ELECTRONIC COMMUNICATIONS in PROBABILITY

The maximal drawdown of the Brownian meander*

Yueyun Hu[†] Zhan Shi[‡] Marc Yor[§]

Abstract

Motivated by evaluating the limiting distribution of randomly biased random walks on trees, we compute the exact value of a negative moment of the maximal drawdown of the standard Brownian meander.

Keywords: Brownian meander; Bessel process; maximal drawdown.AMS MSC 2010: 60J65.Submitted to ECP on November 25, 2014, final version accepted on February 12, 2015.

1 Introduction

Let $(X(t), t \in [0, 1])$ be a random process. Its maximal drawdown on [0, 1] is defined by

$$X^{\#}(1) := \sup_{s \in [0, 1]} \left[\overline{X}(s) - X(s) \right],$$

where $\overline{X}(s) := \sup_{u \in [0, s]} X(u)$. There has been some recent research interest on the study of drawdowns from probabilistic point of view ([7], [8]) as well as applications in insurance and finance ([1], [2], [3], [10], [12]).

We are interested in the maximal drawdown $\mathfrak{m}^{\#}(1)$ of the standard Brownian meander $(\mathfrak{m}(t), t \in [0, 1])$. Our motivation is the presence of the law of $\mathfrak{m}^{\#}(1)$ in the limiting distribution of randomly biased random walks on supercritical Galton–Watson trees ([4]); in particular, the value of $\mathbb{E}(\frac{1}{\mathfrak{m}^{\#}(1)})$ is the normalizing constant in the density function of this limiting distribution. The sole aim of the present note is to compute $\mathbb{E}(\frac{1}{\mathfrak{m}^{\#}(1)})$, which turns out to have a nice numerical value.

Let us first recall the definition of the Brownian meander. Let $W := (W(t), t \in [0, 1])$ be a standard Brownian motion, and let $\mathfrak{g} := \sup\{t \le 1 : W(t) = 0\}$ be the last passage time at 0 before time 1. Since $\mathfrak{g} < 1$ a.s., we can define

$$\mathfrak{m}(s):=\frac{|W(\mathfrak{g}+s(1-\mathfrak{g}))|}{(1-\mathfrak{g})^{1/2}}\,,\qquad s\in[0,\,1]\,.$$

The law of $(\mathfrak{m}(s), s \in [0, 1])$ is called the law of the standard Brownian meander. For an account of general properties of the Brownian meander, see Yen and Yor [11].

^{*}Partly supported by ANR project MEMEMO2 (2010-BLAN-0125).

[†]Université Paris XIII, France. E-mail: yueyun@math.univ-paris13.fr

[‡]Université Paris VI, France. E-mail: zhan.shi@upmc.fr

[§]Université Paris VI, France. E-mail: my19492014@gmail.com

Theorem 1.1. Let $(\mathfrak{m}(s), s \in [0, 1])$ be a standard Brownian meander. We have

$$\mathbb{E}\left(\frac{1}{\sup_{s\in[0,\,1]}[\,\overline{\mathfrak{m}}(s)-\mathfrak{m}(s)]}\right) = \left(\frac{\pi}{2}\right)^{1/2},\tag{1.1}$$

where $\overline{\mathfrak{m}}(s) := \sup_{u \in [0, s]} \mathfrak{m}(u)$.

The theorem is proved in Section 2.

We are grateful to an anonymous referee for a careful reading of the manuscript and for many suggestions for improvements.

N.B. from the first-named coauthors: This note originates from a question we asked our teacher, **Professor Marc Yor (1949–2014)**, who passed away in January 2014, during the preparation of this note. He provided us, in November 2012, with the essential of the material in Section 2.

2 Proof

Let $R := (R(t), t \ge 0)$ be a three-dimensional Bessel process with R(0) = 0, i.e., the Euclidean modulus of a standard three-dimensional Brownian motion. The proof of Theorem 1.1 relies on an absolute continuity relation between $(\mathfrak{m}(s), s \in [0, 1])$ and $(R(s), s \in [0, 1])$, recalled as follows.

Fact 2.1. (Imhof [5]) Let $(\mathfrak{m}(s), s \in [0, 1])$ be a standard Brownian meander. Let $(R(s), s \in [0, 1])$ be a three-dimensional Bessel process with R(0) = 0. For any measurable and non-negative functional F, we have

$$\mathbb{E}\Big[F(\mathfrak{m}(s), \, s \in [0, \, 1])\Big] = \left(\frac{\pi}{2}\right)^{1/2} \mathbb{E}\Big[\frac{1}{R(1)} \, F(R(s), \, s \in [0, \, 1])\Big]\,.$$

We now proceed to the proof of Theorem 1.1. Let

$$L := \mathbb{E}\Big(\frac{1}{\sup_{s \in [0, 1]}[\overline{\mathfrak{m}}(s) - \mathfrak{m}(s)]}\Big) \,.$$

Write $\overline{R}(t) := \sup_{u \in [0, t]} R(u)$ for $t \ge 0$. By Fact 2.1,

$$L = \left(\frac{\pi}{2}\right)^{1/2} \mathbb{E}\left[\frac{1}{R(1)} \frac{1}{\sup_{s \in [0, 1]} [\overline{R}(s) - R(s)]}\right]$$

= $\left(\frac{\pi}{2}\right)^{1/2} \int_{0}^{\infty} \mathbb{E}\left[\frac{1}{R(1)} \mathbf{1}_{\{\sup_{s \in [0, 1]} [\overline{R}(s) - R(s)] < \frac{1}{a}\}}\right] \mathrm{d}a,$

the last equality following from the Fubini–Tonelli theorem. By the scaling property, $\mathbb{E}[\frac{1}{R(1)} \mathbf{1}_{\{\sup_{s \in [0, 1]} [\overline{R}(s) - R(s)] < \frac{1}{a}\}}] = \mathbb{E}[\frac{a}{R(a^2)} \mathbf{1}_{\{\sup_{u \in [0, a^2]} [\overline{R}(u) - R(u)] < 1\}}]$ for all a > 0. So by means of a change of variables $b = a^2$, we obtain:

$$L = \left(\frac{\pi}{8}\right)^{1/2} \int_0^\infty \mathbb{E}\left[\frac{1}{R(b)} \mathbf{1}_{\{\sup_{u \in [0, b]} [\overline{R}(u) - R(u)] < 1\}}\right] \mathrm{d}b$$

Define, for any random process X,

$$\tau_1^X := \inf\{t \ge 0 : \overline{X}(t) - X(t) \ge 1\},\$$

with $\overline{X}(t) := \sup_{s \in [0, t]} X(s)$. For any b > 0, the event $\{\sup_{u \in [0, b]} [\overline{R}(u) - R(u)] < 1\}$ means $\{\tau_1^R > b\}$, so

$$L = \left(\frac{\pi}{8}\right)^{1/2} \int_0^\infty \mathbb{E}\left[\frac{1}{R(b)} \mathbf{1}_{\{\tau_1^R > b\}}\right] \mathrm{d}b = \left(\frac{\pi}{8}\right)^{1/2} \mathbb{E}\left(\int_0^{\tau_1^R} \frac{1}{R(b)} \,\mathrm{d}b\right)$$

ECP 20 (2015), paper 39.

ecp.ejpecp.org

The maximal drawdown of the Brownian meander

the second identity following from the Fubini–Tonelli theorem. According to a relation between Bessel processes of dimensions three and four (Revuz and Yor [9], Proposition XI.1.11, applied to the parameters p = q = 2 and $\nu = \frac{1}{2}$),

$$R(t) = U\left(\frac{1}{4}\int_0^t \frac{1}{R(b)} \,\mathrm{d}b\right), \qquad t \ge 0\,,$$

where $U := (U(s), s \ge 0)$ is a four-dimensional squared Bessel process with U(0) = 0; in other words, U is the square of the Euclidean modulus of a standard four-dimensional Brownian motion.

Let us introduce the increasing functional $\sigma(t) := \frac{1}{4} \int_0^t \frac{1}{R(b)} db$, $t \ge 0$. We have $R = U \circ \sigma$, and

$$\begin{split} \tau_1^R &= &\inf\{t \ge 0: \ \overline{R}(t) - R(t) \ge 1\} \\ &= &\inf\{t \ge 0: \ \overline{U}(\sigma(t)) - U(\sigma(t)) \ge 1\} \\ &= &\inf\{\sigma^{-1}(s): s \ge 0 \text{ and } \overline{U}(s) - U(s) \ge 1\} \end{split}$$

which is $\sigma^{-1}(\tau_1^U)$. So $\tau_1^U = \sigma(\tau_1^R)$, i.e.,

$$\int_0^{\tau_1^R} \frac{1}{R(b)} \, \mathrm{d}b = 4\tau_1^U \,,$$

which implies that

$$L = (2\pi)^{1/2} \mathbb{E}(\tau_1^U) \,.$$

The Laplace transform of τ_1^U is determined by Lehoczky [6], from which, however, it does not seem obvious to deduce the value of $\mathbb{E}(\tau_1^U)$. Instead of using Lehoczky's result directly, we rather apply his method to compute $\mathbb{E}(\tau_1^U)$. By Itô's formula, $(U(t) - 4t, t \ge 0)$ is a continuous martingale, with quadratic variation $4 \int_0^t U(s) \, \mathrm{d}s$; so applying the Dambis–Dubins–Schwarz theorem (Revuz and Yor [9], Theorem V.1.6) to $(U(t) - 4t, t \ge 0)$ yields the existence of a standard Brownian motion $B = (B(t), t \ge 0)$ such that

$$U(t) = 2B(\int_0^t U(s) \, \mathrm{d}s) + 4t, \qquad t \ge 0.$$

Taking $t:=\tau_1^U$, we get

$$U(\tau_1^U) = 2B(\int_0^{\tau_1^U} U(s) \,\mathrm{d}s) + 4\tau_1^U \,.$$

We claim that

$$\mathbb{E}\left[B\left(\int_{0}^{\tau_{1}^{\cup}} U(s) \,\mathrm{d}s\right)\right] = 0.$$
(2.1)

Then $\mathbb{E}(\tau_1^U) = \frac{1}{4} \, \mathbb{E}[U(\tau_1^U)]$; hence

$$L = (2\pi)^{1/2} \mathbb{E}(\tau_1^U) = (\frac{\pi}{8})^{1/2} \mathbb{E}[U(\tau_1^U)].$$
(2.2)

Let us admit (2.1) for the moment, and prove the theorem by computing $\mathbb{E}[U(\tau_1^U)]$ using Lehoczky [6]'s method; in fact, we determine the law of $U(\tau_1^U)$.

Lemma 2.2. The law of $U(\tau_1^U)$ is given by

$$\mathbb{P}\{U(\tau_1^U) > a\} = (a+1)e^{-a}, \quad \forall a > 0.$$

ECP 20 (2015), paper 39.

ecp.ejpecp.org

The maximal drawdown of the Brownian meander

In particular,

$$\mathbb{E}[U(\tau_1^U)] = \int_0^\infty (a+1) \mathrm{e}^{-a} \,\mathrm{d}a = 2.$$

Since $L = (\frac{\pi}{8})^{1/2} \mathbb{E}[U(\tau_1^U)]$ (see (2.2)), this yields $L = (\frac{\pi}{2})^{1/2}$ as stated in Theorem 1.1. The rest of the note is devoted to the proof of Lemma 2.2 and (2.1).

Proof of Lemma 2.2. Fix b > 1. We compute the probability $\mathbb{P}\{\overline{U}(\tau_1^U) > b\}$ which, due to the equality $\overline{U}(\tau_1^U) = U(\tau_1^U) + 1$, coincides with $\mathbb{P}\{U(\tau_1^U) > b - 1\}$. By applying the strong Markov property at time $\sigma_0^U := \inf\{t \ge 0 : U(t) = 1\}$, we see that the value of $\mathbb{P}\{\overline{U}(\tau_1^U) > b\}$ does not change if the squared Bessel process U starts at U(0) = 1. Indeed, observing that $\sigma_0^U \le \tau_1^U$, $U(\sigma_0^U) = 1$ and that $\overline{U}(\tau_1^U) = \sup_{s \in [\sigma_0^U, \tau_1^U]} U(s)$, we have

$$\mathbb{P}\{\overline{U}(\tau_1^U) > b\} = \mathbb{P}\Big\{\sup_{s \in [\sigma_0^U, \, \tau_1^U]} U(s) > b\Big\} = \mathbb{P}_1\{\overline{U}(\tau_1^U) > b\}\,,$$

the subscript 1 in \mathbb{P}_1 indicating the initial value of U. More generally, for $x \ge 0$, we write $\mathbb{P}_x(\bullet) := \mathbb{P}(\bullet | U(0) = x)$; so $\mathbb{P} = \mathbb{P}_0$.

Let $b_0 = 1 < b_1 < \cdots < b_n := b$ be a subdivision of [1, b] such that $\max_{1 \le i \le n} (b_i - b_{i-1}) \to 0, n \to \infty$. Consider the event $\{\overline{U}(\tau_1^U) > b\}$: since U(0) = 1, this means U hits position b before time τ_1^U ; for all $i \in [1, n-1] \cap \mathbb{Z}$, starting from position b_i , U must hit b_{i+1} before hitting $b_i - 1$ (caution: not to be confused with b_{i-1}). More precisely, let $\sigma_i^U := \inf\{t \ge 0 : U(t) = b_i\}$ and let $U_i(s) := U(s + \sigma_i^U), s \ge 0$; then

$$\{\overline{U}(\tau_1^U) > b\} \subset \bigcap_{i=1}^{n-1} \{U_i \text{ hits } b_{i+1} \text{ before hitting } b_i - 1\}.$$

By the strong Markov property, the events $\{U_i \text{ hits } b_{i+1} \text{ before hitting } b_i - 1\}$, $1 \le i \le n-1$, are independent (caution : the processes $(U_i(s), s \ge 0)$, $1 \le i \le n-1$, are not independent). Hence

$$\mathbb{P}_1\{\overline{U}(\tau_1^U) > b\} \le \prod_{i=1}^{n-1} \mathbb{P}_{b_i}\{U \text{ hits } b_{i+1} \text{ before hitting } b_i - 1\}.$$
(2.3)

Conversely, let $\varepsilon > 0$, and if $\max_{1 \le i \le n} (b_i - b_{i-1}) < \varepsilon$, then we also have

$$\mathbb{P}_1\{\overline{U}(\tau_{1+\varepsilon}^U) > b\} \ge \prod_{i=1}^{n-1} \mathbb{P}_{b_i}\{U \text{ hits } b_{i+1} \text{ before hitting } b_i - 1\},$$

with $\tau_{1+\varepsilon}^U := \inf\{t \ge 0 : \overline{U}(t) - U(t) \ge 1 + \varepsilon\}$. By scaling, $\overline{U}(\tau_{1+\varepsilon}^U)$ has the same distribution as $(1+\varepsilon)\overline{U}(\tau_1^U)$. So, as long as $\max_{1\le i\le n}(b_i - b_{i-1}) < \varepsilon$, we have

$$\mathbb{P}_1\{\overline{U}(\tau_1^U) > b\} \le \prod_{i=1}^{n-1} \mathbb{P}_{b_i}\{U \text{ hits } b_{i+1} \text{ before hitting } b_i - 1\} \le \mathbb{P}_1\{\overline{U}(\tau_1^U) > \frac{b}{1+\varepsilon}\}.$$

Since $\frac{1}{x}$ is a scale function for *U*, we have

$$\mathbb{P}_{b_i}\{U \text{ hits } b_{i+1} \text{ before hitting } b_i - 1\} = \frac{\frac{1}{b_i - 1} - \frac{1}{b_i}}{\frac{1}{b_i - 1} - \frac{1}{b_{i+1}}} = 1 - \frac{\frac{1}{b_i} - \frac{1}{b_{i+1}}}{\frac{1}{b_i - 1} - \frac{1}{b_{i+1}}}.$$

If $\lim_{n\to\infty} \max_{0\le i\le n-1}(b_{i+1}-b_i)=0$, then for $n\to\infty$,

$$\sum_{i=1}^{n-1} \frac{\frac{1}{b_i} - \frac{1}{b_{i+1}}}{\frac{1}{b_i - 1} - \frac{1}{b_{i+1}}} = \sum_{i=1}^{n-1} \frac{b_i - 1}{b_i} (b_{i+1} - b_i) + o(1)$$
$$\rightarrow \int_1^b \frac{r - 1}{r} dr$$
$$= b - 1 - \log b.$$

ECP 20 (2015), paper 39.

ecp.ejpecp.org

Therefore,

$$\lim_{n \to \infty} \prod_{i=1}^{n-1} \mathbb{P}_{b_i} \{ U \text{ hits } b_{i+1} \text{ before hitting } b_i - 1 \} = e^{-(b-1-\log b)} = b e^{-(b-1)}$$

Consequently,

$$\mathbb{P}\{\overline{U}(\tau_1^U) > b\} = b e^{-(b-1)}, \quad \forall b > 1.$$

We have already noted that $U(\tau_1^U) = \overline{U}(\tau_1^U) - 1$. This completes the proof of Lemma 2.2.

Proof of (2.1). The Brownian motion B being the Dambis–Dubins–Schwarz Brownian motion associated with the continuous martingale $(U(t) - 4t, t \ge 0)$, it is a $(\mathscr{G}_r)_{r\ge 0}$ -Brownian motion (Revuz and Yor [9], Theorem V.1.6), where, for $r \ge 0$,

$$\mathscr{G}_r := \mathscr{F}_{C(r)}, \qquad C(r) := A^{-1}(r), \qquad A(t) := \int_0^t U(s) \, \mathrm{d}s$$

and A^{-1} denotes the inverse of A. [We mention that $\mathscr{F}_{C(r)}$ is well defined because C(r) is an $(\mathscr{F}_t)_{t\geq 0}$ -stopping time.] As such,

$$\int_0^{\tau_1^U} U(s) \,\mathrm{d}s = A(\tau_1^U) \,.$$

For all $r \geq 0$, $\{A(\tau_1^U) > r\} = \{\tau_1^U > C(r)\} \in \mathscr{F}_{C(r)} = \mathscr{G}_r$ (observing that τ_1^U is an $(\mathscr{F}_t)_{t\geq 0}$ -stopping time), which means that $A(\tau_1^U)$ is a $(\mathscr{G}_r)_{r\geq 0}$ -stopping time. If $A(\tau_1^U) = \int_0^{\tau_1^U} U(s) \, \mathrm{d}s$ has a finite expectation, then we are entitled to apply the (first) Wald identity to see that $\mathbb{E}[B(A(\tau_1^U))] = 0$ as claimed in (2.1).

It remains to prove that $\mathbb{E}[A(\tau_1^U)] < \infty$.

Recall that U is the square of the Euclidean modulus of an \mathbb{R}^4 -valued Brownian motion. By considering only the first coordinate of this Brownian motion, say β , we have

$$\mathbb{P}\Big\{\sup_{s\in[0,\,a]}U(s)< a^{1-\varepsilon}\Big\} \le \mathbb{P}\Big\{\sup_{s\in[0,\,a]}|\beta(s)|< a^{(1-\varepsilon)/2}\Big\} = \mathbb{P}\Big\{\sup_{s\in[0,\,1]}|\beta(s)|< a^{-\varepsilon/2}\Big\};$$

so by the small ball probability for Brownian motion, we obtain:

$$\mathbb{P}\Big\{\sup_{s\in[0,\,a]}U(s)< a^{1-\varepsilon}\Big\}\leq \exp(-c_1\,a^\varepsilon)\,,$$

for all $a \ge 1$ et all $\varepsilon \in (0, 1)$, with some constant $c_1 = c_1(\varepsilon) > 0$. On the event $\{\sup_{s \in [0, a]} U(s) \ge a^{1-\varepsilon}\}$, if $\tau_1^U > a$, then for all $i \in [1, a^{1-\varepsilon} - 1] \cap \mathbb{Z}$, the squared Bessel process U, starting from i, must first hit position i + 1 before hitting i - 1 (which, for each i, can be realized with probability $\le 1 - c_2$, where $c_2 \in (0, 1)$ is a constant that does not depend on i, nor on a). Accordingly,¹

$$\mathbb{P}\Big\{\sup_{s\in[0,\,a]}U(s)\geq a^{1-\varepsilon},\ \tau_1^U>a\Big\}\leq (1-c_2)^{\lfloor a^{1-\varepsilon}-1\rfloor}\leq \exp(-c_3\,a^{1-\varepsilon})\,,$$

with some constant $c_3 > 0$, uniformly in $a \ge 2$. We have thus proved that for all $a \ge 2$ and all $\varepsilon \in (0, 1)$,

$$\mathbb{P}\{\tau_1^U > a\} \le \exp(-c_3 a^{1-\varepsilon}) + \exp(-c_1 a^{\varepsilon}).$$

Taking $\varepsilon := \frac{1}{2}$, we see that there exists a constant $c_4 > 0$ such that

$$\mathbb{P}\{\tau_1^U > a\} \le \exp(-c_4 a^{1/2}), \qquad \forall a \ge 2.$$

ECP 20 (2015), paper 39.

¹This is the special case $b_i := i$ of the argument we have used to obtain (2.3).

On the other hand, U being a squared Bessel process, we have, for all a > 0 and all $b \ge a^2$,

$$\mathbb{P}\{A(a) \ge b\} = \mathbb{P}\{A(1) \ge \frac{b}{a^2}\} \le \mathbb{P}\left\{\sup_{s \in [0, 1]} U(s) \ge \frac{b}{a^2}\right\} \le e^{-c_5 b/a^2}$$

for some constant $c_5 > 0$. Hence, for $b \ge a^2$ and $a \ge 2$,

$$\mathbb{P}\{A(\tau_1^U) \ge b\} \le \mathbb{P}\{\tau_1^U > a\} + \mathbb{P}\{A(a) \ge b\} \le \exp(-c_4 a^{1/2}) + e^{-c_5 b/a^2}.$$

Taking $a := b^{2/5}$ gives that

$$\mathbb{P}\{A(\tau_1^U) \ge b\} \le \exp(-c_6 b^{1/5}),$$

for some constant $c_6 > 0$ and all $b \ge 4$. In particular, $\mathbb{E}[A(\tau_1^U)] < \infty$ as desired.

References

- [1] Carraro, L., El Karoui, N. and Obłój, J. (2012). On Azéma-Yor processes, their optimal properties and the Bachelier-drawdown equation. Ann. Probab. 40, 372–400. MR-2917776
- [2] Cheridito, P., Nikeghbali, A. and Platen, E. (2012). Processes of class sigma, last passage times, and drawdowns. SIAM J. Financial Math. 3, 280–303. MR-2968035
- [3] Cherny, V. and Obłój, J. (2013). Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model. *Finance Stoch.* 17, 771–800. MR-3105933
- [4] Hu, Y. and Shi, Z. (2015+). The slow regime of randomly biased walks on trees. arXiv:1501.07700
- [5] Imhof, J.-P. (1984). Density factorizations for Brownian motion, meander and the threedimensional Bessel process, and applications. J. Appl. Probab. 21, 500–510. MR-0752015
- [6] Lehoczky, J.P. (1977). Formulas for stopped diffusion processes with stopping times based on the maximum. Ann. Probab. 5, 601–607. MR-0458570
- [7] Mijatović, A. and Pistorius, M.R. (2012). On the drawdown of completely asymmetric Lévy processes. Stoch. Proc. Appl. 122, 3812–3836. MR-2965927
- [8] Nikeghbali, A. (2006). A class of remarkable submartingales. Stoch. Proc. Appl. 116, 917–938. MR-2254665
- [9] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion. (Third edition). Springer, Berlin. MR-1725357
- [10] Rieder, U. and Wittlinger, M. (2014). On optimal terminal wealth problems with random trading times and drawdown constraints. Adv. Appl. Probab. 46, 121–138. MR-3189051
- [11] Yen, J.-Y. and Yor, M. (2013). Local Times and Excursion Theory for Brownian Motion. A Tale of Wiener and Itô Measures. Lecture Notes in Mathematics 2088. Springer, Berlin. MR-3134857
- [12] Zhang, H. and Hadjiliadis, O. (2012). Drawdowns and the speed of market crash. Methodol. Comput. Appl. Probab. 12, 293–308. MR-2966318