The maximal drawdown of the Brownian meander*

Yueyun $\mathrm{Hu}^{\dagger} \quad$ Zhan Shi $^{\ddagger} \quad$ Marc Yor §

Abstract

Motivated by evaluating the limiting distribution of randomly biased random walks on trees, we compute the exact value of a negative moment of the maximal drawdown of the standard Brownian meander.

Keywords: Brownian meander; Bessel process; maximal drawdown.
AMS MSC 2010: 60J65.
Submitted to ECP on November 25, 2014, final version accepted on February 12, 2015.

1 Introduction

Let $(X(t), t \in[0,1])$ be a random process. Its maximal drawdown on $[0,1]$ is defined by

$$
X^{\#}(1):=\sup _{s \in[0,1]}[\bar{X}(s)-X(s)]
$$

where $\bar{X}(s):=\sup _{u \in[0, s]} X(u)$. There has been some recent research interest on the study of drawdowns from probabilistic point of view ([7], [8]) as well as applications in insurance and finance ([1], [2], [3], [10], [12]).

We are interested in the maximal drawdown $\mathfrak{m}^{\#}(1)$ of the standard Brownian meander $(\mathfrak{m}(t), t \in[0,1])$. Our motivation is the presence of the law of $\mathfrak{m}^{\#}(1)$ in the limiting distribution of randomly biased random walks on supercritical Galton-Watson trees ([4]); in particular, the value of $\mathbb{E}\left(\frac{1}{\mathfrak{m} \#(1)}\right)$ is the normalizing constant in the density function of this limiting distribution. The sole aim of the present note is to compute $\mathbb{E}\left(\frac{1}{\mathfrak{m} \#(1)}\right)$, which turns out to have a nice numerical value.

Let us first recall the definition of the Brownian meander. Let $W:=(W(t), t \in[0,1])$ be a standard Brownian motion, and let $\mathfrak{g}:=\sup \{t \leq 1: W(t)=0\}$ be the last passage time at 0 before time 1 . Since $\mathfrak{g}<1$ a.s., we can define

$$
\mathfrak{m}(s):=\frac{|W(\mathfrak{g}+s(1-\mathfrak{g}))|}{(1-\mathfrak{g})^{1 / 2}}, \quad s \in[0,1]
$$

The law of $(\mathfrak{m}(s), s \in[0,1])$ is called the law of the standard Brownian meander. For an account of general properties of the Brownian meander, see Yen and Yor [11].

[^0]Theorem 1.1. Let $(\mathfrak{m}(s), s \in[0,1])$ be a standard Brownian meander. We have

$$
\begin{equation*}
\mathbb{E}\left(\frac{1}{\sup _{s \in[0,1]}[\overline{\mathfrak{m}}(s)-\mathfrak{m}(s)]}\right)=\left(\frac{\pi}{2}\right)^{1 / 2} \tag{1.1}
\end{equation*}
$$

where $\overline{\mathfrak{m}}(s):=\sup _{u \in[0, s]} \mathfrak{m}(u)$.
The theorem is proved in Section 2.
We are grateful to an anonymous referee for a careful reading of the manuscript and for many suggestions for improvements.
N.B. from the first-named coauthors: This note originates from a question we asked our teacher, Professor Marc Yor (1949-2014), who passed away in January 2014, during the preparation of this note. He provided us, in November 2012, with the essential of the material in Section 2.

2 Proof

Let $R:=(R(t), t \geq 0)$ be a three-dimensional Bessel process with $R(0)=0$, i.e., the Euclidean modulus of a standard three-dimensional Brownian motion. The proof of Theorem 1.1 relies on an absolute continuity relation between $(\mathfrak{m}(s), s \in[0,1])$ and $(R(s), s \in[0,1])$, recalled as follows.

Fact 2.1. (Imhof [5]) Let $(\mathfrak{m}(s), s \in[0,1])$ be a standard Brownian meander. Let $(R(s), s \in[0,1])$ be a three-dimensional Bessel process with $R(0)=0$. For any measurable and non-negative functional F, we have

$$
\mathbb{E}[F(\mathfrak{m}(s), s \in[0,1])]=\left(\frac{\pi}{2}\right)^{1 / 2} \mathbb{E}\left[\frac{1}{R(1)} F(R(s), s \in[0,1])\right]
$$

We now proceed to the proof of Theorem 1.1. Let

$$
L:=\mathbb{E}\left(\frac{1}{\sup _{s \in[0,1]}[\overline{\mathfrak{m}}(s)-\mathfrak{m}(s)]}\right) .
$$

Write $\bar{R}(t):=\sup _{u \in[0, t]} R(u)$ for $t \geq 0$. By Fact 2.1,

$$
\begin{aligned}
L & =\left(\frac{\pi}{2}\right)^{1 / 2} \mathbb{E}\left[\frac{1}{R(1)} \frac{1}{\sup _{s \in[0,1]}[\bar{R}(s)-R(s)]}\right] \\
& =\left(\frac{\pi}{2}\right)^{1 / 2} \int_{0}^{\infty} \mathbb{E}\left[\frac{1}{R(1)} \mathbf{1}_{\left\{\sup _{s \in[0,1]}[\bar{R}(s)-R(s)]<\frac{1}{a}\right\}}\right] \mathrm{d} a
\end{aligned}
$$

the last equality following from the Fubini-Tonelli theorem. By the scaling property, $\mathbb{E}\left[\frac{1}{R(1)} \mathbf{1}_{\left\{\sup _{s \in[0,1]}[\bar{R}(s)-R(s)]<\frac{1}{a}\right\}}\right]=\mathbb{E}\left[\frac{a}{R\left(a^{2}\right)} \mathbf{1}_{\left\{\sup _{u \in\left[0, a^{2}\right]}[\bar{R}(u)-R(u)]<1\right\}}\right]$ for all $a>0$. So by means of a change of variables $b=a^{2}$, we obtain:

$$
L=\left(\frac{\pi}{8}\right)^{1 / 2} \int_{0}^{\infty} \mathbb{E}\left[\frac{1}{R(b)} \mathbf{1}_{\left\{\sup _{u \in[0, b]}[\bar{R}(u)-R(u)]<1\right\}}\right] \mathrm{d} b
$$

Define, for any random process X,

$$
\tau_{1}^{X}:=\inf \{t \geq 0: \bar{X}(t)-X(t) \geq 1\}
$$

with $\bar{X}(t):=\sup _{s \in[0, t]} X(s)$. For any $b>0$, the event $\left\{\sup _{u \in[0, b]}[\bar{R}(u)-R(u)]<1\right\}$ means $\left\{\tau_{1}^{R}>b\right\}$, so

$$
L=\left(\frac{\pi}{8}\right)^{1 / 2} \int_{0}^{\infty} \mathbb{E}\left[\frac{1}{R(b)} \mathbf{1}_{\left\{\tau_{1}^{R}>b\right\}}\right] \mathrm{d} b=\left(\frac{\pi}{8}\right)^{1 / 2} \mathbb{E}\left(\int_{0}^{\tau_{1}^{R}} \frac{1}{R(b)} \mathrm{d} b\right)
$$

the second identity following from the Fubini-Tonelli theorem. According to a relation between Bessel processes of dimensions three and four (Revuz and Yor [9], Proposition XI.1.11, applied to the parameters $p=q=2$ and $\nu=\frac{1}{2}$),

$$
R(t)=U\left(\frac{1}{4} \int_{0}^{t} \frac{1}{R(b)} \mathrm{d} b\right), \quad t \geq 0
$$

where $U:=(U(s), s \geq 0)$ is a four-dimensional squared Bessel process with $U(0)=0$; in other words, U is the square of the Euclidean modulus of a standard four-dimensional Brownian motion.

Let us introduce the increasing functional $\sigma(t):=\frac{1}{4} \int_{0}^{t} \frac{1}{R(b)} \mathrm{d} b, t \geq 0$. We have $R=U \circ \sigma$, and

$$
\begin{aligned}
\tau_{1}^{R} & =\inf \{t \geq 0: \bar{R}(t)-R(t) \geq 1\} \\
& =\inf \{t \geq 0: \bar{U}(\sigma(t))-U(\sigma(t)) \geq 1\} \\
& =\inf \left\{\sigma^{-1}(s): s \geq 0 \text { and } \bar{U}(s)-U(s) \geq 1\right\}
\end{aligned}
$$

which is $\sigma^{-1}\left(\tau_{1}^{U}\right)$. So $\tau_{1}^{U}=\sigma\left(\tau_{1}^{R}\right)$, i.e.,

$$
\int_{0}^{\tau_{1}^{R}} \frac{1}{R(b)} \mathrm{d} b=4 \tau_{1}^{U}
$$

which implies that

$$
L=(2 \pi)^{1 / 2} \mathbb{E}\left(\tau_{1}^{U}\right)
$$

The Laplace transform of τ_{1}^{U} is determined by Lehoczky [6], from which, however, it does not seem obvious to deduce the value of $\mathbb{E}\left(\tau_{1}^{U}\right)$. Instead of using Lehoczky's result directly, we rather apply his method to compute $\mathbb{E}\left(\tau_{1}^{U}\right)$. By Itô's formula, $(U(t)-4 t, t \geq 0)$ is a continuous martingale, with quadratic variation $4 \int_{0}^{t} U(s) \mathrm{d} s$; so applying the Dambis-Dubins-Schwarz theorem (Revuz and Yor [9], Theorem V.1.6) to $(U(t)-4 t, t \geq 0)$ yields the existence of a standard Brownian motion $B=(B(t), t \geq 0)$ such that

$$
U(t)=2 B\left(\int_{0}^{t} U(s) \mathrm{d} s\right)+4 t, \quad t \geq 0
$$

Taking $t:=\tau_{1}^{U}$, we get

$$
U\left(\tau_{1}^{U}\right)=2 B\left(\int_{0}^{\tau_{1}^{U}} U(s) \mathrm{d} s\right)+4 \tau_{1}^{U}
$$

We claim that

$$
\begin{equation*}
\mathbb{E}\left[B\left(\int_{0}^{\tau_{1}^{U}} U(s) \mathrm{d} s\right)\right]=0 \tag{2.1}
\end{equation*}
$$

Then $\mathbb{E}\left(\tau_{1}^{U}\right)=\frac{1}{4} \mathbb{E}\left[U\left(\tau_{1}^{U}\right)\right]$; hence

$$
\begin{equation*}
L=(2 \pi)^{1 / 2} \mathbb{E}\left(\tau_{1}^{U}\right)=\left(\frac{\pi}{8}\right)^{1 / 2} \mathbb{E}\left[U\left(\tau_{1}^{U}\right)\right] \tag{2.2}
\end{equation*}
$$

Let us admit (2.1) for the moment, and prove the theorem by computing $\mathbb{E}\left[U\left(\tau_{1}^{U}\right)\right]$ using Lehoczky [6]'s method; in fact, we determine the law of $U\left(\tau_{1}^{U}\right)$.

Lemma 2.2. The law of $U\left(\tau_{1}^{U}\right)$ is given by

$$
\mathbb{P}\left\{U\left(\tau_{1}^{U}\right)>a\right\}=(a+1) \mathrm{e}^{-a}, \quad \forall a>0
$$

In particular,

$$
\mathbb{E}\left[U\left(\tau_{1}^{U}\right)\right]=\int_{0}^{\infty}(a+1) \mathrm{e}^{-a} \mathrm{~d} a=2
$$

Since $L=\left(\frac{\pi}{8}\right)^{1 / 2} \mathbb{E}\left[U\left(\tau_{1}^{U}\right)\right]$ (see (2.2)), this yields $L=\left(\frac{\pi}{2}\right)^{1 / 2}$ as stated in Theorem 1.1.
The rest of the note is devoted to the proof of Lemma 2.2 and (2.1).
Proof of Lemma 2.2. Fix $b>1$. We compute the probability $\mathbb{P}\left\{\bar{U}\left(\tau_{1}^{U}\right)>b\right\}$ which, due to the equality $\bar{U}\left(\tau_{1}^{U}\right)=U\left(\tau_{1}^{U}\right)+1$, coincides with $\mathbb{P}\left\{U\left(\tau_{1}^{U}\right)>b-1\right\}$. By applying the strong Markov property at time $\sigma_{0}^{U}:=\inf \{t \geq 0: U(t)=1\}$, we see that the value of $\mathbb{P}\left\{\bar{U}\left(\tau_{1}^{U}\right)>b\right\}$ does not change if the squared Bessel process U starts at $U(0)=1$. Indeed, observing that $\sigma_{0}^{U} \leq \tau_{1}^{U}, U\left(\sigma_{0}^{U}\right)=1$ and that $\bar{U}\left(\tau_{1}^{U}\right)=\sup _{s \in\left[\sigma_{0}^{U}, \tau_{1}^{U}\right]} U(s)$, we have

$$
\mathbb{P}\left\{\bar{U}\left(\tau_{1}^{U}\right)>b\right\}=\mathbb{P}\left\{\sup _{s \in\left[\sigma_{0}^{U}, \tau_{1}^{U}\right]} U(s)>b\right\}=\mathbb{P}_{1}\left\{\bar{U}\left(\tau_{1}^{U}\right)>b\right\}
$$

the subscript 1 in \mathbb{P}_{1} indicating the initial value of U. More generally, for $x \geq 0$, we write $\mathbb{P}_{x}(\bullet):=\mathbb{P}(\bullet \mid U(0)=x)$; so $\mathbb{P}=\mathbb{P}_{0}$.

Let $b_{0}=1<b_{1}<\cdots<b_{n}:=b$ be a subdivision of $[1, b]$ such that $\max _{1 \leq i \leq n}\left(b_{i}-\right.$ $\left.b_{i-1}\right) \rightarrow 0, n \rightarrow \infty$. Consider the event $\left\{\bar{U}\left(\tau_{1}^{U}\right)>b\right\}$: since $U(0)=1$, this means U hits position b before time τ_{1}^{U}; for all $i \in[1, n-1] \cap \mathbb{Z}$, starting from position b_{i}, U must hit b_{i+1} before hitting $b_{i}-1$ (caution: not to be confused with b_{i-1}). More precisely, let $\sigma_{i}^{U}:=\inf \left\{t \geq 0: U(t)=b_{i}\right\}$ and let $U_{i}(s):=U\left(s+\sigma_{i}^{U}\right), s \geq 0$; then

$$
\left\{\bar{U}\left(\tau_{1}^{U}\right)>b\right\} \subset \bigcap_{i=1}^{n-1}\left\{U_{i} \text { hits } b_{i+1} \text { before hitting } b_{i}-1\right\}
$$

By the strong Markov property, the events $\left\{U_{i}\right.$ hits b_{i+1} before hitting $\left.b_{i}-1\right\}, 1 \leq i \leq$ $n-1$, are independent (caution : the processes $\left(U_{i}(s), s \geq 0\right), 1 \leq i \leq n-1$, are not independent). Hence

$$
\begin{equation*}
\mathbb{P}_{1}\left\{\bar{U}\left(\tau_{1}^{U}\right)>b\right\} \leq \prod_{i=1}^{n-1} \mathbb{P}_{b_{i}}\left\{U \text { hits } b_{i+1} \text { before hitting } b_{i}-1\right\} \tag{2.3}
\end{equation*}
$$

Conversely, let $\varepsilon>0$, and if $\max _{1 \leq i \leq n}\left(b_{i}-b_{i-1}\right)<\varepsilon$, then we also have

$$
\mathbb{P}_{1}\left\{\bar{U}\left(\tau_{1+\varepsilon}^{U}\right)>b\right\} \geq \prod_{i=1}^{n-1} \mathbb{P}_{b_{i}}\left\{U \text { hits } b_{i+1} \text { before hitting } b_{i}-1\right\}
$$

with $\tau_{1+\varepsilon}^{U}:=\inf \{t \geq 0: \bar{U}(t)-U(t) \geq 1+\varepsilon\}$. By scaling, $\bar{U}\left(\tau_{1+\varepsilon}^{U}\right)$ has the same distribution as $(1+\varepsilon) \bar{U}\left(\tau_{1}^{U}\right)$. So, as long as $\max _{1 \leq i \leq n}\left(b_{i}-b_{i-1}\right)<\varepsilon$, we have

$$
\mathbb{P}_{1}\left\{\bar{U}\left(\tau_{1}^{U}\right)>b\right\} \leq \prod_{i=1}^{n-1} \mathbb{P}_{b_{i}}\left\{U \text { hits } b_{i+1} \text { before hitting } b_{i}-1\right\} \leq \mathbb{P}_{1}\left\{\bar{U}\left(\tau_{1}^{U}\right)>\frac{b}{1+\varepsilon}\right\}
$$

Since $\frac{1}{x}$ is a scale function for U, we have

$$
\mathbb{P}_{b_{i}}\left\{U \text { hits } b_{i+1} \text { before hitting } b_{i}-1\right\}=\frac{\frac{1}{b_{i}-1}-\frac{1}{b_{i}}}{\frac{1}{b_{i}-1}-\frac{1}{b_{i+1}}}=1-\frac{\frac{1}{b_{i}}-\frac{1}{b_{i+1}}}{\frac{1}{b_{i}-1}-\frac{1}{b_{i+1}}} .
$$

If $\lim _{n \rightarrow \infty} \max _{0 \leq i \leq n-1}\left(b_{i+1}-b_{i}\right)=0$, then for $n \rightarrow \infty$,

$$
\begin{aligned}
\sum_{i=1}^{n-1} \frac{\frac{1}{b_{i}}-\frac{1}{b_{i+1}}}{\frac{1}{b_{i}-1}-\frac{1}{b_{i+1}}} & =\sum_{i=1}^{n-1} \frac{b_{i}-1}{b_{i}}\left(b_{i+1}-b_{i}\right)+o(1) \\
& \rightarrow \int_{1}^{b} \frac{r-1}{r} \mathrm{~d} r \\
& =b-1-\log b
\end{aligned}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \prod_{i=1}^{n-1} \mathbb{P}_{b_{i}}\left\{U \text { hits } b_{i+1} \text { before hitting } b_{i}-1\right\}=\mathrm{e}^{-(b-1-\log b)}=b \mathrm{e}^{-(b-1)}
$$

Consequently,

$$
\mathbb{P}\left\{\bar{U}\left(\tau_{1}^{U}\right)>b\right\}=b \mathrm{e}^{-(b-1)}, \quad \forall b>1
$$

We have already noted that $U\left(\tau_{1}^{U}\right)=\bar{U}\left(\tau_{1}^{U}\right)-1$. This completes the proof of Lemma 2.2.

Proof of (2.1). The Brownian motion B being the Dambis-Dubins-Schwarz Brownian motion associated with the continuous martingale $(U(t)-4 t, t \geq 0)$, it is a $\left(\mathscr{G}_{r}\right)_{r \geq 0^{-}}$ Brownian motion (Revuz and Yor [9], Theorem V.1.6), where, for $r \geq 0$,

$$
\mathscr{G}_{r}:=\mathscr{F}_{C(r)}, \quad C(r):=A^{-1}(r), \quad A(t):=\int_{0}^{t} U(s) \mathrm{d} s
$$

and A^{-1} denotes the inverse of A. [We mention that $\mathscr{F}_{C(r)}$ is well defined because $C(r)$ is an $\left(\mathscr{F}_{t}\right)_{t \geq 0}$-stopping time.] As such,

$$
\int_{0}^{\tau_{1}^{U}} U(s) \mathrm{d} s=A\left(\tau_{1}^{U}\right)
$$

For all $r \geq 0,\left\{A\left(\tau_{1}^{U}\right)>r\right\}=\left\{\tau_{1}^{U}>C(r)\right\} \in \mathscr{F}_{C(r)}=\mathscr{G}_{r}$ (observing that τ_{1}^{U} is an $\left(\mathscr{F}_{t}\right)_{t \geq 0}$-stopping time), which means that $A\left(\tau_{1}^{U}\right)$ is a $\left(\mathscr{G}_{r}\right)_{r \geq 0}$-stopping time. If $A\left(\tau_{1}^{U}\right)=$ $\int_{0}^{\tau_{1}^{U}} U(s) \mathrm{d} s$ has a finite expectation, then we are entitled to apply the (first) Wald identity to see that $\mathbb{E}\left[B\left(A\left(\tau_{1}^{U}\right)\right)\right]=0$ as claimed in (2.1).

It remains to prove that $\mathbb{E}\left[A\left(\tau_{1}^{U}\right)\right]<\infty$.
Recall that U is the square of the Euclidean modulus of an \mathbb{R}^{4}-valued Brownian motion. By considering only the first coordinate of this Brownian motion, say β, we have

$$
\mathbb{P}\left\{\sup _{s \in[0, a]} U(s)<a^{1-\varepsilon}\right\} \leq \mathbb{P}\left\{\sup _{s \in[0, a]}|\beta(s)|<a^{(1-\varepsilon) / 2}\right\}=\mathbb{P}\left\{\sup _{s \in[0,1]}|\beta(s)|<a^{-\varepsilon / 2}\right\}
$$

so by the small ball probability for Brownian motion, we obtain:

$$
\mathbb{P}\left\{\sup _{s \in[0, a]} U(s)<a^{1-\varepsilon}\right\} \leq \exp \left(-c_{1} a^{\varepsilon}\right)
$$

for all $a \geq 1$ et all $\varepsilon \in(0,1)$, with some constant $c_{1}=c_{1}(\varepsilon)>0$. On the event $\left\{\sup _{s \in[0, a]} U(s) \geq a^{1-\varepsilon}\right\}$, if $\tau_{1}^{U}>a$, then for all $i \in\left[1, a^{1-\varepsilon}-1\right] \cap \mathbb{Z}$, the squared Bessel process U, starting from i, must first hit position $i+1$ before hitting $i-1$ (which, for each i, can be realized with probability $\leq 1-c_{2}$, where $c_{2} \in(0,1)$ is a constant that does not depend on i, nor on a). Accordingly, ${ }^{1}$

$$
\mathbb{P}\left\{\sup _{s \in[0, a]} U(s) \geq a^{1-\varepsilon}, \tau_{1}^{U}>a\right\} \leq\left(1-c_{2}\right)^{\left\lfloor a^{1-\varepsilon}-1\right\rfloor} \leq \exp \left(-c_{3} a^{1-\varepsilon}\right)
$$

with some constant $c_{3}>0$, uniformly in $a \geq 2$. We have thus proved that for all $a \geq 2$ and all $\varepsilon \in(0,1)$,

$$
\mathbb{P}\left\{\tau_{1}^{U}>a\right\} \leq \exp \left(-c_{3} a^{1-\varepsilon}\right)+\exp \left(-c_{1} a^{\varepsilon}\right)
$$

Taking $\varepsilon:=\frac{1}{2}$, we see that there exists a constant $c_{4}>0$ such that

$$
\mathbb{P}\left\{\tau_{1}^{U}>a\right\} \leq \exp \left(-c_{4} a^{1 / 2}\right), \quad \forall a \geq 2
$$

[^1]On the other hand, U being a squared Bessel process, we have, for all $a>0$ and all $b \geq a^{2}$,

$$
\mathbb{P}\{A(a) \geq b\}=\mathbb{P}\left\{A(1) \geq \frac{b}{a^{2}}\right\} \leq \mathbb{P}\left\{\sup _{s \in[0,1]} U(s) \geq \frac{b}{a^{2}}\right\} \leq \mathrm{e}^{-c_{5} b / a^{2}}
$$

for some constant $c_{5}>0$. Hence, for $b \geq a^{2}$ and $a \geq 2$,

$$
\mathbb{P}\left\{A\left(\tau_{1}^{U}\right) \geq b\right\} \leq \mathbb{P}\left\{\tau_{1}^{U}>a\right\}+\mathbb{P}\{A(a) \geq b\} \leq \exp \left(-c_{4} a^{1 / 2}\right)+\mathrm{e}^{-c_{5} b / a^{2}}
$$

Taking $a:=b^{2 / 5}$ gives that

$$
\mathbb{P}\left\{A\left(\tau_{1}^{U}\right) \geq b\right\} \leq \exp \left(-c_{6} b^{1 / 5}\right)
$$

for some constant $c_{6}>0$ and all $b \geq 4$. In particular, $\mathbb{E}\left[A\left(\tau_{1}^{U}\right)\right]<\infty$ as desired.

References

[1] Carraro, L., El Karoui, N. and Obłój, J. (2012). On Azéma-Yor processes, their optimal properties and the Bachelier-drawdown equation. Ann. Probab. 40, 372-400. MR-2917776
[2] Cheridito, P., Nikeghbali, A. and Platen, E. (2012). Processes of class sigma, last passage times, and drawdowns. SIAM J. Financial Math. 3, 280-303. MR-2968035
[3] Cherny, V. and Obłój, J. (2013). Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model. Finance Stoch. 17, 771-800. MR-3105933
[4] Hu, Y. and Shi, Z. (2015+). The slow regime of randomly biased walks on trees. arXiv:1501.07700
[5] Imhof, J.-P. (1984). Density factorizations for Brownian motion, meander and the threedimensional Bessel process, and applications. J. Appl. Probab. 21, 500-510. MR-0752015
[6] Lehoczky, J.P. (1977). Formulas for stopped diffusion processes with stopping times based on the maximum. Ann. Probab. 5, 601-607. MR-0458570
[7] Mijatović, A. and Pistorius, M.R. (2012). On the drawdown of completely asymmetric Lévy processes. Stoch. Proc. Appl. 122, 3812-3836. MR-2965927
[8] Nikeghbali, A. (2006). A class of remarkable submartingales. Stoch. Proc. Appl. 116, 917-938. MR-2254665
[9] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion. (Third edition). Springer, Berlin. MR-1725357
[10] Rieder, U. and Wittlinger, M. (2014). On optimal terminal wealth problems with random trading times and drawdown constraints. Adv. Appl. Probab. 46, 121-138. MR-3189051
[11] Yen, J.-Y. and Yor, M. (2013). Local Times and Excursion Theory for Brownian Motion. A Tale of Wiener and Itô Measures. Lecture Notes in Mathematics 2088. Springer, Berlin. MR-3134857
[12] Zhang, H. and Hadjiliadis, O. (2012). Drawdowns and the speed of market crash. Methodol. Comput. Appl. Probab. 12, 293-308. MR-2966318

[^0]: *Partly supported by ANR project MEMEMO2 (2010-BLAN-0125).
 ${ }^{\dagger}$ Université Paris XIII, France. E-mail: yueyun@math. univ-paris13.fr
 ${ }^{\ddagger}$ Université Paris VI, France. E-mail: zhan. shi@upmc. fr
 ${ }^{\text {§ Université Paris VI, France. E-mail: my19492014@gmail. com }}$

[^1]: ${ }^{1}$ This is the special case $b_{i}:=i$ of the argument we have used to obtain (2.3).

