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Abstract

We consider a class of particle systems generalizing the β-Ensembles from random
matrix theory. In these new ensembles, particles experience repulsion of power β > 0
when getting close, which is the same as in the β-Ensembles. For distances larger
than zero, the interaction is allowed to differ from those present for random eigen-
values. We show that the local bulk correlations of the β-Ensembles, universal in
random matrix theory, also appear in these new ensembles.
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1 Introduction and Main Results

A central theme in random matrix theory is the universality phenomenon, which
means that many essentially different matrix distributions lead in the limit of growing
dimension to the same spectral statistics.

In the past 15 years or so, much progress has been made in proving universality
of local spectral distributions, especially correlations between neighboring eigenvalues
in the bulk of the spectrum and of the largest eigenvalues. It is known that there is a
parameter, usually denoted β, which determines the universality class of the ensemble.
To explain this in more detail, define for any β > 0 and a continuous function Q : R −→
R the invariant β-Ensemble PN,Q,β on RN which is given by

PN,Q,β(x) :=
1

ZN,Q,β

∏
i<j

|xi − xj |β e−N
∑N
j=1Q(xj). (1.1)

(With a slight abuse of notation, we will not distinguish between a measure and its
density.) Here we assume Q(t) ≥ β′ log |t| for |t| large enough for some β′ ≥ β with
β′ > 1.

For β = 1, 2, 4, PN,Q,β is the eigenvalue distribution of a probability ensemble on
the space of real symmetric (β = 1), complex Hermitian (β = 2) or quaternionic self-
dual (β = 4) (N × N) matrices, respectively. The matrix distributions are invariant
under orthogonal, unitary or symplectic conjugations, respectively, explaining the name
“invariant ensembles”. For arbitrary β, only for quadratic Q, PN,Q,β is known to be an
eigenvalue distribution.
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Particle systems with repulsion exponent β

It has been shown (see [10] for references) that the local spectral statistics in the
bulk or at the edges of the spectrum do in many cases not depend on Q or, in other
terms, invariant ensembles with different potentials Q but the same β have the same
local statistics. It is also known that different values of β lead to different limiting (local)
distributions. This is not surprising as the interaction term

∏
i<j |xi − xj |

β has a strong

effect on neighboring eigenvalues whereas e−N
∑N
j=1Q(xj) just confines all eigenvalues

independently into a compact interval. In the limit N →∞, these two competing forces
balance and produce a limiting measure of compact support.

In [10] the question was addressed whether the interaction term
∏
i<j |xi − xj |

β

could be changed without changing the local statistics. To this end, we introduced
ensembles with density proportional to

∏
i<j

ϕ(xi − xj)e−N
∑N
j=1Q(xj), (1.2)

where Q is a continuous function of sufficient growth at infinity compared to the con-
tinuous function ϕ : R −→ [0,∞). The interaction potential ϕ fulfills

ϕ(0) = 0, ϕ(t) > 0 for t 6= 0 and lim
t→0

ϕ(t)

|t|β
= c > 0 for some β > 0,

or, in other terms, 0 is the only zero of ϕ and it is of order β. It has been conjectured
in [10] that the bulk correlations for the ensembles (1.2) are the same as in the case
ϕ(t) = |t|β , i.e. the same as for the invariant ensembles in random matrix theory. This
was proved in [10] for β = 2 and a special class of functions ϕ and Q. In the present
work, we prove a similar result for arbitrary β > 0. This shows that the local bulk
correlations (at least in the considered cases) merely depend on the repulsion exponent
β and not on the interaction of particles at distances larger than 0.

We believe that these results may lead to an explanation for the occurrence of ran-
dom matrix bulk statistics in a number of seemingly unrelated observations in real
world and science (see [10] for references). Spacings between cars in different situa-
tions were found to be fitted well by the universal spacing statistics from random matrix
theory (β = 1 for parking along one-way streets, β = 2 along two-way streets, β = 4 for
waiting in front of traffic signals). Also spacings between perching birds and between
bus arrival times at stops in certain cities seem to obey (β = 2) random matrix spac-
ing statistics. Gaps between zeros of the Riemann zeta function on the critical line are
another famous example from mathematics (also β = 2). In all these observations, a
strong repulsion between consecutive quantities is present.

Furthermore, the ensemble (1.2) does not seem to have a natural spectral interpre-
tation which makes our findings a first step in proving universality of random matrix
bulk distributions for more general particle systems.

To state our main results, we first rewrite the ensemble (1.2). Let h be a continuous
even function which is bounded below. Let Q be a continuous even function of sufficient
growth at infinity. By PhN,Q,β we will denote the probability density on RN defined by

PhN,Q,β(x) :=
1

ZhN,Q,β

∏
i<j

|xi − xj |β exp{−N
N∑
j=1

Q(xj)−
∑
i<j

h(xi − xj)}, (1.3)

where ZhN,Q,β denotes the normalizing constant. The density PhN,Q,β can also be written

in the form (1.2) with ϕ(t) := |t|β exp{−h(t)}.
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Particle systems with repulsion exponent β

Furthermore, let for a probability density PN on RN and k = 1, 2, . . . ,

ρN (t1, . . . , tk) :=

∫
RN−k

PN (t1, . . . , tk, xk+1, . . . , xN ) dxk+1 . . . dxN

denote the k−th correlation function of PN . The correlation functions are the marginal
densities. The measure ρN (t1, . . . , tk) dt1 . . . dtk is called k−th correlation measure. De-
note by ρh,kN,Q,β the k-th correlation function of PhN,Q,β and by ρkN,Q,β the k-th correlation
function of PN,Q,β from (1.1). Universality of ensembles is usually defined by univer-
sality of their correlation functions or measures as many interesting statistics of the
ensembles can be expressed in terms of correlation functions. Finally, introduce for a
twice differentiable convex function Q the quantity αQ := inft∈RQ

′′(t).
The following theorem deals with the global or macroscopic behavior of the ensem-

ble PhN,Q,β.

Theorem 1.1. Let h be a real analytic and even Schwartz function. Then there ex-
ists a constant αh ≥ 0 such that for all real analytic, strongly convex and even Q with
αQ > αh, the following holds:
The first correlation measure ρh,1N,Q,β converges weakly to a compactly supported prob-

ability measure µhQ,β which has a non-zero and continuous density on the interior of its
support. Weak convergence means that for any bounded and continuous f : R −→ R,
we have

lim
N→∞

∫
f(t) ρh,1N,Q,β(t) dt =

∫
f(t)µhQ,β(t)dt.

Remark 1.2.

• In general, µhQ,β depends on h, i.e. changing the interaction term has an influence
on the (limiting) global density of the particles.

• If h is positive semi-definite, then αh in Theorem 1.1 may be explicitly chosen as
αh = supt∈R−h′′(t).

• For k = 2, 3, . . . , the k−th correlation measure converges weakly to the k-fold

product
(
µhQ,β

)⊗k
. This has been shown in [10] for β = 2 but the same proof goes

through for arbitrary β > 0. However, as a byproduct of the local universality
result, the proof in [10] uses some rather technical and complicated arguments
which we have no further use for in this article. We will therefore give a short
proof of Theorem 1.1 which only uses methods needed anyway.

• Note that the dependence of µhQ,β on β can be eliminated if the prefactor β is put
in front of Q and h.

• In [4], ensembles with many-body interactions are considered, replacing h in (1.3).
Here global asymptotics but not local correlations are discussed. In the case of
pair interactions, the classes of admissible interactions in [4] and in this paper
are different. In [4], a convexity condition is posed, depending solely on the ad-
ditional interaction potential where our conditions depend on both Q and h. The
characterisation of the limiting measure is different, too.

In [5], a large deviations principle has been shown for interacting particle systems
of the type (1.2) in Rd, d ≥ 1 and without specification of the repulsion behavior.

The next theorem states the local universality in the bulk. We use the notion of
universality by Bourgade, Erdős, Schlein, Yau, Yin et al. (see e.g. [9] and the references
therein). Let G be the Gaussian potential G(t) := x2 and recall that the corresponding
limiting measure µQ,β is the semicircle distribution (with a certain variance depending
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Particle systems with repulsion exponent β

on β). Recall that under mild assumptions on Q, there is a measure µQ,β of compact
support which is the weak limit of the first correlation measure of PN,Q,β. Consider the
scaled correlation functions

1

µhQ,β(a)k
ρh,kN,Q,β

(
a+

t1
NµhQ,β(a)

, . . . , a+
tk

NµhQ,β(a)

)
, (1.4)

where a is a point with µhQ,β(a) > 0 and t1, . . . , tk are contained in an N -independent
compact interval. Under this scaling, the local density around a will be asymptotically
one, in particular independent of a. For N → ∞, h = 0 and Q = G, the limit of (1.4)
exists and has been described in terms of a stochastic process in [14]. As for general β
no nice formula for this limit is known, we state the following theorem as universality
result, comparing the local correlations of PhN,Q,β with those of the Gaussian β-Ensemble
PN,G,β.

Theorem 1.3. Let h and Q satisfy the assumptions of Theorem 1.1. Let 0 < ξ ≤ 1/2 and
set sN := N−1+ξ. Then for k = 1, 2, . . . , we have for any a in the interior of the support
of µhQ,β , any a′ in the interior of the support of the semicircle law µG,β and any smooth

function f : Rk −→ R with compact support

lim
N→∞

∫
f(t1, . . . , tk)

[∫ a+sN

a−sN

1

µhQ,β(a)k
ρh,kN,Q,β

(
u+

t1
NµhQ,β(a)

, . . . , u+
tk

NµhQ,β(a)

)
du

2sN

−
∫ a′+sN

a′−sN

1

µG,β(a′)k
ρkN,G,β

(
u+

t1
NµG,β(a′)

, . . . , u+
tk

NµG,β(a′)

)
du

2sN

]
dt1 . . . dtk

= 0.

Remark 1.4.

• If the inner integrations were not present, the convergence in Theorem 1.3 would
be vague convergence of the scaled correlation measures. Here an additional
small (uniform) average around the points a and a′ is performed.

• If h is positive semi-definite, then αh in Theorem 1.3 may be explicitly chosen as
αh = supt∈R−h′′(t).

• The choice of the Gaussian β-Ensemble PN,G,β is just for definiteness, in fact any
other ensemble belonging to the same universality class could be chosen. So far,
these are known to be basically all PN,Q,β with the same β and real analytic Q

which leads to a limiting measure µQ,β of connected support [3].

These results should be compared to those of [10]. There we could show for β = 2

under the same conditions on Q and h a much stronger type of convergence as in
Theorem 1.3. We proved in [10]

lim
N→∞

1

µhQ,β=2(a)k
ρh,kN,Q,β=2

(
a+

t1
NµhQ,β=2(a)

, . . . , a+
tk

NµhQ,β=2(a)

)

= det

[
sin (π(ti − tj))
π(ti − tj)

]
1≤i,j≤k

uniformly in t1, . . . , tk from any compact subset of Rk and uniformly in the point a from
any compact proper subset of the support of µhQ,β=2. This locally uniform convergence
of the marginal densities was inherited from strong results on universality of unitary
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Particle systems with repulsion exponent β

invariant (i.e. β = 2) ensembles (cf. [11]). In order to apply these results, we developed
a method to express the correlation functions of the model PhN,Q,β=2 as a probabilistic
mixture of unitary invariant ensembles with potential V +f/N , where V was fixed and f
was random. However, this representation was only possible for negative semi-definite
h and an argument involving complex analysis had to be used to extend the universality
for more general h.

So far, the local relaxation flow approach due to Erdős, Schlein and Yau (refined
by others) [7] and applied to β-Ensembles by Bourgade, Erdős and Yau [2, 3] is the
only method for showing bulk universality for general β-Ensembles. A remark on some
crucial points of this method is included in Section 4. Their approach actually addresses
universality of gap distributions which implies the weaker form of universality of the
correlation measures as stated in Theorem 1.3. As we use their method, we obtain
the same form of convergence. If other sufficiently general universality results on β-
Ensembles yielding stronger types of convergence were available, the method of [10]
could be used to prove Theorem 1.3 with stronger forms of convergence. One advantage
of the local relaxation flow approach is the possibility to compare local statistics of
eigenvalue ensembles and other, not necessary spectral ensembles, directly. This allows
us to give a short proof of Theorem 1.3.

Theorems 1.1 and 1.3 rely on comparison with a β-Ensemble which has the same
global asymptotics. This ensemble is constructed in Section 2. Section 3 contains the
proof of Theorem 1.3 via the local relaxation flow approach. In Section 4, we give a
short proof of Theorem 1.1.

2 The Associated Invariant Ensemble

The main idea for the analysis of PhN,Q,β is to find a β-Ensemble having the same
global asymptotics. In this short section we review the determination of the limiting
measure for our particle system from [10] and use this to construct an ensemble of
eigenvalues with the same global and local behaviour.

Let β > 0, h be a continuous even function, Q a strictly convex even function and
assume that

PhN,Q,β(x) :=
1

ZhN,Q,β

∏
1≤i<j≤N

|xi − xj |β e−N
∑N
j=1Q(xj)−

∑
i<j h(xi−xj), (2.1)

defines the density of a probability measure on RN , where

ZhN,Q,β :=

∫
RN

∏
1≤i<j≤N

|xi − xj |β e−N
∑N
j=1Q(xj)−

∑
i<j h(xi−xj)dx

denotes the normalizing constant. We will use the notation

fµ(s) :=

∫
f(t− s)dµ(t), fµµ :=

∫ ∫
f(t− s)dµ(t)dν(s) (2.2)

for a probability measure µ and an even function f : R −→ R of sufficient integrability.
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Particle systems with repulsion exponent β

Using notation (2.2), we make the Hoeffding type decomposition∑
i<j

h(xi − xj)

= −N
2

2
hµµ −

N

2
h(0) +N

N∑
j=1

hµ(xj) +
1

2

( N∑
i,j=1

h(xi − xj)− [hµ(xi) + hµ(xj)− hµµ]
)

= −N
2

2
hµµ −

N

2
h(0) +N

N∑
j=1

hµ(xj)− U(x), where

U(x) := −1

2

( N∑
i,j=1

h(xi − xj)− [hµ(xi) + hµ(xj)− hµµ]
)
. (2.3)

Now we can rewrite PhN,Q,β as

PhN,Q,β(x) =
1

ZN,Vµ,β,U

∏
1≤i<j≤N

|xi − xj |β e−N
∑N
j=1 Vµ(xj)+U(x), (2.4)

where we defined the external field

Vµ(t) := Q(t) + hµ(t)

and absorbed the constant exp{−(N2/2)hµµ− (N/2)h(0)} into the new normalizing con-
stant ZN,Vµ,β,U .

Recall that the unique minimizer of the functional

IV,β(µ) :=

∫
V (t)dµ(t) +

β

2

∫ ∫
log |s− t|−1 dµ(s)dµ(t)

is called equilibrium measure to the external field V (and β > 0). In [10] it has been
shown that, provided Q and h are twice differentiable, h is bounded and h′′ ≥ −αQ,
there is a measure µ such that µ is the equilibrium measure to Vµ. The uniqueness of
such a µ follows (for αQ large enough) from the convergence of ρh,1N,Q,β towards µ. This

measure is denoted µhQ,β in Theorem 1.1, but for brevity we will simply write µ instead

of µhQ,β and skip the indices µ in (2.4).
We note in passing that the external field V = Q + hµ is convex (due to h′′ ≥ −αQ),

even and real-analytic.
We will often use representation (2.4). The proofs of Theorems 1.1 and 1.3 rely on

comparison of PhN,Q,β with the β-Ensemble

PN,V,β(x) =
1

ZN,V,β

∏
1≤i<j≤N

|xi − xj |β e−N
∑N
j=1 V (xj). (2.5)

3 Proof of Theorem 1.3

In this section we use the local relaxation flow approach developed by Erdős, Yau,
Schlein et. al. to establish universality of the local bulk correlations. First we introduce
some notation from [2].

Let k be fixed. Let G : Rk −→ R be a smooth function with compact support and
m = (m1, . . . ,mk) with mj being positive integers. Define

Gi,m(x) := G(N(xi − xi+m1), . . . , N(xi+mk−1
− xi+mk)).
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Particle systems with repulsion exponent β

The Dirichlet form of a smooth test function f : RN −→ R w.r.t. a probability measure
dω on RN is defined as

Dω(f) :=
1

2N

N∑
j=1

∫ (
∂xjf

)2
dω.

Let f be a probability density function w.r.t. dω. The (relative) entropy of f w.r.t. dω is
defined as

Sω(f) :=

∫
f log fdω.

We will use the following general theorem.

Proposition 3.1. [2, Lemma 5.9] Let G : Rk −→ R be bounded and of compact
support. Let dω be a probability measure on {x : x1 < x2 < · · · < xN} ⊂ RN given
by

dω =
1

Z
e−βNĤ(x)dx, Ĥ(x) = H0(x)− 1

N

∑
i<j

log |xj − xi|

with the property that ∇2H0 ≥ τ−1 holds for some positive constant τ . Let qdω be
another probability measure with smooth density q. Let J ⊂ {1, 2, . . . , N −mk − 1} be a
set of indices. Then for any ε1 > 0 we have∣∣∣∣∣ 1

|J |
∑
i∈J

∫
Gi,m qdω −

1

|J |
∑
i∈J

∫
Gi,mdω

∣∣∣∣∣ ≤ C
√
Nε1

Dω(
√
q)τ

|J |
+ C

√
Sω(q)e−cN

ε1
.

In our application we will choose dω = PN,V,β and q = (ZN,V,β/ZN,V,β,U ) exp{U}.
Formally, we should replace V by V/β. However, for notational convenience we will omit
this trivial scaling. If αQ is large enough, then V is strongly convex, hence τ = 1/αV .
By the symmetry of PhN,Q,β and PN,V,β , it is equivalent to restrict the measure to the
simplex {x : x1 < x2 < · · · < xN} and multiply by N ! . From [9, Theorem 2.3] we have
that

Sω(q) ≤ CDω(
√
q).

It is thus sufficient to prove that Dω(
√
q) is bounded in N as J will be chosen such that

|J | ∼ N , in order to identify the bulk correlations.

Remark 3.2 (On the local relaxation flow approach). To briefly explain the essence of
this method due to Erdős, Schlein, Yau and others (see e.g. [9] for references and a
complete review), let us consider two measures as in Proposition 3.1, dω and qdω and
their statistics

∫
gdω and

∫
g qdω for some test function g. Assume that one can define

a Markov process on RN in terms of the Dirichlet form Dω (or the formal generator
LN := 1

2N∆ − 1
2 (∇Ĥ)∇), having dω as stationary distribution. Assume that the process

has the initial distribution qdω and denote the evolution of the density w.r.t. dω by
(ft)t≥0, f0 = q, f∞ = 1. Then one can write∫

g qdω −
∫
gdω =

( ∫
g qdω −

∫
g ftdω

)
+
( ∫

g ftdω −
∫
gdω

)
,

which corresponds to running the process up to time t. If the process is ergodic and
the time t is large enough,

∫
g ftdω will be close to the equilibrium

∫
g dω. If this t is
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Particle systems with repulsion exponent β

still “small”, i.e. the convergence to the stationary distribution is fast, then the distance
between

∫
g qdω and

∫
g ftdω should be not too big. These distances are measured in

terms of Dirichlet form and entropy of dω. The estimates are due to the Bakry-Emery
method which yields ergodicity or relaxation making use of the strict convexity of the
Hamiltonian, i.e. of the bound ∇2H0 ≥ τ−1. It turns out that the constant τ is the time
scale for the relaxation to equilibrium, meaning that e.g. Sω(ft) ≤ e−t/τSω(f0). Here we
tacitly used that the logarithmic part of the Hamiltonian Ĥ is convex, therefore does not
increase the relaxation time. However, one crucial observation is that from the trivial
bound

〈v,∇2Ĥ(x)v〉 ≥ 1

τ
‖v‖2 +

1

N

∑
i<j

(vi − vj)2

(xi − xj)2

one can infer that the relaxation is much faster in the directions (vi − vj) provided that
xi and xj are close. Indeed, the mean distance between neighboring eigenvalues is of
order 1/N , hence the convexity bound for the Hamiltonian should be locally of order N ,
therefore yielding a time to the local equilibrium of order 1/N whereas the time to the
global equilibrium is of order 1. This informal reasoning can be captured by choosing
test functions like Gi,m which depend only on eigenvalue differences in the local scaling
(i.e. multiplied by N ) and vanish whenever two eigenvalues are not close to each other.
By exploiting these features of Gi,m and some estimates, one arrives at Proposition 3.1.
For arbitrary test functions g, one would get basically the same estimate except for the
quantity |J | ∼ N which divides Dω(

√
q).

One problem with this idea is that the existence of the process associated to the
Dirichlet form is not clear for β ∈ (0, 1). For β ≥ 1, the repulsion is strong enough to
prevent collision between the eigenvalues but for β < 1 the probability of explosion is
positive. This problem was overcome in [6] by smoothing the singular logarithmic term
and using the approach above for the corresponding process.

In our application, we can effectively estimate the Dirichlet form. This is due to
the fact that dω and qdω have the same global limit (cf. Theorem 1.1) and we have
concentration of U under dω = PN,V,β (cf. Proposition 3.4 below).

Eventually we will prove the following key proposition.

Proposition 3.3. Let DN,V,β denote the Dirichlet form w.r.t. PN,V,β and
q = (ZN,V,β/ZN,V,β,U ) exp{U}. Then there is a constant C such that we have for αQ large
enough

DN,V,β(
√
q) ≤ C for all N.

One ingredient to the proof of Proposition 3.3 is the following identity from [10],
which can be obtained using Fourier inversion. We have

U(x) = − 1

2
√

2π

∫ ∣∣∣◦uN (t, x)
∣∣∣2 ĥ(t)dt, where (3.1)

◦
uN (t, x) :=

N∑
j=1

cos(txj)−N
∫

cos(ts)dµ(s) +
√
−1

N∑
j=1

sin(txj),

ĥ(t) :=
1√
2π

∫
R

e−itsh(s)ds.

A trivial but useful observation from (2.4) and (2.5) is

EhN,Q,βf(x) = (ZN,V,β/ZN,V,β,U )EN,V,βf(x)eU(x).

The next proposition establishes concentration of U .
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Proposition 3.4. For each λ > 0 there are αh(λ) > 0, C1(λ), C2(λ) such that for all N

0 < C1(λ) < EN,V,β exp{λU(x)} ≤ C2(λ) <∞, if αQ ≥ αh(λ).

In particular, we have for αQ large enough for all N

0 < C1(1) ≤ ZN,V,β,U/ZN,V,β ≤ C2(1) <∞.

The proof is based on identity (3.1) and the following concentration of measure
inequality for linear statistics. Details can be found in [10]. By µQ,β we will denote
the equilibrium measure to the external field Q and β.

Lemma 3.5. Let Q be a real analytic external field with Q′′ ≥ c > 0. Then for any
Lipschitz function f whose third derivative is bounded on a neighborhood of supp(µQ,β),
we have for any ε > 0

EN,Q,β exp
{
ε
( N∑
j=1

f(xj)−N
∫
f(t)dµQ,β(t)

)}
≤ exp

{ε2 |f |2L
2c

+ εC(‖f‖∞ + ‖f (3)‖∞)
}
,

where |f |L denotes the Lipschitz constant of f on R and ‖f‖∞ (‖f (3)‖∞) denotes the
bound of (the third derivative of) f on the neighborhood of supp(µQ,β). Here the con-
stant C does not depend on N or f .

The lemma follows from an application of a basic logarithmic Sobolev inequality due
to the strict convexity of the external field Q, to the Lipschitz function

∑N
j=1 f(xj) (see

e.g. [1]) and a rate of convergence result from [13] which allows to replace the exact
mean by its limit as N →∞.

Proof of Proposition 3.3. The ratio ZN,V,β/ZN,V,β,U is bounded by Proposition 3.4 and
therefore negligible. We have by Hölder’s inequality for ε > 0

DN,V,β(
√
q) ≤ C 1

2N

N∑
l=1

EN,V,β
(
∂xl exp{1

2
U(x)}

)2
= C

1

8N

N∑
l=1

EN,V,β exp{U(x)}
(
∂xlU(x)

)2
≤ C

(
EN,V,β exp{(1 + ε)U(x)}

)1/(1+ε) 1

8N

N∑
l=1

(
EN,V,β

∣∣∂xlU(x)
∣∣2(ε+1)/ε)ε/(ε+1)

.

Again by Proposition 3.4,
(
EN,V,β exp{(1 + ε)U(x)}

)1/(1+ε)
is bounded in N . In order to

bound the second term, recall that

U(x) = − 1

2
√

2π

∫ (∣∣ N∑
j=1

cos(txj)−N
∫

cos(ts)dµ(s)
∣∣2 + |

N∑
j=1

sin(txj)|2
)
ĥ(t)dt.

In the following we only treat the cosine term, the term involving the sine can be esti-
mated analogously. We have

∣∣∂xl ∫ ∣∣ N∑
j=1

cos(txj)−N
∫

cos(ts)dµ(s)
∣∣2ĥ(t)dt

∣∣2(ε+1)/ε

=
∣∣2 ∫ ( N∑

j=1

cos(txj)−N
∫

cos(ts)dµ(s)
)
t sin(txl)ĥ(t)dt

∣∣2(ε+1)/ε

≤ C
∫ ∣∣ N∑

j=1

cos(txj)−N
∫

cos(ts)dµ(s)
∣∣2(ε+1)/ε |t|2(ε+1)/ε ∣∣ĥ(t)

∣∣dt (3.2)
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where the last inequality is derived by first applying the triangle inequality and then
using Jensen’s inequality. Lemma 3.5 gives that the absolute moments of

∑
f(xj) −

N
∫
fdµ are bounded by those of a certain Gaussian distribution with mean of order

‖f‖∞ + ‖f (3)‖∞ and variance of order |f |2L (times a factor of order |f |L). We thus get

EN,V,β
∣∣ N∑
j=1

cos(txj)−N
∫

cos(ts)dµ(s)
∣∣2(ε+1)/ε ≤ p(t)

for some polynomial p. By the strong decay of ĥ, the expectation of (3.2) is bounded in
N . This gives the claimed bound.

Proof of Theorem 1.3. From Propositions 3.1 and 3.3 we have that the statistics
1
|J|
∑
i∈J E

h
N,Q,βGi,m and 1

|J|
∑
i∈J EN,V,βGi,m coincide in the limit N → ∞, as long as

limN→∞
Nε1

|J| = 0 for some ε1 > 0. It is a standard argument ([8, Section 7]) to infer

from this that also the correlation measures of PhN,Q,β and PN,V,β coincide in the sense
of Theorem 1.3. To give the idea of this argument, note that by a simple rescaling we
have the identity∫

f(t1, . . . , tk)

∫ a+sN

a−sN
ρh,kN,Q,β

(
u+

t1
Nµ(a)

, . . . , u+
tk

Nµ(a)

) du

2sN
dt1 . . . dtk

= (1 + o(1))

∫ a+sN

a−sN

∫ ∑
i1 6=i2 6=···6=ik

f̃(N(xi1 − u), N(xi1 − xi2), . . . , N(xik−1
− xik))qdω

du

2sN
,

(3.3)

where we use the notation from Proposition 3.1 and

f̃(t1, . . . , tk) := f(µ(a)t1, µ(a)(t2 − t1), . . . , µ(a)(tk − tk−1)).

Symmetrizing and rearranging the summation, (3.3) can be written as

(1 + o(1))

∫ a+sN

a−sN

∫ ∑
m∈Sk

N∑
i=1

Yi,m(u, x)qdω
du

2sN
, (3.4)

where Sk denotes the set of (k − 1)-tuples of increasing positive integers,
m = (m2,m3, . . . ,mk) and

Yi,m(u, x) := f̃(N(xi − u), N(xi − xm2), . . . , N(xi − xmk)).

If i + mk > N , then we set Yi,m := 0. Now, one can show that as N → ∞, (3.4) can be

replaced by
∫ ∑

m∈Sk
1
N

∑N
i=1Gi,mqdω, where G(t2, . . . , tk) :=

∫
R
f̃(u, t2, . . . , tk)du. Then

Proposition 3.1 can be applied for each fixed m. For details see [8, Section 7].
It remains to see that the limits of the correlation measures of PN,V,β are indeed

universal and in particular coincide with the Gaussian ones. This is the universality
result [2, Corollary 2.2] which precisely states that the correlation measures of PN,Q1,β

and PN,Q2,β have the same limit (in the sense of Theorem 1.3) for any real analytic and
strongly convex Q1, Q2 with αQ1

, αQ2
> 0.

4 Proof of Theorem 1.1

Proof of Theorem 1.1. Recall that µ was determined such that µ is the equilibrium mea-
sure to V = Q+ hµ and β. It remains to show that µ is uniquely determined by this re-
quirement and indeed the limit of the first correlation function. We consider a Lipschitz
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function f : R −→ R with three continuous derivatives and estimate for any ε > 0

PhN,Q,β(|N−1
N∑
j=1

f(xj)−
∫
fdµ| > ε) =

ZN,V,β
ZN,V,β,U

EN,V,βe
U(x)

1{|N−1
∑N
j=1 f(xj)−

∫
fdµ|>ε}.

By Hölder’s inequality and Proposition 3.4, we have

PhN,Q,β(|N−1
N∑
j=1

f(xj)−
∫
fdµ| > ε) ≤ C

(
PN,V,β(|N−1

N∑
j=1

f(xj)−
∫
fdµ| > ε)

)c
for some c, C > 0. By Lemma 3.5, this last probability converges for any ε > 0 to 0

exponentially fast as N →∞. We conclude that

lim
N→∞

EhN,Q,β |N−1
N∑
j=1

f(xj)−
∫
fdµ| = 0 and hence lim

N→∞
EhN,Q,βN

−1
N∑
j=1

f(xj) =

∫
fdµ.

As convergence for smooth Lipschitz functions determines weak convergence, the weak
convergence of the first correlation measure follows. As the limit of weak convergence
is unique, this shows uniqueness of µ. It is known that the real-analyticity and convexity
of V ensures the existence and positivity of the continuous density of µ (see e.g. [12]).
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