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Abstract

We consider a well-known family of SDEs with irregular drifts and the correspondent
zero noise limits. Using (mollified) local times, we show which trajectories are se-
lected. The approach is completely probabilistic and relies on elementary stochastic
calculus only.
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1 Introduction and results

For fixed γ ∈ [0, 1), let us consider the following ODE, in integral form:

x (t) =

∫ t

0

sgn(x (s)) |x (s)|γ ds, t ≥ 0,

where sgn (x) = I{x>0}− I{x<0}. It is well known that there are infinitely many solutions
and they are all of the form ±Hγ (t− t0), for some t0 ≥ 0, where

Hγ (s) = [(1− γ)s+]
1

1−γ ,

Given ε > 0, let us consider a random perturbation of the ODE above:{
dXε

t = sgn(Xε
t ) |Xε

t |
γ
dt+ εdWt

Xε
0 = 0.

(1.1)

Weak existence and uniqueness in law are then guaranteed by Girsanov theorem and
Novikov condition: indeed, it follows from the fact that the random variable K

∫ T
0
|Ws|2γ

is exponentially integrable for any T,K > 0. Therefore, one can consider a weak solu-

tion Xε defined on some space
(

Ω,A,P, (F)0≤t≤T , (Wt)0≤t≤T

)
and let µε = µεγ be the

law of Xε, which is a probability measure on the Borel sets of C0[0, T ], equivalent to the
Wiener measure.

It is also known that the family of measures
(
µεγ
)

0<ε≤1
is tight: indeed, in the case

γ = 0, it follows from the estimate, with C = 1,

|Xε
t −Xε

s | ≤ C |t− s|+ ε |Wt −Ws| .

In general, estimating the drift term |x|γ ≤ 1 + |x|, one obtain that, with arbitrary high
probability, Xε is uniformly bounded on the interval [0, T ], and so the estimate above
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Zero noise limits using local times

holds, for some C > 0. By tightness, therefore, one can consider some sequence εn → 0

such that µεn weakly converges to some probability measure µ (depending on γ).
To characterize µ is the prototype of zero noise problems, which appear in many

contexts: for brevity, here we refer to the extended overview in Chapter 1, Section
5 in [9]. Among the results already mentioned there, we remark that the work [1]
discusses a zero noise limit for some linear PDEs of transport type related to the family
of ODEs introduced above. For more recent developments, not included in [9], we
mention the forthcoming article [7], where a two-dimensional zero noise problem with
discontinuous drift is solved; [4] and [5], where zero noise problems for perturbed ODEs
with respectively continuous and measurable drifts are discussed. After the submission
of this note, the author was informed that the problem introduced above was being
studied in [6], from a similar point of view, but with completely different tools. In
particular, the zero noise problem in higher dimensions is still largely open.

In the context of perturbed one-dimensional SDEs, the most general results are still
those in [2], which rely on explicit estimates for exit times, obtained by solving related
PDEs. The results obtained there show that, in the particular case introduced above, µ
is concentrated only on the trajectories ±Hγ , which leave immediately the origin.

The aim of this short paper is to provide an entirely probabilistic proof of a concen-
tration result for µ, in this special case as strong as that obtainable by applying the
methods in [2], but relying only on applications of Itô(-Tanaka) formula and elementary
estimates for stochastic integrals. In fact, local times appear only in the proof for the
special case γ = 0, but the general case is a technical development of the simple idea
exploited there, after a suitable mollification procedure.

Before stating the main results, we remark that the family of examples introduced
above is well studied in the literature and much more can already be said about the
limit probability µ. In [10] and [11], large deviations estimates are proved, by com-
puting explicitly the density of Xε

t and expanding it in terms of eigenfunctions of a
Schrödinger operator (there are currently many efforts to extend the classical Wentzell-
Freidlin large deviations theory in the case of irregular coefficients: see e.g. [3] and the
monograph [8]). Another approach is presented in [12], where a general setting for
small noise problems is introduced, using Malliavin calculus both to prove strong ex-
istence and compactness of families of strong solutions for the SDE. We remark that
computations involving Itô-Tanaka formulas and local times appear also in these works,
but they are not used to investigate the concentration properties of µ. In the proof of
Proposition 3 in [10], local times appear when manipulating the expression provided by
Girsanov theorem, while in [12] they appear in Example 2.11, in the expression for the
Malliavin derivative of a solution Xε.

The main result of this paper is the following theorem, which implies as a corollary
the concentration result for µ.

Theorem 1.1. Given T > 0, there exist positive numbers t̄, h, α, depending only on
γ, T, ε, infinitesimal as ε → 0 (and the other parameters are fixed) such that, given any
weak solution (Xε

t )0≤t≤T of (1.1), with probability greater than 1− α, it holds

• either for any t̄ ≤ t ≤ T , |Xε
t −Hγ (t)| ≤ h

• or for any t̄ ≤ t ≤ T , |Xε
t +Hγ (t)| ≤ h.

The main feature of this result, together with its proof, is that it provides a rigorous
deduction of the following intuition, which is not evident at all in the classical approach
in [2]: as ε → 0, the trajectory Xε (ω) is forced by the noise to follow closely one of the
two extremal trajectories ±Hγ , and this selection happens in a small time interval [0, t̄].
Moreover, the quantities t̄, h, α can be computed explicitly.
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Zero noise limits using local times

We deduce immediately the following existence and characterization result for the
zero noise limit probability µγ .

Corollary 1.2. The weak limit µ = limε→0 µ
ε exists and is given by

µ =
1

2
δHγ +

1

2
δ−Hγ . (1.2)

Proof. Since (µε)ε>0 is tight, it is enough to consider a convergent subsequence µεn and
prove that its limit is given by the expression above.

For fixed t, η, β > 0, it holds

lim
ε→0

µε {ω ∈ C0[0, T ] : ||ω (t)| −Hγ (t)| > η} ≤ β,

since, for ε is small enough, it holds t̄ ≤ t, h ≤ η and α < β where t̄, h, α are those
provided by the theorem above.

By lower semicontinuity of weak convergence of measures on open sets, it holds
therefore

µ (ω ∈ C0[0, T ] : ||ω (t)| −Hγ (t)| > η) = 0,

which entails that µ is a probability measure concentrated at most on ±Hγ , being t, η

arbitrary.
The simmetry of the problem allows us to conclude that µ is given by (1.2), since

every µε is invariant under the transformation ω 7→ −ω.

2 Proof of Theorem 1.1

2.1 Case γ = 0

Given ε > 0 and a weak solution Xε, we write Itô-Tanaka formula for the local time
at 0, with respect to the semimartingale Xε (Theorem 1.2, Chapter VI in [13]), i.e.

|Xε
t | =

∫ t

0

[sgn (Xε
s )]

2
ds+ ε

∫ t

0

sgn (Xε
s ) dWs + L0 [Xε]t ,

for any t ≥ 0. Since sgn (x)
2

= I{x 6=0} and the local time process L0 [Xε]t is non negative,
we obtain

|Xε
t | ≥

∫ t

0

I{Xεs 6=0}ds+ ε

∫ t

0

sgn (Xε
s ) dWs.

As already remarked, by Girsanov theorem, the law of (Xε)0≤t≤T is equivalent to the
Wiener measure and therefore

Xε
t (ω) 6= 0 P⊗L -a.e. (ω, t) ∈ Ω× [0, T ],

where L is the Lebesgue measure on the interval: indeed the same holds true for a
Wiener process in place ofXε. It follows that, almost surely, for 0 ≤ t ≤ T ,

∫ t
0
I{Xεs 6=0}ds =

t and therefore

|Xε
t | ≥ t− ε

∣∣∣∣∫ t

0

sgn (Xε
s ) dWs

∣∣∣∣ . (2.1)

On the other hand, for any t ≥ 0, directly from (1.1) written in integral form, we deduce
that

|Xε
t | ≤ t+ ε |Wt| . (2.2)

The estimates (2.1) and (2.2) above imply that, given η > 0, the event{
sup

0≤t≤T

∣∣ |Xε
t | − t

∣∣ > η

}
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is contained in the union{
sup

0≤t≤T

∣∣ ∫ t

0

sgn (Xε
s ) dWs

∣∣ > η

ε

}
∪
{

sup
0≤t≤T

|Wt| >
η

ε

}
.

On the other hand, Doob’s inequality and Itô’s isometry assure that

P

(
sup

0≤t≤T

∣∣ ∫ t

0

sgn (Xε
s ) dWs

∣∣ > η

ε

)
+ P

(
sup

0≤t≤T
|Wt| >

η

ε

)
≤ 2ε2 T

η2
.

In order to compute t̄, h, α as required by the theorem, we fix any a, with 0 < a < 1

and put η = εa above, so that, with probability greater than 1− α, where α = 2ε2(1−a)T ,
it holds

sup
0≤t≤T

||Xε
t | − t| ≤ εa.

Then, we put h = εa and t̄ = 2h so that, in the event above, it holds for any t̄ ≤ t ≤ T ,

|Xε
t | ≥ t− h ≥ t̄− h = h > 0.

and in particular Xε
t does not change sign. Therefore,

• either for any t̄ ≤ t ≤ T , |Xε
t | = Xε

t and |Xε
t − t| ≤ h,

• or for any t̄ ≤ t ≤ T , |Xε
t | = −Xε

t and |Xε
t + t| ≤ h.

2.2 Case γ ∈ (0, 1)

The main difficulty in this case is due to the fact that the drift term is infinitesimal
in zero. Indeed, if we repeat the same passages as above, we obtain that

|Xε
t | =

∫ t

0

|Xε
s |
γ
ds+ ε

∫ t

0

sgn (Xε
s ) dWs + L0 [Xε]t . (2.3)

If we simply drop the local time we cannot conclude that |Xε
t | grows enough and the

solution leaves the origin. We are going to see that the local time term contains exactly
the information that we need to conclude that the solution, with high probability, moves
away from zero, as expressed in inequality (2.6) below. Since the drift term is strong
enough to drag the solution away from zero in a finite time, we conclude easily.

To extract information from the local time term, we mollify the map x 7→ |x| and
define

x 7→ |x|δ =
1

δ

∫ δ

−δ
ρ (y/δ) |x− y| dy,

where ρ (x) ∈ C∞ (R) is non negative, supported in ]−1, 1[ with ρ (x) ≥ 3/4 for x ∈ [− 1
2 ,

1
2 ]

and
∫ 1

−1
ρ (x) dx = 1.

The positive map defined in this way is smooth and for any x ∈ R, it holds

||x| − |x|δ| ≤ δ, |x|
′
δ ≤ 1 and |x|′′δ ≥ 0.

Moreover, the assumption ρ (x) ≥ 3/4 for x ∈ [− 1
2 ,

1
2 ] entails that, when |x| ≥ δ/2, it

holds |x|′δ sgn (x) ≥ 1/2 (while for |x| ≥ δ, it holds |x|′δ sgn (x) ≥ 1). Finally, for |x| ≤ δ/2,
|x|′′δ ≥ 3/(4δ).

We apply Itô formula to |Xε
t |δ so that, for t ≥ 0, it holds

|Xε
t |δ = |0|δ +

∫ t

0

|Xε
s |
′
δ sgn (Xε

s ) |Xε
s |
γ

+ ε

∫ t

0

|Xε
s |
′
δ dWs +

1

2
ε2

∫ t

0

|Xε
s |
′′
δ ds. (2.4)

Let us state a key estimate in form of a lemma.
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Lemma 2.1. Fix a > 2γ/ (1 + γ). Then there are positive numbers t̄, δ, depending only
on γ, a, ε, infinitesimal as ε → 0 (and the other parameters are fixed) such that, a.s. on
the event {

sup
0≤t≤T

ε

∣∣∣∣∫ t

0

|Xε
s |
′
δ dWs

∣∣∣∣ ≤ εa} , (2.5)

for every t, with t̄ ≤ t ≤ T , it holds |Xε
t |δ ≥ 2δ + εa and |Xε

t | ≥ δ.

Proof. Using the estimates for |·|δ and its derivatives, from (2.4) we obtain that

|Xε
t |δ ≥

∫ t

0

[
I{|Xεs |≥δ/2}

δγ

2γ+1
+ I{|Xεs |<δ/2}

(
3ε2

8δ
− δγ

2γ

)]
ds+ ε

∫ t

0

|Xε
s |
′
δ dWs.

We put δ = c1ε
2/(1+γ), where c1 = 2(γ−2)/(1+γ) is a positive number depending only

on γ, such that (
3ε2

8δ
− δγ

2γ

)
=

δγ

2γ+1
.

Thanks to this choice, for any t ≥ 0, it holds

|Xε
t |δ ≥

δγ

2γ+1
t− ε

∣∣∣∣∫ t

0

|Xε
s |
′
δ dWs

∣∣∣∣ .
In the event (2.5), it entails that, for 0 ≤ t ≤ T ,

|Xε
t |δ ≥

δγ

2γ+1
t− εa.

We put t̄ = 2γ+1 (2δ + 2εa) /δγ , which is immediately seen to be infinitesimal as ε→ 0,
since γ < 1 and a > 2γ/(1 + γ). With this choice the inequality above entails that, for
any t̄ ≤ t ≤ T ,

|Xε
t |δ ≥ 2δ + εa,

which leads to the thesis, since |Xε
t | ≥ |Xε

t |δ − δ.

In order to conclude the proof of Theorem 1.1, let us fix a ∈]2γ/(1 +γ), 1[, so that the
lemma just proved provides some t̄, δ.

Applying Itô’s formula to |Xε
t |δ, starting from t̄, we obtain

|Xε
t |δ ≥ |X

ε
t̄ |δ +

∫ t

t̄

|Xε
s |
′
δ sgn (Xε

s ) |Xε
s |
γ − ε

∣∣∣∣∫ t

t̄

|Xε
s |
′
δ dWs

∣∣∣∣ ,
since |x|′′δ ≥ 0. On the event (2.5), it holds therefore, for t̄ ≤ t ≤ T ,

|Xε
t | ≥ δ +

∫ t

t̄

|Xε
s |
′
δ sgn (Xε

s ) |Xε
s |
γ
ds,

where we used the fact that ||x|δ − |x|| ≤ δ and the estimate on
∣∣Xε

t̄

∣∣
δ

provided by
the lemma. But the lemma shows that also |Xε

t | ≥ δ, so that, as already remarked,
|Xε

t |
′
δ sgn (Xε

t ) ≥ 1 and therefore for t̄ ≤ t ≤ T ,

|Xε
t | ≥ δ +

∫ t

t̄

|Xε
s |
γ
ds. (2.6)

Lemma 2.2 below allows us to conclude that, in the event (2.5), a.s. it holds, for
t̄ ≤ t ≤ T ,

|Xε
t | ≥ Hγ (t−R (t̄, δ)) .
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where R (t̄, δ) is some (explicit) quantity depending also on γ, which is infinitesimal as
ε→ 0, so that the r.h.s. above converges uniformly in t ∈ [0, T ] to Hγ (t) as ε→ 0.

On the other hand, directly from (1.1), we obtain the estimate

|Xε
t | ≤

∫ t

0

|Xε
s |
γ
ds+ ε |Wt| ,

that, thanks to another application of Lemma 2.2, entails that on the event{
sup

0≤t≤T
ε |Wt| ≤ εa

}
(2.7)

it holds
|Xε

t | ≤ Hγ (t−R (0, εa)) .

Again, as ε → 0, R (0, εa) → 0 and therefore the r.h.s. above converges uniformly in
t ∈ [0, T ] to Hγ (t).

By applying Doob’s inequality and Itô’s isometry, we see that the intersection of the
events (2.5) and (2.7) has probability greater than 1− α, if we define α = 2Tε2(1−a). On
this intersection, it holds, for t̄ ≤ t ≤ T ,

||Xε
t | −H (t)| ≤ h,

where
h = max

0≤t≤T
{|Hγ (t)−Hγ (t−R (t̄, δ))| , |Hγ (t)−Hγ (t−R (0, εa))|}

which is easily seen to be infinitesimal, as ε→ 0.
On the other hand, we already know from Lemma 2.1 above that |Xε

t | ≥ δ 6= 0, for
t̄ ≤ t ≤ T and therefore we can conclude as in the proof for the γ = 0 case. Indeed, in
the intersection of the events (2.5) and (2.7), whose probability is greater than 1 − α,
almost surely,

• either for any t̄ ≤ t ≤ T , |Xε
t | = Xε

t and |Xε
t −Hγ (t)| ≤ h,

• or for any t̄ ≤ t ≤ T , |Xε
t | = −Xε

t and |Xε
t +Hγ (t)| ≤ h,

and the proof is completed. We are only left with the following comparison lemma
that was used above.

Lemma 2.2. Given 0 ≤ t̄ ≤ T , δ > 0 and a non-negative continuous function f on [t̄, T ],
such that for any t ∈ [t̄, T ],

f (t) ≥ δ +

∫ t

t̄

f (s)
γ
ds (respectively, ≤).

Then, for t ∈ [t̄, T ],
f (t) ≥ Hγ (t−R (t̄, δ)) (respectively, ≤).

where R (t̄, δ) = t̄− δ1+γ/(1− γ).

Proof. The term R (t̄, δ) is defined in such a way that t 7→ Hγ (t−R) is the solution of
the ODE,

x (t) = δ +

∫ t

t̄

x (s)
γ
ds, (t̄ ≤ t ≤ T ).

Moreover, Hγ (t−R) is continuously differentiable on [t̄, T ].
To prove the lemma, let R = R (t̄, δ) and set

D (t) = δ +

∫ t

t̄

f (s)
γ
ds−Hγ (t−R) ,
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which is continuously differentiable on [t̄, T ], with D (t̄) = 0 and derivative

D′ (t) = f (t)
γ − (Hγ)

′
(t−R) = f (t)

γ − (Hγ (t−R))
γ

by the remark above. Now, since x 7→ xγ is increasing for x > 0, from the hypothesis we
obtain that for t ∈ [t̄, T ], the condition D (t) ≥ 0 implies D′ (t) ≥ 0 and so we conclude
that D (t) ≥ 0 for t in this range. The other case is similar.
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