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Abstract
We prove that Vertex Reinforced Random Walk onZwith weight of order kα, with α ∈
[0, 1/2), is either almost surely recurrent or almost surely transient. This improves a
previous result of Volkov who showed that the set of sites which are visited infinitely
often was a.s. either empty or infinite.
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1 Introduction

Linearly vertex reinforced random walks (VRRW for short), introduced by Pemantle
in [8], were first studied on Z by Pemantle and Volkov [9], who showed that with positive
probability these processes spend all large times on just five sites. Some times later,
Tarrès [11] managed to prove that this striking phenomenon, called localization, occurs
in fact almost surely (and he recently gave a simplified proof in [12]). Roughly in the
mean-time Volkov [13] proved that (linearly) VRRW localize as well on a large class of
graphs with positive probability and almost surely on trees. Benaïm and Tarrès [2] have
recently generalized his result to a larger class of walks, with a completely different
proof.

In the recent works [4, 5], new models of self-interacting random walks are intro-
duced, where the interaction is not restricted to nearest neighbors. Then the authors
prove that localization can occur on sets of arbitrary size, depending on the parameters
of the model.

What emerges from these remarkable results is the fact that, when studying self-
interacting (or non Markovian) random walks on graphs, the first thing one should do
is to determine the set of vertices which are visited infinitely often and see if this is
empty, the whole graph or some nontrivial subgraph. According to Volkov’s notation
[14] we shall denote this set by R′ here. If it is the whole graph, we say that the walk
is recurrent and if it is empty we say that the walk is transient. But as we just saw, it
might be equal to something else and even have arbitrary size.

In 2006 Volkov started the study of VRRW on Z with some weight (wk, k ≥ 0). Such
process, say (Xn, n ≥ 0), is defined as follows. First X0 = 0. Then for all n ≥ 0, on the
event {Xn = x},

P(Xn+1 = Xn ± 1 | Fn) =
wZn(x±1)

wZn(x−1) + wZn(x+1)
, (1.1)
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A 0-1 law for VRRW with weight of order kα

where (Fn, n ≥ 0) is the natural filtration of X and for all y ∈ Z,

Zn(y) = #{m ≤ n : Xm = y},

is the local time in y at time n. Linearly VRRW correspond to the case when wk = k + 1

for all k ≥ 0. Volkov [14] showed that when
∑
k 1/wk is finite, then X almost surely

localizes on two sites, i.e. that R′ has a.s. cardinality 2, and when wk � (k + 1)α,1

for some α ∈ [0, 1), then a.s. R′ cannot be nonempty and finite (actually he proved this
result under slightly more general hypotheses, see [14] for details). He conjectured also
that the process should be a.s. recurrent, i.e. that R′ should be a.s. equal to Z (Problem
3 in [14]). It is even natural to believe that this should hold as soon as wk = O(kα), for
some α < 1, and not only when wk is exactly of order kα, for some fixed α. However, to
our knowledge, no progress on this conjecture has been made since then, even in the
case α = 0. Here we obtain the following result:

Theorem 1.1. Assume that there exists some α ∈ [0, 1/2), such that wk � (k + 1)α.
Then the VRRW on Z with weight (wk, k ≥ 0) is either a.s. recurrent or a.s. transient.

This result says that R′ is either a.s. empty or a.s. equal to Z. This first step toward
Volkov’s conjecture, called Problem 1 in [14], gives strong evidence that the conjecture
should be true, at least when α < 1/2. Indeed since the process is "reinforced" it should
be "more" recurrent than simple random walk and since it does not localize it should
be recurrent. However, giving a rigorous proof to this kind of monotonicity argument
(even formulating a correct statement) is still a real challenge.

For other results on VRRW, particularly on finite graphs, we refer the reader to
[1, 2, 7, 8]. We shall also mention that analogous results have been obtained in a
continuous setting, for self-interacting diffusions, see [3, 6, 10].

Our proof is different from Volkov’s proof, which was based on urns arguments
and on Rubin’s construction. We use instead a kind of domino principle, which works
roughly as follows. Assume that some site x ≤ 0 is visited infinitely often, but not x− 1,
and let us fix some small constant ε > 0. Then at k-th visit to x, with k large, the local
time in x+1 has to be at least of order k1/α−ε. Otherwise, X would have jumped roughly
kαε times on x− 1, which is not allowed if k is large. Then we repeat this argument and
show that before the k1/α−ε-th visit to x+ 1, the local time in x+ 2 has to be at least of
order kγ , with γ = 1/α+(1/α−1)2− ε/α. Otherwise, during the k1/α−ε visits to x+1, X
would have jumped more than k times to x. By repeating this argument infinitely often,
we get that the local time in x + i has to be of order kγi , with γi of order (1/α − 1)i,
for all i ≥ 1. This is of course not possible before the time of k-th visit to x, and we
get a contradiction. However this argument only works when γi → ∞, when i → ∞,
which explains why we need the hypothesis α < 1/2. Then we deduce that a.s. R′ is
either empty or equal to Z, see Sections 3 and 4 for more details. To see that there
is really a 0-1 law, we use the general Lemma 2.1 below, which enables us to conclude
with Borel-Cantelli like arguments.

2 A general lemma

Let us introduce some new notation. For any w = (wk(x))x∈Z,k≥0, denote by Pw the
law of the VRRW in the "environement" w. This process is defined as in (1.1) except
that in the right hand side we replace wZn(x±1) by wZn(x±1)(x± 1).

Lemma 2.1. If 0 has positive probability under P to be visited only finitely many times,
then for all w ∈ (0,∞)Z×N, such that wk(x) = wk for all x ≥ 0 and k ≥ 0, the probability

1we say that fk � gk when fk/gk is bounded from above and below by positive constants
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under Pw that 0 is visited only at time 0 is also positive. In particular P(Xn > 0 ∀n >
0) > 0.

Proof. By using a symmetry argument we know that there exists some M > 0 such
that P(Xn > 0 for all n ≥ M) > 0. By conditioning now with respect to the first M
steps, we see that there must exist some sequence (x0, . . . , xM ), with xM > 0, such that
conditionally on E = {(X0, . . . , XM ) = (x0, . . . , xM )}, the probability that Xn > 0 for
all n > M is positive. But for any such sequence and any w as in the lemma, we have
Pw(E) > 0, and since wk(x) = wk when x ≥ 0, we have

Pw(Xn > 0 for all n > M | E) = P(Xn > 0 for all n > M | E) > 0.

Note that if X follows the path (x0, . . . , xM ) during the first M steps and after stays on
the right of 0, then certainly it always stays on the right of −M . Thus we also have

Pw(Xn > −M for all n ≥ 0) > 0. (2.1)

Now if w′ = (w′k(x))k≥0,x∈Z is such that for all k ≥ 0, w′k(x) = wk+1 if x < 0, and
w′k(x) = wk if x ≥ 0, then by using the Markov property we get

Pw(Xn > 0 ∀n > 0) ≥ Pw(X1 = 1, . . . , XM =M)Pw′(Xn > −M ∀n ≥ 0).

The first probability on the right hand side is positive (since w0 > 0 by hypothesis), and
it follows from (2.1), with w′ in place of w, that the second one is also positive. This
finishes the proof of the lemma.

3 An induction argument and a new proof of Volkov’s result

We first present a kind of domino principle. In plain words it works as follows.
Assume that there exists some x ∈ Z, such that inf R′ = x. It means that x is visited
infinitely often, but not x− 1. To simplify assume even that x− 1 has never been visited.
Fix some large integer k and let n be the time of k-th visit to x. Then at each of the
k first visits to x, the process has probability at least of order 1/Zn(x + 1)α to jump to
x − 1. Since it did not, this implies with high probability that Zn(x + 1) is at least of
order k1/α. The idea is then to repeat the argument. More precisely the next lemma
implies by induction that the local time in x + i at time n is of order at least kγi , with
γi =

∑i
j=0(1/α−1)j , up to some error term and with probability going to 1 exponentially

fast when k →∞. In particular when α < 1/2 the error term is negligible and we get a
contradiction, since the process X cannot visit an infinite number of sites before time
n. See the next subsection for details. When α is larger than or equal to 1/2, the error
term becomes predominant when i → ∞, and the argument blows up. However, it still
implies that R′ cannot be finite, which gives an alternative proof to Volkov’s result, see
Corollary 3.1 below.

Now for x ∈ Z and k ≥ 1, set

Tx(k) = inf{n ≥ 0 : Zn(x) ≥ k}.

Denote also by Tx := Tx(1) the hitting time of x. In the following each time we consider
an event of the type {T < T ′}, for two random times T and T ′, we implicitely assume
that it is contained in the set {T <∞}.

Lemma 3.1. Assume that there exists some α ∈ [0, 1), such that wk � (k + 1)α. Then
there exist constants c > 0 and C > 0, such that for all x ∈ Z, all γ > 1, all ε ∈ (0, α) and
all k ≥ eC/ε,

P
[
Tx+1(k

γ) < Tx(k) ∧ Tx+2(k
γ−1
α +1−ε)

]
≤ exp

(
−c k1−α

| ln ε|1/(1−α)

)
.
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Proof. Let ε ∈ (0, α) and γ > 1 be given. Consider the event

A0 :=
{
Tx+1(k

γ) < Tx(k) ∧ Tx+2(k
γ′)
}
,

where γ′ := (γ − 1)/α+ 1− ε. Set K = [3 ln ε/ lnα]. For i = 1, . . . ,K, set

ti := Tx+1

(
kγ

(K − i+ 1)2

)
,

and for i ≥ 2,

Ni =
kγ

(K − i+ 1)2
− kγ

(K − i+ 2)2
.

Set also N1 = kγ/K2. Note that by hypothesis, if C > 0 is large enough,

Ni ≥ kγ/(K − i+ 2)3 ≥ 1, (3.1)

for all i ≤ K, and thus ti < ti+1. Moreover, since wk � kα, there exists some constant
c0 ∈ (0, 1), such that for all i0 < j0, all i ≥ i0 and all j ≤ j0, wi/(wi + wj) ≥ c0i

α
0 /j

α
0 . In

particular before time Tx(k) ∧ Tx+2(k
γ′), at each visit to x + 1, the probability to jump

to x is larger than p1 := c0/k
αγ′ . Thus if t1 < Tx(k) ∧ Tx+2(k

γ′), as it is the case on
the event A0 for instance, then the number of jumps from x + 1 to x before time t1 + 1

stochastically dominates the sum of N1 independent Bernoulli random variables with
parameter p1. Therefore,

P [A0, Z1+t1(x) ≤ N1p1/2] ≤ exp(−c1N1p1),

for some constant c1 > 0. Define next inductively p2, . . . , pK , and A1, . . . , AK+1, by

pi = c0(Ni−1pi−1/2)
αk−αγ

′
,

for i ∈ {2, . . . ,K}, and
Ai := A0 ∩ {Z1+ti(x) ≥ Nipi/2} ,

for i ∈ {1, . . . ,K + 1}. Now by using the same argument as above, we immediately get
by induction that

P [Ai−1, Z1+ti(x) ≤ Nipi/2] ≤ exp (−c1Nipi) , (3.2)

for all i ∈ {2, . . . ,K + 1}. It is also straightforward to prove by induction, and by using
(3.1), that

Nipi ≥
2(c0/2)

1+α+···+αi(∏i
j=1(K − j + 2)αi−j

)3 k1−αi+αε, (3.3)

for all i ≤ K. On the other hand it is immediate that

sup
K

K∏
j=1

(K − j + 2)α
K−j

<∞.

Thus there exists a constant c′ > 0 such that

NKpK ≥ c′k1−α
K+αε.

By taking now ε ≥ C/ ln k, with C large enough, we deduce that NKpK/2 > k+ 1. Since
on A0, tK = Tx+1(k

γ) ≤ Tx(k), we get that AK+1 is empty. Finally note that for all i ≤ K,

i∏
j=1

(K − j + 2)α
i−j
≤ (K + 1)1/(1−α),
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so we also deduce from (3.2) and (3.3) that

P[A0] ≤
K+1∑
j=1

P [Ai−1, Z1+ti(x) ≤ Nipi/2]

≤ (K + 1) exp(−c2k1−α/| ln ε|1/(1−α))
≤ exp(−ck1−α/| ln ε|1/(1−α)),

for some positive constants c2 and c. This finishes the proof of the lemma.

We can now give an alternative proof to Volkov’s result, in the case when wk is of order
kα.

Corollary 3.1. Assume that there exists α ∈ [0, 1), such that wk � (k + 1)α. Then a.s.
|R′| ∈ {0,∞}.

Proof. Fix some x ∈ Z and some integers N ≥ 1 and z0 > 0. We want to prove that the
event {Z∞(x) = ∞} ∩ {Z∞(x − 1) < z0} ∩ {Z∞(x + N) ≤ 1} has probability zero, with
the convention Z∞(y) := limn→∞ Zn(y), for all y ∈ Z.

For this first observe that for any ε < 1/α, and any m ≥ 1,

P
[
Tx(m) < Tx+1(m

1/α−ε) ∧ Tx−1(z0)
]
≤ P

 m∑
j=1

ξj ≤ z0

 ≤ e−c(z0) mεα ,
where c(z0) is some constant and the ξj ’s are i.i.d. Bernoulli random variables with
parameter c′m−1+εα, for some other constant c′ > 0.

Now define γ1, . . . , γN , by γ1 = 1, γ2 = 1/α− ε, and for i ≥ 1,

γi+2 = γi(1− ε) +
1

α
(γi+1 − γi).

Note already, that if ε is small enough, then γi+1 > γi, for all i ≤ N − 1. Thus, as soon
as m is large enough, we can apply Lemma 3.1 with k = mγi and γ = γi+1/γi, for any
i ∈ {1, . . . , N − 1}, and we get

P [Tx+i(m
γi+1) < Tx+i−1(m

γi) ∧ Tx+i+1(m
γi+2)] ≤ exp

(
−c mγi(1−α)

| ln ε|1/(1−α)

)
,

where c is the constant appearing in Lemma 3.1. Then,

P [{Z∞(x) =∞} ∩ {Z∞(x− 1) < z0} ∩ {Z∞(x+N) ≤ 1}]
= P [∩m→∞ {Tx(m) < Tx−1(z0)} ∩ {Z∞(x+N) ≤ 1}]
= lim

m→∞
P [{Tx(m) < Tx−1(z0)} ∩ {Z∞(x+N) ≤ 1}]

≤ lim
m→∞

{
P
[
Tx(m) < Tx+1(m

1/α−ε) ∧ Tx−1(z0)
]

+

N−1∑
i=1

P [Tx+i(m
γi+1) < Tx+i−1(m

γi) ∧ Tx+i+1(m
γi+2)]

}
= 0,

as wanted. Since this is true for any x, N ≥ 1 and z0, this proves the corollary.
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4 Proof of Theorem 1.1

We assume in this section that α < 1/2.

For x ≤ 0 and m ≥ 1, consider the event

Ex(m) := {Tx(m) < Tx−1} .

Then for i ≥ 1, set εi = r/i2, with r > 0 some positive constant which will be fixed later.
Consider the sequence (γi, i ≥ 1) defined inductively by γ1 = 1, γ2 = (1/α) − r and for
i ≥ 1,

γi+2 = γi(1− εi) +
1

α
(γi+1 − γi).

Set
Fx(m) := {Tx+i(mγi+1) < Tx+i−1(m

γi) for all i ≥ 1} .

Let us show that if r is small enough, then

sup
x≤0

P [Fx(m)c ∩ Ex(m)] = O
(
e−κm

rα
)
, (4.1)

as m→∞, for some constant κ > 0. For this note that for all i ≥ 1,

γi+2 − γi+1 = (
1

α
− 1)(γi+1 − γi)− εiγi,

so by induction we get

γi+2 − γi+1 = (γ2 − γ1)(
1

α
− 1)i −

i∑
j=1

εjγj(
1

α
− 1)i−j . (4.2)

In particular γi+2 − γi+1 ≤ (1/α − 1)i+1, for all i ≥ 1, which implies γi ≤ C0(1/α − 1)i,
for some constant C0 > 0. Since

∑
1/i2 < ∞, we see from (4.2) that if r > 0 is small

enough, then there exists a constant c0 > 0, such that

γi+2 − γi+1 ≥ c0(
1

α
− 1)i.

Thus γi+2 ≥ c0(1/α − 1)i, for all i ≥ 1, and since α < 1/2, γi grows exponentially fast
with i. Therefore, as soon as m is large enough, we can apply Lemma 3.1 with k = mγi ,
γ = γi+1/γi and ε = εi, for all i ≥ 1. Then we get

P[Fx(m)c ∩ Ex(m)] ≤ P [Tx(m) < Tx+1(m
γ2) ∧ Tx−1(z0)]

+
∑
i≥1

P [Tx+i(m
γi+1) < Tx+i−1(m

γi) ∧ Tx+i+1(m
γi+2)]

≤ e−κm
rα

+
∑
i≥1

exp

(
−c mγi(1−α)

| ln εi|1/(1−α)

)
,

where c is the constant appearing in Lemma 3.1, and κ some other constant, see the
proof of Corollary 3.1. Since γi grows exponentially fast with i, (4.1) follows. But for any
x ≤ 0 and any m ≥ 1, the event Fx(m) ∩ Ex(m) is empty since X cannot visit infinitely
many sites in finite time. This proves that

sup
x≤0

P[Ex(m)] = O
(
e−κm

rα
)
, (4.3)

as well, when m → ∞. This proves in particular that for all x ≤ 0, P[∩mEx(m)] = 0.
This means that a.s. the process cannot visit i.o. x and never x − 1. Actually the proof
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shows as well that for any x ∈ Z, a.s. the process cannot visit x i.o. and only finitely
many times x− 1. Similarly, if E′x(m) := {Tx(m) < Tx+1}, for x ≥ 0, then

sup
x≥0

P[E′x(m)] = O
(
e−κm

rα
)
, (4.4)

as m → ∞, and we can see that a.s. the process cannot visit i.o. some x ∈ Z, and only
finitely many times x + 1. In other words, we just proved that a.s. either R′ = Z or
R′ = ∅.

Now observe that by using Lemma 2.1, if P[Xn > 0 ∀n > 0] = 0, then we know that 0 is
a.s. visited infinitely often. So with the result we just have proved, we know that in this
case a.s. R′ = Z. So it only remains to consider the case when P[Xn > 0 ∀n > 0] > 0,
which we assume now. We will prove that in this case the process is a.s. transient. To
this end, note that (4.3) and (4.4) show that∑

x≥0

P[{Tx(x) < Tx+1} ∪ {T−x(x) < T−x−1}] < +∞.

Thus according to Borel–Cantelli’s lemma, a.s. for x large enough, either Tx+1 < Tx(x)

or T−x−1 < T−x(x). For n ≥ 1, denote by xn the n-th site visited by X, such that
Txn < Txn−1(xn− 1) and xn > 0, or Txn < Txn+1(|xn+1|) and xn < 0. Note that |xn| is at
most of order n, so that for all n, if for instance xn > 0, then X has probability of order
at least n−α to jump to xn + 1 at time Txn , and similarly if xn < 0. Hence,∑

n≥1

P
[
Txn+1 = Txn + 1 or Txn−1 = Txn + 1 | FTxn

]
=∞.

It then follows from Levy’s conditional Borel–Cantelli’s lemma (see for instance Lemma
5.1 in [12]), that a.s. for infinitely many n ≥ 1, either Txn+1 = Txn + 1 (if xn > 0) or
Txn−1 = Txn + 1 (if xn < 0). But each time this happens, by using our assumption we
see that, independently of FTxn , X has some positive probability p > 0 to never come
back to xn after time Txn . It follows that a.s. this happens infinitely often, which proves
well that X is a.s. transient, as wanted. �
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