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Abstract

The signature of a d-dimensional Brownian motion is a sequence of iterated Stratonovich
integrals along the Brownian paths, an object taking values in the tensor algebra
over Rd. In this article, we derive the exact rate of convergence for the expected
signatures of piecewise linear approximations to Brownian motion. The computation
is based on the identification of the set of words whose coefficients are of the leading
order, and the convergence is concentrated on this subset of words. Moreover, under
the choice of l1 tensor norm, we give the explicit value of the leading term constant.
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1 Introduction

Let (e1, · · · , ed) be the standard basis of Rd, d ≥ 2, and let

Bt =

d∑
j=1

Bj
t ej ,

where Bj
t ’s are independent standard one dimensional Brownian motions. The signature

of B is a sequence of Stratonovich iterated integrals along the sample paths ([7], [8]).
We give the precise definition below.

Definition 1.1. For every n ≥ 1 and every word w = ei1 · · · ein with length n, define

Cw
s,t =

∫
s<u1<···<un<t

◦dBi1
u1
· · · ◦ dBin

un
(1.1)

in the sense of Stratonovich integral. For each n ≥ 0, let

Xn
s,t(B) =

∑
|w|=n

Cw
s,tw,

where the sum is taken over all words of length n. We use the convention Cw
s,t ≡ 1 if w is

the empty word. Then, the infinite sequence

Xs,t(B) =
(
1, X1

s,t(B), · · · , Xn
s,t(B), · · ·

)
is the (Stratonovich) signature of B over time interval [s, t].
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Concentration and exact convergence rates for expected Brownian signatures

Remark 1.2. It is sometimes more convenient to write the signatures in terms of tensors,
i.e.,

Xn
s,t =

∫
s<u1<···un<t

◦dBu1
⊗ · · · ⊗ ◦dBun

,

and Cw
s,t defined in (1.1) is the coefficient of w in X. This is equivalent to Definition 1.1.

The study of the signature of a path dates back to K.T.-Chen in 1950’s. In a series
of papers ([1], [2], [3]), he developed algebraic properties of these multiple iterated
integrals, and showed that piecewise smooth paths are characterized by their iterated
path integrals over a fixed time interval. Hambly and Lyons ([8]) gave a quantitative
version of this result, and extended it to all paths of bounded variation. They showed
that, paths of bounded variation in Rd are uniquely determined by their signatures up to
tree-like equivalence.

These iterated integrals also play a fundamental role in rough paths, where Lyons
([9]) used them to develop an integration theory along paths of any regularity.

As for random paths, the expected signature is an important object to study as it
determines the law of compactly supported measure on path space, and this is anticipated
to be true for more general stochastic processes (see [4] for a recent proof for processes
under certain integrability conditions), the foremost example being Brownian motion.
The computation of the expected signature of Brownian motion also leads to cubature on
Wiener space ([11]).

The expected signature for Brownian motion was first derived by Fawcett ([5]), and
then independently by Lyons and Victoir ([11]). In this note, we show that the expected
signature of piecewise linear approximation to Brownian motion with mesh size 1

M

converges to that of Brownian motion with rate 1
M . Moreover, under the choice of l1

tensor norm, we give the explicit value of the leading term constant.
More precisely, let B(M) denote the piecewise linear approximation to Brownian

motion with mesh size 1
M . Let

φ(T ) = EX0,T (B), φM (T ) = EX0,T (B(M)),

where the expectation is taken for each component, and our main theorem is then the
following.

Theorem 1.3. For each n ≥ 0, let πn denote the projection from the tensor algebra to
(Rd)⊗n. Then,

(i) π2(φ(T )) = π2(φM (T )), and π2n−1(φ(T )) = π2n−1(φM (T )) = 0 for all n ≥ 1.

(ii) For each n ≥ 2, if Rd is endowed with the l1 norm, and (Rd)⊗2n is given the
projective tensor norm (to be defined in the next section), then

lim
M→+∞

M

T

∥∥π2n(φ(T ))− π2n(φM (T ))
∥∥ =

d− 1

3 · (n− 2)!

(
dT

2

)n−1

. (1.2)

The first part of the theorem is an immediate consequence of the basic properties
of φ(T ) and φM (T ), which we will establish in section 2 below. The proof of the second
claim is more involved. The core part of the proof is to identify for each n the words
whose coefficients are of order 1

M , which turns out to be a rather small subset of words
of length 2n. The coefficients of all other words are of order O( 1

M2 ). That is to say,
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Concentration and exact convergence rates for expected Brownian signatures

∥∥π2n(φ(T ))− π2n(φM (T ))
∥∥ is concentrated on this small subset. We will give precise

meaning in section 4 below.
It should be noted that the exact value of the right hand side of (1.2) depends on the

choice of tensor norm and the equally spaced piecewise linear approximation. However,
the concentration described above is due to the intrinsic nature of Brownian signatures,
and remains unchanged under different tensor norms.

Following the same line of argument, one can generalize the above statement to the
form below.

Theorem 1.4. If ‖·‖ is endowed with l1 norm on (Rd)⊗2n, then we have

∥∥π2n(φ(T ))− π2n(φM (T ))
∥∥ =

n−1∑
k=1

Ck,n

(
T

M

)k

, (1.3)

where the constants Ck,n depends on k, n and the dimension, but are independent of M
and T . In particular, C1,n is given by Theorem 1.3 above.

Remark 1.5. Note that the sum in the right hand side of (1.3) stops at n− 1. This fact
depends crucially on the choice of l1 norm as in that case, the norm is simply given by
the sum of all components, all of which are polynomials in T

M up to order n− 1. This in
general is not true for other norms, where one necessarily gets an infinite sequence.

We will mainly focus on the proof of Theorem 1.3, and Theorem 1.4 will become an
easy consequence of that. Before we proceed, we first give a brief introduction to tensor
norms.

A note on tensor norms

For each n ≥ 1, the n-tensor space (Rd)⊗n is a real vector space with basis

{ei1 · · · ein : 1 ≤ i1, · · · , in ≤ d},

where the ej ’s are standard basis of Rd. The tensor algebra over Rd is then the direct
sum

T (Rd) := R⊕Rd ⊕ · · · ⊕ (Rd)⊗n ⊕ · · · .

Although it is common to identify (Rd)⊗n with Rdn

, which gives the Hilbert Schmidt
norm, in many cases, some other norms appear more useful. Throughtout this paper, we
will use the l1 norm on each (Rd)⊗n, defined by

‖v‖ =
∑
i

|ai|

if v ∈ (Rd)⊗n can be written as a linear combination of basis elements {vi} by v =
∑

i aivi.
It should be noted that when Rd is endowed with the l1 norm, then the l1 and

projective norms on (Rd)⊗n coincide for every n. But in general, the projective norm
is more complicated if Rd is endowed with other norms. For more details of projective
tensor norms and some of their significance, we refer to the paper [8].

Our paper is organized as follows. In section 2, we give some formulae and basic
properties of the expected signatures of Brownian motion and its piecewise linear
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approximations. Section 3 is devoted to the proof of Theorem 1.3. In section 4, we briefly
explain how our arguments lead to Theorem 1.4.

Notations. In the rest of the paper, ‖·‖n will denote the projective tensor norm on
(Rd)⊗n. We will omit the subscript n and simply write ‖·‖ if no confusion may arise. We
use πn to denote the projection from T (Rd) onto (Rd)⊗n. Also, if x ∈ T (Rd), and w is a
word, then Cw(x) will denote the coefficient of w in x. Finally, for fixed T and M , we
write ∆t = T

M .

2 The expected signatures of Brownian motion and its piecewise
linear approximations

In this part, we give some formulae and propositions of φ(T ) and φM (T ). We first
introduce some notations. For any word w, let Ni(w) denote the number of occurrences
of the letter ei in w. For each n ≥ 0, let

S2n = {w : w = e2i1 · · · e
2
in , 1 ≤ i1, · · · , in ≤ d},

and

K2n = {w : |w| = 2n, Ni(w) is even for all i}.

The following formula for φ(T ) was proven by Fawcett in [5] as well as by Lyons and
Victoir in [11].

Proposition 2.1. Let B be a d-dimensional Brownian motion. Then,

φ(T ) = E[X0,T (B)] = exp

[
T

2

d∑
j=1

ej ⊗ ej
]
.

It is immediate from the proposition that if w ∈ S2n for some n, then

Cw(φ(T )) =
1

n!

(
T

2

)n

, (2.1)

and Cw(φ(T )) = 0 for all other w’s.

Lemma 2.2. Fix an arbitrary n ∈ N. If w ∈ K2n such that Nk(w) = 2mk for k = 1, · · · , d,
then for each t ≥ 0, we have

Cw(φ1(t)) =
λw
n!

(
t

2

)n

,

where λw =

(
n

m1, · · · ,md

)/( 2n

2m1, · · · , 2md

)
≤ 1. On the other hand, Cw(φ1(t)) = 0 for

all t ≥ 0 and all words w that do not belong to any of the K2n’s.

Proof. If γ = (γ1, · · · , γd) is a straight line, and w = ej1 · · · ejk , then

Cw(X0,t(γ)) =
1

k!
γj1(t) · · · γjk(t).

ECP 20 (2015), paper 8.
Page 4/11

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-3636
http://ecp.ejpecp.org/


Concentration and exact convergence rates for expected Brownian signatures

Taking expectation of both sides gives

Cw(φ1(t)) =
1

k!
(E(B1

t )p1) · · · (E(Bd
t )pd),

where pl is the number of occurrences of the letter el in w. It is then clear that
Cw(φ1(t)) = 0 if any of the pl’s is odd. For w ∈ K2n, let 2mk be the number of oc-
currences of ek, then

Cw(φ1(t)) =
1

(2n)!
(E(B1

t )2m1) · · · (E(Bd
t )2md),

and the conclusion of the lemma follows from Gaussian moments.

Corollary 2.3. For any w ∈ S2n, we have

Cw(φM (T )) ≤ Cw(φ(T )).

Proof. By the expression, (2.1), it suffices to show Cw(φM (T )) ≤ 1
n!

(
T
2

)n

. Since the

increments of Brownian motion are independent, we have φM (T ) = φ1(∆t)⊗M . This
implies

Cw(φM (T )) =
∑

Cv1(φ1(∆t)) · · ·CvM (φ1(∆t)),

where ∆t = T
M , and the sum is taken over all v1 ∗ · · · ∗ vM such that each vj is in S2k for

some k. By Lemma 2.2, we have

Cw(φM (T )) ≤
(

∆t

2

)n
1

n!

∑
k1+···+kM=n

(
n

k1, · · · , kM

)

=
1

n!

(
T

2

)n

,

where we have used the fact that λvj ≤ 1, and each vj has even length.

Lemma 2.4. For each n,M ∈ N and T ≥ 0, we have

‖π2n(φ(T ))‖ =
∥∥π2n(φM (T ))

∥∥ =
1

n!
·
(
dT

2

)n

.

Proof. That ‖π2n(φ(T ))‖ = 1
n! ·
(

dT
2

)n

is immediate from Proposition 2.1. In order the

prove the second one, we note that

∥∥π2n(φ1(t))
∥∥ =

1

n!

(
dt

2

)n

(2.2)

for all n and t. By independent increments of Brownian motion, we have

π2n(φM (T )) =
∑

k1+···+kM=n

π2k1
(φ1(∆t))⊗ · · · ⊗ π2kM

(φ1(∆t)).
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By properties of the projective norm and the positivity of all entries, we can change the
sum with the norm ‖·‖, and get∥∥π2n(φM (T ))

∥∥ =
∑

k1+···+kM=n

∥∥π2k1(φ1(∆t))
∥∥ · · · ∥∥π2kM

(φ1(∆t))
∥∥ .

By (2.2) and the multinomial theorem, we get

∥∥π2n(φM (T ))
∥∥ =

1

n!

(
dT

2

)n

,

thus proving the lemma.

Note that the above lemma is true only for the l1 norm. For Hilbert Schmidt norm, we
have ‖π2n(φ(T ))‖ >

∥∥π2n(φM (T ))
∥∥. The next proposition will be very useful for proving

the main theorem. It is an immediate consequence of the previous lemma.

Proposition 2.5.
∥∥π2n(φ(T ))− π2n(φM (T ))

∥∥ = 2
∑

w∈K2n\S2n C
w(φM (T )).

Proof. By Corollary 2.3, we have∥∥π2n(φ(T ))− π2n(φM (T ))
∥∥

=
∑

w∈K2n\S2n

Cw(φM (T )) +
∑

w∈S2n

[Cw(φ(T ))− Cw(φM (T ))],

where we have used the fact that all the Cw(φM (T ))’s are non-negative. Also, Lemma
2.4 implies that the two terms on the right hand side are equal. Thus, we arrive at the
conclusion of the proposition.

3 Proof of Theorems 1.3 and 1.4

This section is mainly devoted to the proof of Theorem 1.3, and we will explain how
one can get Theorem 1.4 as a corollary. The first part of Theorem 1.3 is an immediate
consequence of Proposition 2.1 and Lemma 2.2. To prove the second part, we need a
more detailed study of the coefficients of words in K2n. By Proposition 2.5, it suffices to
consider the words in K2n \ S2n. Let

E = {eiejeiej , eiejejei : 1 ≤ i, j ≤ d, i 6= j}.

For each k = 0, 1, · · · , n− 2, define

Wk
2n = {v ∗ v′ ∗ v′′ : v ∈ S2k, v′ ∈ E , v′′ ∈ S2n−4−2k},

and let

W2n :=

n−2⋃
k=1

Wk
2n.

ThenW2n ⊂ K2n \ S2n. We will show that for each n, the set of words whose coefficients
are of order 1

M is preciselyW2n ∪S2n. We then compute the sum of the coefficients (with
absolute values) inW2n, and those in S2n will be obtained by symmetry. We now study
the coefficients of words in K2n \ (S2n ∪W2n) and inW2n, respectively.
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3.1 Words with negligible coefficients

The purpose of this part is to show that for each n, there exists a constant C = C(d, n)

such that ∑
w∈K2n\(S2n∪W2n)

Cw(φM (T )) <
CTn

M2
(3.1)

for all large M . For w ∈ K2n with w = ei1ei2 · · · ei2n−1
ei2n , let

p(w) = |{k : i2k−1 6= i2k}|.

In other words, p(w) counts the number of non-square pairs in the word w. For each
k = 0, · · · , n, define

Pk
2n = {w ∈ K2n : p(w) = k}.

It is clear that P0
2n = S2n, P1

2n is empty,W2n ⊂ P2
2n, and

K2n =

n⋃
k=0

Pk
2n

as a disjoint union. We will now show that for any w ∈ Pk
2n, we have

Cw(φM (T )) <
CTn

Mb(k+1)/2c . (3.2)

We first consider the case k = 2. If w ∈ P2
2n, then it can be expressed as

w = · · · eiej · · · eiej · · · , or w = · · · eiej · · · ejei · · · ,

where i 6= j, and all other pairs are squares. Without loss of generality, we can assume w
has the form

w = e2i1 · · · e
2
ia eiej ∗ u

′ ∗ eiej︸ ︷︷ ︸
u

e2j1 · · · e
2
jb
,

where u′ ∈ S2r, r ≥ 0, and a+b+r = n−2. Let u = eiej∗u′∗eiej . Since φM (T ) = φ1(∆t)⊗M ,
we have

Cw(φM (T )) =
∑

Cv1(φ1(∆t)) · · ·CvM (φ1(∆t)), (3.3)

where the sum is taken over the collection of words (v1, · · · , vM ) such that (i) v1 ∗ · · · ∗
vM = w, and (ii) for each j, either vj ∈ S2l for some l ≥ 0, or vj = v′ ∗ u ∗ v′′, where
v′ ∈ S2a′ , v′′ ∈ S2b′ for some a′, b′ ≥ 01. The idea is that the two non-square terms must
be grouped together (along with any squares between these two pairs, if they exist) in
order for the product on the right hand side of (3.3) not being zero. This will give at
most n − 1 ’atoms’ in the decomposition, and the total number of the elements in the
sum will be O(Mn−1).

More precisely, by Lemma 2.2, for each decomposition (v1, · · · , vM ) in the sum, we
have

Cv1(φ1(∆t)) · · ·CvM (φ1(∆t)) ≤
(

∆t

2

)a+b+r+2

< (∆t)n, (3.4)

1Condition (ii) guarantees that every term in the sum is positive. In fact, by Lemma 2.2, if (v1, · · · , vM )
satisfies condition (i) but not (ii), then we will have

Cv1 (φ1(∆t)) · · ·CvM (φ1(∆t)) = 0.
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and we can bound Cw(φM (T )) by counting the number of elements in the sum on the
right hand side of (3.3). This is exactly the number of nonnegative integer solutions to

x1 + · · ·+ xM = a+ b+ 1,

which equals (
M + a+ b

M − 1

)
=

(
M + n− 2− r
n− 1− r

)
< (M + n)n−1−r. (3.5)

Combining the above bound with (3.4), we have

Cw(φM (T )) < [(M + n)∆t]n−1−r(∆t)r+1 <

(
T + n∆t

2

)n

· 1

Mr+1
,

and this is true for all w ∈ P2
2n. Now, if w ∈ P2

2n \W2n, then r ≥ 1, and

Cw(φM (T )) <
CTn

M2
.

The argument for k ≥ 3 is similar. In order to produce more ’atoms’, the best possible
choice is to group the consecutive two non-square pairs together, and in the case of odd
k, one atom should contain three non-square pairs2. Below are two figures for even and
odd k’s, respectively.

k even : · · · ei1ei2 · · · ei3ei4︸ ︷︷ ︸
u1

· · · · · · eik−3
eik−2

· · · eik−1
eik︸ ︷︷ ︸

u k
2

· · ·

k odd : · · · ei1ei2 · · · ei3ei4 · · · ei5ei6︸ ︷︷ ︸
u1

· · · · · · eik−3
eik−2

· · · eik−1
eik︸ ︷︷ ︸

u k−1
2

· · ·

As we can see, this will give at most n−
⌊
k+1
2

⌋
’atoms’ in the decompositions. Thus, by

the same computation of the number of elements for such decompositions, we can show
that

Cw(φM (T )) <
CTn

Mb(k+1)/2c

for all w ∈ Pk
2n with k ≥ 3, where C depends on n only. Since

K2n \ (S2n ∪W2n)c = (P2
2n \W2n) ∪ P3

2n ∪ · · · ∪ Pn
2n,

and note that the number of elements in K2n \ (S2n ∪W2n)c depends on d and n only, we
conclude (3.1) with a constant C = C(d, n).

3.2 Words in W2n

Fix 0 ≤ k ≤ n− 2 and wk ∈ Wk
2n, then

wk = e2i1 · · · e
2
ik
∗ u ∗ e2j1 · · · e

2
jn−2−k

,

where u ∈ E as defined at the beginning of this section. Similar as before, we have

Cwk(φM (T )) =
∑
X (wk)

Cv1
k(φ1(∆t)) · · ·CvM

k (φ1(∆t)),

2For example, the three pairs are e1e2, e2e3 and e3e1.
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where X (wk) is the set of words (v1k, · · · , vMk ) such that (i) v1k ∗ · · · ∗ vMk = w, and (ii) for
each j, either vj ∈ S2l for some l ≥ 0, or vj = u′ ∗ u ∗ u′′, where u′ ∈ S2a, u′′ ∈ S2b for
some a, b ≥ 0.

Intuitively, when M is large, most contributions to the sum come from the decomposi-
tions (or more precisely, allocations) with the further restriction that u and each single
square are located in different vj ’s. More precisely, let

X ′(wk) :=
{
v1k ∗ · · · ∗ vMk = w : for each j ≤M, vjk = u or e2l for some l

}
.

Then, X ′(wk) ⊂ X (wk), and

|X ′(wk)| =
(

M

n− 1

)
.

Their difference is

|X (wk) \ X ′(wk)| =
(
M + n− 2

n− 1

)
−
(

M

n− 1

)
= O(Mn−2).

Also, for each (v1k, · · · , vMk ) ∈ X (wk) \ X ′(wk), we have

Cv1
k(φ1(∆t)) · · ·CvM

k (φ1(∆t)) ≤
(

∆t

2

)n

, (3.6)

and thus ∑
X (wk)\X ′(wk)

Cv1
k(φ1(∆t)) · · ·CvM

k (φ1(∆t)) = O
(

1

M2

)
.

On the other hand, for every (v1k, · · · , vMk ) ∈ X ′(wk), Lemma 2.2 implies that

Cv1
k(φ1(∆t)) · · ·CvM

k (φ1(∆t)) =
1

6

(
∆t

2

)n

.

Since |X ′(wk)| =
(

M

n− 1

)
, combining the above equality with (3.6), we get

Cwk(φM (T )) =
1

12 · (n− 1)!

(
T

2

)n−1

∆t+O
( 1

M2

)
,

which holds for each wk ∈ Wk
2n. Note that there are 4dn−2

(
d

2

)
words inWk

2n for each k,

summing over k from 0 to n− 2, we get

∑
w∈W2n

Cw(φM (T )) =
(d− 1)T

6M · (n− 2)!

(
dT

2

)n−1

+O
( 1

M2

)
. (3.7)

3.3 Putting all together

We are now in a position to prove the main claim. By Proposition 2.5, we have∥∥π2n(φM (T ))− π2n(φ(T ))
∥∥ = 2

∑
w∈K2n\S2n

Cw(φM (T )). (3.8)
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Also by (3.1), we know that the coefficients of the words in K2n \ (S2n ∪W2n) are of order
O( 1

M2 ), and thus

∑
w∈K2n\S2n

Cw(φM (T )) =
∑

w∈W2n

Cw(φM (T )) +O
( 1

M2

)
.

Substituting (3.7) into the right hand side, and combining it with (3.8), we get

∥∥π2n(φM (T ))− π2n(φ(T ))
∥∥ =

(d− 1)T

3M · (n− 2)!

(
dT

2

)n−1

+O
( 1

M2

)
.

Multiplying M
T on both sides, and letting M → +∞, we get

lim
M→+∞

M

T

∥∥π2n(φ(T ))− π2n(φM (T ))
∥∥ =

d− 1

3 · (n− 2)!

(
dT

2

)n−1

.

Thus we have completed the proof of Theorem 1.3.

3.4 Proof of Theorem 1.4

It remains to explain why the expansion on the right hand side of (1.3) stops at n− 1,
and why all the coefficients are independent of M . Again, in light of Proposition 2.5, we
only need to consider words in K2n \ S2n. Note that the contribution of each word w to
the norm ‖π2n(·)‖ is the sum of all values of its decomposition and ’allocation’3.

More precisely, for each w ∈ K2n \ S2n, there is a unique maximal decomposition into
’even’ words

w = w1 ∗ · · · ∗ wk, k < n

in the sense that each wj ∈ S2lj for some lj , and that no further even decomposition is
possible. We necessarily have k < n since w is not in S2n.

Similar as before, the total number of ’allocations’ of these k subwords into M slots
is the number of nonnegative integer solutions to

x1 + · · ·+ xM = k,

which equals (
M + k − 1

M − 1

)
=

1

k!
M(M + 1) · · · (M + k − 1), (3.9)

easily seen to be a polynomial in M with degree at most n− 1, and the lowest degree
term being M . On the other hand, by Lemma 2.2, the contribution to the norm of each
allocation is λ(∆t)n, where λ depends on the decomposition and allocation only. Thus,
for each w ∈ K2n \S2n, since the right hand side of (3.9) has no constant term (the lowest
degree term is M ), the coefficient Cw is a polynomial in T

M with degree at most n − 1

and all coefficients independent of M . Since
∥∥π2n(φ(T ))− π2n(φM (T ))

∥∥ is twice the sum
of all such Cw’s, it is also a polynomial in T

M with degree at most n− 1. We have thus
concluded the proof of Theorem 1.4.

3Since all the terms we deal with here are nonnegative, we can neglect the absolute values, and simply sum
all of them to get the l1 norm.
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