us that

$$
\left|B\left(x_{i},\left|x_{i}-x_{i+1}\right|\right)\right| \leq\left|B\left(z, 0.2 d_{i}\right)\right| \leq 0.6 d_{i}
$$

while $F_{i}(z)$ together with $B_{i}(z) \cap C_{i}(z)$ yield that

$$
\left|B\left(x_{i+1},\left|x_{i+1}-x_{i}\right|\right)\right| \leq\left|B\left(z+0.1 d_{i}, 0.3 d_{i}\right)\right| \leq 0.9 d_{i}=0.3 d_{i+1}
$$

(see Figure 1). This last inequality (together with the fact that $x_{i+1} \in\left[z+0.1 d_{i}, z+0.2 d_{i}\right]$) also gives our initial conditioning $F_{i}(z)$ with i replaced by $i+1$ and z replaced by $z+0.1 d_{i}$; hence $E_{i}(z) \cap F_{i}(z) \subseteq F_{i+1}\left(z+0.1 d_{i}\right)$.

By the union bound, we have

$$
\begin{aligned}
\mathbb{P}\left(E_{i}(z) \mid F_{i}(z)\right) \geq 1 & -\mathbb{P}\left(\left(A_{i}(z)\right)^{c} \mid F_{i}(z)\right)-\mathbb{P}\left(\left(B_{i}(z)\right)^{c} \mid F_{i}(z)\right) \\
& -\mathbb{P}\left(\left(C_{i}(z)\right)^{c} \mid F_{i}(z)\right) \\
>1 & -e^{-\left(\frac{3}{2}\right)^{i}}(1+o(1))
\end{aligned}
$$

Selecting i_{0} sufficiently large and some arbitrary vertex $z_{i_{0}}=x_{i_{0}}$ of degree $d_{i_{0}}$ as a starting point, we may define events $E_{i_{0}}\left(z_{i_{0}}\right), E_{i_{0}+1}\left(z_{i_{0}+1}\right), E_{i_{0}+2}\left(z_{i_{0}+2}\right), \ldots$ inductively, each conditional on its predecessors, with $z_{i+1}=z_{i}+0.1 d_{i}$ for all $i \geq i_{0}$, and

$$
\begin{aligned}
\mathbb{P}\left(\bigcap_{i \geq i_{0}} E_{i}\left(z_{i}\right) \mid F_{i_{0}}\left(z_{i_{0}}\right)\right) & =\prod_{i \geq i_{0}} \mathbb{P}\left(E_{i}\left(z_{i}\right) \mid \cap_{j<i} E_{j}\left(z_{j}\right) \cap F_{i_{0}}\left(z_{i_{0}}\right)\right) \\
& =\prod_{i \geq i_{0}} \mathbb{P}\left(E_{i}\left(z_{i}\right) \mid F_{i}\left(z_{i}\right)\right)>1-2 \sum_{i \geq i_{0}} e^{-\left(\frac{3}{2}\right)^{i}}>0
\end{aligned}
$$

Thus, from any vertex $x_{i_{0}} \in \mathcal{P}$ of degree $d_{i_{0}}$ there is, with strictly positive probability, an infinite sequence of vertices from $\mathcal{P}, x_{i_{0}}, x_{i_{0}+1}, \ldots$, with increasing degrees $d_{i_{0}}, d_{i_{0}+1}, \ldots$, such that $\left(x_{i}, x_{i+1}\right)$ is strongly connected for every $i \geq i_{0}$. By the stability property of our multi-matching scheme, there is a.s. an infinite path in G through these vertices. It follows that G a.s. contains an infinite path. We now only need to make two remarks about the proof to obtain the full statement of Theorem 1.2.

Remark 2.1. The pairs $\left(x_{i_{0}}, x_{i_{0}+1}\right),\left(x_{i_{0}+1}, x_{i_{0}+2}\right), \ldots$ remain strongly connected if we increase the degrees. Also, our proof of Theorem 1.2 does not use any information about d_{i} for $i<i_{0}$. Thus, for any measure μ^{\prime} which agrees with (or stochastically dominates) μ on $\left\{n \in \mathbb{N}: n \geq d_{i_{0}}\right\}, G_{1}\left(\mu^{\prime}\right)$ will percolate a.s..
Remark 2.2. Note that we could replace the distribution in the proof of Theorem 1.2 by any distribution μ such that $\mu\left(\left\{x: x \geq d_{i}\right\}\right) \geq 2^{-i}$. Instead of obtaining a (strongly
connected) sequence x_{i} such that x_{i} has exactly degree d_{i}, we get a (strongly connected) sequence x_{i} such that x_{i} has at least degree d_{i}.

3 Concluding remarks

Remark 3.1. The existence of degree distributions that a.s. result in an infinite component in dimensions $d \geq 2$ was established in [1, Theorem 1.2 a)]. Our proof of Theorem 1.2 for $G=G_{1}(\mu)$ easily adapts to higher dimensions $d \geq 2$ (with d-dimensional balls and annuli replacing intervals and punctured intervals, and the sequence $\left(d_{i}\right)_{i \in \mathbb{N}}$ being scaled accordingly), giving a different approach to the construction of examples in that setting.

The distribution μ we construct in Theorem 1.2 has unbounded support, and the expected degree of a vertex in $G(\mu)$ is infinite. We believe however that the answer to Questions 1 and 2 should still remain negative if μ is required to have bounded support. Indeed we conjecture the following:

Conjecture 3.1. For every $\varepsilon>0$, there exists $k=k(\varepsilon)$ such that if $\mu(\{n \in \mathbb{N}: n \geq k\})>$ ε, then percolation occurs a.s. in $G=G_{1}(\mu)$.

One might expect that there is a critical value d_{\star} of the expected degree for percolation. We believe however that no such critical value exists:

Conjecture 3.2. There is no critical value d_{\star}, such that if $\mathbb{E}(D)<d_{\star}$, then a.s. percolation does not occur, while if $\mathbb{E}(D)>d_{\star}$, then a.s. percolation occurs in the stable multi-matching scheme on \mathbb{R}.

Let us give some motivation for this conjecture. By [1, Theorem 1.2 b)], for any μ with support on $\{1,2\}$ and $\mu(\{1\})>0, G_{1}(\mu)$ a.s. does not percolate. So any putative critical value must satisfy $d_{\star} \geq 2$. Now, pick $\varepsilon>0$ and choose $\delta \gg d_{\star}$. Let μ be a degree distribution with support on $\{1, \delta\}$, such that the expected degree satisfies $\mathbb{E}(D)<d_{\star}-\varepsilon$. By the definition of d_{\star} this would imply that $G(\mu)$ a.s. does not percolate. Assign degrees independently at random to the vertices of $G(\mu)$. Perform the first $\delta / 2$ stages of the stable multi-matching process. By then most degree 1 vertices have been matched (and in fact matched to other degree 1 vertices). Now force the remaining degree 1 vertices to match to their future partners. Consider the vertices that had originally been assigned δ edge stubs. A number of these edge stubs will have been used up by the process so far, and the number of edge stubs left at each vertex is not independent; nevertheless we expect most degree δ vertices will have at least $\delta / 4$ edge stubs left, and that the number of stubs left will be almost independently distributed. Thus, we believe that the stable multi-matching scheme on the remaining edge stubs of the degree δ vertices will contain as a subgraph the edges of a stable multi-matching scheme on a thinned Poisson point process on \mathbb{R} corresponding to the degree δ vertices, and with degrees given by some random variable D^{\prime} with $\mathbb{E}\left(D^{\prime}\right)>\delta / 4 \gg d_{\star}$. Since rescaling a Poisson point process does not affect the stable multi-matching process, this would imply that $G(\mu)$ a.s. percolates (by definition of d_{\star}), a contradiction.

References

[1] Deijfen M., Häggström O. and Holroyd A.E. : Percolation in invariant Poisson graphs with i.i.d. degrees, Ark. Mat., 50 (2012), 41-58. MR-2890343
[2] Deijfen M., Holroyd A.E. and Peres Y. : Stable Poisson Graphs in One Dimension, Electronic Journal of Probability 16, (2011), 1238-1253. MR-2827457
[3] Gale D. and Shapley L.S. : College admissions and the stability of marriage, American mathematical monthly 69, (1962), 9-15. MR-1531503
[4] Holroyd A.E. and Peres Y. : Trees and matchings from point processes, Electronic Communications in Probability 8, (2003), 17-27. MR-1961286
[5] Holroyd, A.E., Pemantle R., Peres Y. and Schramm O. : Poisson matchings, Ann. Inst. Henri Poincaré Probab. Stat. 45, (2009), 266-287. MR-2500239
[6] Janson S., Łuczak T. and Ruciński A. : Random Graphs. John Wiley, New York, 2000. MR1782847

Acknowledgments. We would like to thank Svante Janson and an anonymous referee for valuable comments that helped to improve the paper.

[^0]: *Department of Mathematics, Uppsala University, SE-75310 Uppsala, Sweden and Department of Mathematics, Université Pierre et Marie Curie, 75005 Paris, France.

 E-mail: johan.bjorklund@math.uu.se. Supported by the Swedish Research Council.
 ${ }^{\dagger}$ Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville, TN 37240, USA.
 E-mail: falgas. ravry@googlemail.com.
 ${ }^{\ddagger}$ Department of Mathematics, Uppsala University, SE-75310 Uppsala, Sweden and Department of Mathematics, Stockholm University, 11418 Stockholm, Sweden.

 E-mail: cecilia.holmgren@math.uu.se. Supported by the Swedish Research Council.

