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Abstract

A multi-class M/M/1 system, with service rate µin for class-i customers, is considered
with the risk-sensitive cost criterion n−1 logE exp

∑
i ciX

n
i (T ), where ci > 0, T > 0

are constants, andXn
i (t) denotes the class-i queue-length at time t, assuming the sys-

tem starts empty. An asymptotic upper bound (as n→ ∞) on the performance under
a fixed priority policy is attained, implying that the policy is asymptotically optimal
when ci are sufficiently large. The analysis is based on the study of an underlying
differential game.
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1 Introduction

A Markovian queueing model consisting of a single server capable of serving jobs of
k classes is considered. Job arrival rates are proportional to a (large) parameter n, and
so are the processing rates for each of the class-i jobs, that, specifically, are given by
µin. Let Xn

i (t) denote the number of jobs in the ith class at time t, assuming the system
starts empty at time 0, and consider the scaled version X̄n = n−1Xn. Under specific
service policies, for example, serve-the-longest-queue and certain priority policies, it is
well known that {X̄n, n ∈ N} satisfy a sample-path large deviation principle [7]. In this
note we are interested in the dynamic control problem where a service policy is sought
to minimize a cost at the large deviation scale. In particular, we consider the cost

1

n
logE exp{c ·Xn(T )} =

1

n
logE exp{nG(X̄n)}, (1.1)

where T > 0 and c ∈ (0,∞)k are fixed, and we denote G(ξ) = c · ξ(T ) for ξ : [0, T ]→ Rk.
The motivation for considering such a cost, referred to in the literature as risk-sensitive,
for a queueing model, is that it strongly emphasizes large values of terminal queue
length, and is thus natural when one seeks to prevent buffer overflow. Avoiding large
waiting times so as to assure quality of service is a closely related motivation (though
not directly addressed in this paper).
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Risk-sensitive cost under priority

In an earlier paper [1] we considered a broader setting, of a model with multiple,
heterogenous servers, of which the above is a special case, and a risk-sensitive cost
defined similarly to (1.1), with a more general functionalG of the whole path {X̄n(t), 0 ≤
t ≤ T}. The limit of the optimal cost, as n → ∞, was characterized as the value of a
certain two-player zero sum differential game (DG). In this paper a particular priority-
type strategy for the DG is studied. It is shown that at for sufficiently large ci this
strategy is optimal for the DG, and that an analogous policy for the queueing control
problem is asymptotically optimal. We further show that in a more general setup, the
worst performance of that priority type strategy has a specific upper bound which is
also obeyed by the asymptotic performance of the induced policy.

The strategy alluded to above is one that prioritizes the classes in the order of the
index (1 − e−ci)µi, with highest priority given to the class with highest index. This is
reminiscent of the cµ rule, where priority is given according to the index ciµi, known
to be optimal under linear queue-length cost with weights ci: note in particular that
if we scale all ci’s by the same small parameter ε, then the exponential priority rule
agrees with the linear one for all sufficiently small ε. This result is useful in practical
implementation because the priority based resource allocation policy is simple as well
as robust (note, in particular, that it is independent of the arrival rates). The proof builds
on results in our earlier paper [1] and on the general large deviation upper bound of
Dupuis, Ellis and Weiss [5]. In particular, the main argument consists of comparing
the priority policy’s performance, estimated using the results of [5], with the DG value
using the connection established in [1].

The paper is organized as follows. In Section 2 we present the queueing model and
the main result. Section 3 describes the connection between the control problem and
the DG, obtained in [1]. An estimate of performance of DG is also obtained. In Section 4
that estimate is used to analyze the priority policy. Section 5 gives a lower bound on the
DG’s value, by which optimality of the priority rule for large ci follows. The appendix
establishes the existence of a strategy for the DG that acts according to the priority
discipline.

2 Model and main result

The model is parameterized by n ∈ N. It consists of k customer classes and one
server. Arrivals into the system occur according to independent Poisson processes, with
respective parameters nλi, where λi > 0 are fixed. Arriving jobs are queued in buffers,
one dedicated to each class. The server is available to serve the customers at the head
of the k lines, and is capable of splitting its effort among them. The service times are
exponential, where a class-i customer is served at rate nµi if the server dedicates all its
effort to it. An allocation vector, representing the fraction of effort dedicated to each
of the classes, is any member of U = {u ∈ Rk+ |

∑
i∈K ui ≤ 1}, where K = {1, 2, . . . , k}.

Denote ei as the n-tuple with 1 at ith place and 0’s elsewhere. For n ∈ N denote
Sn = n−1Zk+. Given n ∈ N and u ∈ U consider the operator (a generalization of Q-
matrix of finite state case)

Ln,uf(x) =
∑
i∈K

nλi(f(x+
1

n
ei)−f(x))+

∑
i∈K

nµiui(f(x− 1

n
ei)−f(x))1{xi≥n−1}, x ∈ Sn,

(2.1)
for f : Sn → R. A control system consists of a triplet Un = (Un, X̄n, (Ft)t∈[0,T ]),
defined on a given complete probability space (Ω,F , P ), where Un and X̄n are pro-
cesses taking values in U and Sn, having RCLL sample paths, Ft ⊂ F forms a fil-
tration to which these processes are adapted, with probability one, X̄n(0) = 0 and
Uni (t) = 0 whenever X̄n

i (t) = 0, and finally, for every bounded f : Sn → R, the pro-
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Risk-sensitive cost under priority

cess f(X̄n(t)) −
∫ t

0
Ln,Un(s)f(X̄n(s))ds, t ∈ [0, T ], is a martingale w.r.t. (Ft). We refer

to Un and X̄n as the control and controlled process, respectively. For n ∈ N, the cost
functional associated with a control system U is given by

Cn,U =
1

n
logE[eng(X̄

n,U (T ))] (2.2)

where g(x) = c · x, c ∈ (0,∞)k and T > 0. The value of the control problem is given by
V n = inf Cn,U , where the infimum ranges over all control systems. It is known from [1]
that the limit Vlim = limn→∞ V n exists (see Theorem 3.1 below for more details).

We also consider a special class of control systems. Given n, a stationary feedback
control is any mapping U : Sn → U such that

Ui(x) = 0 whenever xi = 0, i ∈ K. (2.3)

The corresponding controlled process is the Markov process X̄n,U on Sn, starting from
zero, with infinitesimal generator LnU given by

LnUf(x) = Ln,U(x)f(x). (2.4)

In the queueing model, nX̄n,U (t) represents the vector of queue lengths at time t when
allocation is performed according to the feedback control U . With an abuse of notation,
U is both a generic symbol for a control system and for a stationary feedback control.
This will cause no confusion.

We will be interested in the stationary feedback control that prioritizes classes ac-
cording to the index µ̂i = µi(1− e−ci). Denote λ̂i = λi(e

ci − 1) and W = minu∈U
∑
i(λ̂i −

uiµ̂i)
+. Assume throughout that the class labels are ordered so that

µ̂1 ≥ µ̂2 ≥ · · · ≥ µ̂k. (2.5)

For n ∈ N, this control, denoted by U∗ = U∗,n, is given by

U∗i (x) = 1{xi>0}
∏
j<i

1{xj=0}, i ∈ K, x ∈ Sn, (2.6)

where the product is defined as 1 when i = 1. Our main result is as follows.

Theorem 2.1. The cost under the feedback controls of priority type, given by (2.6),
obeys the following bounds
i.

Vlim ≤ lim inf
n→∞

Cn,U
∗
≤ lim sup

n→∞
Cn,U

∗
≤WT. (2.7)

ii. If eci ≥ µi

λi
for all i then Vlim = WT . Consequently, U∗ is asymptotically optimal in the

sense that limn→∞ Cn,U
∗

= Vlim.

3 Differential game setup

The limit on the l.h.s. of (2.7) can be characterized as the value of a DG, formulated
as follows. Let M = Rk+×Rk+ and write generic members of M as m = ((λ̄i)i∈K, (µ̄i)i∈K).
While λ and µ denote the actual arrival and service parameters for the system, a possi-
bly different member m = (λ̄, µ̄) of M will be interpreted as a perturbed set of param-
eters. Due to the exponential nature of the cost functional it is natural to expect this
additional control which reposes on the Laplace’s principle [3]. For u ∈ U and m ∈ M ,
let

v(u,m) =
∑
i

λ̄iei −
∑
i

uiµ̄iei, ρ(u,m) =
∑
i

λi ω
( λ̄i
λi

)
+
∑
i

uiµi ω
( µ̄i
µi

)
, (3.1)
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Risk-sensitive cost under priority

where

ω(r) =


r log r − r + 1, r ≥ 0,

+∞, r < 0,

with the convention 0 log 0 = 0. Let Ū = {ū : [0, T ] → U | ū is measurable} be the set
of admissible dynamic allocations. Define the set of admissible dynamic perturbations
M̄ = {m : [0, T ] → M | m is measurable, ω ◦m is locally integrable}. Endow Ū and M̄

with the metric d(v1, v2) =
∫ T

0
‖v1(t) − v2(t)‖dt, and with the corresponding Borel σ-

fields. A mapping α : M̄ → Ū is called a strategy if it is measurable and if for every
m, m̃ ∈ M̄ and t ∈ [0, T ],

m(r) = m̃(r) for a.e. r ∈ [0, t] implies α[m](r) = α[m̃](r) for a.e. r ∈ [0, t].

The set of all strategies is denoted by A.
Let Γ1, the one-dimensional Skorohod map from C([0, T ] : R) to itself, be defined as

Γ1[ψ](t) = ψ(t)− inf
r∈[0,t]

ψ(r) ∧ 0, t ∈ [0, T ],

and let Γ , mapping C([0, T ] : Rk) to itself, be given by Γ [ψ]i = Γ1[ψi], i ∈ K. The cost C
associated with u ∈ Ū and m ∈ M̄ is given by

C(u,m) = g(ϕ(T ))−
∫ T

0

ρ(u(r),m(r))dr, ϕ = Γ [ψ], ψ =

∫ ·
0

v(u(r),m(r))dr. (3.2)

Thus ρ, heuristically, constitutes the cost of changing the measure and is incurred to
player 2. Let

V = inf
α∈A

sup
m∈M̄

C(α[m],m). (3.3)

It is established in Theorem 2.1 and Proposition 3.3 of [1] that

Theorem 3.1. limn→∞ V n = V . Thus Vlim = V .

Now we consider a strategy α∗ that prioritizes according to the indices µ̂i, as in (2.5).
More precisely, let α∗ be the strategy that sends m = ((λ̄i(t))i∈K, (µ̄i(t))i∈K)t∈[0,T ] ∈ M̄
to u ∈ Ū , where, for t ∈ [0, T ], denoting ai(t) = λ̄i(t)/µ̄i(t), one has

u1(t) =

{
1 if ϕ1(t) > 0,

1 ∧ a1(t) if ϕ1(t) = 0,
(3.4)

ui(t) =

{
1−

∑i−1
j=1 uj(t) if ϕi(t) > 0,(

1−
∑i−1
j=1 uj(t)

)
∧ ai(t) if ϕi(t) = 0,

i ≥ 2. (3.5)

These relations give rise to a unique, well-defined strategy as proved in the appendix.
We denote the performance of α∗ by V ∗ = supm∈M̄ C(α∗[m],m).

Proposition 3.2. One has

V ∗ = sup
m∈M̄

(
g

(∫ T

0

v(α∗[m](t),m(t))dt

)
−
∫ T

0

ρ(α∗[m](t),m(t))dt

)
≤WT. (3.6)

Since for every n, Cn,U
∗ ≥ V n, it follows from Theorem 3.1 that lim infn→∞ Cn,U

∗ ≥
V . Thus in view of Proposition 3.2, to prove Theorem 2.1(i), it suffices to show, as we
do in the next section, that

lim sup
n→∞

Cn,U
∗
≤ V ∗. (3.7)
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Risk-sensitive cost under priority

Toward proving Proposition 3.2, let us introduce some notation. Let ωi(y) = λiω(y/λi)

and ω̃i(y) = µiω(y/µi). Let

Ci(u,m) = −ωi(λ̄i)− uiω̃i(µ̄i) + ci(λ̄i − uiµ̄i), u ∈ U, m ∈M. (3.8)

Given r ≥ 0, let

W (r) = min
{ k∑
i=1

(
λ̂i − viµ̂i

)+

: vi ≥ 0,

k∑
i=1

vi ≤ r
}
. (3.9)

Note that, with ρ̂i = λ̂i/µ̂i, the following v is a minimizer in (3.9)

v∗1 = r ∧ ρ̂1, v∗i =
(
r −

i−1∑
m=1

v∗m

)
∧ ρ̂i, i ≥ 2.

Lemma 3.3. Given r ≥ 0 andm = (λ̄i, µ̄i) ∈M , one has
∑k
i=1 Ci(u,m) ≤W (r), provided

that

u1 ∈ {r, r ∧ ρ̄1}, (3.10)

ui ∈ {r − u1,i−1, (r − u1,i−1) ∧ ρ̄i}, i ≥ 2, (3.11)

where ρ̄i = λ̄i/µ̄i (here, r ∧ (y/0) is interpreted as r) and u1,j =
∑j

1 ui .

Before presenting the proof of the lemma, we show that the proposition follows.

Proof of Proposition 3.2. The fact that a strategy α∗ exists, as well as that under this
strategy one has ψi(s) ≥ 0 for all s, is proved in Proposition A.1 in the appendix. Fix an
arbitrary m ∈ M̄ and set u = α∗[m]. To prove the proposition it suffices to show that
C(u,m) ≤WT . Since ψi(s) ≥ 0 for all s, we have ϕ(T ) = ψ(T ). Thus C(u,m) is given by

C(u,m) =

∫ T

0

∑
i

Ci(u(t),m(t))dt.

By (3.4) and (3.5), for each t, u(t) satisfies the hypotheses of Lemma 3.3, with data m(t)

and r = 1. Hence C(u,m) ≤WT , which completes the proof.

Proof of Lemma 3.3. The claim is proved by induction on k. The precise statement
proved by induction involves an arbitrary set of parameters λi, µi, ci. Namely, given k

and r, and any 3k-tuple of positive numbers λi, µi, ci, for which the parameters µ̂i =

µi(1− e−ci) are ordered as in (2.5), the statement of the lemma is valid.
Consider first k = 1. We will show

C1(u,m) ≤

{
λ̂1 − rµ̂1 if u1 = r,

0 if u1 = ρ̄1.
(3.12)

First, the inequalities

− ωi(λ̄i) + ciλ̄i ≤ λ̂i, −ω̃i(µ̄i)− ciµ̄i ≤ −µ̂i (3.13)

hold for every λ̄i, µ̄i, as can be verified in the following way. By direct calculation, the
concave functions on the left hand sides have maxima at λ̄i = λie

ci and µ̄i = µie
−ci

respectively. Thus, their maximum values can be computed and those are λi(e
ci − 1)

and µi(e
−ci − 1) which are the same as λ̂ and −µ̂ respectively. By (3.8), this gives the
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Risk-sensitive cost under priority

first line in (3.12). If u1 = ρ̄1 then the last term in (3.8) is zero, hence C1(u,m) ≤ 0. This
shows (3.12), from which it follows that C1(u,m) ≤W (r) in case k = 1.

Next, assuming that the claim holds for a given k, we show that it holds for k+1. Let
then r and m be given, and let u be as in (3.10)–(3.11). Denote Ca,b =

∑b
i=a Ci(u,m).

Also, let Wa,b(r) be defined as in (3.9), where the sums range from a to b. The induction
assumption implies

C2,k+1 ≤W2,k+1(r − u1). (3.14)

Case 1: u1 < v∗1 . Then by (3.10), u1 = ρ̄1. As a result, arguing as in the induction
base, C1(u,m) ≤ 0. Thus C1,k+1 ≤ C2,k+1. Hence by the induction assumption, C1,k+1 ≤
W2,k+1(r − u1). Clearly W (r) is decreasing with r. Hence

C1,k+1 ≤W2,k+1(r − v∗1) ≤ (λ̂1 − v∗1 µ̂1) +W2,k+1(r − v∗1) = W1,k+1(r).

Case 2: δ := u1 − v∗1 ≥ 0. Using again (3.13), C1,1 ≤ λ̂1 − u1µ̂1. Hence by (3.14),

C1,k+1 ≤ λ̂1 − u1µ̂1 +W2,k+1(r − u1).

By definition of W , it is not hard to see that |W (r1)−W (r2)| ≤ |r1− r2|µ̂max, where µ̂max

is the largest parameter µ̂i involved. Thus, recalling µ̂2 ≥ · · · ≥ µ̂k,

|W2,k+1(r1)−W2,k+1(r2)| ≤ |r1 − r2| µ̂2, r1, r2 ≥ 0.

As a result,

C1,k+1 ≤ λ̂1 − u1µ̂1 +W2,k+1(r − u1)

= λ̂1 − v∗1 µ̂1 +W2,k+1(r − v∗1)− δµ̂1 +W2,k+1(r − u1)−W2,k+1(r − v∗1)

≤ λ̂1 − v∗1 µ̂1 +W2,k+1(r − v∗1)− δµ̂1 + δµ̂2

≤ λ̂1 − v∗1 µ̂1 +W2,k+1(r − v∗1) = W1,k+1(r).

We have thus shown that C1,k+1 ≤W1,k+1(r) and completed the argument.

4 Priority-based feedback controls

In this section we prove (3.7), based on the general large deviation upper bound of
[5]. We begin by analyzing a wider class of stationary feedback controls (which, in this
section we call controls, for short), and then specialize to U∗. Recall that, given n, a
control is defined as a map from Sn to U . In this section we will consider sequences Un
of controls that are all obtained from a single map U : Rk+ → U by way of restricting
U to Sn, for each n. Given n, there will be no confusion in referring to U itself as the
control, and we shall do so.

For x ∈ Rk+ let I(x) = {i ∈ K : xi = 0}. Note that it is an empty set in the interior
of Rk+ and K at the origin. I partitions Rk+ into sets that we will call facets. Let also
Ī(x) = 2I(x) be collection of all subsets of I(x). The class of controls U : Rk+ → U that we
analyze consists of those that satisfy (2.3) and, in addition, take integer values and are
constant on facets. That is,

Ui(x) ∈ {0, 1} for every i ∈ K, x ∈ Rk+,
U(x) = U(y) for every x, y ∈ Rk+ whenever I(x) = I(y).

(4.1)

Under (4.1) U induces a map from 2K to U , given by J ⊂ K 7→ U(x) for some x such
that J = I(x). For the ease of notation, we identify facets (i.e., subsets of Rk+ on which
I is constant) with collections of indices (the corresponding value of I); moreover, we
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Risk-sensitive cost under priority

refer this map (U ◦ I−1) by the same symbol U throughout this section. We follow this
convention for other functions whose dependence on x is via U only. For a given U as in
(4.1), we define the following quantities for each x ∈ Rk+ and p, q ∈ Rk by

H(x, p) =
∑
i∈K

λi(e
pi − 1) +

∑
i∈K

µiUi(x)(e−pi − 1)

h(x, p) = max
J∈Ī(x)

H(J, p)

L(x, q) = sup
p∈Rk

[p · q −H(x, p)]

l(x, q) = sup
p∈Rk

[p · q − h(x, p)]

A = {ϕ : [0, T ]→ Rk+ absolutely continuous | ϕ(0) = 0}

I(ϕ) = IU (ϕ) =


∫ T

0
l(ϕ(t), ϕ̇(t))dt, if ϕ ∈ A;

+∞, else.

Here h is the upper semi continuous regularization of H, whereas L and l are the
Legendre- Fenchel transforms of H and h respectively. Exclusively for this section we
consistently use ϕ to denote a generic element of A (this notation will be convenient
when used in relation (4.10) below). Since, the maps H,h, L and l depend on x via U
only, they are constants on each facets provided the other variable is fixed. Thus the
naturally induced maps H(J, p), h(J, p), L(J, q) and l(J, q) are well defined.

Proposition 4.1. Given a control U satisfying all assumptions stated in this section (in
particular, (4.1)), the corresponding sequence Un satisfies

lim sup
n→∞

Cn,U
n

≤ AU := sup
ϕ∈A

(g(ϕ(T ))− IU (ϕ)). (4.2)

Proof. By Theorem 1.1 of [5], the sequence X̄n of controlled processes associated with
the controls Un, that are merely Markov processes with infinitesimal generators LnUn

(2.4), satisfies a large deviation upper bound inD([0, T ] : Rk) with the good rate function
I (see [5], [3] for this terminology; in particular, D is the space of RCLL functions with
the Skorohod topology). The upper bound in Varadhan’s lemma (Lemma 4.3.6 of [3]) can
therefore be used. It is easy to verify the moment condition lim supn−1 logEeγng(X̄n(T )) <

∞ (for some γ > 1) required for that lemma, by noting that ng(X̄n(T )) is stochastically
bounded by a r.v. αPoisson(βn) for some constants α, β. As a result,

lim sup
n→∞

Cn,U
n

= lim sup
1

n
logE[eng(X̄

n)] ≤ sup
ϕ∈A

(g(ϕ(T ))− IU (ϕ)).

Proposition 4.2. One has AU
∗ ≤ V ∗.

Proof of Theorem 2.1(i). By Proposition 3.2 and the discussion following it, the result
follows from Propositions 4.1 and 4.2.

In the rest of this section we prove Proposition 4.2. Given x ∈ Rk+, q ∈ Rk denote

Ξ = {ξ : 2K → [0, 1] |
∑
J∈2K

ξJ = 1},

Ξ(x) = {ξ ∈ Ξ | ξJ = 0 ∀J /∈ Ī(x)},

S(x,q) = {(m, ξ) ∈M ×Ξ(x) | λ̄i −
∑
J∈Ī(x)

ξJUi(J)µ̄i = qi∀i}.
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The collection Ξ consists of all possible normalized weights on the collection of all
facets. If x belongs to a particular facet J , then Ξ(x) includes those members of Ξ
which assign nonzero weights only to the facets whose closure include J . S(x,q) is the
collection of pairs of rates and weights such that the speed due to resulting weighted
service allocation match with q.

Lemma 4.3. Under (4.1), for x ∈ Rk+, q ∈ Rk, l(x, q) = infS(x,q)
ρ
(∑

J∈2K ξ
JU(J),m

)
,

where ρ is as in (3.1).

Proof. First, by the definition of L and H and using Lemma A.2 in the appendix,

L(x, q) =
∑
i

sup
pi∈R

[piqi −
(
λi(e

pi − 1) + µiUi(x)(e−pi − 1)
)
]

=
∑
i

inf
λ̄i,µ̄i

{
λi ω

( λ̄i
λi

)
+
∑
i

Ui(x)µi ω
( µ̄i
µi

)∣∣∣λ̄i − µ̄iUi(x) = qi

}
= inf

λ̄,µ̄

{∑
i

λi ω
( λ̄i
λi

)
+
∑
i

Ui(x)µi ω
( µ̄i
µi

)∣∣∣λ̄i − µ̄iUi(x) = qi

}
= inf

λ̄,µ̄

{
ρ(U(x), (λ̄, µ̄))|λ̄i − µ̄iUi(x) = qi ∀i

}
,

where the second equality follows by directly solving both optimization problems. We
use the following representation of l, from Theorem 3.1 of [5]:

l(x, q) = inf
(qJ ,ξJ )

 ∑
J∈Ī(x)

ξJL(J, qJ)
∣∣∣ ∑
J∈Ī(x)

ξJqJ = q, ξ ∈ Ξ(x)

 , (4.3)

where the infimum ranges over all maps J 7→ (qJ , ξJ). Using the expression of L above,

l(x, q) = inf
(qJ ,ξJ )

 ∑
J∈Ī(x)

ξJ inf
m
{ρ(U(J),m) | λ̄i − µ̄iUi(J) = qJi ∀i}

∣∣∣ ∑
J∈Ī(x)

ξJqJ = q, ξ ∈ Ξ(x)


= inf

(ξJ )
inf

(mJ )

 ∑
J∈Ī(x)

ξJρ(U(J),mJ)
∣∣∣ ∑
J∈Ī(x)

ξJ(λ̄Ji − µ̄Ji Ui(J)) = qi ∀i, ξ ∈ Ξ(x)

 .

Hence, by restricting the minimizing set for variable (mJ), l(x, q) is bounded above by

inf
ξ∈Ξ(x)

inf
m∈M

 ∑
J∈Ī(x)

ξJρ(U(J),m)
∣∣∣ ∑
J∈Ī(x)

ξJ(λ̄i − µ̄iUi(J)) = qi ∀i

 = inf
S(x,q)

ρ

 ∑
J∈Ī(x)

ξJU(J),m

 .

(4.4)

In order to prove the lemma, it remains to show that l(x, q) is also bounded below by
the above quantity. Given x, (ξJ) and (mJ), define, with 0/0 = 0, λ̄[x] =

∑
J∈Ī(x) ξ

J λ̄J ,

vi(x) =
∑
J∈Ī(x) ξ

JUi(J),

µ̄i[x] =

∑
J∈Ī(x) ξ

JUi(J)µ̄Ji

vi(x)
and m[x] = (λ̄[x], µ̄[x]).

Then ∑
J∈Ī(x)

ξJ(λ̄Ji − µ̄Ji Ui(J)) = λ̄i[x]− vi(x)µ̄i[x] i ∈ K. (4.5)
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Since ω is convex, we have by changing the order of summation on the l.h.s. below and
using Jensen’s inequality,

∑
J∈Ī(x)

ξJ

(∑
i∈K

λi ω
( λ̄Ji
λi

)
+
∑
i∈K
Ui(J)µi ω

( µ̄Ji
µi

))
≥
∑
i∈K

λi ω
( λ̄i[x]

λi

)
+
∑
i∈K

vi(x)µi ω
( µ̄i[x]

µi

)
.

Thus
∑
J∈Ī(x) ξ

Jρ
(
U(J),mJ

)
≥ ρ

(∑
J∈Ī(x) ξ

JU(J),m[x]
)
. Hence given x ∈ Rk+, q ∈ Rk

using (4.5),

l(x, q) = inf
(ξJ ,mJ )

 ∑
J∈Ī(x)

ξJρ(U(J),mJ)
∣∣∣ ∑
J∈Ī(x)

ξJ(λ̄Ji − µ̄Ji Ui(J)) = qi ∀i, ξ ∈ Ξ(x)


≥ inf
ξ∈Ξ(x)

inf
(mJ )

ρ
 ∑
J∈Ī(x)

ξJU(J),m[x]

 ∣∣∣λ̄i[x]−
∑
J∈Ī(x)

ξJUi(J)µ̄i[x] = qi ∀i


≥ inf
ξ∈Ξ(x)

inf
m∈M

ρ
 ∑
J∈Ī(x)

ξJU(J),m

 ∣∣∣λ̄i − ∑
J∈Ī(x)

ξJUi(J)µ̄i = qi ∀i


= inf
S(x,q)

ρ

 ∑
J∈Ī(x)

ξJU(J),m

 .

Thus the result follows from the above and (4.4).

Proof of Proposition 4.2. Consider the following system of equations, for (m, ξ) :

[0, T ]→M ×Ξ measurable and ϕ ∈ A,{
λ̄i(t)−

∑
J∈2K ξ

J(t)Ui(J)µ̄i(t) = ϕ̇i(t) i ∈ K,
ξ(t) ∈ Ξ(ϕ(t)),

a.e. t ∈ [0, T ]. (4.6)

For ϕ ∈ A, and U as in (4.1) denote

Sϕ = {(m, ξ) : [0, T ]→M ×Ξ measurable | (4.6) holds}, and

S∗ϕ = Sϕ with U = U∗.

By a standard argument based on a measurable selection result such as [6], one can
show ∫ T

0

inf
S(ϕ(t),ϕ̇(t))

ρ

(∑
J∈2K

ξJU(J),m

)
dt = inf

Sϕ

∫ T

0

ρ

(∑
J∈2K

ξJ(t)U(J),m(t)

)
dt.

Thus using Lemma 4.3,

IU (ϕ) = inf
Sϕ

∫ T

0

ρ

(∑
J∈2K

ξJ(t)U(J),m(t)

)
dt. (4.7)

The inequality to be proved is AU
∗ ≤ V ∗. Using the expression (4.2) for AU , and (4.7),

it will follow if we show the inequality

sup
ϕ∈A

sup
(m,ξ)∈S∗ϕ

(
g(ϕ(T ))−

∫ T

0

ρ(u∗(t),m(t))dt
)

≤ sup
m∈M̄

(
g

(∫ T

0

v(α∗[m](t),m(t))dt

)
−
∫ T

0

ρ(α∗[m](t),m(t))dt

)
≡ V ∗,

(4.8)
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where, for given ϕ and (m, ξ) ∈ S∗ϕ,

u∗(t) = u∗[ϕ,m, ξ](t) =
∑
J∈2K

ξJ(t)U∗(J). (4.9)

Note that, in turn, the above will follow once we prove the statement

if ϕ ∈ A, (ξ,m) ∈ S∗ϕ then u∗[ϕ,m, ξ](t) = α∗[m](t) for a.e. t. (4.10)

Indeed, if (4.10) holds then ϕ =
∫ ·

0
v(α∗[m](t),m(t))dt, and thus, for every ϕ ∈ A, (ξ,m) ∈

S∗ϕ,

g(ϕ(T ))−
∫ T

0

ρ(u∗(t),m(t))dt = g

(∫ T

0

v(α∗[m](t),m(t))dt

)
−
∫ T

0

ρ(α∗[m](t),m(t))dt ≤ V ∗,

which implies (4.8).

It thus remains to prove (4.10). We do this by arguing that if ϕ ∈ A, (ξ,m) ∈ S∗ϕ then
u∗[t] satisfies (3.4), (3.5) for a.e. t. Recall that U∗(x) is defined, for x ∈ Sn, in (2.6). For
facets J , U∗(J) is defined via the association of x with a facet to which it belongs. We
can write this as

U∗i (J) = 1{i/∈J}
∏
j<i

1{j∈J}, i ∈ K, s ⊂ K. (4.11)

Consider the case ϕ1 = ϕ1(t) > 0. In this case, by the definition of I, 1 /∈ I(ϕ). Con-
sequently, 1 is not a member of any subset of I(ϕ), namely it is not a member of any
J ∈ Ī(ϕ). Since (4.6) holds, ξ ∈ Ξ(ϕ) (where ξ = ξ(t), ϕ = ϕ(t), and this is valid for a.e.
t). Thus by definition of Ξ, ξ charges only facets J ∈ I(ϕ). In particular, it charges only
facets J with 1 /∈ J . By (4.9) and (4.11), it follows that u∗1 = u∗1(t) = 1. This shows that
the first line of (3.4) is valid for a.e. t.

Next consider the case that, for some fixed i > 1, ϕi(t) > 0, so as to verify the first
line of (3.5). In this case i /∈ J for all J ∈ Ī(ϕ), and ξ is supported on such facets. Now,

i∑
j=1

u∗j =

i∑
j=1

∑
J

ξJU∗j (J) =
∑
J

ξJ
i∑

j=1

1{j /∈J}
∏
r<j

1{r∈J}.

For J in the support of ξ we have jJ := min{j : j /∈ J} ≤ i. As a result, for j ∈ {1, . . . , i},

1{j /∈J}
∏
r<j

1{r∈J} =

{
0, if j 6= jJ ,

1, if j = jJ .

This shows
∑i
j=1 u

∗
i =

∑
J ξ

J = 1 and verifies the first line of (3.5).

For each i let Ai = {t ∈ [0, T ] | ϕi(t) = 0} and Ȧi = {t ∈ [0, T ] | ϕi(t) = 0, ϕ̇i(t) = 0}.
Then by Theorem A.6.3 of [4], |Ai \ Ȧi| = 0. Therefore, for a.e. t ∈ [0, T ], ϕi(t) = 0

implies ϕ̇i(t) = 0, thus by (4.6), u∗i (t) = λ̄i(t)/µ̄i(t). Since we always have
∑
i u
∗
i ≤ 1, it

is also true that, for a.e. t, ϕi(t) = 0 implies

u∗i (t) =
(

1−
i−1∑
j=1

u∗j (t)
)
∧ λ̄i(t)
µ̄i(t)

,

which verifies the second line of (3.4) and that of (3.5). This establishes (4.10), thus
(4.8), and we conclude that AU

∗ ≤ V ∗.
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5 A lower bound on V

To prove Theorem 2.1(ii), it remains to show that when eci ≥ µi

λi
for all i, one has

Vlim = WT . Since we already have that V = Vlim ≤ WT , it remains to show that
V ≥WT in this case.

Proof of Theorem 2.1(ii). Note first that λ̂i ≥ µ̂i for each i. Therefore, W =

minu∈U
∑
i(λ̂i − uiµ̂i) =

∑
i λ̂i −maxi µ̂i. From (3.2) we deduce that

ϕi(T ) = sup
r∈[0,T ]

[ψi(T )− ψi(r)] = sup
r∈[0,T ]

∫ T

r

vi(u(r′),m(r′))dr′.

Using this in (3.3) and interchanging the order of suprema gives

V = inf
α∈A

sup
(ri)i

sup
m∈M̄

[
−
∑
i

∫ T

0

ωi(λ̄i(r))dr−
∑
i

∫ T

0

ui(r)ω̃i(µ̄i(r))dr+
∑
i

ci

∫ T

ri

vi(u(r),m(r))dr
]
,

(5.1)
where the outer supremum ranges over r̄ = (ri)i ∈ [0, T ]k. Now, bound V below by
replacing the supremum over r̄ ∈ [0, T ]k by taking r̄ = 0. Further, replace the supremum
over all m ∈ M̄ by the following particular choice of m, (λ̄i(r), µ̄i(r)) = (λ∗i , µ

∗
i ) =

(λie
ci , µie

−ci) r ∈ [0, T ], i ∈ I. Then

V ≥ inf
α∈A

∑
i

∫ T

0

(
−ωi(λ∗i )−ui(r)ω̃i(µ∗i )+ civi(u(r),m)

)
dr = inf

α∈A

∑
i

(
λ̂i− ūiµ̂i

)
T, (5.2)

where ūi = T−1
∫ T

0
ui(r)dr and, as before, u(·) = α[m]. Since ū is always a member of

U , the above expression is equal to WT . This shows V ≥ WT and completes the proof
of Theorem 2.1(ii).

A Appendix

We argue that the relations (3.4)–(3.5) give rise to a well-defined strategy.

Proposition A.1. There exists a strategy α∗ ∈ A with the following properties. Given
m ∈ M̄ , let u = α∗[m] and let ψ and ϕ be given by (3.2). Then (ψ,ϕ, u) satisfy the
relations (3.4)–(3.5). Moreover, ψi(t) ≥ 0 for all t and i, hence ϕ = ψ.

Proof. We will use the following fact regarding Γ1. Recall that if q : R+ → R and
p = Γ1[q] then p = q + d where d(t) = − inft′≤t q(t

′) ∧ 0. In case that q is absolutely
continuous and q(0) ≥ 0, the term d is given by

d(t) =

∫ t

0

( dq
dt′

)−
1{p(t′)=0}dt

′. (A.1)

The above is an immediate consequence of a general fact that solutions p of the Skoro-
hod problem with absolutely continuous data q solve ODE of the form ṗ = π(p, q̇), where
π(x, v) is a certain projection map, which in the one-dimensional case is given by

π(x, v) = v1{x>0} + v+1{x=0}.

For this fact and further details see [2]. Let m = (λ̄i, µ̄i) be given. We will construct ψ,ϕ
and u satisfying relations (3.4)–(3.5) and (3.2), and then argue that the map m 7→ u is a
strategy.

For i = 1, . . . , k, denote ρ̄i(t) = λ̄i(t)/µ̄i(t). Let q1 =
∫ ·

0
(λ̄1 − µ̄1)dt and p1 = Γ1[q1].

Then p1 = q1 + d1, where, by (A.1),

d1(t) =

∫ t

0

(λ̄1(t′)− µ̄1(t′))−1{p1(t′)=0}dt
′.
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As a result, p1 ≥ 0 and can be written as p1(t) =
∫ t

0
(λ̄1(t′)− u1(t′)µ̄1(t′))dt′, where

u1(t) =

{
1 if p1(t) > 0,

1 ∧ ρ̄1(t) if p1(t) = 0.

Now set ψ1 = p1. Then ψ1 ≥ 0 hence ϕ1 := Γ1[ψ1] = ψ1, and relations (3.2) and (3.4)
hold. This gives a construction of (ψ1, ϕ1, u1).

To proceed to (ψi, ϕi, ui) for i ≥ 2, we argue recursively. Fix i ≥ 2. Denote u1,i−1 =∑i−1
m=1 um. Set qi =

∫ ·
0
(λ̄i−(1−u1,i−1)µ̄i)dt and pi = Γ1[qi]. Arguing as before, pi = qi+di

where

di(t) =

∫ t

0

(λ̄i − (1− u1,i−1)µ̄i)
−1{pi=0}dt

′,

hence pi ≥ 0 and pi(t) =
∫ t

0
(λ̄i − uiµ̄i)dt′, where

ui(t) =

{
1− u1,i−1(t) if pi(t) > 0,

(1− u1,i−1(t)) ∧ ρ̄i(t) if pi(t) = 0.

Setting ψi = pi and ϕi = Γ1[ψi] gives ϕi = ψi and agrees with (3.2) and (3.5). This
completes the construction of (ψ,ϕ, u). The construction has the property that for every
t ≥ 0, m|[0,t] uniquely defines (ψ,ϕ, u)|[0,t], and moreover, the map m 7→ u is measurable.
Thus the map is a strategy.

The following lemma is used in Section 4.

Lemma A.2. Fix λ, µ > 0. The following identity holds for every β ∈ R:

sup
α∈R

(αβ − (λ(eα − 1) + µ(e−α − 1))) = inf(λω(λ̄/λ) + µω(µ̄/µ) | λ̄− µ̄ = β, and λ̄, µ̄ > 0).

Proof. Let f1(β) and f2(β) denote the l.h.s. and the r.h.s. Fix β. Then f1(β) is given as
the supremum of a concave function of α. The maximizer ᾱ satisfies β−λeᾱ+µe−ᾱ = 0.
Also, f2(β) is the infimum of a convex function. Let λ∗ = λeᾱ and µ∗ = µe−ᾱ. Then
from the above equality, (λ∗, µ∗) satisfies the constraint in the infimum, and a direct
calculation shows that (λ∗, µ∗) is indeed the minimizer. Hence

f1(β)− f2(β)

= ᾱβ − (λ∗ − λ+ µ∗ − µ)−
(
λ∗ ln(

λ∗

λ
)− λ∗ + λ+ µ∗ ln(

λ

λ∗
)− µ∗ + µ

)
= ᾱβ − (λ∗ − λ+ µ∗ − µ)− (λ∗ − µ∗)ᾱ+ (λ∗ − λ+ µ∗ − µ)

= 0.
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