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Abstract

We consider a random walk in a fixed Z environment composed of two point types:
q-drifts (in which the probabiliy to move to the right is q, and 1 − q to the left) and
p-drifts, where 1

2
< q < p. We study the expected hitting time of a random walk at

N given the number of p-drifts in the interval [1, N − 1], and find that this time is
minimized asymptotically by equally spaced p-drifts.
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1 Introduction

Procaccia and Rosenthal [1] studied the maximal speed of a nearest neighbor ran-
dom walk in a fixed Z environment, consisting of points from two types. The first type
gives equal probability of moving left or right, and the second type, whose density is
bounded by λ, gives probability p to move to the right and 1 − p to the left, where
p > 1

2 . In the finite case, the placement of a given number of p-drifts on an interval
which minimizes the expected crossing time is calculated. They ask about extending
their results to environments on Z composed of two point types: q-drifts and p-drifts,
for 1

2 < q < p ≤ 1. The goal of our work is to do so for the finite environment. See [1]
for background and further related work.

Consider a nearest neighbor random walk on 0, 1, ..., N denoted by {Xn}∞n=0 with
reflection at the origin. We denote the transition law by ω : {0, 1, ..., N} → [0, 1]. More
formally this means that for all i ∈ {0, 1, ..., N}:

P (Xn+1 = i+ 1|Xn = i) = ω (i)

P (Xn+1 = i− 1|Xn = i) = 1− ω (i) .

The reflection at the origin means that ω (0) = 1.

First, we prove the following proposition concerning the expected hitting time at the
vertex N , in a similar way to some results in [2]:
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Proposition 1.1. For a walk with transition law ω starting at any point 0 ≤ x ≤ N , the
hitting time TN = min {n ≥ 0|Xn = N} satisfies:

Exω (TN ) = N − x+ 2

N−1∑
i=x

i∑
j=1

i∏
k=j

ρk,

where ρi =
1−ω(i)
ω(i) , and Exω (TN ) stands for the expected hitting time in the environ-

ment ω starting from the vertex x. In particular:

E0
ω (TN ) = N + 2

N−1∑
i=1

i∑
j=1

i∏
k=j

ρk.

The last proposition gives the following corollary:

Corollary 1.2. The expected hitting time from 0 to N is symmetric under reflection of
the environment, i.e., taking the environment ω′ : {0, 1, ..., N} → [0, 1] defined by:

ω′ (i) =

{
ω (N − i) 1 ≤ i ≤ N
0 i = 0

gives E0
ω′ (TN ) = E0

ω (TN ).

Next we turn to the case of an environment consisting of two types of vertices, q-
drifts (a vertex i for which ω (i) = q) and p-drifts (a vertex i for which ω (i) = p), for
some 1

2 < q < p ≤ 1. For a set L ⊆ {1, . . . , N} of size k = |L| we define the environment
ωL as:

∀0 ≤ x ≤ N ωL (x) =


1 x = 0

p x ∈ L
q x /∈ L ∪ {0}

.

In [1], the exact formula for E0
ω (TN ) was calculated for all choices of L and q = 1

2 ,
and for sufficiently large N (while keeping the drift density k

N constant) it is approx-
imately minimized by equaly spaced p-drifts. In this paper we extend this result for
q > 1

2 . For given N and k, we define an environment ωL(N,k) in which the p-drifts are
equally spaced (up to integer effects):

L (N, k) =
{⌊

i · N − 1

k

⌋
, 1 ≤ i ≤ k

}
and prove the following theorem:

Theorem 1.3. For every ε > 0 there exists n0 such that for every N > n0 and every set
L ⊆ {1, . . . , N}:

E0
ωL

(TN )

N
>
E0
ωL(N,k)

(TN )

N
− ε,

where k = |L|.

Finally, we consider the set of environments ωL(ak+1,k) for a ∈ N, and calculate

lim
k→∞

E0
ωL(ak+1,k)

(Tak+1)

ak+1 . In these calculations, as well as in the proof of Theorem 1.3, it

is convinient to use the notation α = 1−q
q and β = 1−p

p .
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Proposition 1.4. Let a ∈ N. Then:

lim
k→∞

E0
ωL(ak+1,k)

(Tak+1)

ak + 1
= 1 +

2

a
·

(
αa+1 − aα2 + (a− 1)α

(1− α)2
+

β (1− αa)2

(1− α)2 (1− βαa−1)

)
.

2 Proof of the main theorem

Proof of Proposition 1.1 . Let us define vx = Exω (TN ) for 0 ≤ x ≤ N . By conditioning on
the first step:

1. vN = 0

2. v0 = v1 + 1

3. vx = ω(x)vx+1 + (1− ω(x)) vx−1 + 1 1 ≤ x ≤ N − 1.

To solve these equations, define ax = vx − vx−1 (for 1 ≤ x ≤ N ) and bx = vx+1 − vx−1
(for 1 ≤ x ≤ N − 1). Then ∀x ∈ {1, . . . , N − 1}:

bx = ax + ax+1

ax = ω(x)bx + 1

a1 = −1.

Thus ax satisfies the relation ax+1 = ρxax−ρx−1, whose solution is ax = −2
x−1∑
j=1

x−1∏
k=j

ρk−

1, and thus:

vx =

N∑
i=x+1

(vi−1 − vi) + vN

=

N∑
i=x+1

(−ai) + vN

= N − x+ 2

N−1∑
i=x

i∑
j=1

i∏
k=j

ρk.

Finally, for x = 0:

v0 = N + 2

N−1∑
i=1

i∑
j=1

i∏
k=j

ρk,

since for i = 0 the inner sum is empty.

Definition 2.1. For N ∈ N denote:

SN =

N−1∑
i=1

i∑
j=1

i∏
k=j

ρk =

N−1∑
d=1

N−d∑
j=1

j+d−1∏
k=j

ρk.

In order to estimate SN , we compare it to a similar sum on a circle. We glue the
vertices 0 and N − 1, and then sum over subintervals of the circle ZN−1, rather then
summing over subinterval of the segment [1, N − 1].
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More formally, extend ρ such that ρk = ρk−N+1 for k ≥ N (also setting ρN to be equal
ρ1). Then consider the following sum:

S̃N =

N−1∑
d=1

N−1∑
j=1

j+d−1∏
k=j

ρk.

Note that both SN and S̃N depend on the environment ωL, so when necessary we
shall use the explicit notations SLN and S̃LN .

Proposition 2.2. There exists a constant C = C (α) such that for every environment
ωL: ∣∣∣S̃N − SN ∣∣∣ ≤ C (α) .

Proof. Since α = 1−q
q , β = 1−p

p , and 1
2 < q < p ≤ 1, 0 ≤ β < α < 1, we get:

∣∣∣S̃N − SN ∣∣∣ =

N−1∑
d=1

N−1∑
j=N−d+1

j+d−1∏
k=j

ρk

≤
N−1∑
d=1

dαd

≤
∞∑
d=1

dαd = C(α).

Definition 2.3. Let n(d)i be the number of p-drifts in the interval [i, i+ d− 1], i.e., n(d)i =

|[i, i+ d− 1] ∩ L| .

Since every drift appears in d intervals of length d,
N−1∑
i=1

n
(d)
i = dk, where k = |L|. In

addition,

S̃N =

N−1∑
d=1

N−1∑
i=1

(
β

α

)n(d)
i

· αd

=

N−1∑
d=1

σd,

where σd =
N−1∑
i=1

(
β
α

)n(d)
i · αd.

In the following claim we fix d, and see under which conditions σd is minimal. After

fixing d, σ depends only on the vector n(d) =
(
n
(d)
1 , ..., n

(d)
N−1

)
.

Definition 2.4. We say that a vector n = (n1, ..., nN−1) ∈ NN−1 is almost constant if
there exists a ∈ N such that ni ∈ {a, a+ 1} for every 1 ≤ i ≤ N − 1.

Claim 2.5. Consider σd (n) for n ∈ NN−1, under the restriction
N−1∑
i=1

ni = dk, and let

m ∈ NN−1 be an almost constant vector. Then m minimizes σd, i.e., for every n ∈ NN−1

such that
N−1∑
i=1

ni = dk, σd (m) ≤ σd (n).
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Proof. For convenience, we omit d from the notation, and always assume that the do-

main of σ is the set of vectors in NN−1 that satisfy the restriction
N−1∑
i=1

ni = dk.

We will first show that σ (n) achieves its minimum for some almost constant vector
n. Secondly, we show that the value of σ on all almost constant vectors is the same, and
this will complete the proof.

Let M ⊆ NN−1 be the set of vectors satisfying
N−1∑
l=1

nl = dk that minimize σ, and

assume by contradiction that M doesn’t contain an almost constant vector. Choose
m ∈ M such that

∑N−1
l=1 (ml)

2 is minimal. m is not almost constant, so there exist i, j
for which mi − mj ≥ 2, since if the difference between the maximal component of m
and its minimal component were less than 2, it would be almost constant. Consider the
vector m′:

m′l =


ml l 6= i, j

ml − 1 l = i

ml + 1 l = j

.

m′ satisfies the restriction
N−1∑
l=1

nl = dk, and σ (m) ≥ σ (m′):

σ (m)− σ (m′) =

N−1∑
t=1

(
β

α

)mt

· αd −
N−1∑
t=1

(
β

α

)m′
t

· αd

= αd

((
β

α

)mi

+

(
β

α

)mj

−
(
β

α

)mi−1

−
(
β

α

)mj+1
)

= αd
(
1− β

α

)((
β

α

)mj

−
(
β

α

)mi−1
)

≥ 0,

where the inequality follows from the fact that 0 ≤ β
α < 1 and mj < mi − 1 from the

assumption. Due to the minimality of σ (m), σ (m′) must also be minimal. But:

N−1∑
l=1

(ml)
2 −

N−1∑
l=1

(m′l)
2

= (mi)
2
+ (mj)

2 − (m′i)
2 −

(
m′j
)2

= (mi)
2
+ (mj)

2 − (mi − 1)
2 − (mj + 1)

2

= 2 (mi −mj)− 2

≥ 2,

which contradicts the minimality of
∑N−1
l=1 (ml)

2. Therefore M must contain an al-
most constant vector.

Next, consider a general almost constant vector n. Set a = min {nl : 1 ≤ l ≤ N − 1}
the minimal component of n. No component of n is greater then a + 1, therefore nl ∈
{a, a+ 1}. Defining m0 to be the number of a’s in n and m1 = N − 1 − m0 to be the
number of a+ 1’s, we get:
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dk =

N−1∑
l=1

nl

= m0a+m1 (a+ 1)

= (m0 +m1) a+m1

= (N − 1) a+m1.

Since m1 < N − 1, there is a unique solution to the last equation for natural a,m1.
Hence, all almost constant vectors (satisfying the restriction) are the same up to re-

ordering, and since σ (n) =
N−1∑
i=1

(
β
α

)ni

·αd, it doesn’t depend on the order of the compo-

nents in n, and σ takes on the same (minimal) value for all almost constant vectors.

Claim 2.6. For every choice of N and k, consider the following placement L (N, k) of k
drifts on the circle ZN−1:

L (N, k) =

{⌊
i · N − 1

k

⌋}k
i=1

.

Then, the vector n(d) is almost constant for all d.

Proof. We calculate the number of drifts in the interval [x, x+ d− 1]. The index i0 of the
first drift inside the interval is the smallest 1 ≤ i0 ≤ N − 1 which satisfies:

⌊
i0 ·

N − 1

k

⌋
≥ x.

That is, the smallest index satisfying i0 ≥ x · k
N−1 , which implies:

i0 =

⌈
x · k

N − 1

⌉
.

The index i1 of the last drift inside the interval is the greatest index satisfying:

⌊
i1 ·

N − 1

k

⌋
≤ x+ d− 1.

This is the greatest index satisfying i1 · N−1k < x+ d, and therefore:

i1 =

⌈
(x+ d) · k

N − 1

⌉
− 1.

The number of drifts inside this interval therefore satisfies:

i1 − i0 + 1 =

⌈
(x+ d) · k

N − 1

⌉
−
⌈
x · k

N − 1

⌉
≥ (x+ d) · k

N − 1
− x · k

N − 1
− 1

=
dk

N − 1
− 1

i1 − i0 + 1 ≤ (x+ d) · k

N − 1
+ 1− x · k

N − 1

=
dk

N − 1
+ 1.
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Consequently, for non-integer dk
N−1 the number of drifts takes on only the two values⌊

dk
N−1

⌋
,
⌈

dk
N−1

⌉
. In the case where dk

N−1 is an integer we simply have:

i1 − i0 + 1 =

⌈
(x+ d) · k

N − 1

⌉
−
⌈
x · k

N − 1

⌉
=

dk

N − 1
.

Since this number is exactly n(d)x , this proves that n(d) is an almost constant vector.

Claim 2.7. S̃LN achieves its minimum on the configuration L = L (N, k).

Proof. S̃N =
N−1∑
d=1

σd, and by claims 2.5 and 2.6 each σd is minimized by this configura-

tion (since
N−1∑
i=1

n
(d)
i = dk must hold), therefore the sum is also minimized.

Proof of Theorem 1.3. From Proposition 2.2, 0 < S̃N − SN < C. Choose n0 = 2C
ε . Then

for N > n0:

E0
ωL

(TN )

N
=

N + 2SLN
N

= 1 + 2
SLN
N

> 1 + 2
S̃LN
N
− ε

≥ 1 + 2
S̃
L(N,k)
N

N
− ε

≥ 1 + 2
S
L(N,k)
N

N
− ε

=
E0
ωL(N,k)

(TN )

N
− ε.

where the first inequality follows from S̃N − SN < 1
2εN , the second from Claim 2.7,

and the last from 0 < S̃N − SN .

Proof of Proposition 1.4. We evaluate lim
k→∞

S̃ak+1

ak+1 . S̃ak+1 is a sum over the intervals of

the circle, and we will calculate it by considering the sums over intervals containing
any given number of p-drifts.

First, consider the intervals that do not contain any p-drift. In the gap between two
p-drifts, there are a− i intervals of length i, for every 1 ≤ i ≤ a− 1. Therefore, the sum
for all k gaps:

s0 = k ·
a−1∑
i=1

(a− i)αi

= k
αa+1 − aα2 + (a− 1)α

(1− α)2
.
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Next, we consider the intervals that contain 0 < n < k p-drifts. Fixing n, there are
k choices of p-drifts for such an interval. For each of them, let r be the number of q-
drifts to the right of the rightmost p-drift, and s the number of q-drifts to the left of the
leftmost p-drift. Then, summing over all possible values of r and s, and multiplying by k
for the k different choices:

sn = k · βnα(a−1)(n−1) ·
a−1∑
r=0

a−1∑
s=0

αr+s

= kβnα(a−1)(n−1) · (1− α
a)

2

(1− α)2

k−1∑
n=1

sn = kβ
(1− αa)2

(1− α)2
·
1−

(
βαa−1

)k−1
1− βαa−1

.

For the intervals that contain all p-drifts, we first consider the intervals which do
not cover the entire circle. For each of the k gaps between two adjacent p-drifts, we
caculate the sum of the intervals that do not contain all points of that gap, but contain
all other points of the circle. Define r and s as before, and notice that since they both
count q-drifts in the same gap, and not all a− 1 q-drifts in the gap are contained in the
interval, r + s < a− 2 must hold. Therefore:

sk = k · βkα(a−1)(k−1)
a−2∑
r=0

a−r−2∑
s=0

αr+s

= kβkα(a−1)(k−1) · (aα− α− a)α
a−1 + 1

(1− α)2
.

The last interval is the entire circle, and since it contributes to the sum Sak+1 an
amount smaller than 1, we do not have to take it into account when calculating the
limit.

Putting everything together:

lim
k→∞

S̃ak+1

ak + 1
=

1

a
lim
k→∞

s0 +
k−1∑
n=1

sn + sk

k

=
1

a
·

[
αa+1 − aα2 + (a− 1)α

(1− α)2
+

β (1− αa)2

(1− α)2 (1− βαa−1)
+ 0

]
,

and since lim
k→∞

S̃ak+1−Sak+1

ak+1 = 0 from Proposition 2.2, the proof is complete.

3 Further questions

1. Show that the optimal environment also minimizes the variance of the hitting time.

2. Can this result be extended to a random walk on Z with a given density of drifts
(as in [1])?

3. Can similar results be found for other graphs? For example, Z2 ×ZN , or a binary
tree.
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