On maximizing the speed of a random walk in fixed environments

Amichai Lampert* Assaf Shapira ${ }^{\dagger}$

Abstract

We consider a random walk in a fixed \mathbb{Z} environment composed of two point types: q-drifts (in which the probabiliy to move to the right is q, and $1-q$ to the left) and p-drifts, where $\frac{1}{2}<q<p$. We study the expected hitting time of a random walk at N given the number of p-drifts in the interval [$1, N-1]$, and find that this time is minimized asymptotically by equally spaced p-drifts.

Keywords: Random Walk; Speed; Environment.
AMS MSC 2010: 60G50.
Submitted to ECP on November 10, 2012, final version accepted on May 13, 2013.

1 Introduction

Procaccia and Rosenthal [1] studied the maximal speed of a nearest neighbor random walk in a fixed \mathbb{Z} environment, consisting of points from two types. The first type gives equal probability of moving left or right, and the second type, whose density is bounded by λ, gives probability p to move to the right and $1-p$ to the left, where $p>\frac{1}{2}$. In the finite case, the placement of a given number of p-drifts on an interval which minimizes the expected crossing time is calculated. They ask about extending their results to environments on \mathbb{Z} composed of two point types: q-drifts and p-drifts, for $\frac{1}{2}<q<p \leq 1$. The goal of our work is to do so for the finite environment. See [1] for background and further related work.

Consider a nearest neighbor random walk on $0,1, \ldots, N$ denoted by $\left\{X_{n}\right\}_{n=0}^{\infty}$ with reflection at the origin. We denote the transition law by $\omega:\{0,1, \ldots, N\} \rightarrow[0,1]$. More formally this means that for all $i \in\{0,1, \ldots, N\}$:

$$
\begin{aligned}
& P\left(X_{n+1}=i+1 \mid X_{n}=i\right)=\omega(i) \\
& P\left(X_{n+1}=i-1 \mid X_{n}=i\right)=1-\omega(i) .
\end{aligned}
$$

The reflection at the origin means that $\omega(0)=1$.
First, we prove the following proposition concerning the expected hitting time at the vertex N, in a similar way to some results in [2]:

[^0]On maximizing the speed of a random walk in fixed environments

Proposition 1.1. For a walk with transition law ω starting at any point $0 \leq x \leq N$, the hitting time $T_{N}=\min \left\{n \geq 0 \mid X_{n}=N\right\}$ satisfies:

$$
E_{\omega}^{x}\left(T_{N}\right)=N-x+2 \sum_{i=x}^{N-1} \sum_{j=1}^{i} \prod_{k=j}^{i} \rho_{k},
$$

where $\rho_{i}=\frac{1-\omega(i)}{\omega(i)}$, and $E_{\omega}^{x}\left(T_{N}\right)$ stands for the expected hitting time in the environment ω starting from the vertex x. In particular:

$$
E_{\omega}^{0}\left(T_{N}\right)=N+2 \sum_{i=1}^{N-1} \sum_{j=1}^{i} \prod_{k=j}^{i} \rho_{k}
$$

The last proposition gives the following corollary:
Corollary 1.2. The expected hitting time from 0 to N is symmetric under reflection of the environment, i.e., taking the environment $\omega^{\prime}:\{0,1, \ldots, N\} \rightarrow[0,1]$ defined by:

$$
\omega^{\prime}(i)= \begin{cases}\omega(N-i) & 1 \leq i \leq N \\ 0 & i=0\end{cases}
$$

gives $E_{\omega^{\prime}}^{0}\left(T_{N}\right)=E_{\omega}^{0}\left(T_{N}\right)$.
Next we turn to the case of an environment consisting of two types of vertices, q drifts (a vertex i for which $\omega(i)=q$) and p-drifts (a vertex i for which $\omega(i)=p$), for some $\frac{1}{2}<q<p \leq 1$. For a set $L \subseteq\{1, \ldots, N\}$ of size $k=|L|$ we define the environment ω_{L} as:

$$
\forall 0 \leq x \leq N \omega_{L}(x)= \begin{cases}1 & x=0 \\ p & x \in L \\ q & x \notin L \cup\{0\}\end{cases}
$$

In [1], the exact formula for $E_{\omega}^{0}\left(T_{N}\right)$ was calculated for all choices of L and $q=\frac{1}{2}$, and for sufficiently large N (while keeping the drift density $\frac{k}{N}$ constant) it is approximately minimized by equaly spaced p-drifts. In this paper we extend this result for $q>\frac{1}{2}$. For given N and k, we define an environment $\omega_{\mathcal{L}(N, k)}$ in which the p-drifts are equally spaced (up to integer effects):

$$
\mathcal{L}(N, k)=\left\{\left\lfloor i \cdot \frac{N-1}{k}\right\rfloor, 1 \leq i \leq k\right\}
$$

and prove the following theorem:
Theorem 1.3. For every $\varepsilon>0$ there exists n_{0} such that for every $N>n_{0}$ and every set $L \subseteq\{1, \ldots, N\}$:

$$
\frac{E_{\omega_{L}}^{0}\left(T_{N}\right)}{N}>\frac{E_{\omega_{\mathcal{L}(N, k)}^{0}}^{0}\left(T_{N}\right)}{N}-\varepsilon
$$

where $k=|L|$.
Finally, we consider the set of environments $\omega_{\mathcal{L}(a k+1, k)}$ for $a \in \mathbb{N}$, and calculate $\lim _{k \rightarrow \infty} \frac{E_{\omega_{\mathcal{L}(a k+1, k)}}^{0}\left(T_{a k+1)}\right)}{a k+1}$. In these calculations, as well as in the proof of Theorem 1.3, it is convinient to use the notation $\alpha=\frac{1-q}{q}$ and $\beta=\frac{1-p}{p}$.

On maximizing the speed of a random walk in fixed environments

Proposition 1.4. Let $a \in \mathbb{N}$. Then:
$\lim _{k \rightarrow \infty} \frac{E_{\omega_{\mathcal{L}(a k+1, k)}}^{0}\left(T_{a k+1}\right)}{a k+1}=1+\frac{2}{a} \cdot\left(\frac{\alpha^{a+1}-a \alpha^{2}+(a-1) \alpha}{(1-\alpha)^{2}}+\frac{\beta\left(1-\alpha^{a}\right)^{2}}{(1-\alpha)^{2}\left(1-\beta \alpha^{a-1}\right)}\right)$.

2 Proof of the main theorem

Proof of Proposition 1.1. Let us define $v_{x}=E_{\omega}^{x}\left(T_{N}\right)$ for $0 \leq x \leq N$. By conditioning on the first step:

1. $v_{N}=0$
2. $v_{0}=v_{1}+1$
3. $v_{x}=\omega(x) v_{x+1}+(1-\omega(x)) v_{x-1}+1 \quad 1 \leq x \leq N-1$.

To solve these equations, define $a_{x}=v_{x}-v_{x-1}$ (for $1 \leq x \leq N$) and $b_{x}=v_{x+1}-v_{x-1}$ (for $1 \leq x \leq N-1$). Then $\forall x \in\{1, \ldots, N-1\}$:

$$
\begin{aligned}
b_{x} & =a_{x}+a_{x+1} \\
a_{x} & =\omega(x) b_{x}+1 \\
a_{1} & =-1 .
\end{aligned}
$$

Thus a_{x} satisfies the relation $a_{x+1}=\rho_{x} a_{x}-\rho_{x}-1$, whose solution is $a_{x}=-2 \sum_{j=1}^{x-1} \prod_{k=j}^{x-1} \rho_{k}-$ 1 , and thus:

$$
\begin{aligned}
v_{x} & =\sum_{i=x+1}^{N}\left(v_{i-1}-v_{i}\right)+v_{N} \\
& =\sum_{i=x+1}^{N}\left(-a_{i}\right)+v_{N} \\
& =N-x+2 \sum_{i=x}^{N-1} \sum_{j=1}^{i} \prod_{k=j}^{i} \rho_{k} .
\end{aligned}
$$

Finally, for $x=0$:

$$
v_{0}=N+2 \sum_{i=1}^{N-1} \sum_{j=1}^{i} \prod_{k=j}^{i} \rho_{k},
$$

since for $i=0$ the inner sum is empty.
Definition 2.1. For $N \in \mathbb{N}$ denote:

$$
S_{N}=\sum_{i=1}^{N-1} \sum_{j=1}^{i} \prod_{k=j}^{i} \rho_{k}=\sum_{d=1}^{N-1} \sum_{j=1}^{N-d} \prod_{k=j}^{j+d-1} \rho_{k}
$$

In order to estimate S_{N}, we compare it to a similar sum on a circle. We glue the vertices 0 and $N-1$, and then sum over subintervals of the circle \mathbb{Z}_{N-1}, rather then summing over subinterval of the segment $[1, N-1]$.

On maximizing the speed of a random walk in fixed environments

More formally, extend ρ such that $\rho_{k}=\rho_{k-N+1}$ for $k \geq N$ (also setting ρ_{N} to be equal ρ_{1}). Then consider the following sum:

$$
\widetilde{S}_{N}=\sum_{d=1}^{N-1} \sum_{j=1}^{N-1} \prod_{k=j}^{j+d-1} \rho_{k}
$$

Note that both S_{N} and \widetilde{S}_{N} depend on the environment ω_{L}, so when necessary we shall use the explicit notations S_{N}^{L} and \widetilde{S}_{N}^{L}.
Proposition 2.2. There exists a constant $C=C(\alpha)$ such that for every environment ω_{L} :

$$
\left|\widetilde{S}_{N}-S_{N}\right| \leq C(\alpha)
$$

Proof. Since $\alpha=\frac{1-q}{q}, \beta=\frac{1-p}{p}$, and $\frac{1}{2}<q<p \leq 1,0 \leq \beta<\alpha<1$, we get:

$$
\begin{aligned}
\left|\widetilde{S}_{N}-S_{N}\right| & =\sum_{d=1}^{N-1} \sum_{j=N-d+1}^{N-1} \prod_{k=j}^{j+d-1} \rho_{k} \\
& \leq \sum_{d=1}^{N-1} d \alpha^{d} \\
& \leq \sum_{d=1}^{\infty} d \alpha^{d}=C(\alpha)
\end{aligned}
$$

Definition 2.3. $\operatorname{Let} n_{i}^{(d)}$ be the number of p-drifts in the interval $[i, i+d-1]$, i.e., $n_{i}^{(d)}=$ $|[i, i+d-1] \cap L|$.

Since every drift appears in d intervals of length $d, \sum_{i=1}^{N-1} n_{i}^{(d)}=d k$, where $k=|L|$. In addition,

$$
\begin{aligned}
\widetilde{S}_{N} & =\sum_{d=1}^{N-1} \sum_{i=1}^{N-1}\left(\frac{\beta}{\alpha}\right)^{n_{i}^{(d)}} \cdot \alpha^{d} \\
& =\sum_{d=1}^{N-1} \sigma_{d}
\end{aligned}
$$

where $\sigma_{d}=\sum_{i=1}^{N-1}\left(\frac{\beta}{\alpha}\right)^{n_{i}^{(d)}} \cdot \alpha^{d}$.
In the following claim we fix d, and see under which conditions σ_{d} is minimal. After fixing d, σ depends only on the vector $\mathbf{n}^{(d)}=\left(n_{1}^{(d)}, \ldots, n_{N-1}^{(d)}\right)$.
Definition 2.4. We say that a vector $\mathbf{n}=\left(n_{1}, \ldots, n_{N-1}\right) \in \mathbb{N}^{N-1}$ is almost constant if there exists $a \in \mathbb{N}$ such that $n_{i} \in\{a, a+1\}$ for every $1 \leq i \leq N-1$.

Claim 2.5. Consider $\sigma_{d}(\mathbf{n})$ for $\mathbf{n} \in \mathbb{N}^{N-1}$, under the restriction $\sum_{i=1}^{N-1} n_{i}=d k$, and let $\mathbf{m} \in \mathbb{N}^{N-1}$ be an almost constant vector. Then \mathbf{m} minimizes σ_{d}, i.e., for every $\mathbf{n} \in \mathbb{N}^{N-1}$ such that $\sum_{i=1}^{N-1} n_{i}=d k, \sigma_{d}(\mathbf{m}) \leq \sigma_{d}(\mathbf{n})$.

Proof. For convenience, we omit d from the notation, and always assume that the domain of σ is the set of vectors in \mathbb{N}^{N-1} that satisfy the restriction $\sum_{i=1}^{N-1} n_{i}=d k$.

We will first show that $\sigma(\mathbf{n})$ achieves its minimum for some almost constant vector n. Secondly, we show that the value of σ on all almost constant vectors is the same, and this will complete the proof.

Let $M \subseteq \mathbb{N}^{N-1}$ be the set of vectors satisfying $\sum_{l=1}^{N-1} n_{l}=d k$ that minimize σ, and assume by contradiction that M doesn't contain an almost constant vector. Choose $\mathbf{m} \in M$ such that $\sum_{l=1}^{N-1}\left(m_{l}\right)^{2}$ is minimal. \mathbf{m} is not almost constant, so there exist i, j for which $m_{i}-m_{j} \geq 2$, since if the difference between the maximal component of \mathbf{m} and its minimal component were less than 2 , it would be almost constant. Consider the vector \mathbf{m}^{\prime} :

$$
m_{l}^{\prime}=\left\{\begin{array}{ll}
m_{l} & l \neq i, j \\
m_{l}-1 & l=i \\
m_{l}+1 & l=j
\end{array} .\right.
$$

\mathbf{m}^{\prime} satisfies the restriction $\sum_{l=1}^{N-1} n_{l}=d k$, and $\sigma(\mathbf{m}) \geq \sigma\left(\mathbf{m}^{\prime}\right)$:

$$
\begin{aligned}
\sigma(\mathbf{m})-\sigma\left(\mathbf{m}^{\prime}\right) & =\sum_{t=1}^{N-1}\left(\frac{\beta}{\alpha}\right)^{m_{t}} \cdot \alpha^{d}-\sum_{t=1}^{N-1}\left(\frac{\beta}{\alpha}\right)^{m_{t}^{\prime}} \cdot \alpha^{d} \\
& =\alpha^{d}\left(\left(\frac{\beta}{\alpha}\right)^{m_{i}}+\left(\frac{\beta}{\alpha}\right)^{m_{j}}-\left(\frac{\beta}{\alpha}\right)^{m_{i}-1}-\left(\frac{\beta}{\alpha}\right)^{m_{j}+1}\right) \\
& =\alpha^{d}\left(1-\frac{\beta}{\alpha}\right)\left(\left(\frac{\beta}{\alpha}\right)^{m_{j}}-\left(\frac{\beta}{\alpha}\right)^{m_{i}-1}\right) \\
& \geq 0
\end{aligned}
$$

where the inequality follows from the fact that $0 \leq \frac{\beta}{\alpha}<1$ and $m_{j}<m_{i}-1$ from the assumption. Due to the minimality of $\sigma(\mathbf{m}), \sigma\left(\mathbf{m}^{\prime}\right)$ must also be minimal. But:

$$
\begin{aligned}
\sum_{l=1}^{N-1}\left(m_{l}\right)^{2}-\sum_{l=1}^{N-1}\left(m_{l}^{\prime}\right)^{2} & =\left(m_{i}\right)^{2}+\left(m_{j}\right)^{2}-\left(m_{i}^{\prime}\right)^{2}-\left(m_{j}^{\prime}\right)^{2} \\
& =\left(m_{i}\right)^{2}+\left(m_{j}\right)^{2}-\left(m_{i}-1\right)^{2}-\left(m_{j}+1\right)^{2} \\
& =2\left(m_{i}-m_{j}\right)-2 \\
& \geq 2
\end{aligned}
$$

which contradicts the minimality of $\sum_{l=1}^{N-1}\left(m_{l}\right)^{2}$. Therefore M must contain an almost constant vector.

Next, consider a general almost constant vector \mathbf{n}. Set $a=\min \left\{n_{l}: 1 \leq l \leq N-1\right\}$ the minimal component of \mathbf{n}. No component of \mathbf{n} is greater then $a+1$, therefore $n_{l} \in$ $\{a, a+1\}$. Defining m_{0} to be the number of a^{\prime} s in \mathbf{n} and $m_{1}=N-1-m_{0}$ to be the number of $a+1$'s, we get:

On maximizing the speed of a random walk in fixed environments

$$
\begin{aligned}
d k & =\sum_{l=1}^{N-1} n_{l} \\
& =m_{0} a+m_{1}(a+1) \\
& =\left(m_{0}+m_{1}\right) a+m_{1} \\
& =(N-1) a+m_{1} .
\end{aligned}
$$

Since $m_{1}<N-1$, there is a unique solution to the last equation for natural a, m_{1}. Hence, all almost constant vectors (satisfying the restriction) are the same up to reordering, and since $\sigma(\mathbf{n})=\sum_{i=1}^{N-1}\left(\frac{\beta}{\alpha}\right)^{n_{i}} \cdot \alpha^{d}$, it doesn't depend on the order of the components in \mathbf{n}, and σ takes on the same (minimal) value for all almost constant vectors.

Claim 2.6. For every choice of N and k, consider the following placement $\mathcal{L}(N, k)$ of k drifts on the circle \mathbb{Z}_{N-1} :

$$
\mathcal{L}(N, k)=\left\{\left\lfloor i \cdot \frac{N-1}{k}\right\rfloor\right\}_{i=1}^{k} .
$$

Then, the vector $\mathbf{n}^{(d)}$ is almost constant for all d.
Proof. We calculate the number of drifts in the interval $[x, x+d-1]$. The index i_{0} of the first drift inside the interval is the smallest $1 \leq i_{0} \leq N-1$ which satisfies:

$$
\left\lfloor i_{0} \cdot \frac{N-1}{k}\right\rfloor \geq x
$$

That is, the smallest index satisfying $i_{0} \geq x \cdot \frac{k}{N-1}$, which implies:

$$
i_{0}=\left\lceil x \cdot \frac{k}{N-1}\right\rceil .
$$

The index i_{1} of the last drift inside the interval is the greatest index satisfying:

$$
\left\lfloor i_{1} \cdot \frac{N-1}{k}\right\rfloor \leq x+d-1 .
$$

This is the greatest index satisfying $i_{1} \cdot \frac{N-1}{k}<x+d$, and therefore:

$$
i_{1}=\left\lceil(x+d) \cdot \frac{k}{N-1}\right\rceil-1
$$

The number of drifts inside this interval therefore satisfies:

$$
\begin{aligned}
i_{1}-i_{0}+1 & =\left\lceil(x+d) \cdot \frac{k}{N-1}\right\rceil-\left\lceil x \cdot \frac{k}{N-1}\right\rceil \\
& \geq(x+d) \cdot \frac{k}{N-1}-x \cdot \frac{k}{N-1}-1 \\
& =\frac{d k}{N-1}-1 \\
i_{1}-i_{0}+1 & \leq(x+d) \cdot \frac{k}{N-1}+1-x \cdot \frac{k}{N-1} \\
& =\frac{d k}{N-1}+1
\end{aligned}
$$

On maximizing the speed of a random walk in fixed environments

Consequently, for non-integer $\frac{d k}{N-1}$ the number of drifts takes on only the two values $\left\lfloor\frac{d k}{N-1}\right\rfloor,\left\lceil\frac{d k}{N-1}\right\rceil$. In the case where $\frac{d k}{N-1}$ is an integer we simply have:

$$
\begin{aligned}
i_{1}-i_{0}+1 & =\left\lceil(x+d) \cdot \frac{k}{N-1}\right\rceil-\left\lceil x \cdot \frac{k}{N-1}\right\rceil \\
& =\frac{d k}{N-1} .
\end{aligned}
$$

Since this number is exactly $n_{x}^{(d)}$, this proves that $\mathbf{n}^{(d)}$ is an almost constant vector.

Claim 2.7. \widetilde{S}_{N}^{L} achieves its minimum on the configuration $L=\mathcal{L}(N, k)$.
Proof. $\widetilde{S}_{N}=\sum_{d=1}^{N-1} \sigma_{d}$, and by claims 2.5 and 2.6 each σ_{d} is minimized by this configuration (since $\sum_{i=1}^{N-1} n_{i}^{(d)}=d k$ must hold), therefore the sum is also minimized.

Proof of Theorem 1.3. From Proposition 2.2, $0<\widetilde{S}_{N}-S_{N}<C$. Choose $n_{0}=\frac{2 C}{\varepsilon}$. Then for $N>n_{0}$:

$$
\begin{aligned}
\frac{E_{\omega_{L}}^{0}\left(T_{N}\right)}{N} & =\frac{N+2 S_{N}^{L}}{N} \\
& =1+2 \frac{S_{N}^{L}}{N} \\
& >1+2 \frac{\widetilde{S}_{N}^{L}}{N}-\varepsilon \\
& \geq 1+2 \frac{\widetilde{S}_{N}^{\mathcal{L}(N, k)}}{N}-\varepsilon \\
& \geq 1+2 \frac{S_{N}^{\mathcal{L}(N, k)}}{N}-\varepsilon \\
& =\frac{E_{\omega_{\mathcal{L}(N, k)}}^{0}\left(T_{N}\right)}{N}-\varepsilon
\end{aligned}
$$

where the first inequality follows from $\widetilde{S}_{N}-S_{N}<\frac{1}{2} \varepsilon N$, the second from Claim 2.7, and the last from $0<\widetilde{S}_{N}-S_{N}$.

Proof of Proposition 1.4. We evaluate $\lim _{k \rightarrow \infty} \frac{\widetilde{S}_{a k+1}}{a k+1} . \widetilde{S}_{a k+1}$ is a sum over the intervals of the circle, and we will calculate it by considering the sums over intervals containing any given number of p-drifts.

First, consider the intervals that do not contain any p-drift. In the gap between two p-drifts, there are $a-i$ intervals of length i, for every $1 \leq i \leq a-1$. Therefore, the sum for all k gaps:

$$
\begin{aligned}
s_{0} & =k \cdot \sum_{i=1}^{a-1}(a-i) \alpha^{i} \\
& =k \frac{\alpha^{a+1}-a \alpha^{2}+(a-1) \alpha}{(1-\alpha)^{2}}
\end{aligned}
$$

Next, we consider the intervals that contain $0<n<k p$-drifts. Fixing n, there are k choices of p-drifts for such an interval. For each of them, let r be the number of q drifts to the right of the rightmost p-drift, and s the number of q-drifts to the left of the leftmost p-drift. Then, summing over all possible values of r and s, and multiplying by k for the k different choices:

$$
\begin{aligned}
s_{n} & =k \cdot \beta^{n} \alpha^{(a-1)(n-1)} \cdot \sum_{r=0}^{a-1} \sum_{s=0}^{a-1} \alpha^{r+s} \\
& =k \beta^{n} \alpha^{(a-1)(n-1)} \cdot \frac{\left(1-\alpha^{a}\right)^{2}}{(1-\alpha)^{2}} \\
\sum_{n=1}^{k-1} s_{n} & =k \beta \frac{\left(1-\alpha^{a}\right)^{2}}{(1-\alpha)^{2}} \cdot \frac{1-\left(\beta \alpha^{a-1}\right)^{k-1}}{1-\beta \alpha^{a-1}} .
\end{aligned}
$$

For the intervals that contain all p-drifts, we first consider the intervals which do not cover the entire circle. For each of the k gaps between two adjacent p-drifts, we caculate the sum of the intervals that do not contain all points of that gap, but contain all other points of the circle. Define r and s as before, and notice that since they both count q-drifts in the same gap, and not all $a-1 q$-drifts in the gap are contained in the interval, $r+s<a-2$ must hold. Therefore:

$$
\begin{aligned}
s_{k} & =k \cdot \beta^{k} \alpha^{(a-1)(k-1)} \sum_{r=0}^{a-2} \sum_{s=0}^{a-r-2} \alpha^{r+s} \\
& =k \beta^{k} \alpha^{(a-1)(k-1)} \cdot \frac{(a \alpha-\alpha-a) \alpha^{a-1}+1}{(1-\alpha)^{2}}
\end{aligned}
$$

The last interval is the entire circle, and since it contributes to the sum $S_{a k+1}$ an amount smaller than 1 , we do not have to take it into account when calculating the limit.

Putting everything together:

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{\widetilde{S}_{a k+1}}{a k+1} & =\frac{1}{a} \lim _{k \rightarrow \infty} \frac{s_{0}+\sum_{n=1}^{k-1} s_{n}+s_{k}}{k} \\
& =\frac{1}{a} \cdot\left[\frac{\alpha^{a+1}-a \alpha^{2}+(a-1) \alpha}{(1-\alpha)^{2}}+\frac{\beta\left(1-\alpha^{a}\right)^{2}}{(1-\alpha)^{2}\left(1-\beta \alpha^{a-1}\right)}+0\right]
\end{aligned}
$$

and since $\lim _{k \rightarrow \infty} \frac{\widetilde{S}_{a k+1}-S_{a k+1}}{a k+1}=0$ from Proposition 2.2, the proof is complete.

3 Further questions

1. Show that the optimal environment also minimizes the variance of the hitting time.
2. Can this result be extended to a random walk on \mathbb{Z} with a given density of drifts (as in [1])?
3. Can similar results be found for other graphs? For example, $\mathbb{Z}_{2} \times \mathbb{Z}_{N}$, or a binary tree.

On maximizing the speed of a random walk in fixed environments

References

[1] E.B. Procaccia and R. Rosenthal, The need for speed: maximizing the speed of random walk in fixed environments, Electronic Journal of Probability 17 (2012), 1-19. MR-2892326
[2] O. Zeitouni, Part ii: Random walks in random environment, Lectures on probability theory and statistics (2004). MR-2071631

Acknowledgments. We thank Eviatar Procaccia and Itai Benjamini for introducing us to this problem and for many useful discussions.

[^0]: *E-mail: amichai.lam@gmail.com
 ${ }^{\dagger}$ Technion, Haifa, Israel. E-mail: assafs@tx.technion.ac.il

