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Abstract

Equip each point x of a homogeneous Poisson point process P onR withDx edge stubs,
where theDx are i.i.d. positive integer-valued random variables with distribution given
by µ. Following the stable multi-matching scheme introduced by Deijfen, Häggström
and Holroyd [1], we pair off edge stubs in a series of rounds to form the edge set of a
graph G on the vertex set P. In this note, we answer questions of Deijfen, Holroyd
and Peres [2] and Deijfen, Häggström and Holroyd [1] on percolation (the existence of
an infinite connected component) in G. We prove that percolation may occur a.s. even
if µ has support over odd integers. Furthermore, we show that for any ε > 0, there
exists a distribution µ such that µ({1}) > 1− ε, but percolation still occurs a.s..
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1 Introduction

In this paper, we study certain matching processes on the real line. Let D be a
random variable with distribution µ supported on the positive integers. Generate a set
of vertices P by a Poisson point process of intensity 1 on R. Equip each vertex x ∈ P
with a random number Dx of edge stubs, where the (Dx)x∈P are i.i.d. random variables
with distribution given by D. Now form edges in rounds by matching edge stubs in
the following manner. In each round, say that two vertices x, y are compatible if they
are not already joined by an edge and both x and y still possess some unmatched edge
stubs. Two such vertices form a mutually closest compatible pair if x is the nearest
y-compatible vertex to y in the usual Euclidean distance and vice-versa. For each such
mutually closest compatible pair (x, y), remove an edge stub from each of x and y to
form the edge xy. Repeat the procedure indefinitely.

This matching scheme, known as stable multi-matching, was introduced by Deijfen,
Häggström and Holroyd [1], who showed that it a.s. exhausts the set of edge stubs,
yielding an infinite graph G = G(µ) with degree distribution given by µ. Note that
the graph G(µ) arising from our multi-matching process is stable a.s.; for any pair of
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Percolation in Poisson graphs

distinct points x, y ∈ P, either xy ∈ E(G) or at least one of x, y is incident to no edge
in G of length greater than |x− y|. The concept of stable matchings was introduced in
an influential paper of Gale and Shapley [3]; in the context of spatial point processes
its study was initiated by Holroyd and Peres, and by Holroyd, Pemantle, Peres and
Schramm [4, 5].

A natural question to ask is which degree distributions µ (if any) yield an infinite
connected component in G(µ). For example if µ({1}) = 1, then no such component exists,
while if µ({2}) = 1, Deijfen, Holroyd and Peres [2] suggest that percolation (the existence
of an infinite component) occurs a.s.. Note that by (a version of) Kolmogorov’s zero–one
law, the probability of percolation occurring is zero or one. Also, as shown by Deijfen,
Holroyd and Peres (see [2], Proposition 1.1), an infinite component in G, if it exists, is
almost surely unique.

Taking the Poisson point process in Rd for some d ≥ 1 and applying the stable
multi-matching scheme mutatis mutandis, we obtain the d-dimensional Poisson graph
Gd. Deijfen, Häggström and Holroyd proved the following result on percolation in Gd:

Theorem 1.1. (Deijfen, Häggström and Holroyd [1, Theorem 1.2])

(i) For all d ≥ 2 there exists k = k(d) such that if µ({n ∈ N : n ≥ k}) = 1, then a.s. Gd

percolates.

(ii)) For all d ≥ 1, if µ({1, 2}) = 1 and µ({1}) > 0, then a.s. Gd does not percolate.

Their proof of part (i) of Theorem 1.1 relies on a comparison of the d-dimensional
stable multi-matching process with dependent site percolation on Zd. In particular, since
the threshold for percolation in Z is trivial, their argument cannot say anything about
percolation in the 1-dimensional Poisson graph G = G1.

Related to part (ii) of Theorem 1.1, Deijfen, Häggström and Holroyd asked the
following question.

Question 1 (Deijfen, Häggström and Holroyd). Does there exist some ε > 0 such that if
µ({1}) > 1− ε, then a.s. Gd contains no infinite component?

In subsequent work on G = G1, Deijfen, Holroyd and Peres [2] observed that simula-
tions suggested percolation might not occur when µ({3}) = 1, and asked whether the
presence of odd degrees kills off infinite components in general.

Question 2 (Deijfen, Holroyd and Peres). Is it true that percolation in G = G1 occurs
a.s., if and only if, µ has support only on the even integers?

In this paper we prove the following theorem:

Theorem 1.2. Let µ be a degree distribution such that

µ({n ∈ N : n ≥ 20 · 3i}) ≥ 1

2i

for all but finitely many i, then a.s. the one-dimensional stable Poisson graph G = G1(µ)

will contain an infinite path.

Since Theorem 1.2 does not assume anything about µ besides its heavy tail, our result
implies a negative answer to both Question 1 and Question 2:

Corollary 1.3. For any ε > 0, there exist degree distributions µ with µ({1}) > 1 − ε
such that the one-dimensional stable Poisson graph G = G1(µ) a.s. contains an infinite
connected component.
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Figure 1: Restrictions on the number of nodes in various intervals when the event Ei(z)

occurs.

Corollary 1.4. There exist degree distributions µ with support on the odd integers,
such that the one-dimensional stable Poisson graph G = G1(µ) a.s. contains an infinite
connected component.

We note however that the degree distributions µ satisfying the assumptions of Theo-
rem 1.2 have unbounded support; it would be interesting to find a distribution µ with
bounded support only that still gives a negative answer to Questions 1 and 2 (see the
discussion of this problem in Section 3).

2 Proof of Theorem 1.2

To prove Theorem 1.2, we construct a degree distribution µ for which G1(µ) a.s.
contains an infinite path, and then show that for any degree distribution µ′ stochastically
dominating µ, G1(µ

′) also a.s. contains an infinite path.

The idea underlying our construction of µ is to set µ({di}) = 1/2i for a sharply
increasing sequence of integers (di)i∈N. Suppose that we are given a vertex xi with
degree Dxi = di. By choosing di large enough we can ensure that with probability close
to 1, there exists some vertex xi+1 with Dxi+1 = di+1 that is connected to xi by an edge
of G. Let Ui, i ≥ 1, be the event that a given vertex xi of degree di is connected to
some vertex xi+1 of degree di+1. Starting from a vertex x1 of degree d1, we see that if⋂∞

i=1 Ui occurs, then there is an infinite path x1x2x3 . . . in G. If the events (Ui)i∈N were
independent of each other, then P(

⋂∞
i=1 Ui) =

∏
i∈NP(Ui), which we could make strictly

positive by letting the sequence (di)i∈N grow sufficiently quickly, ensuring in turn that
percolation occurs a.s.. Of course the events (Ui)i∈N as we have loosely defined them
above are highly dependent. We circumvent this problem by working with a sequence of
slightly more restricted events, for which we do have full independence.

Before we begin the proof, let us introduce the following notation. Given x ∈ P, let
B(x, r) be the collection of all vertices in P within distance at most r of x. We say that a
pair of vertices (x, y) with degrees (Dx, Dy) is strongly connected if |B(x, |y − x|)| ≤ Dx

and |B(y, |y − x|)| ≤ Dy. Observe that if a pair of vertices (x, y) is strongly connected,
then, by the stability property of the multi-matching scheme, there will a.s. be an edge
of G(µ) joining x and y.

Proof of Theorem 1.2. Set di = 20 · 3i and µ({di}) = 1
2i for each i ∈ N. Let z ∈ R be

arbitrary. Suppose that we condition on a particular vertex xi of degree di belonging to
the point process P and lying inside the interval [z, z + 0.1di], and further condition on
there being at most 0.3di points of P in the interval of length 0.2di centered at z. Write
Fi(z) for the event that we are conditioning on. By the standard properties of Poisson
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point processes, conditioning on Fi(z) does not affect the probability of any event defined
outside the interval [z − 0.1di, z + 0.1di].

Let Ai(z) be the event that there is a vertex xi+1 ∈ P with degree di+1 such that
0.1di < xi+1 − z < 0.2di. Viewing P as the union of two thinned Poisson point processes,
one of intensity 2−(i+1) giving us the vertices of degree di+1 and another of intensity

1− 2−(i+1) giving us the rest of the vertices, we see that P((Ai(z))
c
) = e−

0.1di
2i+1 = e−(

3
2 )

i

.
If Ai(z) occurs, let xi+1 denote the a.s. unique vertex of degree di+1 which is nearest to
xi among those degree di+1 vertices lying at distance at least 0.1di to the right of z.

Let Bi(z) be the event that there are at most 0.3di vertices x ∈ P with 0.1di < |x−z| <
0.2di. Furthermore, let Ci(z) be the event that there are at most 0.3di vertices x ∈ P
lying in the interval [z + 0.2di, z + 0.4di]. A quick calculation (using the Chernoff bound,

see e.g., [6]) yields that P(Bi(z)
c
) = P(Ci(z)

c
) = e−2(3 log( 3

2 )−1)3
i+O(i).

Finally, let Ei(z) = Ai(z)∩Bi(z)∩Ci(z). If Ei(z) occurs, then the vertices xi and xi+1

are strongly connected, since our initial assumption Fi(z) together with Bi(z) tells us
that

|B(xi, |xi − xi+1|)| ≤ |B(z, 0.2di)| ≤ 0.6di,

while Fi(z) together with Bi(z) ∩ Ci(z) yield that

|B(xi+1, |xi+1 − xi|)| ≤ |B(z + 0.1di, 0.3di)| ≤ 0.9di = 0.3di+1

(see Figure 1). This last inequality (together with the fact that xi+1 ∈ [z+0.1di, z+0.2di])
also gives our initial conditioning Fi(z) with i replaced by i+1 and z replaced by z+0.1di;
hence Ei(z) ∩ Fi(z) ⊆ Fi+1(z + 0.1di).

By the union bound, we have

P
(
Ei(z)|Fi(z)

)
≥ 1− P

(
(Ai(z))

c |Fi(z)
)
− P

(
(Bi(z))

c |Fi(z)
)

− P
(
(Ci(z))

c |Fi(z)
)

> 1− e−(
3
2 )

i

(1 + o(1)).

Selecting i0 sufficiently large and some arbitrary vertex zi0 = xi0 of degree di0 as a
starting point, we may define events Ei0(zi0), Ei0+1(zi0+1), Ei0+2(zi0+2), . . . inductively,
each conditional on its predecessors, with zi+1 = zi + 0.1di for all i ≥ i0, and

P
( ⋂
i≥i0

Ei(zi)|Fi0(zi0)
)
=
∏
i≥i0

P
(
Ei(zi)| ∩j<i Ej(zj) ∩ Fi0(zi0)

)
=
∏
i≥i0

P
(
Ei(zi)|Fi(zi)

)
> 1− 2

∑
i≥i0

e−(
3
2 )

i

> 0.

Thus, from any vertex xi0 ∈ P of degree di0 there is, with strictly positive probability, an
infinite sequence of vertices from P, xi0 , xi0+1, . . ., with increasing degrees di0 , di0+1, . . .,
such that (xi, xi+1) is strongly connected for every i ≥ i0. By the stability property of
our multi-matching scheme, there is a.s. an infinite path in G through these vertices. It
follows that G a.s. contains an infinite path. We now only need to make two remarks
about the proof to obtain the full statement of Theorem 1.2.

Remark 2.1. The pairs (xi0 , xi0+1), (xi0+1, xi0+2), . . . remain strongly connected if we
increase the degrees. Also, our proof of Theorem 1.2 does not use any information about
di for i < i0. Thus, for any measure µ′ which agrees with (or stochastically dominates) µ
on {n ∈ N : n ≥ di0}, G1(µ

′) will percolate a.s..

Remark 2.2. Note that we could replace the distribution in the proof of Theorem 1.2
by any distribution µ such that µ({x : x ≥ di}) ≥ 2−i. Instead of obtaining a (strongly
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connected) sequence xi such that xi has exactly degree di, we get a (strongly connected)
sequence xi such that xi has at least degree di.

3 Concluding remarks

Remark 3.1. The existence of degree distributions that a.s. result in an infinite com-
ponent in dimensions d ≥ 2 was established in [1, Theorem 1.2 a)]. Our proof of
Theorem 1.2 for G = G1(µ) easily adapts to higher dimensions d ≥ 2 (with d-dimensional
balls and annuli replacing intervals and punctured intervals, and the sequence (di)i∈N
being scaled accordingly), giving a different approach to the construction of examples in
that setting.

The distribution µ we construct in Theorem 1.2 has unbounded support, and the
expected degree of a vertex in G(µ) is infinite. We believe however that the answer to
Questions 1 and 2 should still remain negative if µ is required to have bounded support.
Indeed we conjecture the following:

Conjecture 3.1. For every ε > 0, there exists k = k(ε) such that if µ({n ∈ N : n ≥ k}) >
ε, then percolation occurs a.s. in G = G1(µ).

One might expect that there is a critical value d? of the expected degree for percola-
tion. We believe however that no such critical value exists:

Conjecture 3.2. There is no critical value d?, such that if E(D) < d?, then a.s. per-
colation does not occur, while if E(D) > d?, then a.s. percolation occurs in the stable
multi-matching scheme on R.

Let us give some motivation for this conjecture. By [1, Theorem 1.2 b)], for any µ
with support on {1, 2} and µ({1}) > 0, G1(µ) a.s. does not percolate. So any putative
critical value must satisfy d? ≥ 2. Now, pick ε > 0 and choose δ � d?. Let µ be a degree
distribution with support on {1, δ}, such that the expected degree satisfies E(D) < d?− ε.
By the definition of d? this would imply that G(µ) a.s. does not percolate. Assign degrees
independently at random to the vertices of G(µ). Perform the first δ/2 stages of the
stable multi-matching process. By then most degree 1 vertices have been matched (and
in fact matched to other degree 1 vertices). Now force the remaining degree 1 vertices
to match to their future partners. Consider the vertices that had originally been assigned
δ edge stubs. A number of these edge stubs will have been used up by the process so far,
and the number of edge stubs left at each vertex is not independent; nevertheless we
expect most degree δ vertices will have at least δ/4 edge stubs left, and that the number
of stubs left will be almost independently distributed. Thus, we believe that the stable
multi-matching scheme on the remaining edge stubs of the degree δ vertices will contain
as a subgraph the edges of a stable multi-matching scheme on a thinned Poisson point
process on R corresponding to the degree δ vertices, and with degrees given by some
random variable D′ with E(D′) > δ/4� d?. Since rescaling a Poisson point process does
not affect the stable multi-matching process, this would imply that G(µ) a.s. percolates
(by definition of d?), a contradiction.
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